applied-ai-018 commited on
Commit
73ed65b
·
verified ·
1 Parent(s): 3d7b8c5

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/geometry/curve.py +424 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/geometry/line.py +2803 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/geometry/parabola.py +422 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/geometry/plane.py +884 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/geometry/point.py +1378 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py +12 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py +643 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py +538 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/__init__.py +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/sets/__init__.py +36 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/__init__.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/conditionset.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/contains.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/ordinals.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/sets/conditionset.py +246 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/sets/contains.py +48 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/sets/fancysets.py +1521 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__init__.py +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/comparison.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/functions.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/mul.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/add.py +79 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/comparison.py +53 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/functions.py +262 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/intersection.py +514 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/issubset.py +144 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/mul.py +79 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/power.py +107 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/union.py +147 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/sets/ordinals.py +282 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/sets/powerset.py +119 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/sets/setexpr.py +97 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/sets/sets.py +2749 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__init__.py +0 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_conditionset.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_sets.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_conditionset.py +294 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_contains.py +50 -0
env-llmeval/lib/python3.10/site-packages/sympy/geometry/curve.py ADDED
@@ -0,0 +1,424 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Curves in 2-dimensional Euclidean space.
2
+
3
+ Contains
4
+ ========
5
+ Curve
6
+
7
+ """
8
+
9
+ from sympy.functions.elementary.miscellaneous import sqrt
10
+ from sympy.core import diff
11
+ from sympy.core.containers import Tuple
12
+ from sympy.core.symbol import _symbol
13
+ from sympy.geometry.entity import GeometryEntity, GeometrySet
14
+ from sympy.geometry.point import Point
15
+ from sympy.integrals import integrate
16
+ from sympy.matrices import Matrix, rot_axis3
17
+ from sympy.utilities.iterables import is_sequence
18
+
19
+ from mpmath.libmp.libmpf import prec_to_dps
20
+
21
+
22
+ class Curve(GeometrySet):
23
+ """A curve in space.
24
+
25
+ A curve is defined by parametric functions for the coordinates, a
26
+ parameter and the lower and upper bounds for the parameter value.
27
+
28
+ Parameters
29
+ ==========
30
+
31
+ function : list of functions
32
+ limits : 3-tuple
33
+ Function parameter and lower and upper bounds.
34
+
35
+ Attributes
36
+ ==========
37
+
38
+ functions
39
+ parameter
40
+ limits
41
+
42
+ Raises
43
+ ======
44
+
45
+ ValueError
46
+ When `functions` are specified incorrectly.
47
+ When `limits` are specified incorrectly.
48
+
49
+ Examples
50
+ ========
51
+
52
+ >>> from sympy import Curve, sin, cos, interpolate
53
+ >>> from sympy.abc import t, a
54
+ >>> C = Curve((sin(t), cos(t)), (t, 0, 2))
55
+ >>> C.functions
56
+ (sin(t), cos(t))
57
+ >>> C.limits
58
+ (t, 0, 2)
59
+ >>> C.parameter
60
+ t
61
+ >>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C
62
+ Curve((t, t**2), (t, 0, 1))
63
+ >>> C.subs(t, 4)
64
+ Point2D(4, 16)
65
+ >>> C.arbitrary_point(a)
66
+ Point2D(a, a**2)
67
+
68
+ See Also
69
+ ========
70
+
71
+ sympy.core.function.Function
72
+ sympy.polys.polyfuncs.interpolate
73
+
74
+ """
75
+
76
+ def __new__(cls, function, limits):
77
+ if not is_sequence(function) or len(function) != 2:
78
+ raise ValueError("Function argument should be (x(t), y(t)) "
79
+ "but got %s" % str(function))
80
+ if not is_sequence(limits) or len(limits) != 3:
81
+ raise ValueError("Limit argument should be (t, tmin, tmax) "
82
+ "but got %s" % str(limits))
83
+
84
+ return GeometryEntity.__new__(cls, Tuple(*function), Tuple(*limits))
85
+
86
+ def __call__(self, f):
87
+ return self.subs(self.parameter, f)
88
+
89
+ def _eval_subs(self, old, new):
90
+ if old == self.parameter:
91
+ return Point(*[f.subs(old, new) for f in self.functions])
92
+
93
+ def _eval_evalf(self, prec=15, **options):
94
+ f, (t, a, b) = self.args
95
+ dps = prec_to_dps(prec)
96
+ f = tuple([i.evalf(n=dps, **options) for i in f])
97
+ a, b = [i.evalf(n=dps, **options) for i in (a, b)]
98
+ return self.func(f, (t, a, b))
99
+
100
+ def arbitrary_point(self, parameter='t'):
101
+ """A parameterized point on the curve.
102
+
103
+ Parameters
104
+ ==========
105
+
106
+ parameter : str or Symbol, optional
107
+ Default value is 't'.
108
+ The Curve's parameter is selected with None or self.parameter
109
+ otherwise the provided symbol is used.
110
+
111
+ Returns
112
+ =======
113
+
114
+ Point :
115
+ Returns a point in parametric form.
116
+
117
+ Raises
118
+ ======
119
+
120
+ ValueError
121
+ When `parameter` already appears in the functions.
122
+
123
+ Examples
124
+ ========
125
+
126
+ >>> from sympy import Curve, Symbol
127
+ >>> from sympy.abc import s
128
+ >>> C = Curve([2*s, s**2], (s, 0, 2))
129
+ >>> C.arbitrary_point()
130
+ Point2D(2*t, t**2)
131
+ >>> C.arbitrary_point(C.parameter)
132
+ Point2D(2*s, s**2)
133
+ >>> C.arbitrary_point(None)
134
+ Point2D(2*s, s**2)
135
+ >>> C.arbitrary_point(Symbol('a'))
136
+ Point2D(2*a, a**2)
137
+
138
+ See Also
139
+ ========
140
+
141
+ sympy.geometry.point.Point
142
+
143
+ """
144
+ if parameter is None:
145
+ return Point(*self.functions)
146
+
147
+ tnew = _symbol(parameter, self.parameter, real=True)
148
+ t = self.parameter
149
+ if (tnew.name != t.name and
150
+ tnew.name in (f.name for f in self.free_symbols)):
151
+ raise ValueError('Symbol %s already appears in object '
152
+ 'and cannot be used as a parameter.' % tnew.name)
153
+ return Point(*[w.subs(t, tnew) for w in self.functions])
154
+
155
+ @property
156
+ def free_symbols(self):
157
+ """Return a set of symbols other than the bound symbols used to
158
+ parametrically define the Curve.
159
+
160
+ Returns
161
+ =======
162
+
163
+ set :
164
+ Set of all non-parameterized symbols.
165
+
166
+ Examples
167
+ ========
168
+
169
+ >>> from sympy.abc import t, a
170
+ >>> from sympy import Curve
171
+ >>> Curve((t, t**2), (t, 0, 2)).free_symbols
172
+ set()
173
+ >>> Curve((t, t**2), (t, a, 2)).free_symbols
174
+ {a}
175
+
176
+ """
177
+ free = set()
178
+ for a in self.functions + self.limits[1:]:
179
+ free |= a.free_symbols
180
+ free = free.difference({self.parameter})
181
+ return free
182
+
183
+ @property
184
+ def ambient_dimension(self):
185
+ """The dimension of the curve.
186
+
187
+ Returns
188
+ =======
189
+
190
+ int :
191
+ the dimension of curve.
192
+
193
+ Examples
194
+ ========
195
+
196
+ >>> from sympy.abc import t
197
+ >>> from sympy import Curve
198
+ >>> C = Curve((t, t**2), (t, 0, 2))
199
+ >>> C.ambient_dimension
200
+ 2
201
+
202
+ """
203
+
204
+ return len(self.args[0])
205
+
206
+ @property
207
+ def functions(self):
208
+ """The functions specifying the curve.
209
+
210
+ Returns
211
+ =======
212
+
213
+ functions :
214
+ list of parameterized coordinate functions.
215
+
216
+ Examples
217
+ ========
218
+
219
+ >>> from sympy.abc import t
220
+ >>> from sympy import Curve
221
+ >>> C = Curve((t, t**2), (t, 0, 2))
222
+ >>> C.functions
223
+ (t, t**2)
224
+
225
+ See Also
226
+ ========
227
+
228
+ parameter
229
+
230
+ """
231
+ return self.args[0]
232
+
233
+ @property
234
+ def limits(self):
235
+ """The limits for the curve.
236
+
237
+ Returns
238
+ =======
239
+
240
+ limits : tuple
241
+ Contains parameter and lower and upper limits.
242
+
243
+ Examples
244
+ ========
245
+
246
+ >>> from sympy.abc import t
247
+ >>> from sympy import Curve
248
+ >>> C = Curve([t, t**3], (t, -2, 2))
249
+ >>> C.limits
250
+ (t, -2, 2)
251
+
252
+ See Also
253
+ ========
254
+
255
+ plot_interval
256
+
257
+ """
258
+ return self.args[1]
259
+
260
+ @property
261
+ def parameter(self):
262
+ """The curve function variable.
263
+
264
+ Returns
265
+ =======
266
+
267
+ Symbol :
268
+ returns a bound symbol.
269
+
270
+ Examples
271
+ ========
272
+
273
+ >>> from sympy.abc import t
274
+ >>> from sympy import Curve
275
+ >>> C = Curve([t, t**2], (t, 0, 2))
276
+ >>> C.parameter
277
+ t
278
+
279
+ See Also
280
+ ========
281
+
282
+ functions
283
+
284
+ """
285
+ return self.args[1][0]
286
+
287
+ @property
288
+ def length(self):
289
+ """The curve length.
290
+
291
+ Examples
292
+ ========
293
+
294
+ >>> from sympy import Curve
295
+ >>> from sympy.abc import t
296
+ >>> Curve((t, t), (t, 0, 1)).length
297
+ sqrt(2)
298
+
299
+ """
300
+ integrand = sqrt(sum(diff(func, self.limits[0])**2 for func in self.functions))
301
+ return integrate(integrand, self.limits)
302
+
303
+ def plot_interval(self, parameter='t'):
304
+ """The plot interval for the default geometric plot of the curve.
305
+
306
+ Parameters
307
+ ==========
308
+
309
+ parameter : str or Symbol, optional
310
+ Default value is 't';
311
+ otherwise the provided symbol is used.
312
+
313
+ Returns
314
+ =======
315
+
316
+ List :
317
+ the plot interval as below:
318
+ [parameter, lower_bound, upper_bound]
319
+
320
+ Examples
321
+ ========
322
+
323
+ >>> from sympy import Curve, sin
324
+ >>> from sympy.abc import x, s
325
+ >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval()
326
+ [t, 1, 2]
327
+ >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s)
328
+ [s, 1, 2]
329
+
330
+ See Also
331
+ ========
332
+
333
+ limits : Returns limits of the parameter interval
334
+
335
+ """
336
+ t = _symbol(parameter, self.parameter, real=True)
337
+ return [t] + list(self.limits[1:])
338
+
339
+ def rotate(self, angle=0, pt=None):
340
+ """This function is used to rotate a curve along given point ``pt`` at given angle(in radian).
341
+
342
+ Parameters
343
+ ==========
344
+
345
+ angle :
346
+ the angle at which the curve will be rotated(in radian) in counterclockwise direction.
347
+ default value of angle is 0.
348
+
349
+ pt : Point
350
+ the point along which the curve will be rotated.
351
+ If no point given, the curve will be rotated around origin.
352
+
353
+ Returns
354
+ =======
355
+
356
+ Curve :
357
+ returns a curve rotated at given angle along given point.
358
+
359
+ Examples
360
+ ========
361
+
362
+ >>> from sympy import Curve, pi
363
+ >>> from sympy.abc import x
364
+ >>> Curve((x, x), (x, 0, 1)).rotate(pi/2)
365
+ Curve((-x, x), (x, 0, 1))
366
+
367
+ """
368
+ if pt:
369
+ pt = -Point(pt, dim=2)
370
+ else:
371
+ pt = Point(0,0)
372
+ rv = self.translate(*pt.args)
373
+ f = list(rv.functions)
374
+ f.append(0)
375
+ f = Matrix(1, 3, f)
376
+ f *= rot_axis3(angle)
377
+ rv = self.func(f[0, :2].tolist()[0], self.limits)
378
+ pt = -pt
379
+ return rv.translate(*pt.args)
380
+
381
+ def scale(self, x=1, y=1, pt=None):
382
+ """Override GeometryEntity.scale since Curve is not made up of Points.
383
+
384
+ Returns
385
+ =======
386
+
387
+ Curve :
388
+ returns scaled curve.
389
+
390
+ Examples
391
+ ========
392
+
393
+ >>> from sympy import Curve
394
+ >>> from sympy.abc import x
395
+ >>> Curve((x, x), (x, 0, 1)).scale(2)
396
+ Curve((2*x, x), (x, 0, 1))
397
+
398
+ """
399
+ if pt:
400
+ pt = Point(pt, dim=2)
401
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
402
+ fx, fy = self.functions
403
+ return self.func((fx*x, fy*y), self.limits)
404
+
405
+ def translate(self, x=0, y=0):
406
+ """Translate the Curve by (x, y).
407
+
408
+ Returns
409
+ =======
410
+
411
+ Curve :
412
+ returns a translated curve.
413
+
414
+ Examples
415
+ ========
416
+
417
+ >>> from sympy import Curve
418
+ >>> from sympy.abc import x
419
+ >>> Curve((x, x), (x, 0, 1)).translate(1, 2)
420
+ Curve((x + 1, x + 2), (x, 0, 1))
421
+
422
+ """
423
+ fx, fy = self.functions
424
+ return self.func((fx + x, fy + y), self.limits)
env-llmeval/lib/python3.10/site-packages/sympy/geometry/line.py ADDED
@@ -0,0 +1,2803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Line-like geometrical entities.
2
+
3
+ Contains
4
+ ========
5
+ LinearEntity
6
+ Line
7
+ Ray
8
+ Segment
9
+ LinearEntity2D
10
+ Line2D
11
+ Ray2D
12
+ Segment2D
13
+ LinearEntity3D
14
+ Line3D
15
+ Ray3D
16
+ Segment3D
17
+
18
+ """
19
+
20
+ from sympy.core.containers import Tuple
21
+ from sympy.core.evalf import N
22
+ from sympy.core.expr import Expr
23
+ from sympy.core.numbers import Rational, oo, Float
24
+ from sympy.core.relational import Eq
25
+ from sympy.core.singleton import S
26
+ from sympy.core.sorting import ordered
27
+ from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol
28
+ from sympy.core.sympify import sympify
29
+ from sympy.functions.elementary.piecewise import Piecewise
30
+ from sympy.functions.elementary.trigonometric import (_pi_coeff, acos, tan, atan2)
31
+ from .entity import GeometryEntity, GeometrySet
32
+ from .exceptions import GeometryError
33
+ from .point import Point, Point3D
34
+ from .util import find, intersection
35
+ from sympy.logic.boolalg import And
36
+ from sympy.matrices import Matrix
37
+ from sympy.sets.sets import Intersection
38
+ from sympy.simplify.simplify import simplify
39
+ from sympy.solvers.solvers import solve
40
+ from sympy.solvers.solveset import linear_coeffs
41
+ from sympy.utilities.misc import Undecidable, filldedent
42
+
43
+
44
+ import random
45
+
46
+
47
+ t, u = [Dummy('line_dummy') for i in range(2)]
48
+
49
+
50
+ class LinearEntity(GeometrySet):
51
+ """A base class for all linear entities (Line, Ray and Segment)
52
+ in n-dimensional Euclidean space.
53
+
54
+ Attributes
55
+ ==========
56
+
57
+ ambient_dimension
58
+ direction
59
+ length
60
+ p1
61
+ p2
62
+ points
63
+
64
+ Notes
65
+ =====
66
+
67
+ This is an abstract class and is not meant to be instantiated.
68
+
69
+ See Also
70
+ ========
71
+
72
+ sympy.geometry.entity.GeometryEntity
73
+
74
+ """
75
+ def __new__(cls, p1, p2=None, **kwargs):
76
+ p1, p2 = Point._normalize_dimension(p1, p2)
77
+ if p1 == p2:
78
+ # sometimes we return a single point if we are not given two unique
79
+ # points. This is done in the specific subclass
80
+ raise ValueError(
81
+ "%s.__new__ requires two unique Points." % cls.__name__)
82
+ if len(p1) != len(p2):
83
+ raise ValueError(
84
+ "%s.__new__ requires two Points of equal dimension." % cls.__name__)
85
+
86
+ return GeometryEntity.__new__(cls, p1, p2, **kwargs)
87
+
88
+ def __contains__(self, other):
89
+ """Return a definitive answer or else raise an error if it cannot
90
+ be determined that other is on the boundaries of self."""
91
+ result = self.contains(other)
92
+
93
+ if result is not None:
94
+ return result
95
+ else:
96
+ raise Undecidable(
97
+ "Cannot decide whether '%s' contains '%s'" % (self, other))
98
+
99
+ def _span_test(self, other):
100
+ """Test whether the point `other` lies in the positive span of `self`.
101
+ A point x is 'in front' of a point y if x.dot(y) >= 0. Return
102
+ -1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and
103
+ and 1 if `other` is in front of `self.p1`."""
104
+ if self.p1 == other:
105
+ return 0
106
+
107
+ rel_pos = other - self.p1
108
+ d = self.direction
109
+ if d.dot(rel_pos) > 0:
110
+ return 1
111
+ return -1
112
+
113
+ @property
114
+ def ambient_dimension(self):
115
+ """A property method that returns the dimension of LinearEntity
116
+ object.
117
+
118
+ Parameters
119
+ ==========
120
+
121
+ p1 : LinearEntity
122
+
123
+ Returns
124
+ =======
125
+
126
+ dimension : integer
127
+
128
+ Examples
129
+ ========
130
+
131
+ >>> from sympy import Point, Line
132
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
133
+ >>> l1 = Line(p1, p2)
134
+ >>> l1.ambient_dimension
135
+ 2
136
+
137
+ >>> from sympy import Point, Line
138
+ >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
139
+ >>> l1 = Line(p1, p2)
140
+ >>> l1.ambient_dimension
141
+ 3
142
+
143
+ """
144
+ return len(self.p1)
145
+
146
+ def angle_between(l1, l2):
147
+ """Return the non-reflex angle formed by rays emanating from
148
+ the origin with directions the same as the direction vectors
149
+ of the linear entities.
150
+
151
+ Parameters
152
+ ==========
153
+
154
+ l1 : LinearEntity
155
+ l2 : LinearEntity
156
+
157
+ Returns
158
+ =======
159
+
160
+ angle : angle in radians
161
+
162
+ Notes
163
+ =====
164
+
165
+ From the dot product of vectors v1 and v2 it is known that:
166
+
167
+ ``dot(v1, v2) = |v1|*|v2|*cos(A)``
168
+
169
+ where A is the angle formed between the two vectors. We can
170
+ get the directional vectors of the two lines and readily
171
+ find the angle between the two using the above formula.
172
+
173
+ See Also
174
+ ========
175
+
176
+ is_perpendicular, Ray2D.closing_angle
177
+
178
+ Examples
179
+ ========
180
+
181
+ >>> from sympy import Line
182
+ >>> e = Line((0, 0), (1, 0))
183
+ >>> ne = Line((0, 0), (1, 1))
184
+ >>> sw = Line((1, 1), (0, 0))
185
+ >>> ne.angle_between(e)
186
+ pi/4
187
+ >>> sw.angle_between(e)
188
+ 3*pi/4
189
+
190
+ To obtain the non-obtuse angle at the intersection of lines, use
191
+ the ``smallest_angle_between`` method:
192
+
193
+ >>> sw.smallest_angle_between(e)
194
+ pi/4
195
+
196
+ >>> from sympy import Point3D, Line3D
197
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
198
+ >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
199
+ >>> l1.angle_between(l2)
200
+ acos(-sqrt(2)/3)
201
+ >>> l1.smallest_angle_between(l2)
202
+ acos(sqrt(2)/3)
203
+ """
204
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
205
+ raise TypeError('Must pass only LinearEntity objects')
206
+
207
+ v1, v2 = l1.direction, l2.direction
208
+ return acos(v1.dot(v2)/(abs(v1)*abs(v2)))
209
+
210
+ def smallest_angle_between(l1, l2):
211
+ """Return the smallest angle formed at the intersection of the
212
+ lines containing the linear entities.
213
+
214
+ Parameters
215
+ ==========
216
+
217
+ l1 : LinearEntity
218
+ l2 : LinearEntity
219
+
220
+ Returns
221
+ =======
222
+
223
+ angle : angle in radians
224
+
225
+ Examples
226
+ ========
227
+
228
+ >>> from sympy import Point, Line
229
+ >>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
230
+ >>> l1, l2 = Line(p1, p2), Line(p1, p3)
231
+ >>> l1.smallest_angle_between(l2)
232
+ pi/4
233
+
234
+ See Also
235
+ ========
236
+
237
+ angle_between, is_perpendicular, Ray2D.closing_angle
238
+ """
239
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
240
+ raise TypeError('Must pass only LinearEntity objects')
241
+
242
+ v1, v2 = l1.direction, l2.direction
243
+ return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2)))
244
+
245
+ def arbitrary_point(self, parameter='t'):
246
+ """A parameterized point on the Line.
247
+
248
+ Parameters
249
+ ==========
250
+
251
+ parameter : str, optional
252
+ The name of the parameter which will be used for the parametric
253
+ point. The default value is 't'. When this parameter is 0, the
254
+ first point used to define the line will be returned, and when
255
+ it is 1 the second point will be returned.
256
+
257
+ Returns
258
+ =======
259
+
260
+ point : Point
261
+
262
+ Raises
263
+ ======
264
+
265
+ ValueError
266
+ When ``parameter`` already appears in the Line's definition.
267
+
268
+ See Also
269
+ ========
270
+
271
+ sympy.geometry.point.Point
272
+
273
+ Examples
274
+ ========
275
+
276
+ >>> from sympy import Point, Line
277
+ >>> p1, p2 = Point(1, 0), Point(5, 3)
278
+ >>> l1 = Line(p1, p2)
279
+ >>> l1.arbitrary_point()
280
+ Point2D(4*t + 1, 3*t)
281
+ >>> from sympy import Point3D, Line3D
282
+ >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
283
+ >>> l1 = Line3D(p1, p2)
284
+ >>> l1.arbitrary_point()
285
+ Point3D(4*t + 1, 3*t, t)
286
+
287
+ """
288
+ t = _symbol(parameter, real=True)
289
+ if t.name in (f.name for f in self.free_symbols):
290
+ raise ValueError(filldedent('''
291
+ Symbol %s already appears in object
292
+ and cannot be used as a parameter.
293
+ ''' % t.name))
294
+ # multiply on the right so the variable gets
295
+ # combined with the coordinates of the point
296
+ return self.p1 + (self.p2 - self.p1)*t
297
+
298
+ @staticmethod
299
+ def are_concurrent(*lines):
300
+ """Is a sequence of linear entities concurrent?
301
+
302
+ Two or more linear entities are concurrent if they all
303
+ intersect at a single point.
304
+
305
+ Parameters
306
+ ==========
307
+
308
+ lines
309
+ A sequence of linear entities.
310
+
311
+ Returns
312
+ =======
313
+
314
+ True : if the set of linear entities intersect in one point
315
+ False : otherwise.
316
+
317
+ See Also
318
+ ========
319
+
320
+ sympy.geometry.util.intersection
321
+
322
+ Examples
323
+ ========
324
+
325
+ >>> from sympy import Point, Line
326
+ >>> p1, p2 = Point(0, 0), Point(3, 5)
327
+ >>> p3, p4 = Point(-2, -2), Point(0, 2)
328
+ >>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
329
+ >>> Line.are_concurrent(l1, l2, l3)
330
+ True
331
+ >>> l4 = Line(p2, p3)
332
+ >>> Line.are_concurrent(l2, l3, l4)
333
+ False
334
+ >>> from sympy import Point3D, Line3D
335
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2)
336
+ >>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1)
337
+ >>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4)
338
+ >>> Line3D.are_concurrent(l1, l2, l3)
339
+ True
340
+ >>> l4 = Line3D(p2, p3)
341
+ >>> Line3D.are_concurrent(l2, l3, l4)
342
+ False
343
+
344
+ """
345
+ common_points = Intersection(*lines)
346
+ if common_points.is_FiniteSet and len(common_points) == 1:
347
+ return True
348
+ return False
349
+
350
+ def contains(self, other):
351
+ """Subclasses should implement this method and should return
352
+ True if other is on the boundaries of self;
353
+ False if not on the boundaries of self;
354
+ None if a determination cannot be made."""
355
+ raise NotImplementedError()
356
+
357
+ @property
358
+ def direction(self):
359
+ """The direction vector of the LinearEntity.
360
+
361
+ Returns
362
+ =======
363
+
364
+ p : a Point; the ray from the origin to this point is the
365
+ direction of `self`
366
+
367
+ Examples
368
+ ========
369
+
370
+ >>> from sympy import Line
371
+ >>> a, b = (1, 1), (1, 3)
372
+ >>> Line(a, b).direction
373
+ Point2D(0, 2)
374
+ >>> Line(b, a).direction
375
+ Point2D(0, -2)
376
+
377
+ This can be reported so the distance from the origin is 1:
378
+
379
+ >>> Line(b, a).direction.unit
380
+ Point2D(0, -1)
381
+
382
+ See Also
383
+ ========
384
+
385
+ sympy.geometry.point.Point.unit
386
+
387
+ """
388
+ return self.p2 - self.p1
389
+
390
+ def intersection(self, other):
391
+ """The intersection with another geometrical entity.
392
+
393
+ Parameters
394
+ ==========
395
+
396
+ o : Point or LinearEntity
397
+
398
+ Returns
399
+ =======
400
+
401
+ intersection : list of geometrical entities
402
+
403
+ See Also
404
+ ========
405
+
406
+ sympy.geometry.point.Point
407
+
408
+ Examples
409
+ ========
410
+
411
+ >>> from sympy import Point, Line, Segment
412
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
413
+ >>> l1 = Line(p1, p2)
414
+ >>> l1.intersection(p3)
415
+ [Point2D(7, 7)]
416
+ >>> p4, p5 = Point(5, 0), Point(0, 3)
417
+ >>> l2 = Line(p4, p5)
418
+ >>> l1.intersection(l2)
419
+ [Point2D(15/8, 15/8)]
420
+ >>> p6, p7 = Point(0, 5), Point(2, 6)
421
+ >>> s1 = Segment(p6, p7)
422
+ >>> l1.intersection(s1)
423
+ []
424
+ >>> from sympy import Point3D, Line3D, Segment3D
425
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
426
+ >>> l1 = Line3D(p1, p2)
427
+ >>> l1.intersection(p3)
428
+ [Point3D(7, 7, 7)]
429
+ >>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17))
430
+ >>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8])
431
+ >>> l1.intersection(l2)
432
+ [Point3D(1, 1, -3)]
433
+ >>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
434
+ >>> s1 = Segment3D(p6, p7)
435
+ >>> l1.intersection(s1)
436
+ []
437
+
438
+ """
439
+ def intersect_parallel_rays(ray1, ray2):
440
+ if ray1.direction.dot(ray2.direction) > 0:
441
+ # rays point in the same direction
442
+ # so return the one that is "in front"
443
+ return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1]
444
+ else:
445
+ # rays point in opposite directions
446
+ st = ray1._span_test(ray2.p1)
447
+ if st < 0:
448
+ return []
449
+ elif st == 0:
450
+ return [ray2.p1]
451
+ return [Segment(ray1.p1, ray2.p1)]
452
+
453
+ def intersect_parallel_ray_and_segment(ray, seg):
454
+ st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2)
455
+ if st1 < 0 and st2 < 0:
456
+ return []
457
+ elif st1 >= 0 and st2 >= 0:
458
+ return [seg]
459
+ elif st1 >= 0: # st2 < 0:
460
+ return [Segment(ray.p1, seg.p1)]
461
+ else: # st1 < 0 and st2 >= 0:
462
+ return [Segment(ray.p1, seg.p2)]
463
+
464
+ def intersect_parallel_segments(seg1, seg2):
465
+ if seg1.contains(seg2):
466
+ return [seg2]
467
+ if seg2.contains(seg1):
468
+ return [seg1]
469
+
470
+ # direct the segments so they're oriented the same way
471
+ if seg1.direction.dot(seg2.direction) < 0:
472
+ seg2 = Segment(seg2.p2, seg2.p1)
473
+ # order the segments so seg1 is "behind" seg2
474
+ if seg1._span_test(seg2.p1) < 0:
475
+ seg1, seg2 = seg2, seg1
476
+ if seg2._span_test(seg1.p2) < 0:
477
+ return []
478
+ return [Segment(seg2.p1, seg1.p2)]
479
+
480
+ if not isinstance(other, GeometryEntity):
481
+ other = Point(other, dim=self.ambient_dimension)
482
+ if other.is_Point:
483
+ if self.contains(other):
484
+ return [other]
485
+ else:
486
+ return []
487
+ elif isinstance(other, LinearEntity):
488
+ # break into cases based on whether
489
+ # the lines are parallel, non-parallel intersecting, or skew
490
+ pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2)
491
+ rank = Point.affine_rank(*pts)
492
+
493
+ if rank == 1:
494
+ # we're collinear
495
+ if isinstance(self, Line):
496
+ return [other]
497
+ if isinstance(other, Line):
498
+ return [self]
499
+
500
+ if isinstance(self, Ray) and isinstance(other, Ray):
501
+ return intersect_parallel_rays(self, other)
502
+ if isinstance(self, Ray) and isinstance(other, Segment):
503
+ return intersect_parallel_ray_and_segment(self, other)
504
+ if isinstance(self, Segment) and isinstance(other, Ray):
505
+ return intersect_parallel_ray_and_segment(other, self)
506
+ if isinstance(self, Segment) and isinstance(other, Segment):
507
+ return intersect_parallel_segments(self, other)
508
+ elif rank == 2:
509
+ # we're in the same plane
510
+ l1 = Line(*pts[:2])
511
+ l2 = Line(*pts[2:])
512
+
513
+ # check to see if we're parallel. If we are, we can't
514
+ # be intersecting, since the collinear case was already
515
+ # handled
516
+ if l1.direction.is_scalar_multiple(l2.direction):
517
+ return []
518
+
519
+ # find the intersection as if everything were lines
520
+ # by solving the equation t*d + p1 == s*d' + p1'
521
+ m = Matrix([l1.direction, -l2.direction]).transpose()
522
+ v = Matrix([l2.p1 - l1.p1]).transpose()
523
+
524
+ # we cannot use m.solve(v) because that only works for square matrices
525
+ m_rref, pivots = m.col_insert(2, v).rref(simplify=True)
526
+ # rank == 2 ensures we have 2 pivots, but let's check anyway
527
+ if len(pivots) != 2:
528
+ raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v))
529
+ coeff = m_rref[0, 2]
530
+ line_intersection = l1.direction*coeff + self.p1
531
+
532
+ # if both are lines, skip a containment check
533
+ if isinstance(self, Line) and isinstance(other, Line):
534
+ return [line_intersection]
535
+
536
+ if ((isinstance(self, Line) or
537
+ self.contains(line_intersection)) and
538
+ other.contains(line_intersection)):
539
+ return [line_intersection]
540
+ if not self.atoms(Float) and not other.atoms(Float):
541
+ # if it can fail when there are no Floats then
542
+ # maybe the following parametric check should be
543
+ # done
544
+ return []
545
+ # floats may fail exact containment so check that the
546
+ # arbitrary points, when equal, both give a
547
+ # non-negative parameter when the arbitrary point
548
+ # coordinates are equated
549
+ tu = solve(self.arbitrary_point(t) - other.arbitrary_point(u),
550
+ t, u, dict=True)[0]
551
+ def ok(p, l):
552
+ if isinstance(l, Line):
553
+ # p > -oo
554
+ return True
555
+ if isinstance(l, Ray):
556
+ # p >= 0
557
+ return p.is_nonnegative
558
+ if isinstance(l, Segment):
559
+ # 0 <= p <= 1
560
+ return p.is_nonnegative and (1 - p).is_nonnegative
561
+ raise ValueError("unexpected line type")
562
+ if ok(tu[t], self) and ok(tu[u], other):
563
+ return [line_intersection]
564
+ return []
565
+ else:
566
+ # we're skew
567
+ return []
568
+
569
+ return other.intersection(self)
570
+
571
+ def is_parallel(l1, l2):
572
+ """Are two linear entities parallel?
573
+
574
+ Parameters
575
+ ==========
576
+
577
+ l1 : LinearEntity
578
+ l2 : LinearEntity
579
+
580
+ Returns
581
+ =======
582
+
583
+ True : if l1 and l2 are parallel,
584
+ False : otherwise.
585
+
586
+ See Also
587
+ ========
588
+
589
+ coefficients
590
+
591
+ Examples
592
+ ========
593
+
594
+ >>> from sympy import Point, Line
595
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
596
+ >>> p3, p4 = Point(3, 4), Point(6, 7)
597
+ >>> l1, l2 = Line(p1, p2), Line(p3, p4)
598
+ >>> Line.is_parallel(l1, l2)
599
+ True
600
+ >>> p5 = Point(6, 6)
601
+ >>> l3 = Line(p3, p5)
602
+ >>> Line.is_parallel(l1, l3)
603
+ False
604
+ >>> from sympy import Point3D, Line3D
605
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5)
606
+ >>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11)
607
+ >>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4)
608
+ >>> Line3D.is_parallel(l1, l2)
609
+ True
610
+ >>> p5 = Point3D(6, 6, 6)
611
+ >>> l3 = Line3D(p3, p5)
612
+ >>> Line3D.is_parallel(l1, l3)
613
+ False
614
+
615
+ """
616
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
617
+ raise TypeError('Must pass only LinearEntity objects')
618
+
619
+ return l1.direction.is_scalar_multiple(l2.direction)
620
+
621
+ def is_perpendicular(l1, l2):
622
+ """Are two linear entities perpendicular?
623
+
624
+ Parameters
625
+ ==========
626
+
627
+ l1 : LinearEntity
628
+ l2 : LinearEntity
629
+
630
+ Returns
631
+ =======
632
+
633
+ True : if l1 and l2 are perpendicular,
634
+ False : otherwise.
635
+
636
+ See Also
637
+ ========
638
+
639
+ coefficients
640
+
641
+ Examples
642
+ ========
643
+
644
+ >>> from sympy import Point, Line
645
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
646
+ >>> l1, l2 = Line(p1, p2), Line(p1, p3)
647
+ >>> l1.is_perpendicular(l2)
648
+ True
649
+ >>> p4 = Point(5, 3)
650
+ >>> l3 = Line(p1, p4)
651
+ >>> l1.is_perpendicular(l3)
652
+ False
653
+ >>> from sympy import Point3D, Line3D
654
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
655
+ >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
656
+ >>> l1.is_perpendicular(l2)
657
+ False
658
+ >>> p4 = Point3D(5, 3, 7)
659
+ >>> l3 = Line3D(p1, p4)
660
+ >>> l1.is_perpendicular(l3)
661
+ False
662
+
663
+ """
664
+ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
665
+ raise TypeError('Must pass only LinearEntity objects')
666
+
667
+ return S.Zero.equals(l1.direction.dot(l2.direction))
668
+
669
+ def is_similar(self, other):
670
+ """
671
+ Return True if self and other are contained in the same line.
672
+
673
+ Examples
674
+ ========
675
+
676
+ >>> from sympy import Point, Line
677
+ >>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
678
+ >>> l1 = Line(p1, p2)
679
+ >>> l2 = Line(p1, p3)
680
+ >>> l1.is_similar(l2)
681
+ True
682
+ """
683
+ l = Line(self.p1, self.p2)
684
+ return l.contains(other)
685
+
686
+ @property
687
+ def length(self):
688
+ """
689
+ The length of the line.
690
+
691
+ Examples
692
+ ========
693
+
694
+ >>> from sympy import Point, Line
695
+ >>> p1, p2 = Point(0, 0), Point(3, 5)
696
+ >>> l1 = Line(p1, p2)
697
+ >>> l1.length
698
+ oo
699
+ """
700
+ return S.Infinity
701
+
702
+ @property
703
+ def p1(self):
704
+ """The first defining point of a linear entity.
705
+
706
+ See Also
707
+ ========
708
+
709
+ sympy.geometry.point.Point
710
+
711
+ Examples
712
+ ========
713
+
714
+ >>> from sympy import Point, Line
715
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
716
+ >>> l = Line(p1, p2)
717
+ >>> l.p1
718
+ Point2D(0, 0)
719
+
720
+ """
721
+ return self.args[0]
722
+
723
+ @property
724
+ def p2(self):
725
+ """The second defining point of a linear entity.
726
+
727
+ See Also
728
+ ========
729
+
730
+ sympy.geometry.point.Point
731
+
732
+ Examples
733
+ ========
734
+
735
+ >>> from sympy import Point, Line
736
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
737
+ >>> l = Line(p1, p2)
738
+ >>> l.p2
739
+ Point2D(5, 3)
740
+
741
+ """
742
+ return self.args[1]
743
+
744
+ def parallel_line(self, p):
745
+ """Create a new Line parallel to this linear entity which passes
746
+ through the point `p`.
747
+
748
+ Parameters
749
+ ==========
750
+
751
+ p : Point
752
+
753
+ Returns
754
+ =======
755
+
756
+ line : Line
757
+
758
+ See Also
759
+ ========
760
+
761
+ is_parallel
762
+
763
+ Examples
764
+ ========
765
+
766
+ >>> from sympy import Point, Line
767
+ >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
768
+ >>> l1 = Line(p1, p2)
769
+ >>> l2 = l1.parallel_line(p3)
770
+ >>> p3 in l2
771
+ True
772
+ >>> l1.is_parallel(l2)
773
+ True
774
+ >>> from sympy import Point3D, Line3D
775
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
776
+ >>> l1 = Line3D(p1, p2)
777
+ >>> l2 = l1.parallel_line(p3)
778
+ >>> p3 in l2
779
+ True
780
+ >>> l1.is_parallel(l2)
781
+ True
782
+
783
+ """
784
+ p = Point(p, dim=self.ambient_dimension)
785
+ return Line(p, p + self.direction)
786
+
787
+ def perpendicular_line(self, p):
788
+ """Create a new Line perpendicular to this linear entity which passes
789
+ through the point `p`.
790
+
791
+ Parameters
792
+ ==========
793
+
794
+ p : Point
795
+
796
+ Returns
797
+ =======
798
+
799
+ line : Line
800
+
801
+ See Also
802
+ ========
803
+
804
+ sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
805
+
806
+ Examples
807
+ ========
808
+
809
+ >>> from sympy import Point3D, Line3D
810
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
811
+ >>> L = Line3D(p1, p2)
812
+ >>> P = L.perpendicular_line(p3); P
813
+ Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29))
814
+ >>> L.is_perpendicular(P)
815
+ True
816
+
817
+ In 3D the, the first point used to define the line is the point
818
+ through which the perpendicular was required to pass; the
819
+ second point is (arbitrarily) contained in the given line:
820
+
821
+ >>> P.p2 in L
822
+ True
823
+ """
824
+ p = Point(p, dim=self.ambient_dimension)
825
+ if p in self:
826
+ p = p + self.direction.orthogonal_direction
827
+ return Line(p, self.projection(p))
828
+
829
+ def perpendicular_segment(self, p):
830
+ """Create a perpendicular line segment from `p` to this line.
831
+
832
+ The endpoints of the segment are ``p`` and the closest point in
833
+ the line containing self. (If self is not a line, the point might
834
+ not be in self.)
835
+
836
+ Parameters
837
+ ==========
838
+
839
+ p : Point
840
+
841
+ Returns
842
+ =======
843
+
844
+ segment : Segment
845
+
846
+ Notes
847
+ =====
848
+
849
+ Returns `p` itself if `p` is on this linear entity.
850
+
851
+ See Also
852
+ ========
853
+
854
+ perpendicular_line
855
+
856
+ Examples
857
+ ========
858
+
859
+ >>> from sympy import Point, Line
860
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
861
+ >>> l1 = Line(p1, p2)
862
+ >>> s1 = l1.perpendicular_segment(p3)
863
+ >>> l1.is_perpendicular(s1)
864
+ True
865
+ >>> p3 in s1
866
+ True
867
+ >>> l1.perpendicular_segment(Point(4, 0))
868
+ Segment2D(Point2D(4, 0), Point2D(2, 2))
869
+ >>> from sympy import Point3D, Line3D
870
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0)
871
+ >>> l1 = Line3D(p1, p2)
872
+ >>> s1 = l1.perpendicular_segment(p3)
873
+ >>> l1.is_perpendicular(s1)
874
+ True
875
+ >>> p3 in s1
876
+ True
877
+ >>> l1.perpendicular_segment(Point3D(4, 0, 0))
878
+ Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3))
879
+
880
+ """
881
+ p = Point(p, dim=self.ambient_dimension)
882
+ if p in self:
883
+ return p
884
+ l = self.perpendicular_line(p)
885
+ # The intersection should be unique, so unpack the singleton
886
+ p2, = Intersection(Line(self.p1, self.p2), l)
887
+
888
+ return Segment(p, p2)
889
+
890
+ @property
891
+ def points(self):
892
+ """The two points used to define this linear entity.
893
+
894
+ Returns
895
+ =======
896
+
897
+ points : tuple of Points
898
+
899
+ See Also
900
+ ========
901
+
902
+ sympy.geometry.point.Point
903
+
904
+ Examples
905
+ ========
906
+
907
+ >>> from sympy import Point, Line
908
+ >>> p1, p2 = Point(0, 0), Point(5, 11)
909
+ >>> l1 = Line(p1, p2)
910
+ >>> l1.points
911
+ (Point2D(0, 0), Point2D(5, 11))
912
+
913
+ """
914
+ return (self.p1, self.p2)
915
+
916
+ def projection(self, other):
917
+ """Project a point, line, ray, or segment onto this linear entity.
918
+
919
+ Parameters
920
+ ==========
921
+
922
+ other : Point or LinearEntity (Line, Ray, Segment)
923
+
924
+ Returns
925
+ =======
926
+
927
+ projection : Point or LinearEntity (Line, Ray, Segment)
928
+ The return type matches the type of the parameter ``other``.
929
+
930
+ Raises
931
+ ======
932
+
933
+ GeometryError
934
+ When method is unable to perform projection.
935
+
936
+ Notes
937
+ =====
938
+
939
+ A projection involves taking the two points that define
940
+ the linear entity and projecting those points onto a
941
+ Line and then reforming the linear entity using these
942
+ projections.
943
+ A point P is projected onto a line L by finding the point
944
+ on L that is closest to P. This point is the intersection
945
+ of L and the line perpendicular to L that passes through P.
946
+
947
+ See Also
948
+ ========
949
+
950
+ sympy.geometry.point.Point, perpendicular_line
951
+
952
+ Examples
953
+ ========
954
+
955
+ >>> from sympy import Point, Line, Segment, Rational
956
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
957
+ >>> l1 = Line(p1, p2)
958
+ >>> l1.projection(p3)
959
+ Point2D(1/4, 1/4)
960
+ >>> p4, p5 = Point(10, 0), Point(12, 1)
961
+ >>> s1 = Segment(p4, p5)
962
+ >>> l1.projection(s1)
963
+ Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
964
+ >>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
965
+ >>> l1 = Line(p1, p2)
966
+ >>> l1.projection(p3)
967
+ Point3D(2/3, 2/3, 5/3)
968
+ >>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
969
+ >>> s1 = Segment(p4, p5)
970
+ >>> l1.projection(s1)
971
+ Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))
972
+
973
+ """
974
+ if not isinstance(other, GeometryEntity):
975
+ other = Point(other, dim=self.ambient_dimension)
976
+
977
+ def proj_point(p):
978
+ return Point.project(p - self.p1, self.direction) + self.p1
979
+
980
+ if isinstance(other, Point):
981
+ return proj_point(other)
982
+ elif isinstance(other, LinearEntity):
983
+ p1, p2 = proj_point(other.p1), proj_point(other.p2)
984
+ # test to see if we're degenerate
985
+ if p1 == p2:
986
+ return p1
987
+ projected = other.__class__(p1, p2)
988
+ projected = Intersection(self, projected)
989
+ if projected.is_empty:
990
+ return projected
991
+ # if we happen to have intersected in only a point, return that
992
+ if projected.is_FiniteSet and len(projected) == 1:
993
+ # projected is a set of size 1, so unpack it in `a`
994
+ a, = projected
995
+ return a
996
+ # order args so projection is in the same direction as self
997
+ if self.direction.dot(projected.direction) < 0:
998
+ p1, p2 = projected.args
999
+ projected = projected.func(p2, p1)
1000
+ return projected
1001
+
1002
+ raise GeometryError(
1003
+ "Do not know how to project %s onto %s" % (other, self))
1004
+
1005
+ def random_point(self, seed=None):
1006
+ """A random point on a LinearEntity.
1007
+
1008
+ Returns
1009
+ =======
1010
+
1011
+ point : Point
1012
+
1013
+ See Also
1014
+ ========
1015
+
1016
+ sympy.geometry.point.Point
1017
+
1018
+ Examples
1019
+ ========
1020
+
1021
+ >>> from sympy import Point, Line, Ray, Segment
1022
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
1023
+ >>> line = Line(p1, p2)
1024
+ >>> r = line.random_point(seed=42) # seed value is optional
1025
+ >>> r.n(3)
1026
+ Point2D(-0.72, -0.432)
1027
+ >>> r in line
1028
+ True
1029
+ >>> Ray(p1, p2).random_point(seed=42).n(3)
1030
+ Point2D(0.72, 0.432)
1031
+ >>> Segment(p1, p2).random_point(seed=42).n(3)
1032
+ Point2D(3.2, 1.92)
1033
+
1034
+ """
1035
+ if seed is not None:
1036
+ rng = random.Random(seed)
1037
+ else:
1038
+ rng = random
1039
+ pt = self.arbitrary_point(t)
1040
+ if isinstance(self, Ray):
1041
+ v = abs(rng.gauss(0, 1))
1042
+ elif isinstance(self, Segment):
1043
+ v = rng.random()
1044
+ elif isinstance(self, Line):
1045
+ v = rng.gauss(0, 1)
1046
+ else:
1047
+ raise NotImplementedError('unhandled line type')
1048
+ return pt.subs(t, Rational(v))
1049
+
1050
+ def bisectors(self, other):
1051
+ """Returns the perpendicular lines which pass through the intersections
1052
+ of self and other that are in the same plane.
1053
+
1054
+ Parameters
1055
+ ==========
1056
+
1057
+ line : Line3D
1058
+
1059
+ Returns
1060
+ =======
1061
+
1062
+ list: two Line instances
1063
+
1064
+ Examples
1065
+ ========
1066
+
1067
+ >>> from sympy import Point3D, Line3D
1068
+ >>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
1069
+ >>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
1070
+ >>> r1.bisectors(r2)
1071
+ [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
1072
+
1073
+ """
1074
+ if not isinstance(other, LinearEntity):
1075
+ raise GeometryError("Expecting LinearEntity, not %s" % other)
1076
+
1077
+ l1, l2 = self, other
1078
+
1079
+ # make sure dimensions match or else a warning will rise from
1080
+ # intersection calculation
1081
+ if l1.p1.ambient_dimension != l2.p1.ambient_dimension:
1082
+ if isinstance(l1, Line2D):
1083
+ l1, l2 = l2, l1
1084
+ _, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore')
1085
+ _, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore')
1086
+ l2 = Line(p1, p2)
1087
+
1088
+ point = intersection(l1, l2)
1089
+
1090
+ # Three cases: Lines may intersect in a point, may be equal or may not intersect.
1091
+ if not point:
1092
+ raise GeometryError("The lines do not intersect")
1093
+ else:
1094
+ pt = point[0]
1095
+ if isinstance(pt, Line):
1096
+ # Intersection is a line because both lines are coincident
1097
+ return [self]
1098
+
1099
+
1100
+ d1 = l1.direction.unit
1101
+ d2 = l2.direction.unit
1102
+
1103
+ bis1 = Line(pt, pt + d1 + d2)
1104
+ bis2 = Line(pt, pt + d1 - d2)
1105
+
1106
+ return [bis1, bis2]
1107
+
1108
+
1109
+ class Line(LinearEntity):
1110
+ """An infinite line in space.
1111
+
1112
+ A 2D line is declared with two distinct points, point and slope, or
1113
+ an equation. A 3D line may be defined with a point and a direction ratio.
1114
+
1115
+ Parameters
1116
+ ==========
1117
+
1118
+ p1 : Point
1119
+ p2 : Point
1120
+ slope : SymPy expression
1121
+ direction_ratio : list
1122
+ equation : equation of a line
1123
+
1124
+ Notes
1125
+ =====
1126
+
1127
+ `Line` will automatically subclass to `Line2D` or `Line3D` based
1128
+ on the dimension of `p1`. The `slope` argument is only relevant
1129
+ for `Line2D` and the `direction_ratio` argument is only relevant
1130
+ for `Line3D`.
1131
+
1132
+ The order of the points will define the direction of the line
1133
+ which is used when calculating the angle between lines.
1134
+
1135
+ See Also
1136
+ ========
1137
+
1138
+ sympy.geometry.point.Point
1139
+ sympy.geometry.line.Line2D
1140
+ sympy.geometry.line.Line3D
1141
+
1142
+ Examples
1143
+ ========
1144
+
1145
+ >>> from sympy import Line, Segment, Point, Eq
1146
+ >>> from sympy.abc import x, y, a, b
1147
+
1148
+ >>> L = Line(Point(2,3), Point(3,5))
1149
+ >>> L
1150
+ Line2D(Point2D(2, 3), Point2D(3, 5))
1151
+ >>> L.points
1152
+ (Point2D(2, 3), Point2D(3, 5))
1153
+ >>> L.equation()
1154
+ -2*x + y + 1
1155
+ >>> L.coefficients
1156
+ (-2, 1, 1)
1157
+
1158
+ Instantiate with keyword ``slope``:
1159
+
1160
+ >>> Line(Point(0, 0), slope=0)
1161
+ Line2D(Point2D(0, 0), Point2D(1, 0))
1162
+
1163
+ Instantiate with another linear object
1164
+
1165
+ >>> s = Segment((0, 0), (0, 1))
1166
+ >>> Line(s).equation()
1167
+ x
1168
+
1169
+ The line corresponding to an equation in the for `ax + by + c = 0`,
1170
+ can be entered:
1171
+
1172
+ >>> Line(3*x + y + 18)
1173
+ Line2D(Point2D(0, -18), Point2D(1, -21))
1174
+
1175
+ If `x` or `y` has a different name, then they can be specified, too,
1176
+ as a string (to match the name) or symbol:
1177
+
1178
+ >>> Line(Eq(3*a + b, -18), x='a', y=b)
1179
+ Line2D(Point2D(0, -18), Point2D(1, -21))
1180
+ """
1181
+ def __new__(cls, *args, **kwargs):
1182
+ if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
1183
+ missing = uniquely_named_symbol('?', args)
1184
+ if not kwargs:
1185
+ x = 'x'
1186
+ y = 'y'
1187
+ else:
1188
+ x = kwargs.pop('x', missing)
1189
+ y = kwargs.pop('y', missing)
1190
+ if kwargs:
1191
+ raise ValueError('expecting only x and y as keywords')
1192
+
1193
+ equation = args[0]
1194
+ if isinstance(equation, Eq):
1195
+ equation = equation.lhs - equation.rhs
1196
+
1197
+ def find_or_missing(x):
1198
+ try:
1199
+ return find(x, equation)
1200
+ except ValueError:
1201
+ return missing
1202
+ x = find_or_missing(x)
1203
+ y = find_or_missing(y)
1204
+
1205
+ a, b, c = linear_coeffs(equation, x, y)
1206
+
1207
+ if b:
1208
+ return Line((0, -c/b), slope=-a/b)
1209
+ if a:
1210
+ return Line((-c/a, 0), slope=oo)
1211
+
1212
+ raise ValueError('not found in equation: %s' % (set('xy') - {x, y}))
1213
+
1214
+ else:
1215
+ if len(args) > 0:
1216
+ p1 = args[0]
1217
+ if len(args) > 1:
1218
+ p2 = args[1]
1219
+ else:
1220
+ p2 = None
1221
+
1222
+ if isinstance(p1, LinearEntity):
1223
+ if p2:
1224
+ raise ValueError('If p1 is a LinearEntity, p2 must be None.')
1225
+ dim = len(p1.p1)
1226
+ else:
1227
+ p1 = Point(p1)
1228
+ dim = len(p1)
1229
+ if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim:
1230
+ p2 = Point(p2)
1231
+
1232
+ if dim == 2:
1233
+ return Line2D(p1, p2, **kwargs)
1234
+ elif dim == 3:
1235
+ return Line3D(p1, p2, **kwargs)
1236
+ return LinearEntity.__new__(cls, p1, p2, **kwargs)
1237
+
1238
+ def contains(self, other):
1239
+ """
1240
+ Return True if `other` is on this Line, or False otherwise.
1241
+
1242
+ Examples
1243
+ ========
1244
+
1245
+ >>> from sympy import Line,Point
1246
+ >>> p1, p2 = Point(0, 1), Point(3, 4)
1247
+ >>> l = Line(p1, p2)
1248
+ >>> l.contains(p1)
1249
+ True
1250
+ >>> l.contains((0, 1))
1251
+ True
1252
+ >>> l.contains((0, 0))
1253
+ False
1254
+ >>> a = (0, 0, 0)
1255
+ >>> b = (1, 1, 1)
1256
+ >>> c = (2, 2, 2)
1257
+ >>> l1 = Line(a, b)
1258
+ >>> l2 = Line(b, a)
1259
+ >>> l1 == l2
1260
+ False
1261
+ >>> l1 in l2
1262
+ True
1263
+
1264
+ """
1265
+ if not isinstance(other, GeometryEntity):
1266
+ other = Point(other, dim=self.ambient_dimension)
1267
+ if isinstance(other, Point):
1268
+ return Point.is_collinear(other, self.p1, self.p2)
1269
+ if isinstance(other, LinearEntity):
1270
+ return Point.is_collinear(self.p1, self.p2, other.p1, other.p2)
1271
+ return False
1272
+
1273
+ def distance(self, other):
1274
+ """
1275
+ Finds the shortest distance between a line and a point.
1276
+
1277
+ Raises
1278
+ ======
1279
+
1280
+ NotImplementedError is raised if `other` is not a Point
1281
+
1282
+ Examples
1283
+ ========
1284
+
1285
+ >>> from sympy import Point, Line
1286
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
1287
+ >>> s = Line(p1, p2)
1288
+ >>> s.distance(Point(-1, 1))
1289
+ sqrt(2)
1290
+ >>> s.distance((-1, 2))
1291
+ 3*sqrt(2)/2
1292
+ >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
1293
+ >>> s = Line(p1, p2)
1294
+ >>> s.distance(Point(-1, 1, 1))
1295
+ 2*sqrt(6)/3
1296
+ >>> s.distance((-1, 1, 1))
1297
+ 2*sqrt(6)/3
1298
+
1299
+ """
1300
+ if not isinstance(other, GeometryEntity):
1301
+ other = Point(other, dim=self.ambient_dimension)
1302
+ if self.contains(other):
1303
+ return S.Zero
1304
+ return self.perpendicular_segment(other).length
1305
+
1306
+ def equals(self, other):
1307
+ """Returns True if self and other are the same mathematical entities"""
1308
+ if not isinstance(other, Line):
1309
+ return False
1310
+ return Point.is_collinear(self.p1, other.p1, self.p2, other.p2)
1311
+
1312
+ def plot_interval(self, parameter='t'):
1313
+ """The plot interval for the default geometric plot of line. Gives
1314
+ values that will produce a line that is +/- 5 units long (where a
1315
+ unit is the distance between the two points that define the line).
1316
+
1317
+ Parameters
1318
+ ==========
1319
+
1320
+ parameter : str, optional
1321
+ Default value is 't'.
1322
+
1323
+ Returns
1324
+ =======
1325
+
1326
+ plot_interval : list (plot interval)
1327
+ [parameter, lower_bound, upper_bound]
1328
+
1329
+ Examples
1330
+ ========
1331
+
1332
+ >>> from sympy import Point, Line
1333
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
1334
+ >>> l1 = Line(p1, p2)
1335
+ >>> l1.plot_interval()
1336
+ [t, -5, 5]
1337
+
1338
+ """
1339
+ t = _symbol(parameter, real=True)
1340
+ return [t, -5, 5]
1341
+
1342
+
1343
+ class Ray(LinearEntity):
1344
+ """A Ray is a semi-line in the space with a source point and a direction.
1345
+
1346
+ Parameters
1347
+ ==========
1348
+
1349
+ p1 : Point
1350
+ The source of the Ray
1351
+ p2 : Point or radian value
1352
+ This point determines the direction in which the Ray propagates.
1353
+ If given as an angle it is interpreted in radians with the positive
1354
+ direction being ccw.
1355
+
1356
+ Attributes
1357
+ ==========
1358
+
1359
+ source
1360
+
1361
+ See Also
1362
+ ========
1363
+
1364
+ sympy.geometry.line.Ray2D
1365
+ sympy.geometry.line.Ray3D
1366
+ sympy.geometry.point.Point
1367
+ sympy.geometry.line.Line
1368
+
1369
+ Notes
1370
+ =====
1371
+
1372
+ `Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the
1373
+ dimension of `p1`.
1374
+
1375
+ Examples
1376
+ ========
1377
+
1378
+ >>> from sympy import Ray, Point, pi
1379
+ >>> r = Ray(Point(2, 3), Point(3, 5))
1380
+ >>> r
1381
+ Ray2D(Point2D(2, 3), Point2D(3, 5))
1382
+ >>> r.points
1383
+ (Point2D(2, 3), Point2D(3, 5))
1384
+ >>> r.source
1385
+ Point2D(2, 3)
1386
+ >>> r.xdirection
1387
+ oo
1388
+ >>> r.ydirection
1389
+ oo
1390
+ >>> r.slope
1391
+ 2
1392
+ >>> Ray(Point(0, 0), angle=pi/4).slope
1393
+ 1
1394
+
1395
+ """
1396
+ def __new__(cls, p1, p2=None, **kwargs):
1397
+ p1 = Point(p1)
1398
+ if p2 is not None:
1399
+ p1, p2 = Point._normalize_dimension(p1, Point(p2))
1400
+ dim = len(p1)
1401
+
1402
+ if dim == 2:
1403
+ return Ray2D(p1, p2, **kwargs)
1404
+ elif dim == 3:
1405
+ return Ray3D(p1, p2, **kwargs)
1406
+ return LinearEntity.__new__(cls, p1, p2, **kwargs)
1407
+
1408
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
1409
+ """Returns SVG path element for the LinearEntity.
1410
+
1411
+ Parameters
1412
+ ==========
1413
+
1414
+ scale_factor : float
1415
+ Multiplication factor for the SVG stroke-width. Default is 1.
1416
+ fill_color : str, optional
1417
+ Hex string for fill color. Default is "#66cc99".
1418
+ """
1419
+ verts = (N(self.p1), N(self.p2))
1420
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
1421
+ path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
1422
+
1423
+ return (
1424
+ '<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
1425
+ 'stroke-width="{0}" opacity="0.6" d="{1}" '
1426
+ 'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
1427
+ ).format(2.*scale_factor, path, fill_color)
1428
+
1429
+ def contains(self, other):
1430
+ """
1431
+ Is other GeometryEntity contained in this Ray?
1432
+
1433
+ Examples
1434
+ ========
1435
+
1436
+ >>> from sympy import Ray,Point,Segment
1437
+ >>> p1, p2 = Point(0, 0), Point(4, 4)
1438
+ >>> r = Ray(p1, p2)
1439
+ >>> r.contains(p1)
1440
+ True
1441
+ >>> r.contains((1, 1))
1442
+ True
1443
+ >>> r.contains((1, 3))
1444
+ False
1445
+ >>> s = Segment((1, 1), (2, 2))
1446
+ >>> r.contains(s)
1447
+ True
1448
+ >>> s = Segment((1, 2), (2, 5))
1449
+ >>> r.contains(s)
1450
+ False
1451
+ >>> r1 = Ray((2, 2), (3, 3))
1452
+ >>> r.contains(r1)
1453
+ True
1454
+ >>> r1 = Ray((2, 2), (3, 5))
1455
+ >>> r.contains(r1)
1456
+ False
1457
+ """
1458
+ if not isinstance(other, GeometryEntity):
1459
+ other = Point(other, dim=self.ambient_dimension)
1460
+ if isinstance(other, Point):
1461
+ if Point.is_collinear(self.p1, self.p2, other):
1462
+ # if we're in the direction of the ray, our
1463
+ # direction vector dot the ray's direction vector
1464
+ # should be non-negative
1465
+ return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero)
1466
+ return False
1467
+ elif isinstance(other, Ray):
1468
+ if Point.is_collinear(self.p1, self.p2, other.p1, other.p2):
1469
+ return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero)
1470
+ return False
1471
+ elif isinstance(other, Segment):
1472
+ return other.p1 in self and other.p2 in self
1473
+
1474
+ # No other known entity can be contained in a Ray
1475
+ return False
1476
+
1477
+ def distance(self, other):
1478
+ """
1479
+ Finds the shortest distance between the ray and a point.
1480
+
1481
+ Raises
1482
+ ======
1483
+
1484
+ NotImplementedError is raised if `other` is not a Point
1485
+
1486
+ Examples
1487
+ ========
1488
+
1489
+ >>> from sympy import Point, Ray
1490
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
1491
+ >>> s = Ray(p1, p2)
1492
+ >>> s.distance(Point(-1, -1))
1493
+ sqrt(2)
1494
+ >>> s.distance((-1, 2))
1495
+ 3*sqrt(2)/2
1496
+ >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
1497
+ >>> s = Ray(p1, p2)
1498
+ >>> s
1499
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
1500
+ >>> s.distance(Point(-1, -1, 2))
1501
+ 4*sqrt(3)/3
1502
+ >>> s.distance((-1, -1, 2))
1503
+ 4*sqrt(3)/3
1504
+
1505
+ """
1506
+ if not isinstance(other, GeometryEntity):
1507
+ other = Point(other, dim=self.ambient_dimension)
1508
+ if self.contains(other):
1509
+ return S.Zero
1510
+
1511
+ proj = Line(self.p1, self.p2).projection(other)
1512
+ if self.contains(proj):
1513
+ return abs(other - proj)
1514
+ else:
1515
+ return abs(other - self.source)
1516
+
1517
+ def equals(self, other):
1518
+ """Returns True if self and other are the same mathematical entities"""
1519
+ if not isinstance(other, Ray):
1520
+ return False
1521
+ return self.source == other.source and other.p2 in self
1522
+
1523
+ def plot_interval(self, parameter='t'):
1524
+ """The plot interval for the default geometric plot of the Ray. Gives
1525
+ values that will produce a ray that is 10 units long (where a unit is
1526
+ the distance between the two points that define the ray).
1527
+
1528
+ Parameters
1529
+ ==========
1530
+
1531
+ parameter : str, optional
1532
+ Default value is 't'.
1533
+
1534
+ Returns
1535
+ =======
1536
+
1537
+ plot_interval : list
1538
+ [parameter, lower_bound, upper_bound]
1539
+
1540
+ Examples
1541
+ ========
1542
+
1543
+ >>> from sympy import Ray, pi
1544
+ >>> r = Ray((0, 0), angle=pi/4)
1545
+ >>> r.plot_interval()
1546
+ [t, 0, 10]
1547
+
1548
+ """
1549
+ t = _symbol(parameter, real=True)
1550
+ return [t, 0, 10]
1551
+
1552
+ @property
1553
+ def source(self):
1554
+ """The point from which the ray emanates.
1555
+
1556
+ See Also
1557
+ ========
1558
+
1559
+ sympy.geometry.point.Point
1560
+
1561
+ Examples
1562
+ ========
1563
+
1564
+ >>> from sympy import Point, Ray
1565
+ >>> p1, p2 = Point(0, 0), Point(4, 1)
1566
+ >>> r1 = Ray(p1, p2)
1567
+ >>> r1.source
1568
+ Point2D(0, 0)
1569
+ >>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
1570
+ >>> r1 = Ray(p2, p1)
1571
+ >>> r1.source
1572
+ Point3D(4, 1, 5)
1573
+
1574
+ """
1575
+ return self.p1
1576
+
1577
+
1578
+ class Segment(LinearEntity):
1579
+ """A line segment in space.
1580
+
1581
+ Parameters
1582
+ ==========
1583
+
1584
+ p1 : Point
1585
+ p2 : Point
1586
+
1587
+ Attributes
1588
+ ==========
1589
+
1590
+ length : number or SymPy expression
1591
+ midpoint : Point
1592
+
1593
+ See Also
1594
+ ========
1595
+
1596
+ sympy.geometry.line.Segment2D
1597
+ sympy.geometry.line.Segment3D
1598
+ sympy.geometry.point.Point
1599
+ sympy.geometry.line.Line
1600
+
1601
+ Notes
1602
+ =====
1603
+
1604
+ If 2D or 3D points are used to define `Segment`, it will
1605
+ be automatically subclassed to `Segment2D` or `Segment3D`.
1606
+
1607
+ Examples
1608
+ ========
1609
+
1610
+ >>> from sympy import Point, Segment
1611
+ >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
1612
+ Segment2D(Point2D(1, 0), Point2D(1, 1))
1613
+ >>> s = Segment(Point(4, 3), Point(1, 1))
1614
+ >>> s.points
1615
+ (Point2D(4, 3), Point2D(1, 1))
1616
+ >>> s.slope
1617
+ 2/3
1618
+ >>> s.length
1619
+ sqrt(13)
1620
+ >>> s.midpoint
1621
+ Point2D(5/2, 2)
1622
+ >>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
1623
+ Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
1624
+ >>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
1625
+ Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
1626
+ >>> s.points
1627
+ (Point3D(4, 3, 9), Point3D(1, 1, 7))
1628
+ >>> s.length
1629
+ sqrt(17)
1630
+ >>> s.midpoint
1631
+ Point3D(5/2, 2, 8)
1632
+
1633
+ """
1634
+ def __new__(cls, p1, p2, **kwargs):
1635
+ p1, p2 = Point._normalize_dimension(Point(p1), Point(p2))
1636
+ dim = len(p1)
1637
+
1638
+ if dim == 2:
1639
+ return Segment2D(p1, p2, **kwargs)
1640
+ elif dim == 3:
1641
+ return Segment3D(p1, p2, **kwargs)
1642
+ return LinearEntity.__new__(cls, p1, p2, **kwargs)
1643
+
1644
+ def contains(self, other):
1645
+ """
1646
+ Is the other GeometryEntity contained within this Segment?
1647
+
1648
+ Examples
1649
+ ========
1650
+
1651
+ >>> from sympy import Point, Segment
1652
+ >>> p1, p2 = Point(0, 1), Point(3, 4)
1653
+ >>> s = Segment(p1, p2)
1654
+ >>> s2 = Segment(p2, p1)
1655
+ >>> s.contains(s2)
1656
+ True
1657
+ >>> from sympy import Point3D, Segment3D
1658
+ >>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
1659
+ >>> s = Segment3D(p1, p2)
1660
+ >>> s2 = Segment3D(p2, p1)
1661
+ >>> s.contains(s2)
1662
+ True
1663
+ >>> s.contains((p1 + p2)/2)
1664
+ True
1665
+ """
1666
+ if not isinstance(other, GeometryEntity):
1667
+ other = Point(other, dim=self.ambient_dimension)
1668
+ if isinstance(other, Point):
1669
+ if Point.is_collinear(other, self.p1, self.p2):
1670
+ if isinstance(self, Segment2D):
1671
+ # if it is collinear and is in the bounding box of the
1672
+ # segment then it must be on the segment
1673
+ vert = (1/self.slope).equals(0)
1674
+ if vert is False:
1675
+ isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0
1676
+ if isin in (True, False):
1677
+ return isin
1678
+ if vert is True:
1679
+ isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0
1680
+ if isin in (True, False):
1681
+ return isin
1682
+ # use the triangle inequality
1683
+ d1, d2 = other - self.p1, other - self.p2
1684
+ d = self.p2 - self.p1
1685
+ # without the call to simplify, SymPy cannot tell that an expression
1686
+ # like (a+b)*(a/2+b/2) is always non-negative. If it cannot be
1687
+ # determined, raise an Undecidable error
1688
+ try:
1689
+ # the triangle inequality says that |d1|+|d2| >= |d| and is strict
1690
+ # only if other lies in the line segment
1691
+ return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0)))
1692
+ except TypeError:
1693
+ raise Undecidable("Cannot determine if {} is in {}".format(other, self))
1694
+ if isinstance(other, Segment):
1695
+ return other.p1 in self and other.p2 in self
1696
+
1697
+ return False
1698
+
1699
+ def equals(self, other):
1700
+ """Returns True if self and other are the same mathematical entities"""
1701
+ return isinstance(other, self.func) and list(
1702
+ ordered(self.args)) == list(ordered(other.args))
1703
+
1704
+ def distance(self, other):
1705
+ """
1706
+ Finds the shortest distance between a line segment and a point.
1707
+
1708
+ Raises
1709
+ ======
1710
+
1711
+ NotImplementedError is raised if `other` is not a Point
1712
+
1713
+ Examples
1714
+ ========
1715
+
1716
+ >>> from sympy import Point, Segment
1717
+ >>> p1, p2 = Point(0, 1), Point(3, 4)
1718
+ >>> s = Segment(p1, p2)
1719
+ >>> s.distance(Point(10, 15))
1720
+ sqrt(170)
1721
+ >>> s.distance((0, 12))
1722
+ sqrt(73)
1723
+ >>> from sympy import Point3D, Segment3D
1724
+ >>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
1725
+ >>> s = Segment3D(p1, p2)
1726
+ >>> s.distance(Point3D(10, 15, 12))
1727
+ sqrt(341)
1728
+ >>> s.distance((10, 15, 12))
1729
+ sqrt(341)
1730
+ """
1731
+ if not isinstance(other, GeometryEntity):
1732
+ other = Point(other, dim=self.ambient_dimension)
1733
+ if isinstance(other, Point):
1734
+ vp1 = other - self.p1
1735
+ vp2 = other - self.p2
1736
+
1737
+ dot_prod_sign_1 = self.direction.dot(vp1) >= 0
1738
+ dot_prod_sign_2 = self.direction.dot(vp2) <= 0
1739
+ if dot_prod_sign_1 and dot_prod_sign_2:
1740
+ return Line(self.p1, self.p2).distance(other)
1741
+ if dot_prod_sign_1 and not dot_prod_sign_2:
1742
+ return abs(vp2)
1743
+ if not dot_prod_sign_1 and dot_prod_sign_2:
1744
+ return abs(vp1)
1745
+ raise NotImplementedError()
1746
+
1747
+ @property
1748
+ def length(self):
1749
+ """The length of the line segment.
1750
+
1751
+ See Also
1752
+ ========
1753
+
1754
+ sympy.geometry.point.Point.distance
1755
+
1756
+ Examples
1757
+ ========
1758
+
1759
+ >>> from sympy import Point, Segment
1760
+ >>> p1, p2 = Point(0, 0), Point(4, 3)
1761
+ >>> s1 = Segment(p1, p2)
1762
+ >>> s1.length
1763
+ 5
1764
+ >>> from sympy import Point3D, Segment3D
1765
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
1766
+ >>> s1 = Segment3D(p1, p2)
1767
+ >>> s1.length
1768
+ sqrt(34)
1769
+
1770
+ """
1771
+ return Point.distance(self.p1, self.p2)
1772
+
1773
+ @property
1774
+ def midpoint(self):
1775
+ """The midpoint of the line segment.
1776
+
1777
+ See Also
1778
+ ========
1779
+
1780
+ sympy.geometry.point.Point.midpoint
1781
+
1782
+ Examples
1783
+ ========
1784
+
1785
+ >>> from sympy import Point, Segment
1786
+ >>> p1, p2 = Point(0, 0), Point(4, 3)
1787
+ >>> s1 = Segment(p1, p2)
1788
+ >>> s1.midpoint
1789
+ Point2D(2, 3/2)
1790
+ >>> from sympy import Point3D, Segment3D
1791
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
1792
+ >>> s1 = Segment3D(p1, p2)
1793
+ >>> s1.midpoint
1794
+ Point3D(2, 3/2, 3/2)
1795
+
1796
+ """
1797
+ return Point.midpoint(self.p1, self.p2)
1798
+
1799
+ def perpendicular_bisector(self, p=None):
1800
+ """The perpendicular bisector of this segment.
1801
+
1802
+ If no point is specified or the point specified is not on the
1803
+ bisector then the bisector is returned as a Line. Otherwise a
1804
+ Segment is returned that joins the point specified and the
1805
+ intersection of the bisector and the segment.
1806
+
1807
+ Parameters
1808
+ ==========
1809
+
1810
+ p : Point
1811
+
1812
+ Returns
1813
+ =======
1814
+
1815
+ bisector : Line or Segment
1816
+
1817
+ See Also
1818
+ ========
1819
+
1820
+ LinearEntity.perpendicular_segment
1821
+
1822
+ Examples
1823
+ ========
1824
+
1825
+ >>> from sympy import Point, Segment
1826
+ >>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
1827
+ >>> s1 = Segment(p1, p2)
1828
+ >>> s1.perpendicular_bisector()
1829
+ Line2D(Point2D(3, 3), Point2D(-3, 9))
1830
+
1831
+ >>> s1.perpendicular_bisector(p3)
1832
+ Segment2D(Point2D(5, 1), Point2D(3, 3))
1833
+
1834
+ """
1835
+ l = self.perpendicular_line(self.midpoint)
1836
+ if p is not None:
1837
+ p2 = Point(p, dim=self.ambient_dimension)
1838
+ if p2 in l:
1839
+ return Segment(p2, self.midpoint)
1840
+ return l
1841
+
1842
+ def plot_interval(self, parameter='t'):
1843
+ """The plot interval for the default geometric plot of the Segment gives
1844
+ values that will produce the full segment in a plot.
1845
+
1846
+ Parameters
1847
+ ==========
1848
+
1849
+ parameter : str, optional
1850
+ Default value is 't'.
1851
+
1852
+ Returns
1853
+ =======
1854
+
1855
+ plot_interval : list
1856
+ [parameter, lower_bound, upper_bound]
1857
+
1858
+ Examples
1859
+ ========
1860
+
1861
+ >>> from sympy import Point, Segment
1862
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
1863
+ >>> s1 = Segment(p1, p2)
1864
+ >>> s1.plot_interval()
1865
+ [t, 0, 1]
1866
+
1867
+ """
1868
+ t = _symbol(parameter, real=True)
1869
+ return [t, 0, 1]
1870
+
1871
+
1872
+ class LinearEntity2D(LinearEntity):
1873
+ """A base class for all linear entities (line, ray and segment)
1874
+ in a 2-dimensional Euclidean space.
1875
+
1876
+ Attributes
1877
+ ==========
1878
+
1879
+ p1
1880
+ p2
1881
+ coefficients
1882
+ slope
1883
+ points
1884
+
1885
+ Notes
1886
+ =====
1887
+
1888
+ This is an abstract class and is not meant to be instantiated.
1889
+
1890
+ See Also
1891
+ ========
1892
+
1893
+ sympy.geometry.entity.GeometryEntity
1894
+
1895
+ """
1896
+ @property
1897
+ def bounds(self):
1898
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
1899
+ rectangle for the geometric figure.
1900
+
1901
+ """
1902
+ verts = self.points
1903
+ xs = [p.x for p in verts]
1904
+ ys = [p.y for p in verts]
1905
+ return (min(xs), min(ys), max(xs), max(ys))
1906
+
1907
+ def perpendicular_line(self, p):
1908
+ """Create a new Line perpendicular to this linear entity which passes
1909
+ through the point `p`.
1910
+
1911
+ Parameters
1912
+ ==========
1913
+
1914
+ p : Point
1915
+
1916
+ Returns
1917
+ =======
1918
+
1919
+ line : Line
1920
+
1921
+ See Also
1922
+ ========
1923
+
1924
+ sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
1925
+
1926
+ Examples
1927
+ ========
1928
+
1929
+ >>> from sympy import Point, Line
1930
+ >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
1931
+ >>> L = Line(p1, p2)
1932
+ >>> P = L.perpendicular_line(p3); P
1933
+ Line2D(Point2D(-2, 2), Point2D(-5, 4))
1934
+ >>> L.is_perpendicular(P)
1935
+ True
1936
+
1937
+ In 2D, the first point of the perpendicular line is the
1938
+ point through which was required to pass; the second
1939
+ point is arbitrarily chosen. To get a line that explicitly
1940
+ uses a point in the line, create a line from the perpendicular
1941
+ segment from the line to the point:
1942
+
1943
+ >>> Line(L.perpendicular_segment(p3))
1944
+ Line2D(Point2D(-2, 2), Point2D(4/13, 6/13))
1945
+ """
1946
+ p = Point(p, dim=self.ambient_dimension)
1947
+ # any two lines in R^2 intersect, so blindly making
1948
+ # a line through p in an orthogonal direction will work
1949
+ # and is faster than finding the projection point as in 3D
1950
+ return Line(p, p + self.direction.orthogonal_direction)
1951
+
1952
+ @property
1953
+ def slope(self):
1954
+ """The slope of this linear entity, or infinity if vertical.
1955
+
1956
+ Returns
1957
+ =======
1958
+
1959
+ slope : number or SymPy expression
1960
+
1961
+ See Also
1962
+ ========
1963
+
1964
+ coefficients
1965
+
1966
+ Examples
1967
+ ========
1968
+
1969
+ >>> from sympy import Point, Line
1970
+ >>> p1, p2 = Point(0, 0), Point(3, 5)
1971
+ >>> l1 = Line(p1, p2)
1972
+ >>> l1.slope
1973
+ 5/3
1974
+
1975
+ >>> p3 = Point(0, 4)
1976
+ >>> l2 = Line(p1, p3)
1977
+ >>> l2.slope
1978
+ oo
1979
+
1980
+ """
1981
+ d1, d2 = (self.p1 - self.p2).args
1982
+ if d1 == 0:
1983
+ return S.Infinity
1984
+ return simplify(d2/d1)
1985
+
1986
+
1987
+ class Line2D(LinearEntity2D, Line):
1988
+ """An infinite line in space 2D.
1989
+
1990
+ A line is declared with two distinct points or a point and slope
1991
+ as defined using keyword `slope`.
1992
+
1993
+ Parameters
1994
+ ==========
1995
+
1996
+ p1 : Point
1997
+ pt : Point
1998
+ slope : SymPy expression
1999
+
2000
+ See Also
2001
+ ========
2002
+
2003
+ sympy.geometry.point.Point
2004
+
2005
+ Examples
2006
+ ========
2007
+
2008
+ >>> from sympy import Line, Segment, Point
2009
+ >>> L = Line(Point(2,3), Point(3,5))
2010
+ >>> L
2011
+ Line2D(Point2D(2, 3), Point2D(3, 5))
2012
+ >>> L.points
2013
+ (Point2D(2, 3), Point2D(3, 5))
2014
+ >>> L.equation()
2015
+ -2*x + y + 1
2016
+ >>> L.coefficients
2017
+ (-2, 1, 1)
2018
+
2019
+ Instantiate with keyword ``slope``:
2020
+
2021
+ >>> Line(Point(0, 0), slope=0)
2022
+ Line2D(Point2D(0, 0), Point2D(1, 0))
2023
+
2024
+ Instantiate with another linear object
2025
+
2026
+ >>> s = Segment((0, 0), (0, 1))
2027
+ >>> Line(s).equation()
2028
+ x
2029
+ """
2030
+ def __new__(cls, p1, pt=None, slope=None, **kwargs):
2031
+ if isinstance(p1, LinearEntity):
2032
+ if pt is not None:
2033
+ raise ValueError('When p1 is a LinearEntity, pt should be None')
2034
+ p1, pt = Point._normalize_dimension(*p1.args, dim=2)
2035
+ else:
2036
+ p1 = Point(p1, dim=2)
2037
+ if pt is not None and slope is None:
2038
+ try:
2039
+ p2 = Point(pt, dim=2)
2040
+ except (NotImplementedError, TypeError, ValueError):
2041
+ raise ValueError(filldedent('''
2042
+ The 2nd argument was not a valid Point.
2043
+ If it was a slope, enter it with keyword "slope".
2044
+ '''))
2045
+ elif slope is not None and pt is None:
2046
+ slope = sympify(slope)
2047
+ if slope.is_finite is False:
2048
+ # when infinite slope, don't change x
2049
+ dx = 0
2050
+ dy = 1
2051
+ else:
2052
+ # go over 1 up slope
2053
+ dx = 1
2054
+ dy = slope
2055
+ # XXX avoiding simplification by adding to coords directly
2056
+ p2 = Point(p1.x + dx, p1.y + dy, evaluate=False)
2057
+ else:
2058
+ raise ValueError('A 2nd Point or keyword "slope" must be used.')
2059
+ return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
2060
+
2061
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
2062
+ """Returns SVG path element for the LinearEntity.
2063
+
2064
+ Parameters
2065
+ ==========
2066
+
2067
+ scale_factor : float
2068
+ Multiplication factor for the SVG stroke-width. Default is 1.
2069
+ fill_color : str, optional
2070
+ Hex string for fill color. Default is "#66cc99".
2071
+ """
2072
+ verts = (N(self.p1), N(self.p2))
2073
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
2074
+ path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
2075
+
2076
+ return (
2077
+ '<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
2078
+ 'stroke-width="{0}" opacity="0.6" d="{1}" '
2079
+ 'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
2080
+ ).format(2.*scale_factor, path, fill_color)
2081
+
2082
+ @property
2083
+ def coefficients(self):
2084
+ """The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`.
2085
+
2086
+ See Also
2087
+ ========
2088
+
2089
+ sympy.geometry.line.Line2D.equation
2090
+
2091
+ Examples
2092
+ ========
2093
+
2094
+ >>> from sympy import Point, Line
2095
+ >>> from sympy.abc import x, y
2096
+ >>> p1, p2 = Point(0, 0), Point(5, 3)
2097
+ >>> l = Line(p1, p2)
2098
+ >>> l.coefficients
2099
+ (-3, 5, 0)
2100
+
2101
+ >>> p3 = Point(x, y)
2102
+ >>> l2 = Line(p1, p3)
2103
+ >>> l2.coefficients
2104
+ (-y, x, 0)
2105
+
2106
+ """
2107
+ p1, p2 = self.points
2108
+ if p1.x == p2.x:
2109
+ return (S.One, S.Zero, -p1.x)
2110
+ elif p1.y == p2.y:
2111
+ return (S.Zero, S.One, -p1.y)
2112
+ return tuple([simplify(i) for i in
2113
+ (self.p1.y - self.p2.y,
2114
+ self.p2.x - self.p1.x,
2115
+ self.p1.x*self.p2.y - self.p1.y*self.p2.x)])
2116
+
2117
+ def equation(self, x='x', y='y'):
2118
+ """The equation of the line: ax + by + c.
2119
+
2120
+ Parameters
2121
+ ==========
2122
+
2123
+ x : str, optional
2124
+ The name to use for the x-axis, default value is 'x'.
2125
+ y : str, optional
2126
+ The name to use for the y-axis, default value is 'y'.
2127
+
2128
+ Returns
2129
+ =======
2130
+
2131
+ equation : SymPy expression
2132
+
2133
+ See Also
2134
+ ========
2135
+
2136
+ sympy.geometry.line.Line2D.coefficients
2137
+
2138
+ Examples
2139
+ ========
2140
+
2141
+ >>> from sympy import Point, Line
2142
+ >>> p1, p2 = Point(1, 0), Point(5, 3)
2143
+ >>> l1 = Line(p1, p2)
2144
+ >>> l1.equation()
2145
+ -3*x + 4*y + 3
2146
+
2147
+ """
2148
+ x = _symbol(x, real=True)
2149
+ y = _symbol(y, real=True)
2150
+ p1, p2 = self.points
2151
+ if p1.x == p2.x:
2152
+ return x - p1.x
2153
+ elif p1.y == p2.y:
2154
+ return y - p1.y
2155
+
2156
+ a, b, c = self.coefficients
2157
+ return a*x + b*y + c
2158
+
2159
+
2160
+ class Ray2D(LinearEntity2D, Ray):
2161
+ """
2162
+ A Ray is a semi-line in the space with a source point and a direction.
2163
+
2164
+ Parameters
2165
+ ==========
2166
+
2167
+ p1 : Point
2168
+ The source of the Ray
2169
+ p2 : Point or radian value
2170
+ This point determines the direction in which the Ray propagates.
2171
+ If given as an angle it is interpreted in radians with the positive
2172
+ direction being ccw.
2173
+
2174
+ Attributes
2175
+ ==========
2176
+
2177
+ source
2178
+ xdirection
2179
+ ydirection
2180
+
2181
+ See Also
2182
+ ========
2183
+
2184
+ sympy.geometry.point.Point, Line
2185
+
2186
+ Examples
2187
+ ========
2188
+
2189
+ >>> from sympy import Point, pi, Ray
2190
+ >>> r = Ray(Point(2, 3), Point(3, 5))
2191
+ >>> r
2192
+ Ray2D(Point2D(2, 3), Point2D(3, 5))
2193
+ >>> r.points
2194
+ (Point2D(2, 3), Point2D(3, 5))
2195
+ >>> r.source
2196
+ Point2D(2, 3)
2197
+ >>> r.xdirection
2198
+ oo
2199
+ >>> r.ydirection
2200
+ oo
2201
+ >>> r.slope
2202
+ 2
2203
+ >>> Ray(Point(0, 0), angle=pi/4).slope
2204
+ 1
2205
+
2206
+ """
2207
+ def __new__(cls, p1, pt=None, angle=None, **kwargs):
2208
+ p1 = Point(p1, dim=2)
2209
+ if pt is not None and angle is None:
2210
+ try:
2211
+ p2 = Point(pt, dim=2)
2212
+ except (NotImplementedError, TypeError, ValueError):
2213
+ raise ValueError(filldedent('''
2214
+ The 2nd argument was not a valid Point; if
2215
+ it was meant to be an angle it should be
2216
+ given with keyword "angle".'''))
2217
+ if p1 == p2:
2218
+ raise ValueError('A Ray requires two distinct points.')
2219
+ elif angle is not None and pt is None:
2220
+ # we need to know if the angle is an odd multiple of pi/2
2221
+ angle = sympify(angle)
2222
+ c = _pi_coeff(angle)
2223
+ p2 = None
2224
+ if c is not None:
2225
+ if c.is_Rational:
2226
+ if c.q == 2:
2227
+ if c.p == 1:
2228
+ p2 = p1 + Point(0, 1)
2229
+ elif c.p == 3:
2230
+ p2 = p1 + Point(0, -1)
2231
+ elif c.q == 1:
2232
+ if c.p == 0:
2233
+ p2 = p1 + Point(1, 0)
2234
+ elif c.p == 1:
2235
+ p2 = p1 + Point(-1, 0)
2236
+ if p2 is None:
2237
+ c *= S.Pi
2238
+ else:
2239
+ c = angle % (2*S.Pi)
2240
+ if not p2:
2241
+ m = 2*c/S.Pi
2242
+ left = And(1 < m, m < 3) # is it in quadrant 2 or 3?
2243
+ x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
2244
+ y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True))
2245
+ p2 = p1 + Point(x, y)
2246
+ else:
2247
+ raise ValueError('A 2nd point or keyword "angle" must be used.')
2248
+
2249
+ return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
2250
+
2251
+ @property
2252
+ def xdirection(self):
2253
+ """The x direction of the ray.
2254
+
2255
+ Positive infinity if the ray points in the positive x direction,
2256
+ negative infinity if the ray points in the negative x direction,
2257
+ or 0 if the ray is vertical.
2258
+
2259
+ See Also
2260
+ ========
2261
+
2262
+ ydirection
2263
+
2264
+ Examples
2265
+ ========
2266
+
2267
+ >>> from sympy import Point, Ray
2268
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
2269
+ >>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
2270
+ >>> r1.xdirection
2271
+ oo
2272
+ >>> r2.xdirection
2273
+ 0
2274
+
2275
+ """
2276
+ if self.p1.x < self.p2.x:
2277
+ return S.Infinity
2278
+ elif self.p1.x == self.p2.x:
2279
+ return S.Zero
2280
+ else:
2281
+ return S.NegativeInfinity
2282
+
2283
+ @property
2284
+ def ydirection(self):
2285
+ """The y direction of the ray.
2286
+
2287
+ Positive infinity if the ray points in the positive y direction,
2288
+ negative infinity if the ray points in the negative y direction,
2289
+ or 0 if the ray is horizontal.
2290
+
2291
+ See Also
2292
+ ========
2293
+
2294
+ xdirection
2295
+
2296
+ Examples
2297
+ ========
2298
+
2299
+ >>> from sympy import Point, Ray
2300
+ >>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
2301
+ >>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
2302
+ >>> r1.ydirection
2303
+ -oo
2304
+ >>> r2.ydirection
2305
+ 0
2306
+
2307
+ """
2308
+ if self.p1.y < self.p2.y:
2309
+ return S.Infinity
2310
+ elif self.p1.y == self.p2.y:
2311
+ return S.Zero
2312
+ else:
2313
+ return S.NegativeInfinity
2314
+
2315
+ def closing_angle(r1, r2):
2316
+ """Return the angle by which r2 must be rotated so it faces the same
2317
+ direction as r1.
2318
+
2319
+ Parameters
2320
+ ==========
2321
+
2322
+ r1 : Ray2D
2323
+ r2 : Ray2D
2324
+
2325
+ Returns
2326
+ =======
2327
+
2328
+ angle : angle in radians (ccw angle is positive)
2329
+
2330
+ See Also
2331
+ ========
2332
+
2333
+ LinearEntity.angle_between
2334
+
2335
+ Examples
2336
+ ========
2337
+
2338
+ >>> from sympy import Ray, pi
2339
+ >>> r1 = Ray((0, 0), (1, 0))
2340
+ >>> r2 = r1.rotate(-pi/2)
2341
+ >>> angle = r1.closing_angle(r2); angle
2342
+ pi/2
2343
+ >>> r2.rotate(angle).direction.unit == r1.direction.unit
2344
+ True
2345
+ >>> r2.closing_angle(r1)
2346
+ -pi/2
2347
+ """
2348
+ if not all(isinstance(r, Ray2D) for r in (r1, r2)):
2349
+ # although the direction property is defined for
2350
+ # all linear entities, only the Ray is truly a
2351
+ # directed object
2352
+ raise TypeError('Both arguments must be Ray2D objects.')
2353
+
2354
+ a1 = atan2(*list(reversed(r1.direction.args)))
2355
+ a2 = atan2(*list(reversed(r2.direction.args)))
2356
+ if a1*a2 < 0:
2357
+ a1 = 2*S.Pi + a1 if a1 < 0 else a1
2358
+ a2 = 2*S.Pi + a2 if a2 < 0 else a2
2359
+ return a1 - a2
2360
+
2361
+
2362
+ class Segment2D(LinearEntity2D, Segment):
2363
+ """A line segment in 2D space.
2364
+
2365
+ Parameters
2366
+ ==========
2367
+
2368
+ p1 : Point
2369
+ p2 : Point
2370
+
2371
+ Attributes
2372
+ ==========
2373
+
2374
+ length : number or SymPy expression
2375
+ midpoint : Point
2376
+
2377
+ See Also
2378
+ ========
2379
+
2380
+ sympy.geometry.point.Point, Line
2381
+
2382
+ Examples
2383
+ ========
2384
+
2385
+ >>> from sympy import Point, Segment
2386
+ >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
2387
+ Segment2D(Point2D(1, 0), Point2D(1, 1))
2388
+ >>> s = Segment(Point(4, 3), Point(1, 1)); s
2389
+ Segment2D(Point2D(4, 3), Point2D(1, 1))
2390
+ >>> s.points
2391
+ (Point2D(4, 3), Point2D(1, 1))
2392
+ >>> s.slope
2393
+ 2/3
2394
+ >>> s.length
2395
+ sqrt(13)
2396
+ >>> s.midpoint
2397
+ Point2D(5/2, 2)
2398
+
2399
+ """
2400
+ def __new__(cls, p1, p2, **kwargs):
2401
+ p1 = Point(p1, dim=2)
2402
+ p2 = Point(p2, dim=2)
2403
+
2404
+ if p1 == p2:
2405
+ return p1
2406
+
2407
+ return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
2408
+
2409
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
2410
+ """Returns SVG path element for the LinearEntity.
2411
+
2412
+ Parameters
2413
+ ==========
2414
+
2415
+ scale_factor : float
2416
+ Multiplication factor for the SVG stroke-width. Default is 1.
2417
+ fill_color : str, optional
2418
+ Hex string for fill color. Default is "#66cc99".
2419
+ """
2420
+ verts = (N(self.p1), N(self.p2))
2421
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
2422
+ path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
2423
+ return (
2424
+ '<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
2425
+ 'stroke-width="{0}" opacity="0.6" d="{1}" />'
2426
+ ).format(2.*scale_factor, path, fill_color)
2427
+
2428
+
2429
+ class LinearEntity3D(LinearEntity):
2430
+ """An base class for all linear entities (line, ray and segment)
2431
+ in a 3-dimensional Euclidean space.
2432
+
2433
+ Attributes
2434
+ ==========
2435
+
2436
+ p1
2437
+ p2
2438
+ direction_ratio
2439
+ direction_cosine
2440
+ points
2441
+
2442
+ Notes
2443
+ =====
2444
+
2445
+ This is a base class and is not meant to be instantiated.
2446
+ """
2447
+ def __new__(cls, p1, p2, **kwargs):
2448
+ p1 = Point3D(p1, dim=3)
2449
+ p2 = Point3D(p2, dim=3)
2450
+ if p1 == p2:
2451
+ # if it makes sense to return a Point, handle in subclass
2452
+ raise ValueError(
2453
+ "%s.__new__ requires two unique Points." % cls.__name__)
2454
+
2455
+ return GeometryEntity.__new__(cls, p1, p2, **kwargs)
2456
+
2457
+ ambient_dimension = 3
2458
+
2459
+ @property
2460
+ def direction_ratio(self):
2461
+ """The direction ratio of a given line in 3D.
2462
+
2463
+ See Also
2464
+ ========
2465
+
2466
+ sympy.geometry.line.Line3D.equation
2467
+
2468
+ Examples
2469
+ ========
2470
+
2471
+ >>> from sympy import Point3D, Line3D
2472
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
2473
+ >>> l = Line3D(p1, p2)
2474
+ >>> l.direction_ratio
2475
+ [5, 3, 1]
2476
+ """
2477
+ p1, p2 = self.points
2478
+ return p1.direction_ratio(p2)
2479
+
2480
+ @property
2481
+ def direction_cosine(self):
2482
+ """The normalized direction ratio of a given line in 3D.
2483
+
2484
+ See Also
2485
+ ========
2486
+
2487
+ sympy.geometry.line.Line3D.equation
2488
+
2489
+ Examples
2490
+ ========
2491
+
2492
+ >>> from sympy import Point3D, Line3D
2493
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
2494
+ >>> l = Line3D(p1, p2)
2495
+ >>> l.direction_cosine
2496
+ [sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
2497
+ >>> sum(i**2 for i in _)
2498
+ 1
2499
+ """
2500
+ p1, p2 = self.points
2501
+ return p1.direction_cosine(p2)
2502
+
2503
+
2504
+ class Line3D(LinearEntity3D, Line):
2505
+ """An infinite 3D line in space.
2506
+
2507
+ A line is declared with two distinct points or a point and direction_ratio
2508
+ as defined using keyword `direction_ratio`.
2509
+
2510
+ Parameters
2511
+ ==========
2512
+
2513
+ p1 : Point3D
2514
+ pt : Point3D
2515
+ direction_ratio : list
2516
+
2517
+ See Also
2518
+ ========
2519
+
2520
+ sympy.geometry.point.Point3D
2521
+ sympy.geometry.line.Line
2522
+ sympy.geometry.line.Line2D
2523
+
2524
+ Examples
2525
+ ========
2526
+
2527
+ >>> from sympy import Line3D, Point3D
2528
+ >>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
2529
+ >>> L
2530
+ Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
2531
+ >>> L.points
2532
+ (Point3D(2, 3, 4), Point3D(3, 5, 1))
2533
+ """
2534
+ def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
2535
+ if isinstance(p1, LinearEntity3D):
2536
+ if pt is not None:
2537
+ raise ValueError('if p1 is a LinearEntity, pt must be None.')
2538
+ p1, pt = p1.args
2539
+ else:
2540
+ p1 = Point(p1, dim=3)
2541
+ if pt is not None and len(direction_ratio) == 0:
2542
+ pt = Point(pt, dim=3)
2543
+ elif len(direction_ratio) == 3 and pt is None:
2544
+ pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
2545
+ p1.z + direction_ratio[2])
2546
+ else:
2547
+ raise ValueError('A 2nd Point or keyword "direction_ratio" must '
2548
+ 'be used.')
2549
+
2550
+ return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
2551
+
2552
+ def equation(self, x='x', y='y', z='z'):
2553
+ """Return the equations that define the line in 3D.
2554
+
2555
+ Parameters
2556
+ ==========
2557
+
2558
+ x : str, optional
2559
+ The name to use for the x-axis, default value is 'x'.
2560
+ y : str, optional
2561
+ The name to use for the y-axis, default value is 'y'.
2562
+ z : str, optional
2563
+ The name to use for the z-axis, default value is 'z'.
2564
+
2565
+ Returns
2566
+ =======
2567
+
2568
+ equation : Tuple of simultaneous equations
2569
+
2570
+ Examples
2571
+ ========
2572
+
2573
+ >>> from sympy import Point3D, Line3D, solve
2574
+ >>> from sympy.abc import x, y, z
2575
+ >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
2576
+ >>> l1 = Line3D(p1, p2)
2577
+ >>> eq = l1.equation(x, y, z); eq
2578
+ (-3*x + 4*y + 3, z)
2579
+ >>> solve(eq.subs(z, 0), (x, y, z))
2580
+ {x: 4*y/3 + 1}
2581
+ """
2582
+ x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')]
2583
+ p1, p2 = self.points
2584
+ d1, d2, d3 = p1.direction_ratio(p2)
2585
+ x1, y1, z1 = p1
2586
+ eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1]
2587
+ # eliminate k from equations by solving first eq with k for k
2588
+ for i, e in enumerate(eqs):
2589
+ if e.has(k):
2590
+ kk = solve(eqs[i], k)[0]
2591
+ eqs.pop(i)
2592
+ break
2593
+ return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs])
2594
+
2595
+
2596
+ class Ray3D(LinearEntity3D, Ray):
2597
+ """
2598
+ A Ray is a semi-line in the space with a source point and a direction.
2599
+
2600
+ Parameters
2601
+ ==========
2602
+
2603
+ p1 : Point3D
2604
+ The source of the Ray
2605
+ p2 : Point or a direction vector
2606
+ direction_ratio: Determines the direction in which the Ray propagates.
2607
+
2608
+
2609
+ Attributes
2610
+ ==========
2611
+
2612
+ source
2613
+ xdirection
2614
+ ydirection
2615
+ zdirection
2616
+
2617
+ See Also
2618
+ ========
2619
+
2620
+ sympy.geometry.point.Point3D, Line3D
2621
+
2622
+
2623
+ Examples
2624
+ ========
2625
+
2626
+ >>> from sympy import Point3D, Ray3D
2627
+ >>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
2628
+ >>> r
2629
+ Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
2630
+ >>> r.points
2631
+ (Point3D(2, 3, 4), Point3D(3, 5, 0))
2632
+ >>> r.source
2633
+ Point3D(2, 3, 4)
2634
+ >>> r.xdirection
2635
+ oo
2636
+ >>> r.ydirection
2637
+ oo
2638
+ >>> r.direction_ratio
2639
+ [1, 2, -4]
2640
+
2641
+ """
2642
+ def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
2643
+ if isinstance(p1, LinearEntity3D):
2644
+ if pt is not None:
2645
+ raise ValueError('If p1 is a LinearEntity, pt must be None')
2646
+ p1, pt = p1.args
2647
+ else:
2648
+ p1 = Point(p1, dim=3)
2649
+ if pt is not None and len(direction_ratio) == 0:
2650
+ pt = Point(pt, dim=3)
2651
+ elif len(direction_ratio) == 3 and pt is None:
2652
+ pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
2653
+ p1.z + direction_ratio[2])
2654
+ else:
2655
+ raise ValueError(filldedent('''
2656
+ A 2nd Point or keyword "direction_ratio" must be used.
2657
+ '''))
2658
+
2659
+ return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
2660
+
2661
+ @property
2662
+ def xdirection(self):
2663
+ """The x direction of the ray.
2664
+
2665
+ Positive infinity if the ray points in the positive x direction,
2666
+ negative infinity if the ray points in the negative x direction,
2667
+ or 0 if the ray is vertical.
2668
+
2669
+ See Also
2670
+ ========
2671
+
2672
+ ydirection
2673
+
2674
+ Examples
2675
+ ========
2676
+
2677
+ >>> from sympy import Point3D, Ray3D
2678
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
2679
+ >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
2680
+ >>> r1.xdirection
2681
+ oo
2682
+ >>> r2.xdirection
2683
+ 0
2684
+
2685
+ """
2686
+ if self.p1.x < self.p2.x:
2687
+ return S.Infinity
2688
+ elif self.p1.x == self.p2.x:
2689
+ return S.Zero
2690
+ else:
2691
+ return S.NegativeInfinity
2692
+
2693
+ @property
2694
+ def ydirection(self):
2695
+ """The y direction of the ray.
2696
+
2697
+ Positive infinity if the ray points in the positive y direction,
2698
+ negative infinity if the ray points in the negative y direction,
2699
+ or 0 if the ray is horizontal.
2700
+
2701
+ See Also
2702
+ ========
2703
+
2704
+ xdirection
2705
+
2706
+ Examples
2707
+ ========
2708
+
2709
+ >>> from sympy import Point3D, Ray3D
2710
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
2711
+ >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
2712
+ >>> r1.ydirection
2713
+ -oo
2714
+ >>> r2.ydirection
2715
+ 0
2716
+
2717
+ """
2718
+ if self.p1.y < self.p2.y:
2719
+ return S.Infinity
2720
+ elif self.p1.y == self.p2.y:
2721
+ return S.Zero
2722
+ else:
2723
+ return S.NegativeInfinity
2724
+
2725
+ @property
2726
+ def zdirection(self):
2727
+ """The z direction of the ray.
2728
+
2729
+ Positive infinity if the ray points in the positive z direction,
2730
+ negative infinity if the ray points in the negative z direction,
2731
+ or 0 if the ray is horizontal.
2732
+
2733
+ See Also
2734
+ ========
2735
+
2736
+ xdirection
2737
+
2738
+ Examples
2739
+ ========
2740
+
2741
+ >>> from sympy import Point3D, Ray3D
2742
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
2743
+ >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
2744
+ >>> r1.ydirection
2745
+ -oo
2746
+ >>> r2.ydirection
2747
+ 0
2748
+ >>> r2.zdirection
2749
+ 0
2750
+
2751
+ """
2752
+ if self.p1.z < self.p2.z:
2753
+ return S.Infinity
2754
+ elif self.p1.z == self.p2.z:
2755
+ return S.Zero
2756
+ else:
2757
+ return S.NegativeInfinity
2758
+
2759
+
2760
+ class Segment3D(LinearEntity3D, Segment):
2761
+ """A line segment in a 3D space.
2762
+
2763
+ Parameters
2764
+ ==========
2765
+
2766
+ p1 : Point3D
2767
+ p2 : Point3D
2768
+
2769
+ Attributes
2770
+ ==========
2771
+
2772
+ length : number or SymPy expression
2773
+ midpoint : Point3D
2774
+
2775
+ See Also
2776
+ ========
2777
+
2778
+ sympy.geometry.point.Point3D, Line3D
2779
+
2780
+ Examples
2781
+ ========
2782
+
2783
+ >>> from sympy import Point3D, Segment3D
2784
+ >>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
2785
+ Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
2786
+ >>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
2787
+ Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
2788
+ >>> s.points
2789
+ (Point3D(4, 3, 9), Point3D(1, 1, 7))
2790
+ >>> s.length
2791
+ sqrt(17)
2792
+ >>> s.midpoint
2793
+ Point3D(5/2, 2, 8)
2794
+
2795
+ """
2796
+ def __new__(cls, p1, p2, **kwargs):
2797
+ p1 = Point(p1, dim=3)
2798
+ p2 = Point(p2, dim=3)
2799
+
2800
+ if p1 == p2:
2801
+ return p1
2802
+
2803
+ return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
env-llmeval/lib/python3.10/site-packages/sympy/geometry/parabola.py ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Parabolic geometrical entity.
2
+
3
+ Contains
4
+ * Parabola
5
+
6
+ """
7
+
8
+ from sympy.core import S
9
+ from sympy.core.sorting import ordered
10
+ from sympy.core.symbol import _symbol, symbols
11
+ from sympy.geometry.entity import GeometryEntity, GeometrySet
12
+ from sympy.geometry.point import Point, Point2D
13
+ from sympy.geometry.line import Line, Line2D, Ray2D, Segment2D, LinearEntity3D
14
+ from sympy.geometry.ellipse import Ellipse
15
+ from sympy.functions import sign
16
+ from sympy.simplify import simplify
17
+ from sympy.solvers.solvers import solve
18
+
19
+
20
+ class Parabola(GeometrySet):
21
+ """A parabolic GeometryEntity.
22
+
23
+ A parabola is declared with a point, that is called 'focus', and
24
+ a line, that is called 'directrix'.
25
+ Only vertical or horizontal parabolas are currently supported.
26
+
27
+ Parameters
28
+ ==========
29
+
30
+ focus : Point
31
+ Default value is Point(0, 0)
32
+ directrix : Line
33
+
34
+ Attributes
35
+ ==========
36
+
37
+ focus
38
+ directrix
39
+ axis of symmetry
40
+ focal length
41
+ p parameter
42
+ vertex
43
+ eccentricity
44
+
45
+ Raises
46
+ ======
47
+ ValueError
48
+ When `focus` is not a two dimensional point.
49
+ When `focus` is a point of directrix.
50
+ NotImplementedError
51
+ When `directrix` is neither horizontal nor vertical.
52
+
53
+ Examples
54
+ ========
55
+
56
+ >>> from sympy import Parabola, Point, Line
57
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7,8)))
58
+ >>> p1.focus
59
+ Point2D(0, 0)
60
+ >>> p1.directrix
61
+ Line2D(Point2D(5, 8), Point2D(7, 8))
62
+
63
+ """
64
+
65
+ def __new__(cls, focus=None, directrix=None, **kwargs):
66
+
67
+ if focus:
68
+ focus = Point(focus, dim=2)
69
+ else:
70
+ focus = Point(0, 0)
71
+
72
+ directrix = Line(directrix)
73
+
74
+ if directrix.contains(focus):
75
+ raise ValueError('The focus must not be a point of directrix')
76
+
77
+ return GeometryEntity.__new__(cls, focus, directrix, **kwargs)
78
+
79
+ @property
80
+ def ambient_dimension(self):
81
+ """Returns the ambient dimension of parabola.
82
+
83
+ Returns
84
+ =======
85
+
86
+ ambient_dimension : integer
87
+
88
+ Examples
89
+ ========
90
+
91
+ >>> from sympy import Parabola, Point, Line
92
+ >>> f1 = Point(0, 0)
93
+ >>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8)))
94
+ >>> p1.ambient_dimension
95
+ 2
96
+
97
+ """
98
+ return 2
99
+
100
+ @property
101
+ def axis_of_symmetry(self):
102
+ """Return the axis of symmetry of the parabola: a line
103
+ perpendicular to the directrix passing through the focus.
104
+
105
+ Returns
106
+ =======
107
+
108
+ axis_of_symmetry : Line
109
+
110
+ See Also
111
+ ========
112
+
113
+ sympy.geometry.line.Line
114
+
115
+ Examples
116
+ ========
117
+
118
+ >>> from sympy import Parabola, Point, Line
119
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
120
+ >>> p1.axis_of_symmetry
121
+ Line2D(Point2D(0, 0), Point2D(0, 1))
122
+
123
+ """
124
+ return self.directrix.perpendicular_line(self.focus)
125
+
126
+ @property
127
+ def directrix(self):
128
+ """The directrix of the parabola.
129
+
130
+ Returns
131
+ =======
132
+
133
+ directrix : Line
134
+
135
+ See Also
136
+ ========
137
+
138
+ sympy.geometry.line.Line
139
+
140
+ Examples
141
+ ========
142
+
143
+ >>> from sympy import Parabola, Point, Line
144
+ >>> l1 = Line(Point(5, 8), Point(7, 8))
145
+ >>> p1 = Parabola(Point(0, 0), l1)
146
+ >>> p1.directrix
147
+ Line2D(Point2D(5, 8), Point2D(7, 8))
148
+
149
+ """
150
+ return self.args[1]
151
+
152
+ @property
153
+ def eccentricity(self):
154
+ """The eccentricity of the parabola.
155
+
156
+ Returns
157
+ =======
158
+
159
+ eccentricity : number
160
+
161
+ A parabola may also be characterized as a conic section with an
162
+ eccentricity of 1. As a consequence of this, all parabolas are
163
+ similar, meaning that while they can be different sizes,
164
+ they are all the same shape.
165
+
166
+ See Also
167
+ ========
168
+
169
+ https://en.wikipedia.org/wiki/Parabola
170
+
171
+
172
+ Examples
173
+ ========
174
+
175
+ >>> from sympy import Parabola, Point, Line
176
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
177
+ >>> p1.eccentricity
178
+ 1
179
+
180
+ Notes
181
+ -----
182
+ The eccentricity for every Parabola is 1 by definition.
183
+
184
+ """
185
+ return S.One
186
+
187
+ def equation(self, x='x', y='y'):
188
+ """The equation of the parabola.
189
+
190
+ Parameters
191
+ ==========
192
+ x : str, optional
193
+ Label for the x-axis. Default value is 'x'.
194
+ y : str, optional
195
+ Label for the y-axis. Default value is 'y'.
196
+
197
+ Returns
198
+ =======
199
+ equation : SymPy expression
200
+
201
+ Examples
202
+ ========
203
+
204
+ >>> from sympy import Parabola, Point, Line
205
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
206
+ >>> p1.equation()
207
+ -x**2 - 16*y + 64
208
+ >>> p1.equation('f')
209
+ -f**2 - 16*y + 64
210
+ >>> p1.equation(y='z')
211
+ -x**2 - 16*z + 64
212
+
213
+ """
214
+ x = _symbol(x, real=True)
215
+ y = _symbol(y, real=True)
216
+
217
+ m = self.directrix.slope
218
+ if m is S.Infinity:
219
+ t1 = 4 * (self.p_parameter) * (x - self.vertex.x)
220
+ t2 = (y - self.vertex.y)**2
221
+ elif m == 0:
222
+ t1 = 4 * (self.p_parameter) * (y - self.vertex.y)
223
+ t2 = (x - self.vertex.x)**2
224
+ else:
225
+ a, b = self.focus
226
+ c, d = self.directrix.coefficients[:2]
227
+ t1 = (x - a)**2 + (y - b)**2
228
+ t2 = self.directrix.equation(x, y)**2/(c**2 + d**2)
229
+ return t1 - t2
230
+
231
+ @property
232
+ def focal_length(self):
233
+ """The focal length of the parabola.
234
+
235
+ Returns
236
+ =======
237
+
238
+ focal_lenght : number or symbolic expression
239
+
240
+ Notes
241
+ =====
242
+
243
+ The distance between the vertex and the focus
244
+ (or the vertex and directrix), measured along the axis
245
+ of symmetry, is the "focal length".
246
+
247
+ See Also
248
+ ========
249
+
250
+ https://en.wikipedia.org/wiki/Parabola
251
+
252
+ Examples
253
+ ========
254
+
255
+ >>> from sympy import Parabola, Point, Line
256
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
257
+ >>> p1.focal_length
258
+ 4
259
+
260
+ """
261
+ distance = self.directrix.distance(self.focus)
262
+ focal_length = distance/2
263
+
264
+ return focal_length
265
+
266
+ @property
267
+ def focus(self):
268
+ """The focus of the parabola.
269
+
270
+ Returns
271
+ =======
272
+
273
+ focus : Point
274
+
275
+ See Also
276
+ ========
277
+
278
+ sympy.geometry.point.Point
279
+
280
+ Examples
281
+ ========
282
+
283
+ >>> from sympy import Parabola, Point, Line
284
+ >>> f1 = Point(0, 0)
285
+ >>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8)))
286
+ >>> p1.focus
287
+ Point2D(0, 0)
288
+
289
+ """
290
+ return self.args[0]
291
+
292
+ def intersection(self, o):
293
+ """The intersection of the parabola and another geometrical entity `o`.
294
+
295
+ Parameters
296
+ ==========
297
+
298
+ o : GeometryEntity, LinearEntity
299
+
300
+ Returns
301
+ =======
302
+
303
+ intersection : list of GeometryEntity objects
304
+
305
+ Examples
306
+ ========
307
+
308
+ >>> from sympy import Parabola, Point, Ellipse, Line, Segment
309
+ >>> p1 = Point(0,0)
310
+ >>> l1 = Line(Point(1, -2), Point(-1,-2))
311
+ >>> parabola1 = Parabola(p1, l1)
312
+ >>> parabola1.intersection(Ellipse(Point(0, 0), 2, 5))
313
+ [Point2D(-2, 0), Point2D(2, 0)]
314
+ >>> parabola1.intersection(Line(Point(-7, 3), Point(12, 3)))
315
+ [Point2D(-4, 3), Point2D(4, 3)]
316
+ >>> parabola1.intersection(Segment((-12, -65), (14, -68)))
317
+ []
318
+
319
+ """
320
+ x, y = symbols('x y', real=True)
321
+ parabola_eq = self.equation()
322
+ if isinstance(o, Parabola):
323
+ if o in self:
324
+ return [o]
325
+ else:
326
+ return list(ordered([Point(i) for i in solve(
327
+ [parabola_eq, o.equation()], [x, y], set=True)[1]]))
328
+ elif isinstance(o, Point2D):
329
+ if simplify(parabola_eq.subs([(x, o._args[0]), (y, o._args[1])])) == 0:
330
+ return [o]
331
+ else:
332
+ return []
333
+ elif isinstance(o, (Segment2D, Ray2D)):
334
+ result = solve([parabola_eq,
335
+ Line2D(o.points[0], o.points[1]).equation()],
336
+ [x, y], set=True)[1]
337
+ return list(ordered([Point2D(i) for i in result if i in o]))
338
+ elif isinstance(o, (Line2D, Ellipse)):
339
+ return list(ordered([Point2D(i) for i in solve(
340
+ [parabola_eq, o.equation()], [x, y], set=True)[1]]))
341
+ elif isinstance(o, LinearEntity3D):
342
+ raise TypeError('Entity must be two dimensional, not three dimensional')
343
+ else:
344
+ raise TypeError('Wrong type of argument were put')
345
+
346
+ @property
347
+ def p_parameter(self):
348
+ """P is a parameter of parabola.
349
+
350
+ Returns
351
+ =======
352
+
353
+ p : number or symbolic expression
354
+
355
+ Notes
356
+ =====
357
+
358
+ The absolute value of p is the focal length. The sign on p tells
359
+ which way the parabola faces. Vertical parabolas that open up
360
+ and horizontal that open right, give a positive value for p.
361
+ Vertical parabolas that open down and horizontal that open left,
362
+ give a negative value for p.
363
+
364
+
365
+ See Also
366
+ ========
367
+
368
+ https://www.sparknotes.com/math/precalc/conicsections/section2/
369
+
370
+ Examples
371
+ ========
372
+
373
+ >>> from sympy import Parabola, Point, Line
374
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
375
+ >>> p1.p_parameter
376
+ -4
377
+
378
+ """
379
+ m = self.directrix.slope
380
+ if m is S.Infinity:
381
+ x = self.directrix.coefficients[2]
382
+ p = sign(self.focus.args[0] + x)
383
+ elif m == 0:
384
+ y = self.directrix.coefficients[2]
385
+ p = sign(self.focus.args[1] + y)
386
+ else:
387
+ d = self.directrix.projection(self.focus)
388
+ p = sign(self.focus.x - d.x)
389
+ return p * self.focal_length
390
+
391
+ @property
392
+ def vertex(self):
393
+ """The vertex of the parabola.
394
+
395
+ Returns
396
+ =======
397
+
398
+ vertex : Point
399
+
400
+ See Also
401
+ ========
402
+
403
+ sympy.geometry.point.Point
404
+
405
+ Examples
406
+ ========
407
+
408
+ >>> from sympy import Parabola, Point, Line
409
+ >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
410
+ >>> p1.vertex
411
+ Point2D(0, 4)
412
+
413
+ """
414
+ focus = self.focus
415
+ m = self.directrix.slope
416
+ if m is S.Infinity:
417
+ vertex = Point(focus.args[0] - self.p_parameter, focus.args[1])
418
+ elif m == 0:
419
+ vertex = Point(focus.args[0], focus.args[1] - self.p_parameter)
420
+ else:
421
+ vertex = self.axis_of_symmetry.intersection(self)[0]
422
+ return vertex
env-llmeval/lib/python3.10/site-packages/sympy/geometry/plane.py ADDED
@@ -0,0 +1,884 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Geometrical Planes.
2
+
3
+ Contains
4
+ ========
5
+ Plane
6
+
7
+ """
8
+
9
+ from sympy.core import Dummy, Rational, S, Symbol
10
+ from sympy.core.symbol import _symbol
11
+ from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt
12
+ from .entity import GeometryEntity
13
+ from .line import (Line, Ray, Segment, Line3D, LinearEntity, LinearEntity3D,
14
+ Ray3D, Segment3D)
15
+ from .point import Point, Point3D
16
+ from sympy.matrices import Matrix
17
+ from sympy.polys.polytools import cancel
18
+ from sympy.solvers import solve, linsolve
19
+ from sympy.utilities.iterables import uniq, is_sequence
20
+ from sympy.utilities.misc import filldedent, func_name, Undecidable
21
+
22
+ from mpmath.libmp.libmpf import prec_to_dps
23
+
24
+ import random
25
+
26
+
27
+ x, y, z, t = [Dummy('plane_dummy') for i in range(4)]
28
+
29
+
30
+ class Plane(GeometryEntity):
31
+ """
32
+ A plane is a flat, two-dimensional surface. A plane is the two-dimensional
33
+ analogue of a point (zero-dimensions), a line (one-dimension) and a solid
34
+ (three-dimensions). A plane can generally be constructed by two types of
35
+ inputs. They are three non-collinear points and a point and the plane's
36
+ normal vector.
37
+
38
+ Attributes
39
+ ==========
40
+
41
+ p1
42
+ normal_vector
43
+
44
+ Examples
45
+ ========
46
+
47
+ >>> from sympy import Plane, Point3D
48
+ >>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
49
+ Plane(Point3D(1, 1, 1), (-1, 2, -1))
50
+ >>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2))
51
+ Plane(Point3D(1, 1, 1), (-1, 2, -1))
52
+ >>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7))
53
+ Plane(Point3D(1, 1, 1), (1, 4, 7))
54
+
55
+ """
56
+ def __new__(cls, p1, a=None, b=None, **kwargs):
57
+ p1 = Point3D(p1, dim=3)
58
+ if a and b:
59
+ p2 = Point(a, dim=3)
60
+ p3 = Point(b, dim=3)
61
+ if Point3D.are_collinear(p1, p2, p3):
62
+ raise ValueError('Enter three non-collinear points')
63
+ a = p1.direction_ratio(p2)
64
+ b = p1.direction_ratio(p3)
65
+ normal_vector = tuple(Matrix(a).cross(Matrix(b)))
66
+ else:
67
+ a = kwargs.pop('normal_vector', a)
68
+ evaluate = kwargs.get('evaluate', True)
69
+ if is_sequence(a) and len(a) == 3:
70
+ normal_vector = Point3D(a).args if evaluate else a
71
+ else:
72
+ raise ValueError(filldedent('''
73
+ Either provide 3 3D points or a point with a
74
+ normal vector expressed as a sequence of length 3'''))
75
+ if all(coord.is_zero for coord in normal_vector):
76
+ raise ValueError('Normal vector cannot be zero vector')
77
+ return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs)
78
+
79
+ def __contains__(self, o):
80
+ k = self.equation(x, y, z)
81
+ if isinstance(o, (LinearEntity, LinearEntity3D)):
82
+ d = Point3D(o.arbitrary_point(t))
83
+ e = k.subs([(x, d.x), (y, d.y), (z, d.z)])
84
+ return e.equals(0)
85
+ try:
86
+ o = Point(o, dim=3, strict=True)
87
+ d = k.xreplace(dict(zip((x, y, z), o.args)))
88
+ return d.equals(0)
89
+ except TypeError:
90
+ return False
91
+
92
+ def _eval_evalf(self, prec=15, **options):
93
+ pt, tup = self.args
94
+ dps = prec_to_dps(prec)
95
+ pt = pt.evalf(n=dps, **options)
96
+ tup = tuple([i.evalf(n=dps, **options) for i in tup])
97
+ return self.func(pt, normal_vector=tup, evaluate=False)
98
+
99
+ def angle_between(self, o):
100
+ """Angle between the plane and other geometric entity.
101
+
102
+ Parameters
103
+ ==========
104
+
105
+ LinearEntity3D, Plane.
106
+
107
+ Returns
108
+ =======
109
+
110
+ angle : angle in radians
111
+
112
+ Notes
113
+ =====
114
+
115
+ This method accepts only 3D entities as it's parameter, but if you want
116
+ to calculate the angle between a 2D entity and a plane you should
117
+ first convert to a 3D entity by projecting onto a desired plane and
118
+ then proceed to calculate the angle.
119
+
120
+ Examples
121
+ ========
122
+
123
+ >>> from sympy import Point3D, Line3D, Plane
124
+ >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
125
+ >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
126
+ >>> a.angle_between(b)
127
+ -asin(sqrt(21)/6)
128
+
129
+ """
130
+ if isinstance(o, LinearEntity3D):
131
+ a = Matrix(self.normal_vector)
132
+ b = Matrix(o.direction_ratio)
133
+ c = a.dot(b)
134
+ d = sqrt(sum([i**2 for i in self.normal_vector]))
135
+ e = sqrt(sum([i**2 for i in o.direction_ratio]))
136
+ return asin(c/(d*e))
137
+ if isinstance(o, Plane):
138
+ a = Matrix(self.normal_vector)
139
+ b = Matrix(o.normal_vector)
140
+ c = a.dot(b)
141
+ d = sqrt(sum([i**2 for i in self.normal_vector]))
142
+ e = sqrt(sum([i**2 for i in o.normal_vector]))
143
+ return acos(c/(d*e))
144
+
145
+
146
+ def arbitrary_point(self, u=None, v=None):
147
+ """ Returns an arbitrary point on the Plane. If given two
148
+ parameters, the point ranges over the entire plane. If given 1
149
+ or no parameters, returns a point with one parameter which,
150
+ when varying from 0 to 2*pi, moves the point in a circle of
151
+ radius 1 about p1 of the Plane.
152
+
153
+ Examples
154
+ ========
155
+
156
+ >>> from sympy import Plane, Ray
157
+ >>> from sympy.abc import u, v, t, r
158
+ >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
159
+ >>> p.arbitrary_point(u, v)
160
+ Point3D(1, u + 1, v + 1)
161
+ >>> p.arbitrary_point(t)
162
+ Point3D(1, cos(t) + 1, sin(t) + 1)
163
+
164
+ While arbitrary values of u and v can move the point anywhere in
165
+ the plane, the single-parameter point can be used to construct a
166
+ ray whose arbitrary point can be located at angle t and radius
167
+ r from p.p1:
168
+
169
+ >>> Ray(p.p1, _).arbitrary_point(r)
170
+ Point3D(1, r*cos(t) + 1, r*sin(t) + 1)
171
+
172
+ Returns
173
+ =======
174
+
175
+ Point3D
176
+
177
+ """
178
+ circle = v is None
179
+ if circle:
180
+ u = _symbol(u or 't', real=True)
181
+ else:
182
+ u = _symbol(u or 'u', real=True)
183
+ v = _symbol(v or 'v', real=True)
184
+ x, y, z = self.normal_vector
185
+ a, b, c = self.p1.args
186
+ # x1, y1, z1 is a nonzero vector parallel to the plane
187
+ if x.is_zero and y.is_zero:
188
+ x1, y1, z1 = S.One, S.Zero, S.Zero
189
+ else:
190
+ x1, y1, z1 = -y, x, S.Zero
191
+ # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
192
+ x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
193
+ if circle:
194
+ x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1))
195
+ x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2))
196
+ p = Point3D(a + x1*cos(u) + x2*sin(u), \
197
+ b + y1*cos(u) + y2*sin(u), \
198
+ c + z1*cos(u) + z2*sin(u))
199
+ else:
200
+ p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v)
201
+ return p
202
+
203
+
204
+ @staticmethod
205
+ def are_concurrent(*planes):
206
+ """Is a sequence of Planes concurrent?
207
+
208
+ Two or more Planes are concurrent if their intersections
209
+ are a common line.
210
+
211
+ Parameters
212
+ ==========
213
+
214
+ planes: list
215
+
216
+ Returns
217
+ =======
218
+
219
+ Boolean
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy import Plane, Point3D
225
+ >>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1))
226
+ >>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1))
227
+ >>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9))
228
+ >>> Plane.are_concurrent(a, b)
229
+ True
230
+ >>> Plane.are_concurrent(a, b, c)
231
+ False
232
+
233
+ """
234
+ planes = list(uniq(planes))
235
+ for i in planes:
236
+ if not isinstance(i, Plane):
237
+ raise ValueError('All objects should be Planes but got %s' % i.func)
238
+ if len(planes) < 2:
239
+ return False
240
+ planes = list(planes)
241
+ first = planes.pop(0)
242
+ sol = first.intersection(planes[0])
243
+ if sol == []:
244
+ return False
245
+ else:
246
+ line = sol[0]
247
+ for i in planes[1:]:
248
+ l = first.intersection(i)
249
+ if not l or l[0] not in line:
250
+ return False
251
+ return True
252
+
253
+
254
+ def distance(self, o):
255
+ """Distance between the plane and another geometric entity.
256
+
257
+ Parameters
258
+ ==========
259
+
260
+ Point3D, LinearEntity3D, Plane.
261
+
262
+ Returns
263
+ =======
264
+
265
+ distance
266
+
267
+ Notes
268
+ =====
269
+
270
+ This method accepts only 3D entities as it's parameter, but if you want
271
+ to calculate the distance between a 2D entity and a plane you should
272
+ first convert to a 3D entity by projecting onto a desired plane and
273
+ then proceed to calculate the distance.
274
+
275
+ Examples
276
+ ========
277
+
278
+ >>> from sympy import Point3D, Line3D, Plane
279
+ >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
280
+ >>> b = Point3D(1, 2, 3)
281
+ >>> a.distance(b)
282
+ sqrt(3)
283
+ >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
284
+ >>> a.distance(c)
285
+ 0
286
+
287
+ """
288
+ if self.intersection(o) != []:
289
+ return S.Zero
290
+
291
+ if isinstance(o, (Segment3D, Ray3D)):
292
+ a, b = o.p1, o.p2
293
+ pi, = self.intersection(Line3D(a, b))
294
+ if pi in o:
295
+ return self.distance(pi)
296
+ elif a in Segment3D(pi, b):
297
+ return self.distance(a)
298
+ else:
299
+ assert isinstance(o, Segment3D) is True
300
+ return self.distance(b)
301
+
302
+ # following code handles `Point3D`, `LinearEntity3D`, `Plane`
303
+ a = o if isinstance(o, Point3D) else o.p1
304
+ n = Point3D(self.normal_vector).unit
305
+ d = (a - self.p1).dot(n)
306
+ return abs(d)
307
+
308
+
309
+ def equals(self, o):
310
+ """
311
+ Returns True if self and o are the same mathematical entities.
312
+
313
+ Examples
314
+ ========
315
+
316
+ >>> from sympy import Plane, Point3D
317
+ >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
318
+ >>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2))
319
+ >>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6))
320
+ >>> a.equals(a)
321
+ True
322
+ >>> a.equals(b)
323
+ True
324
+ >>> a.equals(c)
325
+ False
326
+ """
327
+ if isinstance(o, Plane):
328
+ a = self.equation()
329
+ b = o.equation()
330
+ return cancel(a/b).is_constant()
331
+ else:
332
+ return False
333
+
334
+
335
+ def equation(self, x=None, y=None, z=None):
336
+ """The equation of the Plane.
337
+
338
+ Examples
339
+ ========
340
+
341
+ >>> from sympy import Point3D, Plane
342
+ >>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1))
343
+ >>> a.equation()
344
+ -23*x + 11*y - 2*z + 16
345
+ >>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6))
346
+ >>> a.equation()
347
+ 6*x + 6*y + 6*z - 42
348
+
349
+ """
350
+ x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')]
351
+ a = Point3D(x, y, z)
352
+ b = self.p1.direction_ratio(a)
353
+ c = self.normal_vector
354
+ return (sum(i*j for i, j in zip(b, c)))
355
+
356
+
357
+ def intersection(self, o):
358
+ """ The intersection with other geometrical entity.
359
+
360
+ Parameters
361
+ ==========
362
+
363
+ Point, Point3D, LinearEntity, LinearEntity3D, Plane
364
+
365
+ Returns
366
+ =======
367
+
368
+ List
369
+
370
+ Examples
371
+ ========
372
+
373
+ >>> from sympy import Point3D, Line3D, Plane
374
+ >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
375
+ >>> b = Point3D(1, 2, 3)
376
+ >>> a.intersection(b)
377
+ [Point3D(1, 2, 3)]
378
+ >>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2))
379
+ >>> a.intersection(c)
380
+ [Point3D(2, 2, 2)]
381
+ >>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
382
+ >>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3))
383
+ >>> d.intersection(e)
384
+ [Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))]
385
+
386
+ """
387
+ if not isinstance(o, GeometryEntity):
388
+ o = Point(o, dim=3)
389
+ if isinstance(o, Point):
390
+ if o in self:
391
+ return [o]
392
+ else:
393
+ return []
394
+ if isinstance(o, (LinearEntity, LinearEntity3D)):
395
+ # recast to 3D
396
+ p1, p2 = o.p1, o.p2
397
+ if isinstance(o, Segment):
398
+ o = Segment3D(p1, p2)
399
+ elif isinstance(o, Ray):
400
+ o = Ray3D(p1, p2)
401
+ elif isinstance(o, Line):
402
+ o = Line3D(p1, p2)
403
+ else:
404
+ raise ValueError('unhandled linear entity: %s' % o.func)
405
+ if o in self:
406
+ return [o]
407
+ else:
408
+ a = Point3D(o.arbitrary_point(t))
409
+ p1, n = self.p1, Point3D(self.normal_vector)
410
+
411
+ # TODO: Replace solve with solveset, when this line is tested
412
+ c = solve((a - p1).dot(n), t)
413
+ if not c:
414
+ return []
415
+ else:
416
+ c = [i for i in c if i.is_real is not False]
417
+ if len(c) > 1:
418
+ c = [i for i in c if i.is_real]
419
+ if len(c) != 1:
420
+ raise Undecidable("not sure which point is real")
421
+ p = a.subs(t, c[0])
422
+ if p not in o:
423
+ return [] # e.g. a segment might not intersect a plane
424
+ return [p]
425
+ if isinstance(o, Plane):
426
+ if self.equals(o):
427
+ return [self]
428
+ if self.is_parallel(o):
429
+ return []
430
+ else:
431
+ x, y, z = map(Dummy, 'xyz')
432
+ a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector])
433
+ c = list(a.cross(b))
434
+ d = self.equation(x, y, z)
435
+ e = o.equation(x, y, z)
436
+ result = list(linsolve([d, e], x, y, z))[0]
437
+ for i in (x, y, z): result = result.subs(i, 0)
438
+ return [Line3D(Point3D(result), direction_ratio=c)]
439
+
440
+
441
+ def is_coplanar(self, o):
442
+ """ Returns True if `o` is coplanar with self, else False.
443
+
444
+ Examples
445
+ ========
446
+
447
+ >>> from sympy import Plane
448
+ >>> o = (0, 0, 0)
449
+ >>> p = Plane(o, (1, 1, 1))
450
+ >>> p2 = Plane(o, (2, 2, 2))
451
+ >>> p == p2
452
+ False
453
+ >>> p.is_coplanar(p2)
454
+ True
455
+ """
456
+ if isinstance(o, Plane):
457
+ return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z)
458
+ if isinstance(o, Point3D):
459
+ return o in self
460
+ elif isinstance(o, LinearEntity3D):
461
+ return all(i in self for i in self)
462
+ elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now
463
+ return all(i == 0 for i in self.normal_vector[:2])
464
+
465
+
466
+ def is_parallel(self, l):
467
+ """Is the given geometric entity parallel to the plane?
468
+
469
+ Parameters
470
+ ==========
471
+
472
+ LinearEntity3D or Plane
473
+
474
+ Returns
475
+ =======
476
+
477
+ Boolean
478
+
479
+ Examples
480
+ ========
481
+
482
+ >>> from sympy import Plane, Point3D
483
+ >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
484
+ >>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12))
485
+ >>> a.is_parallel(b)
486
+ True
487
+
488
+ """
489
+ if isinstance(l, LinearEntity3D):
490
+ a = l.direction_ratio
491
+ b = self.normal_vector
492
+ c = sum([i*j for i, j in zip(a, b)])
493
+ if c == 0:
494
+ return True
495
+ else:
496
+ return False
497
+ elif isinstance(l, Plane):
498
+ a = Matrix(l.normal_vector)
499
+ b = Matrix(self.normal_vector)
500
+ if a.cross(b).is_zero_matrix:
501
+ return True
502
+ else:
503
+ return False
504
+
505
+
506
+ def is_perpendicular(self, l):
507
+ """Is the given geometric entity perpendicualar to the given plane?
508
+
509
+ Parameters
510
+ ==========
511
+
512
+ LinearEntity3D or Plane
513
+
514
+ Returns
515
+ =======
516
+
517
+ Boolean
518
+
519
+ Examples
520
+ ========
521
+
522
+ >>> from sympy import Plane, Point3D
523
+ >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
524
+ >>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1))
525
+ >>> a.is_perpendicular(b)
526
+ True
527
+
528
+ """
529
+ if isinstance(l, LinearEntity3D):
530
+ a = Matrix(l.direction_ratio)
531
+ b = Matrix(self.normal_vector)
532
+ if a.cross(b).is_zero_matrix:
533
+ return True
534
+ else:
535
+ return False
536
+ elif isinstance(l, Plane):
537
+ a = Matrix(l.normal_vector)
538
+ b = Matrix(self.normal_vector)
539
+ if a.dot(b) == 0:
540
+ return True
541
+ else:
542
+ return False
543
+ else:
544
+ return False
545
+
546
+ @property
547
+ def normal_vector(self):
548
+ """Normal vector of the given plane.
549
+
550
+ Examples
551
+ ========
552
+
553
+ >>> from sympy import Point3D, Plane
554
+ >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
555
+ >>> a.normal_vector
556
+ (-1, 2, -1)
557
+ >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7))
558
+ >>> a.normal_vector
559
+ (1, 4, 7)
560
+
561
+ """
562
+ return self.args[1]
563
+
564
+ @property
565
+ def p1(self):
566
+ """The only defining point of the plane. Others can be obtained from the
567
+ arbitrary_point method.
568
+
569
+ See Also
570
+ ========
571
+
572
+ sympy.geometry.point.Point3D
573
+
574
+ Examples
575
+ ========
576
+
577
+ >>> from sympy import Point3D, Plane
578
+ >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
579
+ >>> a.p1
580
+ Point3D(1, 1, 1)
581
+
582
+ """
583
+ return self.args[0]
584
+
585
+ def parallel_plane(self, pt):
586
+ """
587
+ Plane parallel to the given plane and passing through the point pt.
588
+
589
+ Parameters
590
+ ==========
591
+
592
+ pt: Point3D
593
+
594
+ Returns
595
+ =======
596
+
597
+ Plane
598
+
599
+ Examples
600
+ ========
601
+
602
+ >>> from sympy import Plane, Point3D
603
+ >>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
604
+ >>> a.parallel_plane(Point3D(2, 3, 5))
605
+ Plane(Point3D(2, 3, 5), (2, 4, 6))
606
+
607
+ """
608
+ a = self.normal_vector
609
+ return Plane(pt, normal_vector=a)
610
+
611
+ def perpendicular_line(self, pt):
612
+ """A line perpendicular to the given plane.
613
+
614
+ Parameters
615
+ ==========
616
+
617
+ pt: Point3D
618
+
619
+ Returns
620
+ =======
621
+
622
+ Line3D
623
+
624
+ Examples
625
+ ========
626
+
627
+ >>> from sympy import Plane, Point3D
628
+ >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
629
+ >>> a.perpendicular_line(Point3D(9, 8, 7))
630
+ Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13))
631
+
632
+ """
633
+ a = self.normal_vector
634
+ return Line3D(pt, direction_ratio=a)
635
+
636
+ def perpendicular_plane(self, *pts):
637
+ """
638
+ Return a perpendicular passing through the given points. If the
639
+ direction ratio between the points is the same as the Plane's normal
640
+ vector then, to select from the infinite number of possible planes,
641
+ a third point will be chosen on the z-axis (or the y-axis
642
+ if the normal vector is already parallel to the z-axis). If less than
643
+ two points are given they will be supplied as follows: if no point is
644
+ given then pt1 will be self.p1; if a second point is not given it will
645
+ be a point through pt1 on a line parallel to the z-axis (if the normal
646
+ is not already the z-axis, otherwise on the line parallel to the
647
+ y-axis).
648
+
649
+ Parameters
650
+ ==========
651
+
652
+ pts: 0, 1 or 2 Point3D
653
+
654
+ Returns
655
+ =======
656
+
657
+ Plane
658
+
659
+ Examples
660
+ ========
661
+
662
+ >>> from sympy import Plane, Point3D
663
+ >>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
664
+ >>> Z = (0, 0, 1)
665
+ >>> p = Plane(a, normal_vector=Z)
666
+ >>> p.perpendicular_plane(a, b)
667
+ Plane(Point3D(0, 0, 0), (1, 0, 0))
668
+ """
669
+ if len(pts) > 2:
670
+ raise ValueError('No more than 2 pts should be provided.')
671
+
672
+ pts = list(pts)
673
+ if len(pts) == 0:
674
+ pts.append(self.p1)
675
+ if len(pts) == 1:
676
+ x, y, z = self.normal_vector
677
+ if x == y == 0:
678
+ dir = (0, 1, 0)
679
+ else:
680
+ dir = (0, 0, 1)
681
+ pts.append(pts[0] + Point3D(*dir))
682
+
683
+ p1, p2 = [Point(i, dim=3) for i in pts]
684
+ l = Line3D(p1, p2)
685
+ n = Line3D(p1, direction_ratio=self.normal_vector)
686
+ if l in n: # XXX should an error be raised instead?
687
+ # there are infinitely many perpendicular planes;
688
+ x, y, z = self.normal_vector
689
+ if x == y == 0:
690
+ # the z axis is the normal so pick a pt on the y-axis
691
+ p3 = Point3D(0, 1, 0) # case 1
692
+ else:
693
+ # else pick a pt on the z axis
694
+ p3 = Point3D(0, 0, 1) # case 2
695
+ # in case that point is already given, move it a bit
696
+ if p3 in l:
697
+ p3 *= 2 # case 3
698
+ else:
699
+ p3 = p1 + Point3D(*self.normal_vector) # case 4
700
+ return Plane(p1, p2, p3)
701
+
702
+ def projection_line(self, line):
703
+ """Project the given line onto the plane through the normal plane
704
+ containing the line.
705
+
706
+ Parameters
707
+ ==========
708
+
709
+ LinearEntity or LinearEntity3D
710
+
711
+ Returns
712
+ =======
713
+
714
+ Point3D, Line3D, Ray3D or Segment3D
715
+
716
+ Notes
717
+ =====
718
+
719
+ For the interaction between 2D and 3D lines(segments, rays), you should
720
+ convert the line to 3D by using this method. For example for finding the
721
+ intersection between a 2D and a 3D line, convert the 2D line to a 3D line
722
+ by projecting it on a required plane and then proceed to find the
723
+ intersection between those lines.
724
+
725
+ Examples
726
+ ========
727
+
728
+ >>> from sympy import Plane, Line, Line3D, Point3D
729
+ >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
730
+ >>> b = Line(Point3D(1, 1), Point3D(2, 2))
731
+ >>> a.projection_line(b)
732
+ Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3))
733
+ >>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
734
+ >>> a.projection_line(c)
735
+ Point3D(1, 1, 1)
736
+
737
+ """
738
+ if not isinstance(line, (LinearEntity, LinearEntity3D)):
739
+ raise NotImplementedError('Enter a linear entity only')
740
+ a, b = self.projection(line.p1), self.projection(line.p2)
741
+ if a == b:
742
+ # projection does not imply intersection so for
743
+ # this case (line parallel to plane's normal) we
744
+ # return the projection point
745
+ return a
746
+ if isinstance(line, (Line, Line3D)):
747
+ return Line3D(a, b)
748
+ if isinstance(line, (Ray, Ray3D)):
749
+ return Ray3D(a, b)
750
+ if isinstance(line, (Segment, Segment3D)):
751
+ return Segment3D(a, b)
752
+
753
+ def projection(self, pt):
754
+ """Project the given point onto the plane along the plane normal.
755
+
756
+ Parameters
757
+ ==========
758
+
759
+ Point or Point3D
760
+
761
+ Returns
762
+ =======
763
+
764
+ Point3D
765
+
766
+ Examples
767
+ ========
768
+
769
+ >>> from sympy import Plane, Point3D
770
+ >>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
771
+
772
+ The projection is along the normal vector direction, not the z
773
+ axis, so (1, 1) does not project to (1, 1, 2) on the plane A:
774
+
775
+ >>> b = Point3D(1, 1)
776
+ >>> A.projection(b)
777
+ Point3D(5/3, 5/3, 2/3)
778
+ >>> _ in A
779
+ True
780
+
781
+ But the point (1, 1, 2) projects to (1, 1) on the XY-plane:
782
+
783
+ >>> XY = Plane((0, 0, 0), (0, 0, 1))
784
+ >>> XY.projection((1, 1, 2))
785
+ Point3D(1, 1, 0)
786
+ """
787
+ rv = Point(pt, dim=3)
788
+ if rv in self:
789
+ return rv
790
+ return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0]
791
+
792
+ def random_point(self, seed=None):
793
+ """ Returns a random point on the Plane.
794
+
795
+ Returns
796
+ =======
797
+
798
+ Point3D
799
+
800
+ Examples
801
+ ========
802
+
803
+ >>> from sympy import Plane
804
+ >>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0))
805
+ >>> r = p.random_point(seed=42) # seed value is optional
806
+ >>> r.n(3)
807
+ Point3D(2.29, 0, -1.35)
808
+
809
+ The random point can be moved to lie on the circle of radius
810
+ 1 centered on p1:
811
+
812
+ >>> c = p.p1 + (r - p.p1).unit
813
+ >>> c.distance(p.p1).equals(1)
814
+ True
815
+ """
816
+ if seed is not None:
817
+ rng = random.Random(seed)
818
+ else:
819
+ rng = random
820
+ params = {
821
+ x: 2*Rational(rng.gauss(0, 1)) - 1,
822
+ y: 2*Rational(rng.gauss(0, 1)) - 1}
823
+ return self.arbitrary_point(x, y).subs(params)
824
+
825
+ def parameter_value(self, other, u, v=None):
826
+ """Return the parameter(s) corresponding to the given point.
827
+
828
+ Examples
829
+ ========
830
+
831
+ >>> from sympy import pi, Plane
832
+ >>> from sympy.abc import t, u, v
833
+ >>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0))
834
+
835
+ By default, the parameter value returned defines a point
836
+ that is a distance of 1 from the Plane's p1 value and
837
+ in line with the given point:
838
+
839
+ >>> on_circle = p.arbitrary_point(t).subs(t, pi/4)
840
+ >>> on_circle.distance(p.p1)
841
+ 1
842
+ >>> p.parameter_value(on_circle, t)
843
+ {t: pi/4}
844
+
845
+ Moving the point twice as far from p1 does not change
846
+ the parameter value:
847
+
848
+ >>> off_circle = p.p1 + (on_circle - p.p1)*2
849
+ >>> off_circle.distance(p.p1)
850
+ 2
851
+ >>> p.parameter_value(off_circle, t)
852
+ {t: pi/4}
853
+
854
+ If the 2-value parameter is desired, supply the two
855
+ parameter symbols and a replacement dictionary will
856
+ be returned:
857
+
858
+ >>> p.parameter_value(on_circle, u, v)
859
+ {u: sqrt(10)/10, v: sqrt(10)/30}
860
+ >>> p.parameter_value(off_circle, u, v)
861
+ {u: sqrt(10)/5, v: sqrt(10)/15}
862
+ """
863
+ if not isinstance(other, GeometryEntity):
864
+ other = Point(other, dim=self.ambient_dimension)
865
+ if not isinstance(other, Point):
866
+ raise ValueError("other must be a point")
867
+ if other == self.p1:
868
+ return other
869
+ if isinstance(u, Symbol) and v is None:
870
+ delta = self.arbitrary_point(u) - self.p1
871
+ eq = delta - (other - self.p1).unit
872
+ sol = solve(eq, u, dict=True)
873
+ elif isinstance(u, Symbol) and isinstance(v, Symbol):
874
+ pt = self.arbitrary_point(u, v)
875
+ sol = solve(pt - other, (u, v), dict=True)
876
+ else:
877
+ raise ValueError('expecting 1 or 2 symbols')
878
+ if not sol:
879
+ raise ValueError("Given point is not on %s" % func_name(self))
880
+ return sol[0] # {t: tval} or {u: uval, v: vval}
881
+
882
+ @property
883
+ def ambient_dimension(self):
884
+ return self.p1.ambient_dimension
env-llmeval/lib/python3.10/site-packages/sympy/geometry/point.py ADDED
@@ -0,0 +1,1378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Geometrical Points.
2
+
3
+ Contains
4
+ ========
5
+ Point
6
+ Point2D
7
+ Point3D
8
+
9
+ When methods of Point require 1 or more points as arguments, they
10
+ can be passed as a sequence of coordinates or Points:
11
+
12
+ >>> from sympy import Point
13
+ >>> Point(1, 1).is_collinear((2, 2), (3, 4))
14
+ False
15
+ >>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
16
+ False
17
+
18
+ """
19
+
20
+ import warnings
21
+
22
+ from sympy.core import S, sympify, Expr
23
+ from sympy.core.add import Add
24
+ from sympy.core.containers import Tuple
25
+ from sympy.core.numbers import Float
26
+ from sympy.core.parameters import global_parameters
27
+ from sympy.simplify import nsimplify, simplify
28
+ from sympy.geometry.exceptions import GeometryError
29
+ from sympy.functions.elementary.miscellaneous import sqrt
30
+ from sympy.functions.elementary.complexes import im
31
+ from sympy.functions.elementary.trigonometric import cos, sin
32
+ from sympy.matrices import Matrix
33
+ from sympy.matrices.expressions import Transpose
34
+ from sympy.utilities.iterables import uniq, is_sequence
35
+ from sympy.utilities.misc import filldedent, func_name, Undecidable
36
+
37
+ from .entity import GeometryEntity
38
+
39
+ from mpmath.libmp.libmpf import prec_to_dps
40
+
41
+
42
+ class Point(GeometryEntity):
43
+ """A point in a n-dimensional Euclidean space.
44
+
45
+ Parameters
46
+ ==========
47
+
48
+ coords : sequence of n-coordinate values. In the special
49
+ case where n=2 or 3, a Point2D or Point3D will be created
50
+ as appropriate.
51
+ evaluate : if `True` (default), all floats are turn into
52
+ exact types.
53
+ dim : number of coordinates the point should have. If coordinates
54
+ are unspecified, they are padded with zeros.
55
+ on_morph : indicates what should happen when the number of
56
+ coordinates of a point need to be changed by adding or
57
+ removing zeros. Possible values are `'warn'`, `'error'`, or
58
+ `ignore` (default). No warning or error is given when `*args`
59
+ is empty and `dim` is given. An error is always raised when
60
+ trying to remove nonzero coordinates.
61
+
62
+
63
+ Attributes
64
+ ==========
65
+
66
+ length
67
+ origin: A `Point` representing the origin of the
68
+ appropriately-dimensioned space.
69
+
70
+ Raises
71
+ ======
72
+
73
+ TypeError : When instantiating with anything but a Point or sequence
74
+ ValueError : when instantiating with a sequence with length < 2 or
75
+ when trying to reduce dimensions if keyword `on_morph='error'` is
76
+ set.
77
+
78
+ See Also
79
+ ========
80
+
81
+ sympy.geometry.line.Segment : Connects two Points
82
+
83
+ Examples
84
+ ========
85
+
86
+ >>> from sympy import Point
87
+ >>> from sympy.abc import x
88
+ >>> Point(1, 2, 3)
89
+ Point3D(1, 2, 3)
90
+ >>> Point([1, 2])
91
+ Point2D(1, 2)
92
+ >>> Point(0, x)
93
+ Point2D(0, x)
94
+ >>> Point(dim=4)
95
+ Point(0, 0, 0, 0)
96
+
97
+ Floats are automatically converted to Rational unless the
98
+ evaluate flag is False:
99
+
100
+ >>> Point(0.5, 0.25)
101
+ Point2D(1/2, 1/4)
102
+ >>> Point(0.5, 0.25, evaluate=False)
103
+ Point2D(0.5, 0.25)
104
+
105
+ """
106
+
107
+ is_Point = True
108
+
109
+ def __new__(cls, *args, **kwargs):
110
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
111
+ on_morph = kwargs.get('on_morph', 'ignore')
112
+
113
+ # unpack into coords
114
+ coords = args[0] if len(args) == 1 else args
115
+
116
+ # check args and handle quickly handle Point instances
117
+ if isinstance(coords, Point):
118
+ # even if we're mutating the dimension of a point, we
119
+ # don't reevaluate its coordinates
120
+ evaluate = False
121
+ if len(coords) == kwargs.get('dim', len(coords)):
122
+ return coords
123
+
124
+ if not is_sequence(coords):
125
+ raise TypeError(filldedent('''
126
+ Expecting sequence of coordinates, not `{}`'''
127
+ .format(func_name(coords))))
128
+ # A point where only `dim` is specified is initialized
129
+ # to zeros.
130
+ if len(coords) == 0 and kwargs.get('dim', None):
131
+ coords = (S.Zero,)*kwargs.get('dim')
132
+
133
+ coords = Tuple(*coords)
134
+ dim = kwargs.get('dim', len(coords))
135
+
136
+ if len(coords) < 2:
137
+ raise ValueError(filldedent('''
138
+ Point requires 2 or more coordinates or
139
+ keyword `dim` > 1.'''))
140
+ if len(coords) != dim:
141
+ message = ("Dimension of {} needs to be changed "
142
+ "from {} to {}.").format(coords, len(coords), dim)
143
+ if on_morph == 'ignore':
144
+ pass
145
+ elif on_morph == "error":
146
+ raise ValueError(message)
147
+ elif on_morph == 'warn':
148
+ warnings.warn(message, stacklevel=2)
149
+ else:
150
+ raise ValueError(filldedent('''
151
+ on_morph value should be 'error',
152
+ 'warn' or 'ignore'.'''))
153
+ if any(coords[dim:]):
154
+ raise ValueError('Nonzero coordinates cannot be removed.')
155
+ if any(a.is_number and im(a).is_zero is False for a in coords):
156
+ raise ValueError('Imaginary coordinates are not permitted.')
157
+ if not all(isinstance(a, Expr) for a in coords):
158
+ raise TypeError('Coordinates must be valid SymPy expressions.')
159
+
160
+ # pad with zeros appropriately
161
+ coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
162
+
163
+ # Turn any Floats into rationals and simplify
164
+ # any expressions before we instantiate
165
+ if evaluate:
166
+ coords = coords.xreplace({
167
+ f: simplify(nsimplify(f, rational=True))
168
+ for f in coords.atoms(Float)})
169
+
170
+ # return 2D or 3D instances
171
+ if len(coords) == 2:
172
+ kwargs['_nocheck'] = True
173
+ return Point2D(*coords, **kwargs)
174
+ elif len(coords) == 3:
175
+ kwargs['_nocheck'] = True
176
+ return Point3D(*coords, **kwargs)
177
+
178
+ # the general Point
179
+ return GeometryEntity.__new__(cls, *coords)
180
+
181
+ def __abs__(self):
182
+ """Returns the distance between this point and the origin."""
183
+ origin = Point([0]*len(self))
184
+ return Point.distance(origin, self)
185
+
186
+ def __add__(self, other):
187
+ """Add other to self by incrementing self's coordinates by
188
+ those of other.
189
+
190
+ Notes
191
+ =====
192
+
193
+ >>> from sympy import Point
194
+
195
+ When sequences of coordinates are passed to Point methods, they
196
+ are converted to a Point internally. This __add__ method does
197
+ not do that so if floating point values are used, a floating
198
+ point result (in terms of SymPy Floats) will be returned.
199
+
200
+ >>> Point(1, 2) + (.1, .2)
201
+ Point2D(1.1, 2.2)
202
+
203
+ If this is not desired, the `translate` method can be used or
204
+ another Point can be added:
205
+
206
+ >>> Point(1, 2).translate(.1, .2)
207
+ Point2D(11/10, 11/5)
208
+ >>> Point(1, 2) + Point(.1, .2)
209
+ Point2D(11/10, 11/5)
210
+
211
+ See Also
212
+ ========
213
+
214
+ sympy.geometry.point.Point.translate
215
+
216
+ """
217
+ try:
218
+ s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
219
+ except TypeError:
220
+ raise GeometryError("Don't know how to add {} and a Point object".format(other))
221
+
222
+ coords = [simplify(a + b) for a, b in zip(s, o)]
223
+ return Point(coords, evaluate=False)
224
+
225
+ def __contains__(self, item):
226
+ return item in self.args
227
+
228
+ def __truediv__(self, divisor):
229
+ """Divide point's coordinates by a factor."""
230
+ divisor = sympify(divisor)
231
+ coords = [simplify(x/divisor) for x in self.args]
232
+ return Point(coords, evaluate=False)
233
+
234
+ def __eq__(self, other):
235
+ if not isinstance(other, Point) or len(self.args) != len(other.args):
236
+ return False
237
+ return self.args == other.args
238
+
239
+ def __getitem__(self, key):
240
+ return self.args[key]
241
+
242
+ def __hash__(self):
243
+ return hash(self.args)
244
+
245
+ def __iter__(self):
246
+ return self.args.__iter__()
247
+
248
+ def __len__(self):
249
+ return len(self.args)
250
+
251
+ def __mul__(self, factor):
252
+ """Multiply point's coordinates by a factor.
253
+
254
+ Notes
255
+ =====
256
+
257
+ >>> from sympy import Point
258
+
259
+ When multiplying a Point by a floating point number,
260
+ the coordinates of the Point will be changed to Floats:
261
+
262
+ >>> Point(1, 2)*0.1
263
+ Point2D(0.1, 0.2)
264
+
265
+ If this is not desired, the `scale` method can be used or
266
+ else only multiply or divide by integers:
267
+
268
+ >>> Point(1, 2).scale(1.1, 1.1)
269
+ Point2D(11/10, 11/5)
270
+ >>> Point(1, 2)*11/10
271
+ Point2D(11/10, 11/5)
272
+
273
+ See Also
274
+ ========
275
+
276
+ sympy.geometry.point.Point.scale
277
+ """
278
+ factor = sympify(factor)
279
+ coords = [simplify(x*factor) for x in self.args]
280
+ return Point(coords, evaluate=False)
281
+
282
+ def __rmul__(self, factor):
283
+ """Multiply a factor by point's coordinates."""
284
+ return self.__mul__(factor)
285
+
286
+ def __neg__(self):
287
+ """Negate the point."""
288
+ coords = [-x for x in self.args]
289
+ return Point(coords, evaluate=False)
290
+
291
+ def __sub__(self, other):
292
+ """Subtract two points, or subtract a factor from this point's
293
+ coordinates."""
294
+ return self + [-x for x in other]
295
+
296
+ @classmethod
297
+ def _normalize_dimension(cls, *points, **kwargs):
298
+ """Ensure that points have the same dimension.
299
+ By default `on_morph='warn'` is passed to the
300
+ `Point` constructor."""
301
+ # if we have a built-in ambient dimension, use it
302
+ dim = getattr(cls, '_ambient_dimension', None)
303
+ # override if we specified it
304
+ dim = kwargs.get('dim', dim)
305
+ # if no dim was given, use the highest dimensional point
306
+ if dim is None:
307
+ dim = max(i.ambient_dimension for i in points)
308
+ if all(i.ambient_dimension == dim for i in points):
309
+ return list(points)
310
+ kwargs['dim'] = dim
311
+ kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
312
+ return [Point(i, **kwargs) for i in points]
313
+
314
+ @staticmethod
315
+ def affine_rank(*args):
316
+ """The affine rank of a set of points is the dimension
317
+ of the smallest affine space containing all the points.
318
+ For example, if the points lie on a line (and are not all
319
+ the same) their affine rank is 1. If the points lie on a plane
320
+ but not a line, their affine rank is 2. By convention, the empty
321
+ set has affine rank -1."""
322
+
323
+ if len(args) == 0:
324
+ return -1
325
+ # make sure we're genuinely points
326
+ # and translate every point to the origin
327
+ points = Point._normalize_dimension(*[Point(i) for i in args])
328
+ origin = points[0]
329
+ points = [i - origin for i in points[1:]]
330
+
331
+ m = Matrix([i.args for i in points])
332
+ # XXX fragile -- what is a better way?
333
+ return m.rank(iszerofunc = lambda x:
334
+ abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)
335
+
336
+ @property
337
+ def ambient_dimension(self):
338
+ """Number of components this point has."""
339
+ return getattr(self, '_ambient_dimension', len(self))
340
+
341
+ @classmethod
342
+ def are_coplanar(cls, *points):
343
+ """Return True if there exists a plane in which all the points
344
+ lie. A trivial True value is returned if `len(points) < 3` or
345
+ all Points are 2-dimensional.
346
+
347
+ Parameters
348
+ ==========
349
+
350
+ A set of points
351
+
352
+ Raises
353
+ ======
354
+
355
+ ValueError : if less than 3 unique points are given
356
+
357
+ Returns
358
+ =======
359
+
360
+ boolean
361
+
362
+ Examples
363
+ ========
364
+
365
+ >>> from sympy import Point3D
366
+ >>> p1 = Point3D(1, 2, 2)
367
+ >>> p2 = Point3D(2, 7, 2)
368
+ >>> p3 = Point3D(0, 0, 2)
369
+ >>> p4 = Point3D(1, 1, 2)
370
+ >>> Point3D.are_coplanar(p1, p2, p3, p4)
371
+ True
372
+ >>> p5 = Point3D(0, 1, 3)
373
+ >>> Point3D.are_coplanar(p1, p2, p3, p5)
374
+ False
375
+
376
+ """
377
+ if len(points) <= 1:
378
+ return True
379
+
380
+ points = cls._normalize_dimension(*[Point(i) for i in points])
381
+ # quick exit if we are in 2D
382
+ if points[0].ambient_dimension == 2:
383
+ return True
384
+ points = list(uniq(points))
385
+ return Point.affine_rank(*points) <= 2
386
+
387
+ def distance(self, other):
388
+ """The Euclidean distance between self and another GeometricEntity.
389
+
390
+ Returns
391
+ =======
392
+
393
+ distance : number or symbolic expression.
394
+
395
+ Raises
396
+ ======
397
+
398
+ TypeError : if other is not recognized as a GeometricEntity or is a
399
+ GeometricEntity for which distance is not defined.
400
+
401
+ See Also
402
+ ========
403
+
404
+ sympy.geometry.line.Segment.length
405
+ sympy.geometry.point.Point.taxicab_distance
406
+
407
+ Examples
408
+ ========
409
+
410
+ >>> from sympy import Point, Line
411
+ >>> p1, p2 = Point(1, 1), Point(4, 5)
412
+ >>> l = Line((3, 1), (2, 2))
413
+ >>> p1.distance(p2)
414
+ 5
415
+ >>> p1.distance(l)
416
+ sqrt(2)
417
+
418
+ The computed distance may be symbolic, too:
419
+
420
+ >>> from sympy.abc import x, y
421
+ >>> p3 = Point(x, y)
422
+ >>> p3.distance((0, 0))
423
+ sqrt(x**2 + y**2)
424
+
425
+ """
426
+ if not isinstance(other, GeometryEntity):
427
+ try:
428
+ other = Point(other, dim=self.ambient_dimension)
429
+ except TypeError:
430
+ raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
431
+ if isinstance(other, Point):
432
+ s, p = Point._normalize_dimension(self, Point(other))
433
+ return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
434
+ distance = getattr(other, 'distance', None)
435
+ if distance is None:
436
+ raise TypeError("distance between Point and %s is not defined" % type(other))
437
+ return distance(self)
438
+
439
+ def dot(self, p):
440
+ """Return dot product of self with another Point."""
441
+ if not is_sequence(p):
442
+ p = Point(p) # raise the error via Point
443
+ return Add(*(a*b for a, b in zip(self, p)))
444
+
445
+ def equals(self, other):
446
+ """Returns whether the coordinates of self and other agree."""
447
+ # a point is equal to another point if all its components are equal
448
+ if not isinstance(other, Point) or len(self) != len(other):
449
+ return False
450
+ return all(a.equals(b) for a, b in zip(self, other))
451
+
452
+ def _eval_evalf(self, prec=15, **options):
453
+ """Evaluate the coordinates of the point.
454
+
455
+ This method will, where possible, create and return a new Point
456
+ where the coordinates are evaluated as floating point numbers to
457
+ the precision indicated (default=15).
458
+
459
+ Parameters
460
+ ==========
461
+
462
+ prec : int
463
+
464
+ Returns
465
+ =======
466
+
467
+ point : Point
468
+
469
+ Examples
470
+ ========
471
+
472
+ >>> from sympy import Point, Rational
473
+ >>> p1 = Point(Rational(1, 2), Rational(3, 2))
474
+ >>> p1
475
+ Point2D(1/2, 3/2)
476
+ >>> p1.evalf()
477
+ Point2D(0.5, 1.5)
478
+
479
+ """
480
+ dps = prec_to_dps(prec)
481
+ coords = [x.evalf(n=dps, **options) for x in self.args]
482
+ return Point(*coords, evaluate=False)
483
+
484
+ def intersection(self, other):
485
+ """The intersection between this point and another GeometryEntity.
486
+
487
+ Parameters
488
+ ==========
489
+
490
+ other : GeometryEntity or sequence of coordinates
491
+
492
+ Returns
493
+ =======
494
+
495
+ intersection : list of Points
496
+
497
+ Notes
498
+ =====
499
+
500
+ The return value will either be an empty list if there is no
501
+ intersection, otherwise it will contain this point.
502
+
503
+ Examples
504
+ ========
505
+
506
+ >>> from sympy import Point
507
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
508
+ >>> p1.intersection(p2)
509
+ []
510
+ >>> p1.intersection(p3)
511
+ [Point2D(0, 0)]
512
+
513
+ """
514
+ if not isinstance(other, GeometryEntity):
515
+ other = Point(other)
516
+ if isinstance(other, Point):
517
+ if self == other:
518
+ return [self]
519
+ p1, p2 = Point._normalize_dimension(self, other)
520
+ if p1 == self and p1 == p2:
521
+ return [self]
522
+ return []
523
+ return other.intersection(self)
524
+
525
+ def is_collinear(self, *args):
526
+ """Returns `True` if there exists a line
527
+ that contains `self` and `points`. Returns `False` otherwise.
528
+ A trivially True value is returned if no points are given.
529
+
530
+ Parameters
531
+ ==========
532
+
533
+ args : sequence of Points
534
+
535
+ Returns
536
+ =======
537
+
538
+ is_collinear : boolean
539
+
540
+ See Also
541
+ ========
542
+
543
+ sympy.geometry.line.Line
544
+
545
+ Examples
546
+ ========
547
+
548
+ >>> from sympy import Point
549
+ >>> from sympy.abc import x
550
+ >>> p1, p2 = Point(0, 0), Point(1, 1)
551
+ >>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
552
+ >>> Point.is_collinear(p1, p2, p3, p4)
553
+ True
554
+ >>> Point.is_collinear(p1, p2, p3, p5)
555
+ False
556
+
557
+ """
558
+ points = (self,) + args
559
+ points = Point._normalize_dimension(*[Point(i) for i in points])
560
+ points = list(uniq(points))
561
+ return Point.affine_rank(*points) <= 1
562
+
563
+ def is_concyclic(self, *args):
564
+ """Do `self` and the given sequence of points lie in a circle?
565
+
566
+ Returns True if the set of points are concyclic and
567
+ False otherwise. A trivial value of True is returned
568
+ if there are fewer than 2 other points.
569
+
570
+ Parameters
571
+ ==========
572
+
573
+ args : sequence of Points
574
+
575
+ Returns
576
+ =======
577
+
578
+ is_concyclic : boolean
579
+
580
+
581
+ Examples
582
+ ========
583
+
584
+ >>> from sympy import Point
585
+
586
+ Define 4 points that are on the unit circle:
587
+
588
+ >>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
589
+
590
+ >>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
591
+ True
592
+
593
+ Define a point not on that circle:
594
+
595
+ >>> p = Point(1, 1)
596
+
597
+ >>> p.is_concyclic(p1, p2, p3)
598
+ False
599
+
600
+ """
601
+ points = (self,) + args
602
+ points = Point._normalize_dimension(*[Point(i) for i in points])
603
+ points = list(uniq(points))
604
+ if not Point.affine_rank(*points) <= 2:
605
+ return False
606
+ origin = points[0]
607
+ points = [p - origin for p in points]
608
+ # points are concyclic if they are coplanar and
609
+ # there is a point c so that ||p_i-c|| == ||p_j-c|| for all
610
+ # i and j. Rearranging this equation gives us the following
611
+ # condition: the matrix `mat` must not a pivot in the last
612
+ # column.
613
+ mat = Matrix([list(i) + [i.dot(i)] for i in points])
614
+ rref, pivots = mat.rref()
615
+ if len(origin) not in pivots:
616
+ return True
617
+ return False
618
+
619
+ @property
620
+ def is_nonzero(self):
621
+ """True if any coordinate is nonzero, False if every coordinate is zero,
622
+ and None if it cannot be determined."""
623
+ is_zero = self.is_zero
624
+ if is_zero is None:
625
+ return None
626
+ return not is_zero
627
+
628
+ def is_scalar_multiple(self, p):
629
+ """Returns whether each coordinate of `self` is a scalar
630
+ multiple of the corresponding coordinate in point p.
631
+ """
632
+ s, o = Point._normalize_dimension(self, Point(p))
633
+ # 2d points happen a lot, so optimize this function call
634
+ if s.ambient_dimension == 2:
635
+ (x1, y1), (x2, y2) = s.args, o.args
636
+ rv = (x1*y2 - x2*y1).equals(0)
637
+ if rv is None:
638
+ raise Undecidable(filldedent(
639
+ '''Cannot determine if %s is a scalar multiple of
640
+ %s''' % (s, o)))
641
+
642
+ # if the vectors p1 and p2 are linearly dependent, then they must
643
+ # be scalar multiples of each other
644
+ m = Matrix([s.args, o.args])
645
+ return m.rank() < 2
646
+
647
+ @property
648
+ def is_zero(self):
649
+ """True if every coordinate is zero, False if any coordinate is not zero,
650
+ and None if it cannot be determined."""
651
+ nonzero = [x.is_nonzero for x in self.args]
652
+ if any(nonzero):
653
+ return False
654
+ if any(x is None for x in nonzero):
655
+ return None
656
+ return True
657
+
658
+ @property
659
+ def length(self):
660
+ """
661
+ Treating a Point as a Line, this returns 0 for the length of a Point.
662
+
663
+ Examples
664
+ ========
665
+
666
+ >>> from sympy import Point
667
+ >>> p = Point(0, 1)
668
+ >>> p.length
669
+ 0
670
+ """
671
+ return S.Zero
672
+
673
+ def midpoint(self, p):
674
+ """The midpoint between self and point p.
675
+
676
+ Parameters
677
+ ==========
678
+
679
+ p : Point
680
+
681
+ Returns
682
+ =======
683
+
684
+ midpoint : Point
685
+
686
+ See Also
687
+ ========
688
+
689
+ sympy.geometry.line.Segment.midpoint
690
+
691
+ Examples
692
+ ========
693
+
694
+ >>> from sympy import Point
695
+ >>> p1, p2 = Point(1, 1), Point(13, 5)
696
+ >>> p1.midpoint(p2)
697
+ Point2D(7, 3)
698
+
699
+ """
700
+ s, p = Point._normalize_dimension(self, Point(p))
701
+ return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
702
+
703
+ @property
704
+ def origin(self):
705
+ """A point of all zeros of the same ambient dimension
706
+ as the current point"""
707
+ return Point([0]*len(self), evaluate=False)
708
+
709
+ @property
710
+ def orthogonal_direction(self):
711
+ """Returns a non-zero point that is orthogonal to the
712
+ line containing `self` and the origin.
713
+
714
+ Examples
715
+ ========
716
+
717
+ >>> from sympy import Line, Point
718
+ >>> a = Point(1, 2, 3)
719
+ >>> a.orthogonal_direction
720
+ Point3D(-2, 1, 0)
721
+ >>> b = _
722
+ >>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
723
+ True
724
+ """
725
+ dim = self.ambient_dimension
726
+ # if a coordinate is zero, we can put a 1 there and zeros elsewhere
727
+ if self[0].is_zero:
728
+ return Point([1] + (dim - 1)*[0])
729
+ if self[1].is_zero:
730
+ return Point([0,1] + (dim - 2)*[0])
731
+ # if the first two coordinates aren't zero, we can create a non-zero
732
+ # orthogonal vector by swapping them, negating one, and padding with zeros
733
+ return Point([-self[1], self[0]] + (dim - 2)*[0])
734
+
735
+ @staticmethod
736
+ def project(a, b):
737
+ """Project the point `a` onto the line between the origin
738
+ and point `b` along the normal direction.
739
+
740
+ Parameters
741
+ ==========
742
+
743
+ a : Point
744
+ b : Point
745
+
746
+ Returns
747
+ =======
748
+
749
+ p : Point
750
+
751
+ See Also
752
+ ========
753
+
754
+ sympy.geometry.line.LinearEntity.projection
755
+
756
+ Examples
757
+ ========
758
+
759
+ >>> from sympy import Line, Point
760
+ >>> a = Point(1, 2)
761
+ >>> b = Point(2, 5)
762
+ >>> z = a.origin
763
+ >>> p = Point.project(a, b)
764
+ >>> Line(p, a).is_perpendicular(Line(p, b))
765
+ True
766
+ >>> Point.is_collinear(z, p, b)
767
+ True
768
+ """
769
+ a, b = Point._normalize_dimension(Point(a), Point(b))
770
+ if b.is_zero:
771
+ raise ValueError("Cannot project to the zero vector.")
772
+ return b*(a.dot(b) / b.dot(b))
773
+
774
+ def taxicab_distance(self, p):
775
+ """The Taxicab Distance from self to point p.
776
+
777
+ Returns the sum of the horizontal and vertical distances to point p.
778
+
779
+ Parameters
780
+ ==========
781
+
782
+ p : Point
783
+
784
+ Returns
785
+ =======
786
+
787
+ taxicab_distance : The sum of the horizontal
788
+ and vertical distances to point p.
789
+
790
+ See Also
791
+ ========
792
+
793
+ sympy.geometry.point.Point.distance
794
+
795
+ Examples
796
+ ========
797
+
798
+ >>> from sympy import Point
799
+ >>> p1, p2 = Point(1, 1), Point(4, 5)
800
+ >>> p1.taxicab_distance(p2)
801
+ 7
802
+
803
+ """
804
+ s, p = Point._normalize_dimension(self, Point(p))
805
+ return Add(*(abs(a - b) for a, b in zip(s, p)))
806
+
807
+ def canberra_distance(self, p):
808
+ """The Canberra Distance from self to point p.
809
+
810
+ Returns the weighted sum of horizontal and vertical distances to
811
+ point p.
812
+
813
+ Parameters
814
+ ==========
815
+
816
+ p : Point
817
+
818
+ Returns
819
+ =======
820
+
821
+ canberra_distance : The weighted sum of horizontal and vertical
822
+ distances to point p. The weight used is the sum of absolute values
823
+ of the coordinates.
824
+
825
+ Examples
826
+ ========
827
+
828
+ >>> from sympy import Point
829
+ >>> p1, p2 = Point(1, 1), Point(3, 3)
830
+ >>> p1.canberra_distance(p2)
831
+ 1
832
+ >>> p1, p2 = Point(0, 0), Point(3, 3)
833
+ >>> p1.canberra_distance(p2)
834
+ 2
835
+
836
+ Raises
837
+ ======
838
+
839
+ ValueError when both vectors are zero.
840
+
841
+ See Also
842
+ ========
843
+
844
+ sympy.geometry.point.Point.distance
845
+
846
+ """
847
+
848
+ s, p = Point._normalize_dimension(self, Point(p))
849
+ if self.is_zero and p.is_zero:
850
+ raise ValueError("Cannot project to the zero vector.")
851
+ return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
852
+
853
+ @property
854
+ def unit(self):
855
+ """Return the Point that is in the same direction as `self`
856
+ and a distance of 1 from the origin"""
857
+ return self / abs(self)
858
+
859
+
860
+ class Point2D(Point):
861
+ """A point in a 2-dimensional Euclidean space.
862
+
863
+ Parameters
864
+ ==========
865
+
866
+ coords
867
+ A sequence of 2 coordinate values.
868
+
869
+ Attributes
870
+ ==========
871
+
872
+ x
873
+ y
874
+ length
875
+
876
+ Raises
877
+ ======
878
+
879
+ TypeError
880
+ When trying to add or subtract points with different dimensions.
881
+ When trying to create a point with more than two dimensions.
882
+ When `intersection` is called with object other than a Point.
883
+
884
+ See Also
885
+ ========
886
+
887
+ sympy.geometry.line.Segment : Connects two Points
888
+
889
+ Examples
890
+ ========
891
+
892
+ >>> from sympy import Point2D
893
+ >>> from sympy.abc import x
894
+ >>> Point2D(1, 2)
895
+ Point2D(1, 2)
896
+ >>> Point2D([1, 2])
897
+ Point2D(1, 2)
898
+ >>> Point2D(0, x)
899
+ Point2D(0, x)
900
+
901
+ Floats are automatically converted to Rational unless the
902
+ evaluate flag is False:
903
+
904
+ >>> Point2D(0.5, 0.25)
905
+ Point2D(1/2, 1/4)
906
+ >>> Point2D(0.5, 0.25, evaluate=False)
907
+ Point2D(0.5, 0.25)
908
+
909
+ """
910
+
911
+ _ambient_dimension = 2
912
+
913
+ def __new__(cls, *args, _nocheck=False, **kwargs):
914
+ if not _nocheck:
915
+ kwargs['dim'] = 2
916
+ args = Point(*args, **kwargs)
917
+ return GeometryEntity.__new__(cls, *args)
918
+
919
+ def __contains__(self, item):
920
+ return item == self
921
+
922
+ @property
923
+ def bounds(self):
924
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
925
+ rectangle for the geometric figure.
926
+
927
+ """
928
+
929
+ return (self.x, self.y, self.x, self.y)
930
+
931
+ def rotate(self, angle, pt=None):
932
+ """Rotate ``angle`` radians counterclockwise about Point ``pt``.
933
+
934
+ See Also
935
+ ========
936
+
937
+ translate, scale
938
+
939
+ Examples
940
+ ========
941
+
942
+ >>> from sympy import Point2D, pi
943
+ >>> t = Point2D(1, 0)
944
+ >>> t.rotate(pi/2)
945
+ Point2D(0, 1)
946
+ >>> t.rotate(pi/2, (2, 0))
947
+ Point2D(2, -1)
948
+
949
+ """
950
+ c = cos(angle)
951
+ s = sin(angle)
952
+
953
+ rv = self
954
+ if pt is not None:
955
+ pt = Point(pt, dim=2)
956
+ rv -= pt
957
+ x, y = rv.args
958
+ rv = Point(c*x - s*y, s*x + c*y)
959
+ if pt is not None:
960
+ rv += pt
961
+ return rv
962
+
963
+ def scale(self, x=1, y=1, pt=None):
964
+ """Scale the coordinates of the Point by multiplying by
965
+ ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
966
+ and then adding ``pt`` back again (i.e. ``pt`` is the point of
967
+ reference for the scaling).
968
+
969
+ See Also
970
+ ========
971
+
972
+ rotate, translate
973
+
974
+ Examples
975
+ ========
976
+
977
+ >>> from sympy import Point2D
978
+ >>> t = Point2D(1, 1)
979
+ >>> t.scale(2)
980
+ Point2D(2, 1)
981
+ >>> t.scale(2, 2)
982
+ Point2D(2, 2)
983
+
984
+ """
985
+ if pt:
986
+ pt = Point(pt, dim=2)
987
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
988
+ return Point(self.x*x, self.y*y)
989
+
990
+ def transform(self, matrix):
991
+ """Return the point after applying the transformation described
992
+ by the 3x3 Matrix, ``matrix``.
993
+
994
+ See Also
995
+ ========
996
+ sympy.geometry.point.Point2D.rotate
997
+ sympy.geometry.point.Point2D.scale
998
+ sympy.geometry.point.Point2D.translate
999
+ """
1000
+ if not (matrix.is_Matrix and matrix.shape == (3, 3)):
1001
+ raise ValueError("matrix must be a 3x3 matrix")
1002
+ x, y = self.args
1003
+ return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
1004
+
1005
+ def translate(self, x=0, y=0):
1006
+ """Shift the Point by adding x and y to the coordinates of the Point.
1007
+
1008
+ See Also
1009
+ ========
1010
+
1011
+ sympy.geometry.point.Point2D.rotate, scale
1012
+
1013
+ Examples
1014
+ ========
1015
+
1016
+ >>> from sympy import Point2D
1017
+ >>> t = Point2D(0, 1)
1018
+ >>> t.translate(2)
1019
+ Point2D(2, 1)
1020
+ >>> t.translate(2, 2)
1021
+ Point2D(2, 3)
1022
+ >>> t + Point2D(2, 2)
1023
+ Point2D(2, 3)
1024
+
1025
+ """
1026
+ return Point(self.x + x, self.y + y)
1027
+
1028
+ @property
1029
+ def coordinates(self):
1030
+ """
1031
+ Returns the two coordinates of the Point.
1032
+
1033
+ Examples
1034
+ ========
1035
+
1036
+ >>> from sympy import Point2D
1037
+ >>> p = Point2D(0, 1)
1038
+ >>> p.coordinates
1039
+ (0, 1)
1040
+ """
1041
+ return self.args
1042
+
1043
+ @property
1044
+ def x(self):
1045
+ """
1046
+ Returns the X coordinate of the Point.
1047
+
1048
+ Examples
1049
+ ========
1050
+
1051
+ >>> from sympy import Point2D
1052
+ >>> p = Point2D(0, 1)
1053
+ >>> p.x
1054
+ 0
1055
+ """
1056
+ return self.args[0]
1057
+
1058
+ @property
1059
+ def y(self):
1060
+ """
1061
+ Returns the Y coordinate of the Point.
1062
+
1063
+ Examples
1064
+ ========
1065
+
1066
+ >>> from sympy import Point2D
1067
+ >>> p = Point2D(0, 1)
1068
+ >>> p.y
1069
+ 1
1070
+ """
1071
+ return self.args[1]
1072
+
1073
+ class Point3D(Point):
1074
+ """A point in a 3-dimensional Euclidean space.
1075
+
1076
+ Parameters
1077
+ ==========
1078
+
1079
+ coords
1080
+ A sequence of 3 coordinate values.
1081
+
1082
+ Attributes
1083
+ ==========
1084
+
1085
+ x
1086
+ y
1087
+ z
1088
+ length
1089
+
1090
+ Raises
1091
+ ======
1092
+
1093
+ TypeError
1094
+ When trying to add or subtract points with different dimensions.
1095
+ When `intersection` is called with object other than a Point.
1096
+
1097
+ Examples
1098
+ ========
1099
+
1100
+ >>> from sympy import Point3D
1101
+ >>> from sympy.abc import x
1102
+ >>> Point3D(1, 2, 3)
1103
+ Point3D(1, 2, 3)
1104
+ >>> Point3D([1, 2, 3])
1105
+ Point3D(1, 2, 3)
1106
+ >>> Point3D(0, x, 3)
1107
+ Point3D(0, x, 3)
1108
+
1109
+ Floats are automatically converted to Rational unless the
1110
+ evaluate flag is False:
1111
+
1112
+ >>> Point3D(0.5, 0.25, 2)
1113
+ Point3D(1/2, 1/4, 2)
1114
+ >>> Point3D(0.5, 0.25, 3, evaluate=False)
1115
+ Point3D(0.5, 0.25, 3)
1116
+
1117
+ """
1118
+
1119
+ _ambient_dimension = 3
1120
+
1121
+ def __new__(cls, *args, _nocheck=False, **kwargs):
1122
+ if not _nocheck:
1123
+ kwargs['dim'] = 3
1124
+ args = Point(*args, **kwargs)
1125
+ return GeometryEntity.__new__(cls, *args)
1126
+
1127
+ def __contains__(self, item):
1128
+ return item == self
1129
+
1130
+ @staticmethod
1131
+ def are_collinear(*points):
1132
+ """Is a sequence of points collinear?
1133
+
1134
+ Test whether or not a set of points are collinear. Returns True if
1135
+ the set of points are collinear, or False otherwise.
1136
+
1137
+ Parameters
1138
+ ==========
1139
+
1140
+ points : sequence of Point
1141
+
1142
+ Returns
1143
+ =======
1144
+
1145
+ are_collinear : boolean
1146
+
1147
+ See Also
1148
+ ========
1149
+
1150
+ sympy.geometry.line.Line3D
1151
+
1152
+ Examples
1153
+ ========
1154
+
1155
+ >>> from sympy import Point3D
1156
+ >>> from sympy.abc import x
1157
+ >>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
1158
+ >>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
1159
+ >>> Point3D.are_collinear(p1, p2, p3, p4)
1160
+ True
1161
+ >>> Point3D.are_collinear(p1, p2, p3, p5)
1162
+ False
1163
+ """
1164
+ return Point.is_collinear(*points)
1165
+
1166
+ def direction_cosine(self, point):
1167
+ """
1168
+ Gives the direction cosine between 2 points
1169
+
1170
+ Parameters
1171
+ ==========
1172
+
1173
+ p : Point3D
1174
+
1175
+ Returns
1176
+ =======
1177
+
1178
+ list
1179
+
1180
+ Examples
1181
+ ========
1182
+
1183
+ >>> from sympy import Point3D
1184
+ >>> p1 = Point3D(1, 2, 3)
1185
+ >>> p1.direction_cosine(Point3D(2, 3, 5))
1186
+ [sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
1187
+ """
1188
+ a = self.direction_ratio(point)
1189
+ b = sqrt(Add(*(i**2 for i in a)))
1190
+ return [(point.x - self.x) / b,(point.y - self.y) / b,
1191
+ (point.z - self.z) / b]
1192
+
1193
+ def direction_ratio(self, point):
1194
+ """
1195
+ Gives the direction ratio between 2 points
1196
+
1197
+ Parameters
1198
+ ==========
1199
+
1200
+ p : Point3D
1201
+
1202
+ Returns
1203
+ =======
1204
+
1205
+ list
1206
+
1207
+ Examples
1208
+ ========
1209
+
1210
+ >>> from sympy import Point3D
1211
+ >>> p1 = Point3D(1, 2, 3)
1212
+ >>> p1.direction_ratio(Point3D(2, 3, 5))
1213
+ [1, 1, 2]
1214
+ """
1215
+ return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
1216
+
1217
+ def intersection(self, other):
1218
+ """The intersection between this point and another GeometryEntity.
1219
+
1220
+ Parameters
1221
+ ==========
1222
+
1223
+ other : GeometryEntity or sequence of coordinates
1224
+
1225
+ Returns
1226
+ =======
1227
+
1228
+ intersection : list of Points
1229
+
1230
+ Notes
1231
+ =====
1232
+
1233
+ The return value will either be an empty list if there is no
1234
+ intersection, otherwise it will contain this point.
1235
+
1236
+ Examples
1237
+ ========
1238
+
1239
+ >>> from sympy import Point3D
1240
+ >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
1241
+ >>> p1.intersection(p2)
1242
+ []
1243
+ >>> p1.intersection(p3)
1244
+ [Point3D(0, 0, 0)]
1245
+
1246
+ """
1247
+ if not isinstance(other, GeometryEntity):
1248
+ other = Point(other, dim=3)
1249
+ if isinstance(other, Point3D):
1250
+ if self == other:
1251
+ return [self]
1252
+ return []
1253
+ return other.intersection(self)
1254
+
1255
+ def scale(self, x=1, y=1, z=1, pt=None):
1256
+ """Scale the coordinates of the Point by multiplying by
1257
+ ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
1258
+ and then adding ``pt`` back again (i.e. ``pt`` is the point of
1259
+ reference for the scaling).
1260
+
1261
+ See Also
1262
+ ========
1263
+
1264
+ translate
1265
+
1266
+ Examples
1267
+ ========
1268
+
1269
+ >>> from sympy import Point3D
1270
+ >>> t = Point3D(1, 1, 1)
1271
+ >>> t.scale(2)
1272
+ Point3D(2, 1, 1)
1273
+ >>> t.scale(2, 2)
1274
+ Point3D(2, 2, 1)
1275
+
1276
+ """
1277
+ if pt:
1278
+ pt = Point3D(pt)
1279
+ return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
1280
+ return Point3D(self.x*x, self.y*y, self.z*z)
1281
+
1282
+ def transform(self, matrix):
1283
+ """Return the point after applying the transformation described
1284
+ by the 4x4 Matrix, ``matrix``.
1285
+
1286
+ See Also
1287
+ ========
1288
+ sympy.geometry.point.Point3D.scale
1289
+ sympy.geometry.point.Point3D.translate
1290
+ """
1291
+ if not (matrix.is_Matrix and matrix.shape == (4, 4)):
1292
+ raise ValueError("matrix must be a 4x4 matrix")
1293
+ x, y, z = self.args
1294
+ m = Transpose(matrix)
1295
+ return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
1296
+
1297
+ def translate(self, x=0, y=0, z=0):
1298
+ """Shift the Point by adding x and y to the coordinates of the Point.
1299
+
1300
+ See Also
1301
+ ========
1302
+
1303
+ scale
1304
+
1305
+ Examples
1306
+ ========
1307
+
1308
+ >>> from sympy import Point3D
1309
+ >>> t = Point3D(0, 1, 1)
1310
+ >>> t.translate(2)
1311
+ Point3D(2, 1, 1)
1312
+ >>> t.translate(2, 2)
1313
+ Point3D(2, 3, 1)
1314
+ >>> t + Point3D(2, 2, 2)
1315
+ Point3D(2, 3, 3)
1316
+
1317
+ """
1318
+ return Point3D(self.x + x, self.y + y, self.z + z)
1319
+
1320
+ @property
1321
+ def coordinates(self):
1322
+ """
1323
+ Returns the three coordinates of the Point.
1324
+
1325
+ Examples
1326
+ ========
1327
+
1328
+ >>> from sympy import Point3D
1329
+ >>> p = Point3D(0, 1, 2)
1330
+ >>> p.coordinates
1331
+ (0, 1, 2)
1332
+ """
1333
+ return self.args
1334
+
1335
+ @property
1336
+ def x(self):
1337
+ """
1338
+ Returns the X coordinate of the Point.
1339
+
1340
+ Examples
1341
+ ========
1342
+
1343
+ >>> from sympy import Point3D
1344
+ >>> p = Point3D(0, 1, 3)
1345
+ >>> p.x
1346
+ 0
1347
+ """
1348
+ return self.args[0]
1349
+
1350
+ @property
1351
+ def y(self):
1352
+ """
1353
+ Returns the Y coordinate of the Point.
1354
+
1355
+ Examples
1356
+ ========
1357
+
1358
+ >>> from sympy import Point3D
1359
+ >>> p = Point3D(0, 1, 2)
1360
+ >>> p.y
1361
+ 1
1362
+ """
1363
+ return self.args[1]
1364
+
1365
+ @property
1366
+ def z(self):
1367
+ """
1368
+ Returns the Z coordinate of the Point.
1369
+
1370
+ Examples
1371
+ ========
1372
+
1373
+ >>> from sympy import Point3D
1374
+ >>> p = Point3D(0, 1, 1)
1375
+ >>> p.z
1376
+ 1
1377
+ """
1378
+ return self.args[2]
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ASCII-ART 2D pretty-printer"""
2
+
3
+ from .pretty import (pretty, pretty_print, pprint, pprint_use_unicode,
4
+ pprint_try_use_unicode, pager_print)
5
+
6
+ # if unicode output is available -- let's use it
7
+ pprint_try_use_unicode()
8
+
9
+ __all__ = [
10
+ 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode',
11
+ 'pprint_try_use_unicode', 'pager_print',
12
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (410 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc ADDED
Binary file (84.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc ADDED
Binary file (17.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc ADDED
Binary file (15.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py ADDED
@@ -0,0 +1,643 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Symbolic primitives + unicode/ASCII abstraction for pretty.py"""
2
+
3
+ import sys
4
+ import warnings
5
+ from string import ascii_lowercase, ascii_uppercase
6
+ import unicodedata
7
+
8
+ unicode_warnings = ''
9
+
10
+ def U(name):
11
+ """
12
+ Get a unicode character by name or, None if not found.
13
+
14
+ This exists because older versions of Python use older unicode databases.
15
+ """
16
+ try:
17
+ return unicodedata.lookup(name)
18
+ except KeyError:
19
+ global unicode_warnings
20
+ unicode_warnings += 'No \'%s\' in unicodedata\n' % name
21
+ return None
22
+
23
+ from sympy.printing.conventions import split_super_sub
24
+ from sympy.core.alphabets import greeks
25
+ from sympy.utilities.exceptions import sympy_deprecation_warning
26
+
27
+ # prefix conventions when constructing tables
28
+ # L - LATIN i
29
+ # G - GREEK beta
30
+ # D - DIGIT 0
31
+ # S - SYMBOL +
32
+
33
+
34
+ __all__ = ['greek_unicode', 'sub', 'sup', 'xsym', 'vobj', 'hobj', 'pretty_symbol',
35
+ 'annotated']
36
+
37
+
38
+ _use_unicode = False
39
+
40
+
41
+ def pretty_use_unicode(flag=None):
42
+ """Set whether pretty-printer should use unicode by default"""
43
+ global _use_unicode
44
+ global unicode_warnings
45
+ if flag is None:
46
+ return _use_unicode
47
+
48
+ if flag and unicode_warnings:
49
+ # print warnings (if any) on first unicode usage
50
+ warnings.warn(unicode_warnings)
51
+ unicode_warnings = ''
52
+
53
+ use_unicode_prev = _use_unicode
54
+ _use_unicode = flag
55
+ return use_unicode_prev
56
+
57
+
58
+ def pretty_try_use_unicode():
59
+ """See if unicode output is available and leverage it if possible"""
60
+
61
+ encoding = getattr(sys.stdout, 'encoding', None)
62
+
63
+ # this happens when e.g. stdout is redirected through a pipe, or is
64
+ # e.g. a cStringIO.StringO
65
+ if encoding is None:
66
+ return # sys.stdout has no encoding
67
+
68
+ symbols = []
69
+
70
+ # see if we can represent greek alphabet
71
+ symbols += greek_unicode.values()
72
+
73
+ # and atoms
74
+ symbols += atoms_table.values()
75
+
76
+ for s in symbols:
77
+ if s is None:
78
+ return # common symbols not present!
79
+
80
+ try:
81
+ s.encode(encoding)
82
+ except UnicodeEncodeError:
83
+ return
84
+
85
+ # all the characters were present and encodable
86
+ pretty_use_unicode(True)
87
+
88
+
89
+ def xstr(*args):
90
+ sympy_deprecation_warning(
91
+ """
92
+ The sympy.printing.pretty.pretty_symbology.xstr() function is
93
+ deprecated. Use str() instead.
94
+ """,
95
+ deprecated_since_version="1.7",
96
+ active_deprecations_target="deprecated-pretty-printing-functions"
97
+ )
98
+ return str(*args)
99
+
100
+ # GREEK
101
+ g = lambda l: U('GREEK SMALL LETTER %s' % l.upper())
102
+ G = lambda l: U('GREEK CAPITAL LETTER %s' % l.upper())
103
+
104
+ greek_letters = list(greeks) # make a copy
105
+ # deal with Unicode's funny spelling of lambda
106
+ greek_letters[greek_letters.index('lambda')] = 'lamda'
107
+
108
+ # {} greek letter -> (g,G)
109
+ greek_unicode = {L: g(L) for L in greek_letters}
110
+ greek_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_letters)
111
+
112
+ # aliases
113
+ greek_unicode['lambda'] = greek_unicode['lamda']
114
+ greek_unicode['Lambda'] = greek_unicode['Lamda']
115
+ greek_unicode['varsigma'] = '\N{GREEK SMALL LETTER FINAL SIGMA}'
116
+
117
+ # BOLD
118
+ b = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
119
+ B = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
120
+
121
+ bold_unicode = {l: b(l) for l in ascii_lowercase}
122
+ bold_unicode.update((L, B(L)) for L in ascii_uppercase)
123
+
124
+ # GREEK BOLD
125
+ gb = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
126
+ GB = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
127
+
128
+ greek_bold_letters = list(greeks) # make a copy, not strictly required here
129
+ # deal with Unicode's funny spelling of lambda
130
+ greek_bold_letters[greek_bold_letters.index('lambda')] = 'lamda'
131
+
132
+ # {} greek letter -> (g,G)
133
+ greek_bold_unicode = {L: g(L) for L in greek_bold_letters}
134
+ greek_bold_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_bold_letters)
135
+ greek_bold_unicode['lambda'] = greek_unicode['lamda']
136
+ greek_bold_unicode['Lambda'] = greek_unicode['Lamda']
137
+ greek_bold_unicode['varsigma'] = '\N{MATHEMATICAL BOLD SMALL FINAL SIGMA}'
138
+
139
+ digit_2txt = {
140
+ '0': 'ZERO',
141
+ '1': 'ONE',
142
+ '2': 'TWO',
143
+ '3': 'THREE',
144
+ '4': 'FOUR',
145
+ '5': 'FIVE',
146
+ '6': 'SIX',
147
+ '7': 'SEVEN',
148
+ '8': 'EIGHT',
149
+ '9': 'NINE',
150
+ }
151
+
152
+ symb_2txt = {
153
+ '+': 'PLUS SIGN',
154
+ '-': 'MINUS',
155
+ '=': 'EQUALS SIGN',
156
+ '(': 'LEFT PARENTHESIS',
157
+ ')': 'RIGHT PARENTHESIS',
158
+ '[': 'LEFT SQUARE BRACKET',
159
+ ']': 'RIGHT SQUARE BRACKET',
160
+ '{': 'LEFT CURLY BRACKET',
161
+ '}': 'RIGHT CURLY BRACKET',
162
+
163
+ # non-std
164
+ '{}': 'CURLY BRACKET',
165
+ 'sum': 'SUMMATION',
166
+ 'int': 'INTEGRAL',
167
+ }
168
+
169
+ # SUBSCRIPT & SUPERSCRIPT
170
+ LSUB = lambda letter: U('LATIN SUBSCRIPT SMALL LETTER %s' % letter.upper())
171
+ GSUB = lambda letter: U('GREEK SUBSCRIPT SMALL LETTER %s' % letter.upper())
172
+ DSUB = lambda digit: U('SUBSCRIPT %s' % digit_2txt[digit])
173
+ SSUB = lambda symb: U('SUBSCRIPT %s' % symb_2txt[symb])
174
+
175
+ LSUP = lambda letter: U('SUPERSCRIPT LATIN SMALL LETTER %s' % letter.upper())
176
+ DSUP = lambda digit: U('SUPERSCRIPT %s' % digit_2txt[digit])
177
+ SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb])
178
+
179
+ sub = {} # symb -> subscript symbol
180
+ sup = {} # symb -> superscript symbol
181
+
182
+ # latin subscripts
183
+ for l in 'aeioruvxhklmnpst':
184
+ sub[l] = LSUB(l)
185
+
186
+ for l in 'in':
187
+ sup[l] = LSUP(l)
188
+
189
+ for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']:
190
+ sub[gl] = GSUB(gl)
191
+
192
+ for d in [str(i) for i in range(10)]:
193
+ sub[d] = DSUB(d)
194
+ sup[d] = DSUP(d)
195
+
196
+ for s in '+-=()':
197
+ sub[s] = SSUB(s)
198
+ sup[s] = SSUP(s)
199
+
200
+ # Variable modifiers
201
+ # TODO: Make brackets adjust to height of contents
202
+ modifier_dict = {
203
+ # Accents
204
+ 'mathring': lambda s: center_accent(s, '\N{COMBINING RING ABOVE}'),
205
+ 'ddddot': lambda s: center_accent(s, '\N{COMBINING FOUR DOTS ABOVE}'),
206
+ 'dddot': lambda s: center_accent(s, '\N{COMBINING THREE DOTS ABOVE}'),
207
+ 'ddot': lambda s: center_accent(s, '\N{COMBINING DIAERESIS}'),
208
+ 'dot': lambda s: center_accent(s, '\N{COMBINING DOT ABOVE}'),
209
+ 'check': lambda s: center_accent(s, '\N{COMBINING CARON}'),
210
+ 'breve': lambda s: center_accent(s, '\N{COMBINING BREVE}'),
211
+ 'acute': lambda s: center_accent(s, '\N{COMBINING ACUTE ACCENT}'),
212
+ 'grave': lambda s: center_accent(s, '\N{COMBINING GRAVE ACCENT}'),
213
+ 'tilde': lambda s: center_accent(s, '\N{COMBINING TILDE}'),
214
+ 'hat': lambda s: center_accent(s, '\N{COMBINING CIRCUMFLEX ACCENT}'),
215
+ 'bar': lambda s: center_accent(s, '\N{COMBINING OVERLINE}'),
216
+ 'vec': lambda s: center_accent(s, '\N{COMBINING RIGHT ARROW ABOVE}'),
217
+ 'prime': lambda s: s+'\N{PRIME}',
218
+ 'prm': lambda s: s+'\N{PRIME}',
219
+ # # Faces -- these are here for some compatibility with latex printing
220
+ # 'bold': lambda s: s,
221
+ # 'bm': lambda s: s,
222
+ # 'cal': lambda s: s,
223
+ # 'scr': lambda s: s,
224
+ # 'frak': lambda s: s,
225
+ # Brackets
226
+ 'norm': lambda s: '\N{DOUBLE VERTICAL LINE}'+s+'\N{DOUBLE VERTICAL LINE}',
227
+ 'avg': lambda s: '\N{MATHEMATICAL LEFT ANGLE BRACKET}'+s+'\N{MATHEMATICAL RIGHT ANGLE BRACKET}',
228
+ 'abs': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
229
+ 'mag': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
230
+ }
231
+
232
+ # VERTICAL OBJECTS
233
+ HUP = lambda symb: U('%s UPPER HOOK' % symb_2txt[symb])
234
+ CUP = lambda symb: U('%s UPPER CORNER' % symb_2txt[symb])
235
+ MID = lambda symb: U('%s MIDDLE PIECE' % symb_2txt[symb])
236
+ EXT = lambda symb: U('%s EXTENSION' % symb_2txt[symb])
237
+ HLO = lambda symb: U('%s LOWER HOOK' % symb_2txt[symb])
238
+ CLO = lambda symb: U('%s LOWER CORNER' % symb_2txt[symb])
239
+ TOP = lambda symb: U('%s TOP' % symb_2txt[symb])
240
+ BOT = lambda symb: U('%s BOTTOM' % symb_2txt[symb])
241
+
242
+ # {} '(' -> (extension, start, end, middle) 1-character
243
+ _xobj_unicode = {
244
+
245
+ # vertical symbols
246
+ # (( ext, top, bot, mid ), c1)
247
+ '(': (( EXT('('), HUP('('), HLO('(') ), '('),
248
+ ')': (( EXT(')'), HUP(')'), HLO(')') ), ')'),
249
+ '[': (( EXT('['), CUP('['), CLO('[') ), '['),
250
+ ']': (( EXT(']'), CUP(']'), CLO(']') ), ']'),
251
+ '{': (( EXT('{}'), HUP('{'), HLO('{'), MID('{') ), '{'),
252
+ '}': (( EXT('{}'), HUP('}'), HLO('}'), MID('}') ), '}'),
253
+ '|': U('BOX DRAWINGS LIGHT VERTICAL'),
254
+
255
+ '<': ((U('BOX DRAWINGS LIGHT VERTICAL'),
256
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
257
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT')), '<'),
258
+
259
+ '>': ((U('BOX DRAWINGS LIGHT VERTICAL'),
260
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
261
+ U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), '>'),
262
+
263
+ 'lfloor': (( EXT('['), EXT('['), CLO('[') ), U('LEFT FLOOR')),
264
+ 'rfloor': (( EXT(']'), EXT(']'), CLO(']') ), U('RIGHT FLOOR')),
265
+ 'lceil': (( EXT('['), CUP('['), EXT('[') ), U('LEFT CEILING')),
266
+ 'rceil': (( EXT(']'), CUP(']'), EXT(']') ), U('RIGHT CEILING')),
267
+
268
+ 'int': (( EXT('int'), U('TOP HALF INTEGRAL'), U('BOTTOM HALF INTEGRAL') ), U('INTEGRAL')),
269
+ 'sum': (( U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), '_', U('OVERLINE'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), U('N-ARY SUMMATION')),
270
+
271
+ # horizontal objects
272
+ #'-': '-',
273
+ '-': U('BOX DRAWINGS LIGHT HORIZONTAL'),
274
+ '_': U('LOW LINE'),
275
+ # We used to use this, but LOW LINE looks better for roots, as it's a
276
+ # little lower (i.e., it lines up with the / perfectly. But perhaps this
277
+ # one would still be wanted for some cases?
278
+ # '_': U('HORIZONTAL SCAN LINE-9'),
279
+
280
+ # diagonal objects '\' & '/' ?
281
+ '/': U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
282
+ '\\': U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
283
+ }
284
+
285
+ _xobj_ascii = {
286
+ # vertical symbols
287
+ # (( ext, top, bot, mid ), c1)
288
+ '(': (( '|', '/', '\\' ), '('),
289
+ ')': (( '|', '\\', '/' ), ')'),
290
+
291
+ # XXX this looks ugly
292
+ # '[': (( '|', '-', '-' ), '['),
293
+ # ']': (( '|', '-', '-' ), ']'),
294
+ # XXX not so ugly :(
295
+ '[': (( '[', '[', '[' ), '['),
296
+ ']': (( ']', ']', ']' ), ']'),
297
+
298
+ '{': (( '|', '/', '\\', '<' ), '{'),
299
+ '}': (( '|', '\\', '/', '>' ), '}'),
300
+ '|': '|',
301
+
302
+ '<': (( '|', '/', '\\' ), '<'),
303
+ '>': (( '|', '\\', '/' ), '>'),
304
+
305
+ 'int': ( ' | ', ' /', '/ ' ),
306
+
307
+ # horizontal objects
308
+ '-': '-',
309
+ '_': '_',
310
+
311
+ # diagonal objects '\' & '/' ?
312
+ '/': '/',
313
+ '\\': '\\',
314
+ }
315
+
316
+
317
+ def xobj(symb, length):
318
+ """Construct spatial object of given length.
319
+
320
+ return: [] of equal-length strings
321
+ """
322
+
323
+ if length <= 0:
324
+ raise ValueError("Length should be greater than 0")
325
+
326
+ # TODO robustify when no unicodedat available
327
+ if _use_unicode:
328
+ _xobj = _xobj_unicode
329
+ else:
330
+ _xobj = _xobj_ascii
331
+
332
+ vinfo = _xobj[symb]
333
+
334
+ c1 = top = bot = mid = None
335
+
336
+ if not isinstance(vinfo, tuple): # 1 entry
337
+ ext = vinfo
338
+ else:
339
+ if isinstance(vinfo[0], tuple): # (vlong), c1
340
+ vlong = vinfo[0]
341
+ c1 = vinfo[1]
342
+ else: # (vlong), c1
343
+ vlong = vinfo
344
+
345
+ ext = vlong[0]
346
+
347
+ try:
348
+ top = vlong[1]
349
+ bot = vlong[2]
350
+ mid = vlong[3]
351
+ except IndexError:
352
+ pass
353
+
354
+ if c1 is None:
355
+ c1 = ext
356
+ if top is None:
357
+ top = ext
358
+ if bot is None:
359
+ bot = ext
360
+ if mid is not None:
361
+ if (length % 2) == 0:
362
+ # even height, but we have to print it somehow anyway...
363
+ # XXX is it ok?
364
+ length += 1
365
+
366
+ else:
367
+ mid = ext
368
+
369
+ if length == 1:
370
+ return c1
371
+
372
+ res = []
373
+ next = (length - 2)//2
374
+ nmid = (length - 2) - next*2
375
+
376
+ res += [top]
377
+ res += [ext]*next
378
+ res += [mid]*nmid
379
+ res += [ext]*next
380
+ res += [bot]
381
+
382
+ return res
383
+
384
+
385
+ def vobj(symb, height):
386
+ """Construct vertical object of a given height
387
+
388
+ see: xobj
389
+ """
390
+ return '\n'.join( xobj(symb, height) )
391
+
392
+
393
+ def hobj(symb, width):
394
+ """Construct horizontal object of a given width
395
+
396
+ see: xobj
397
+ """
398
+ return ''.join( xobj(symb, width) )
399
+
400
+ # RADICAL
401
+ # n -> symbol
402
+ root = {
403
+ 2: U('SQUARE ROOT'), # U('RADICAL SYMBOL BOTTOM')
404
+ 3: U('CUBE ROOT'),
405
+ 4: U('FOURTH ROOT'),
406
+ }
407
+
408
+
409
+ # RATIONAL
410
+ VF = lambda txt: U('VULGAR FRACTION %s' % txt)
411
+
412
+ # (p,q) -> symbol
413
+ frac = {
414
+ (1, 2): VF('ONE HALF'),
415
+ (1, 3): VF('ONE THIRD'),
416
+ (2, 3): VF('TWO THIRDS'),
417
+ (1, 4): VF('ONE QUARTER'),
418
+ (3, 4): VF('THREE QUARTERS'),
419
+ (1, 5): VF('ONE FIFTH'),
420
+ (2, 5): VF('TWO FIFTHS'),
421
+ (3, 5): VF('THREE FIFTHS'),
422
+ (4, 5): VF('FOUR FIFTHS'),
423
+ (1, 6): VF('ONE SIXTH'),
424
+ (5, 6): VF('FIVE SIXTHS'),
425
+ (1, 8): VF('ONE EIGHTH'),
426
+ (3, 8): VF('THREE EIGHTHS'),
427
+ (5, 8): VF('FIVE EIGHTHS'),
428
+ (7, 8): VF('SEVEN EIGHTHS'),
429
+ }
430
+
431
+
432
+ # atom symbols
433
+ _xsym = {
434
+ '==': ('=', '='),
435
+ '<': ('<', '<'),
436
+ '>': ('>', '>'),
437
+ '<=': ('<=', U('LESS-THAN OR EQUAL TO')),
438
+ '>=': ('>=', U('GREATER-THAN OR EQUAL TO')),
439
+ '!=': ('!=', U('NOT EQUAL TO')),
440
+ ':=': (':=', ':='),
441
+ '+=': ('+=', '+='),
442
+ '-=': ('-=', '-='),
443
+ '*=': ('*=', '*='),
444
+ '/=': ('/=', '/='),
445
+ '%=': ('%=', '%='),
446
+ '*': ('*', U('DOT OPERATOR')),
447
+ '-->': ('-->', U('EM DASH') + U('EM DASH') +
448
+ U('BLACK RIGHT-POINTING TRIANGLE') if U('EM DASH')
449
+ and U('BLACK RIGHT-POINTING TRIANGLE') else None),
450
+ '==>': ('==>', U('BOX DRAWINGS DOUBLE HORIZONTAL') +
451
+ U('BOX DRAWINGS DOUBLE HORIZONTAL') +
452
+ U('BLACK RIGHT-POINTING TRIANGLE') if
453
+ U('BOX DRAWINGS DOUBLE HORIZONTAL') and
454
+ U('BOX DRAWINGS DOUBLE HORIZONTAL') and
455
+ U('BLACK RIGHT-POINTING TRIANGLE') else None),
456
+ '.': ('*', U('RING OPERATOR')),
457
+ }
458
+
459
+
460
+ def xsym(sym):
461
+ """get symbology for a 'character'"""
462
+ op = _xsym[sym]
463
+
464
+ if _use_unicode:
465
+ return op[1]
466
+ else:
467
+ return op[0]
468
+
469
+
470
+ # SYMBOLS
471
+
472
+ atoms_table = {
473
+ # class how-to-display
474
+ 'Exp1': U('SCRIPT SMALL E'),
475
+ 'Pi': U('GREEK SMALL LETTER PI'),
476
+ 'Infinity': U('INFINITY'),
477
+ 'NegativeInfinity': U('INFINITY') and ('-' + U('INFINITY')), # XXX what to do here
478
+ #'ImaginaryUnit': U('GREEK SMALL LETTER IOTA'),
479
+ #'ImaginaryUnit': U('MATHEMATICAL ITALIC SMALL I'),
480
+ 'ImaginaryUnit': U('DOUBLE-STRUCK ITALIC SMALL I'),
481
+ 'EmptySet': U('EMPTY SET'),
482
+ 'Naturals': U('DOUBLE-STRUCK CAPITAL N'),
483
+ 'Naturals0': (U('DOUBLE-STRUCK CAPITAL N') and
484
+ (U('DOUBLE-STRUCK CAPITAL N') +
485
+ U('SUBSCRIPT ZERO'))),
486
+ 'Integers': U('DOUBLE-STRUCK CAPITAL Z'),
487
+ 'Rationals': U('DOUBLE-STRUCK CAPITAL Q'),
488
+ 'Reals': U('DOUBLE-STRUCK CAPITAL R'),
489
+ 'Complexes': U('DOUBLE-STRUCK CAPITAL C'),
490
+ 'Union': U('UNION'),
491
+ 'SymmetricDifference': U('INCREMENT'),
492
+ 'Intersection': U('INTERSECTION'),
493
+ 'Ring': U('RING OPERATOR'),
494
+ 'Modifier Letter Low Ring':U('Modifier Letter Low Ring'),
495
+ 'EmptySequence': 'EmptySequence',
496
+ }
497
+
498
+
499
+ def pretty_atom(atom_name, default=None, printer=None):
500
+ """return pretty representation of an atom"""
501
+ if _use_unicode:
502
+ if printer is not None and atom_name == 'ImaginaryUnit' and printer._settings['imaginary_unit'] == 'j':
503
+ return U('DOUBLE-STRUCK ITALIC SMALL J')
504
+ else:
505
+ return atoms_table[atom_name]
506
+ else:
507
+ if default is not None:
508
+ return default
509
+
510
+ raise KeyError('only unicode') # send it default printer
511
+
512
+
513
+ def pretty_symbol(symb_name, bold_name=False):
514
+ """return pretty representation of a symbol"""
515
+ # let's split symb_name into symbol + index
516
+ # UC: beta1
517
+ # UC: f_beta
518
+
519
+ if not _use_unicode:
520
+ return symb_name
521
+
522
+ name, sups, subs = split_super_sub(symb_name)
523
+
524
+ def translate(s, bold_name) :
525
+ if bold_name:
526
+ gG = greek_bold_unicode.get(s)
527
+ else:
528
+ gG = greek_unicode.get(s)
529
+ if gG is not None:
530
+ return gG
531
+ for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True) :
532
+ if s.lower().endswith(key) and len(s)>len(key):
533
+ return modifier_dict[key](translate(s[:-len(key)], bold_name))
534
+ if bold_name:
535
+ return ''.join([bold_unicode[c] for c in s])
536
+ return s
537
+
538
+ name = translate(name, bold_name)
539
+
540
+ # Let's prettify sups/subs. If it fails at one of them, pretty sups/subs are
541
+ # not used at all.
542
+ def pretty_list(l, mapping):
543
+ result = []
544
+ for s in l:
545
+ pretty = mapping.get(s)
546
+ if pretty is None:
547
+ try: # match by separate characters
548
+ pretty = ''.join([mapping[c] for c in s])
549
+ except (TypeError, KeyError):
550
+ return None
551
+ result.append(pretty)
552
+ return result
553
+
554
+ pretty_sups = pretty_list(sups, sup)
555
+ if pretty_sups is not None:
556
+ pretty_subs = pretty_list(subs, sub)
557
+ else:
558
+ pretty_subs = None
559
+
560
+ # glue the results into one string
561
+ if pretty_subs is None: # nice formatting of sups/subs did not work
562
+ if subs:
563
+ name += '_'+'_'.join([translate(s, bold_name) for s in subs])
564
+ if sups:
565
+ name += '__'+'__'.join([translate(s, bold_name) for s in sups])
566
+ return name
567
+ else:
568
+ sups_result = ' '.join(pretty_sups)
569
+ subs_result = ' '.join(pretty_subs)
570
+
571
+ return ''.join([name, sups_result, subs_result])
572
+
573
+
574
+ def annotated(letter):
575
+ """
576
+ Return a stylised drawing of the letter ``letter``, together with
577
+ information on how to put annotations (super- and subscripts to the
578
+ left and to the right) on it.
579
+
580
+ See pretty.py functions _print_meijerg, _print_hyper on how to use this
581
+ information.
582
+ """
583
+ ucode_pics = {
584
+ 'F': (2, 0, 2, 0, '\N{BOX DRAWINGS LIGHT DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
585
+ '\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
586
+ '\N{BOX DRAWINGS LIGHT UP}'),
587
+ 'G': (3, 0, 3, 1, '\N{BOX DRAWINGS LIGHT ARC DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC DOWN AND LEFT}\n'
588
+ '\N{BOX DRAWINGS LIGHT VERTICAL}\N{BOX DRAWINGS LIGHT RIGHT}\N{BOX DRAWINGS LIGHT DOWN AND LEFT}\n'
589
+ '\N{BOX DRAWINGS LIGHT ARC UP AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC UP AND LEFT}')
590
+ }
591
+ ascii_pics = {
592
+ 'F': (3, 0, 3, 0, ' _\n|_\n|\n'),
593
+ 'G': (3, 0, 3, 1, ' __\n/__\n\\_|')
594
+ }
595
+
596
+ if _use_unicode:
597
+ return ucode_pics[letter]
598
+ else:
599
+ return ascii_pics[letter]
600
+
601
+ _remove_combining = dict.fromkeys(list(range(ord('\N{COMBINING GRAVE ACCENT}'), ord('\N{COMBINING LATIN SMALL LETTER X}')))
602
+ + list(range(ord('\N{COMBINING LEFT HARPOON ABOVE}'), ord('\N{COMBINING ASTERISK ABOVE}'))))
603
+
604
+ def is_combining(sym):
605
+ """Check whether symbol is a unicode modifier. """
606
+
607
+ return ord(sym) in _remove_combining
608
+
609
+
610
+ def center_accent(string, accent):
611
+ """
612
+ Returns a string with accent inserted on the middle character. Useful to
613
+ put combining accents on symbol names, including multi-character names.
614
+
615
+ Parameters
616
+ ==========
617
+
618
+ string : string
619
+ The string to place the accent in.
620
+ accent : string
621
+ The combining accent to insert
622
+
623
+ References
624
+ ==========
625
+
626
+ .. [1] https://en.wikipedia.org/wiki/Combining_character
627
+ .. [2] https://en.wikipedia.org/wiki/Combining_Diacritical_Marks
628
+
629
+ """
630
+
631
+ # Accent is placed on the previous character, although it may not always look
632
+ # like that depending on console
633
+ midpoint = len(string) // 2 + 1
634
+ firstpart = string[:midpoint]
635
+ secondpart = string[midpoint:]
636
+ return firstpart + accent + secondpart
637
+
638
+
639
+ def line_width(line):
640
+ """Unicode combining symbols (modifiers) are not ever displayed as
641
+ separate symbols and thus should not be counted
642
+ """
643
+ return len(line.translate(_remove_combining))
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Prettyprinter by Jurjen Bos.
2
+ (I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay).
3
+ All objects have a method that create a "stringPict",
4
+ that can be used in the str method for pretty printing.
5
+
6
+ Updates by Jason Gedge (email <my last name> at cs mun ca)
7
+ - terminal_string() method
8
+ - minor fixes and changes (mostly to prettyForm)
9
+
10
+ TODO:
11
+ - Allow left/center/right alignment options for above/below and
12
+ top/center/bottom alignment options for left/right
13
+ """
14
+
15
+ from .pretty_symbology import hobj, vobj, xsym, xobj, pretty_use_unicode, line_width
16
+ from sympy.utilities.exceptions import sympy_deprecation_warning
17
+
18
+ class stringPict:
19
+ """An ASCII picture.
20
+ The pictures are represented as a list of equal length strings.
21
+ """
22
+ #special value for stringPict.below
23
+ LINE = 'line'
24
+
25
+ def __init__(self, s, baseline=0):
26
+ """Initialize from string.
27
+ Multiline strings are centered.
28
+ """
29
+ self.s = s
30
+ #picture is a string that just can be printed
31
+ self.picture = stringPict.equalLengths(s.splitlines())
32
+ #baseline is the line number of the "base line"
33
+ self.baseline = baseline
34
+ self.binding = None
35
+
36
+ @staticmethod
37
+ def equalLengths(lines):
38
+ # empty lines
39
+ if not lines:
40
+ return ['']
41
+
42
+ width = max(line_width(line) for line in lines)
43
+ return [line.center(width) for line in lines]
44
+
45
+ def height(self):
46
+ """The height of the picture in characters."""
47
+ return len(self.picture)
48
+
49
+ def width(self):
50
+ """The width of the picture in characters."""
51
+ return line_width(self.picture[0])
52
+
53
+ @staticmethod
54
+ def next(*args):
55
+ """Put a string of stringPicts next to each other.
56
+ Returns string, baseline arguments for stringPict.
57
+ """
58
+ #convert everything to stringPicts
59
+ objects = []
60
+ for arg in args:
61
+ if isinstance(arg, str):
62
+ arg = stringPict(arg)
63
+ objects.append(arg)
64
+
65
+ #make a list of pictures, with equal height and baseline
66
+ newBaseline = max(obj.baseline for obj in objects)
67
+ newHeightBelowBaseline = max(
68
+ obj.height() - obj.baseline
69
+ for obj in objects)
70
+ newHeight = newBaseline + newHeightBelowBaseline
71
+
72
+ pictures = []
73
+ for obj in objects:
74
+ oneEmptyLine = [' '*obj.width()]
75
+ basePadding = newBaseline - obj.baseline
76
+ totalPadding = newHeight - obj.height()
77
+ pictures.append(
78
+ oneEmptyLine * basePadding +
79
+ obj.picture +
80
+ oneEmptyLine * (totalPadding - basePadding))
81
+
82
+ result = [''.join(lines) for lines in zip(*pictures)]
83
+ return '\n'.join(result), newBaseline
84
+
85
+ def right(self, *args):
86
+ r"""Put pictures next to this one.
87
+ Returns string, baseline arguments for stringPict.
88
+ (Multiline) strings are allowed, and are given a baseline of 0.
89
+
90
+ Examples
91
+ ========
92
+
93
+ >>> from sympy.printing.pretty.stringpict import stringPict
94
+ >>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0])
95
+ 1
96
+ 10 + -
97
+ 2
98
+
99
+ """
100
+ return stringPict.next(self, *args)
101
+
102
+ def left(self, *args):
103
+ """Put pictures (left to right) at left.
104
+ Returns string, baseline arguments for stringPict.
105
+ """
106
+ return stringPict.next(*(args + (self,)))
107
+
108
+ @staticmethod
109
+ def stack(*args):
110
+ """Put pictures on top of each other,
111
+ from top to bottom.
112
+ Returns string, baseline arguments for stringPict.
113
+ The baseline is the baseline of the second picture.
114
+ Everything is centered.
115
+ Baseline is the baseline of the second picture.
116
+ Strings are allowed.
117
+ The special value stringPict.LINE is a row of '-' extended to the width.
118
+ """
119
+ #convert everything to stringPicts; keep LINE
120
+ objects = []
121
+ for arg in args:
122
+ if arg is not stringPict.LINE and isinstance(arg, str):
123
+ arg = stringPict(arg)
124
+ objects.append(arg)
125
+
126
+ #compute new width
127
+ newWidth = max(
128
+ obj.width()
129
+ for obj in objects
130
+ if obj is not stringPict.LINE)
131
+
132
+ lineObj = stringPict(hobj('-', newWidth))
133
+
134
+ #replace LINE with proper lines
135
+ for i, obj in enumerate(objects):
136
+ if obj is stringPict.LINE:
137
+ objects[i] = lineObj
138
+
139
+ #stack the pictures, and center the result
140
+ newPicture = []
141
+ for obj in objects:
142
+ newPicture.extend(obj.picture)
143
+ newPicture = [line.center(newWidth) for line in newPicture]
144
+ newBaseline = objects[0].height() + objects[1].baseline
145
+ return '\n'.join(newPicture), newBaseline
146
+
147
+ def below(self, *args):
148
+ """Put pictures under this picture.
149
+ Returns string, baseline arguments for stringPict.
150
+ Baseline is baseline of top picture
151
+
152
+ Examples
153
+ ========
154
+
155
+ >>> from sympy.printing.pretty.stringpict import stringPict
156
+ >>> print(stringPict("x+3").below(
157
+ ... stringPict.LINE, '3')[0]) #doctest: +NORMALIZE_WHITESPACE
158
+ x+3
159
+ ---
160
+ 3
161
+
162
+ """
163
+ s, baseline = stringPict.stack(self, *args)
164
+ return s, self.baseline
165
+
166
+ def above(self, *args):
167
+ """Put pictures above this picture.
168
+ Returns string, baseline arguments for stringPict.
169
+ Baseline is baseline of bottom picture.
170
+ """
171
+ string, baseline = stringPict.stack(*(args + (self,)))
172
+ baseline = len(string.splitlines()) - self.height() + self.baseline
173
+ return string, baseline
174
+
175
+ def parens(self, left='(', right=')', ifascii_nougly=False):
176
+ """Put parentheses around self.
177
+ Returns string, baseline arguments for stringPict.
178
+
179
+ left or right can be None or empty string which means 'no paren from
180
+ that side'
181
+ """
182
+ h = self.height()
183
+ b = self.baseline
184
+
185
+ # XXX this is a hack -- ascii parens are ugly!
186
+ if ifascii_nougly and not pretty_use_unicode():
187
+ h = 1
188
+ b = 0
189
+
190
+ res = self
191
+
192
+ if left:
193
+ lparen = stringPict(vobj(left, h), baseline=b)
194
+ res = stringPict(*lparen.right(self))
195
+ if right:
196
+ rparen = stringPict(vobj(right, h), baseline=b)
197
+ res = stringPict(*res.right(rparen))
198
+
199
+ return ('\n'.join(res.picture), res.baseline)
200
+
201
+ def leftslash(self):
202
+ """Precede object by a slash of the proper size.
203
+ """
204
+ # XXX not used anywhere ?
205
+ height = max(
206
+ self.baseline,
207
+ self.height() - 1 - self.baseline)*2 + 1
208
+ slash = '\n'.join(
209
+ ' '*(height - i - 1) + xobj('/', 1) + ' '*i
210
+ for i in range(height)
211
+ )
212
+ return self.left(stringPict(slash, height//2))
213
+
214
+ def root(self, n=None):
215
+ """Produce a nice root symbol.
216
+ Produces ugly results for big n inserts.
217
+ """
218
+ # XXX not used anywhere
219
+ # XXX duplicate of root drawing in pretty.py
220
+ #put line over expression
221
+ result = self.above('_'*self.width())
222
+ #construct right half of root symbol
223
+ height = self.height()
224
+ slash = '\n'.join(
225
+ ' ' * (height - i - 1) + '/' + ' ' * i
226
+ for i in range(height)
227
+ )
228
+ slash = stringPict(slash, height - 1)
229
+ #left half of root symbol
230
+ if height > 2:
231
+ downline = stringPict('\\ \n \\', 1)
232
+ else:
233
+ downline = stringPict('\\')
234
+ #put n on top, as low as possible
235
+ if n is not None and n.width() > downline.width():
236
+ downline = downline.left(' '*(n.width() - downline.width()))
237
+ downline = downline.above(n)
238
+ #build root symbol
239
+ root = downline.right(slash)
240
+ #glue it on at the proper height
241
+ #normally, the root symbel is as high as self
242
+ #which is one less than result
243
+ #this moves the root symbol one down
244
+ #if the root became higher, the baseline has to grow too
245
+ root.baseline = result.baseline - result.height() + root.height()
246
+ return result.left(root)
247
+
248
+ def render(self, * args, **kwargs):
249
+ """Return the string form of self.
250
+
251
+ Unless the argument line_break is set to False, it will
252
+ break the expression in a form that can be printed
253
+ on the terminal without being broken up.
254
+ """
255
+ if kwargs["wrap_line"] is False:
256
+ return "\n".join(self.picture)
257
+
258
+ if kwargs["num_columns"] is not None:
259
+ # Read the argument num_columns if it is not None
260
+ ncols = kwargs["num_columns"]
261
+ else:
262
+ # Attempt to get a terminal width
263
+ ncols = self.terminal_width()
264
+
265
+ ncols -= 2
266
+ if ncols <= 0:
267
+ ncols = 78
268
+
269
+ # If smaller than the terminal width, no need to correct
270
+ if self.width() <= ncols:
271
+ return type(self.picture[0])(self)
272
+
273
+ # for one-line pictures we don't need v-spacers. on the other hand, for
274
+ # multiline-pictures, we need v-spacers between blocks, compare:
275
+ #
276
+ # 2 2 3 | a*c*e + a*c*f + a*d | a*c*e + a*c*f + a*d | 3.14159265358979323
277
+ # 6*x *y + 4*x*y + | | *e + a*d*f + b*c*e | 84626433832795
278
+ # | *e + a*d*f + b*c*e | + b*c*f + b*d*e + b |
279
+ # 3 4 4 | | *d*f |
280
+ # 4*y*x + x + y | + b*c*f + b*d*e + b | |
281
+ # | | |
282
+ # | *d*f
283
+
284
+ i = 0
285
+ svals = []
286
+ do_vspacers = (self.height() > 1)
287
+ while i < self.width():
288
+ svals.extend([ sval[i:i + ncols] for sval in self.picture ])
289
+ if do_vspacers:
290
+ svals.append("") # a vertical spacer
291
+ i += ncols
292
+
293
+ if svals[-1] == '':
294
+ del svals[-1] # Get rid of the last spacer
295
+
296
+ return "\n".join(svals)
297
+
298
+ def terminal_width(self):
299
+ """Return the terminal width if possible, otherwise return 0.
300
+ """
301
+ ncols = 0
302
+ try:
303
+ import curses
304
+ import io
305
+ try:
306
+ curses.setupterm()
307
+ ncols = curses.tigetnum('cols')
308
+ except AttributeError:
309
+ # windows curses doesn't implement setupterm or tigetnum
310
+ # code below from
311
+ # https://code.activestate.com/recipes/440694/
312
+ from ctypes import windll, create_string_buffer
313
+ # stdin handle is -10
314
+ # stdout handle is -11
315
+ # stderr handle is -12
316
+ h = windll.kernel32.GetStdHandle(-12)
317
+ csbi = create_string_buffer(22)
318
+ res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
319
+ if res:
320
+ import struct
321
+ (bufx, bufy, curx, cury, wattr,
322
+ left, top, right, bottom, maxx, maxy) = struct.unpack("hhhhHhhhhhh", csbi.raw)
323
+ ncols = right - left + 1
324
+ except curses.error:
325
+ pass
326
+ except io.UnsupportedOperation:
327
+ pass
328
+ except (ImportError, TypeError):
329
+ pass
330
+ return ncols
331
+
332
+ def __eq__(self, o):
333
+ if isinstance(o, str):
334
+ return '\n'.join(self.picture) == o
335
+ elif isinstance(o, stringPict):
336
+ return o.picture == self.picture
337
+ return False
338
+
339
+ def __hash__(self):
340
+ return super().__hash__()
341
+
342
+ def __str__(self):
343
+ return '\n'.join(self.picture)
344
+
345
+ def __repr__(self):
346
+ return "stringPict(%r,%d)" % ('\n'.join(self.picture), self.baseline)
347
+
348
+ def __getitem__(self, index):
349
+ return self.picture[index]
350
+
351
+ def __len__(self):
352
+ return len(self.s)
353
+
354
+
355
+ class prettyForm(stringPict):
356
+ """
357
+ Extension of the stringPict class that knows about basic math applications,
358
+ optimizing double minus signs.
359
+
360
+ "Binding" is interpreted as follows::
361
+
362
+ ATOM this is an atom: never needs to be parenthesized
363
+ FUNC this is a function application: parenthesize if added (?)
364
+ DIV this is a division: make wider division if divided
365
+ POW this is a power: only parenthesize if exponent
366
+ MUL this is a multiplication: parenthesize if powered
367
+ ADD this is an addition: parenthesize if multiplied or powered
368
+ NEG this is a negative number: optimize if added, parenthesize if
369
+ multiplied or powered
370
+ OPEN this is an open object: parenthesize if added, multiplied, or
371
+ powered (example: Piecewise)
372
+ """
373
+ ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8)
374
+
375
+ def __init__(self, s, baseline=0, binding=0, unicode=None):
376
+ """Initialize from stringPict and binding power."""
377
+ stringPict.__init__(self, s, baseline)
378
+ self.binding = binding
379
+ if unicode is not None:
380
+ sympy_deprecation_warning(
381
+ """
382
+ The unicode argument to prettyForm is deprecated. Only the s
383
+ argument (the first positional argument) should be passed.
384
+ """,
385
+ deprecated_since_version="1.7",
386
+ active_deprecations_target="deprecated-pretty-printing-functions")
387
+ self._unicode = unicode or s
388
+
389
+ @property
390
+ def unicode(self):
391
+ sympy_deprecation_warning(
392
+ """
393
+ The prettyForm.unicode attribute is deprecated. Use the
394
+ prettyForm.s attribute instead.
395
+ """,
396
+ deprecated_since_version="1.7",
397
+ active_deprecations_target="deprecated-pretty-printing-functions")
398
+ return self._unicode
399
+
400
+ # Note: code to handle subtraction is in _print_Add
401
+
402
+ def __add__(self, *others):
403
+ """Make a pretty addition.
404
+ Addition of negative numbers is simplified.
405
+ """
406
+ arg = self
407
+ if arg.binding > prettyForm.NEG:
408
+ arg = stringPict(*arg.parens())
409
+ result = [arg]
410
+ for arg in others:
411
+ #add parentheses for weak binders
412
+ if arg.binding > prettyForm.NEG:
413
+ arg = stringPict(*arg.parens())
414
+ #use existing minus sign if available
415
+ if arg.binding != prettyForm.NEG:
416
+ result.append(' + ')
417
+ result.append(arg)
418
+ return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result))
419
+
420
+ def __truediv__(self, den, slashed=False):
421
+ """Make a pretty division; stacked or slashed.
422
+ """
423
+ if slashed:
424
+ raise NotImplementedError("Can't do slashed fraction yet")
425
+ num = self
426
+ if num.binding == prettyForm.DIV:
427
+ num = stringPict(*num.parens())
428
+ if den.binding == prettyForm.DIV:
429
+ den = stringPict(*den.parens())
430
+
431
+ if num.binding==prettyForm.NEG:
432
+ num = num.right(" ")[0]
433
+
434
+ return prettyForm(binding=prettyForm.DIV, *stringPict.stack(
435
+ num,
436
+ stringPict.LINE,
437
+ den))
438
+
439
+ def __mul__(self, *others):
440
+ """Make a pretty multiplication.
441
+ Parentheses are needed around +, - and neg.
442
+ """
443
+ quantity = {
444
+ 'degree': "\N{DEGREE SIGN}"
445
+ }
446
+
447
+ if len(others) == 0:
448
+ return self # We aren't actually multiplying... So nothing to do here.
449
+
450
+ # add parens on args that need them
451
+ arg = self
452
+ if arg.binding > prettyForm.MUL and arg.binding != prettyForm.NEG:
453
+ arg = stringPict(*arg.parens())
454
+ result = [arg]
455
+ for arg in others:
456
+ if arg.picture[0] not in quantity.values():
457
+ result.append(xsym('*'))
458
+ #add parentheses for weak binders
459
+ if arg.binding > prettyForm.MUL and arg.binding != prettyForm.NEG:
460
+ arg = stringPict(*arg.parens())
461
+ result.append(arg)
462
+
463
+ len_res = len(result)
464
+ for i in range(len_res):
465
+ if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym('*'):
466
+ # substitute -1 by -, like in -1*x -> -x
467
+ result.pop(i)
468
+ result.pop(i)
469
+ result.insert(i, '-')
470
+ if result[0][0] == '-':
471
+ # if there is a - sign in front of all
472
+ # This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative
473
+ bin = prettyForm.NEG
474
+ if result[0] == '-':
475
+ right = result[1]
476
+ if right.picture[right.baseline][0] == '-':
477
+ result[0] = '- '
478
+ else:
479
+ bin = prettyForm.MUL
480
+ return prettyForm(binding=bin, *stringPict.next(*result))
481
+
482
+ def __repr__(self):
483
+ return "prettyForm(%r,%d,%d)" % (
484
+ '\n'.join(self.picture),
485
+ self.baseline,
486
+ self.binding)
487
+
488
+ def __pow__(self, b):
489
+ """Make a pretty power.
490
+ """
491
+ a = self
492
+ use_inline_func_form = False
493
+ if b.binding == prettyForm.POW:
494
+ b = stringPict(*b.parens())
495
+ if a.binding > prettyForm.FUNC:
496
+ a = stringPict(*a.parens())
497
+ elif a.binding == prettyForm.FUNC:
498
+ # heuristic for when to use inline power
499
+ if b.height() > 1:
500
+ a = stringPict(*a.parens())
501
+ else:
502
+ use_inline_func_form = True
503
+
504
+ if use_inline_func_form:
505
+ # 2
506
+ # sin + + (x)
507
+ b.baseline = a.prettyFunc.baseline + b.height()
508
+ func = stringPict(*a.prettyFunc.right(b))
509
+ return prettyForm(*func.right(a.prettyArgs))
510
+ else:
511
+ # 2 <-- top
512
+ # (x+y) <-- bot
513
+ top = stringPict(*b.left(' '*a.width()))
514
+ bot = stringPict(*a.right(' '*b.width()))
515
+
516
+ return prettyForm(binding=prettyForm.POW, *bot.above(top))
517
+
518
+ simpleFunctions = ["sin", "cos", "tan"]
519
+
520
+ @staticmethod
521
+ def apply(function, *args):
522
+ """Functions of one or more variables.
523
+ """
524
+ if function in prettyForm.simpleFunctions:
525
+ #simple function: use only space if possible
526
+ assert len(
527
+ args) == 1, "Simple function %s must have 1 argument" % function
528
+ arg = args[0].__pretty__()
529
+ if arg.binding <= prettyForm.DIV:
530
+ #optimization: no parentheses necessary
531
+ return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' '))
532
+ argumentList = []
533
+ for arg in args:
534
+ argumentList.append(',')
535
+ argumentList.append(arg.__pretty__())
536
+ argumentList = stringPict(*stringPict.next(*argumentList[1:]))
537
+ argumentList = stringPict(*argumentList.parens())
538
+ return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function))
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .sets import (Set, Interval, Union, FiniteSet, ProductSet,
2
+ Intersection, imageset, Complement, SymmetricDifference,
3
+ DisjointUnion)
4
+
5
+ from .fancysets import ImageSet, Range, ComplexRegion
6
+ from .contains import Contains
7
+ from .conditionset import ConditionSet
8
+ from .ordinals import Ordinal, OmegaPower, ord0
9
+ from .powerset import PowerSet
10
+ from ..core.singleton import S
11
+ from .handlers.comparison import _eval_is_eq # noqa:F401
12
+ Complexes = S.Complexes
13
+ EmptySet = S.EmptySet
14
+ Integers = S.Integers
15
+ Naturals = S.Naturals
16
+ Naturals0 = S.Naturals0
17
+ Rationals = S.Rationals
18
+ Reals = S.Reals
19
+ UniversalSet = S.UniversalSet
20
+
21
+ __all__ = [
22
+ 'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
23
+ 'Intersection', 'imageset', 'Complement', 'SymmetricDifference', 'DisjointUnion',
24
+
25
+ 'ImageSet', 'Range', 'ComplexRegion', 'Reals',
26
+
27
+ 'Contains',
28
+
29
+ 'ConditionSet',
30
+
31
+ 'Ordinal', 'OmegaPower', 'ord0',
32
+
33
+ 'PowerSet',
34
+
35
+ 'Reals', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals',
36
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/conditionset.cpython-310.pyc ADDED
Binary file (7.62 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/contains.cpython-310.pyc ADDED
Binary file (1.91 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/ordinals.cpython-310.pyc ADDED
Binary file (8.44 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/conditionset.py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.containers import Tuple
4
+ from sympy.core.function import Lambda, BadSignatureError
5
+ from sympy.core.logic import fuzzy_bool
6
+ from sympy.core.relational import Eq
7
+ from sympy.core.symbol import Dummy
8
+ from sympy.core.sympify import _sympify
9
+ from sympy.logic.boolalg import And, as_Boolean
10
+ from sympy.utilities.iterables import sift, flatten, has_dups
11
+ from sympy.utilities.exceptions import sympy_deprecation_warning
12
+ from .contains import Contains
13
+ from .sets import Set, Union, FiniteSet, SetKind
14
+
15
+
16
+ adummy = Dummy('conditionset')
17
+
18
+
19
+ class ConditionSet(Set):
20
+ r"""
21
+ Set of elements which satisfies a given condition.
22
+
23
+ .. math:: \{x \mid \textrm{condition}(x) = \texttt{True}, x \in S\}
24
+
25
+ Examples
26
+ ========
27
+
28
+ >>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
29
+ >>> from sympy.abc import x, y, z
30
+
31
+ >>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
32
+ >>> 2*pi in sin_sols
33
+ True
34
+ >>> pi/2 in sin_sols
35
+ False
36
+ >>> 3*pi in sin_sols
37
+ False
38
+ >>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
39
+ True
40
+
41
+ If the value is not in the base set, the result is false:
42
+
43
+ >>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
44
+ False
45
+
46
+ Notes
47
+ =====
48
+
49
+ Symbols with assumptions should be avoided or else the
50
+ condition may evaluate without consideration of the set:
51
+
52
+ >>> n = Symbol('n', negative=True)
53
+ >>> cond = (n > 0); cond
54
+ False
55
+ >>> ConditionSet(n, cond, S.Integers)
56
+ EmptySet
57
+
58
+ Only free symbols can be changed by using `subs`:
59
+
60
+ >>> c = ConditionSet(x, x < 1, {x, z})
61
+ >>> c.subs(x, y)
62
+ ConditionSet(x, x < 1, {y, z})
63
+
64
+ To check if ``pi`` is in ``c`` use:
65
+
66
+ >>> pi in c
67
+ False
68
+
69
+ If no base set is specified, the universal set is implied:
70
+
71
+ >>> ConditionSet(x, x < 1).base_set
72
+ UniversalSet
73
+
74
+ Only symbols or symbol-like expressions can be used:
75
+
76
+ >>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
77
+ Traceback (most recent call last):
78
+ ...
79
+ ValueError: non-symbol dummy not recognized in condition
80
+
81
+ When the base set is a ConditionSet, the symbols will be
82
+ unified if possible with preference for the outermost symbols:
83
+
84
+ >>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
85
+ ConditionSet(x, (x < y) & (x + y < 2), Integers)
86
+
87
+ """
88
+ def __new__(cls, sym, condition, base_set=S.UniversalSet):
89
+ sym = _sympify(sym)
90
+ flat = flatten([sym])
91
+ if has_dups(flat):
92
+ raise BadSignatureError("Duplicate symbols detected")
93
+ base_set = _sympify(base_set)
94
+ if not isinstance(base_set, Set):
95
+ raise TypeError(
96
+ 'base set should be a Set object, not %s' % base_set)
97
+ condition = _sympify(condition)
98
+
99
+ if isinstance(condition, FiniteSet):
100
+ condition_orig = condition
101
+ temp = (Eq(lhs, 0) for lhs in condition)
102
+ condition = And(*temp)
103
+ sympy_deprecation_warning(
104
+ f"""
105
+ Using a set for the condition in ConditionSet is deprecated. Use a boolean
106
+ instead.
107
+
108
+ In this case, replace
109
+
110
+ {condition_orig}
111
+
112
+ with
113
+
114
+ {condition}
115
+ """,
116
+ deprecated_since_version='1.5',
117
+ active_deprecations_target="deprecated-conditionset-set",
118
+ )
119
+
120
+ condition = as_Boolean(condition)
121
+
122
+ if condition is S.true:
123
+ return base_set
124
+
125
+ if condition is S.false:
126
+ return S.EmptySet
127
+
128
+ if base_set is S.EmptySet:
129
+ return S.EmptySet
130
+
131
+ # no simple answers, so now check syms
132
+ for i in flat:
133
+ if not getattr(i, '_diff_wrt', False):
134
+ raise ValueError('`%s` is not symbol-like' % i)
135
+
136
+ if base_set.contains(sym) is S.false:
137
+ raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set))
138
+
139
+ know = None
140
+ if isinstance(base_set, FiniteSet):
141
+ sifted = sift(
142
+ base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
143
+ if sifted[None]:
144
+ know = FiniteSet(*sifted[True])
145
+ base_set = FiniteSet(*sifted[None])
146
+ else:
147
+ return FiniteSet(*sifted[True])
148
+
149
+ if isinstance(base_set, cls):
150
+ s, c, b = base_set.args
151
+ def sig(s):
152
+ return cls(s, Eq(adummy, 0)).as_dummy().sym
153
+ sa, sb = map(sig, (sym, s))
154
+ if sa != sb:
155
+ raise BadSignatureError('sym does not match sym of base set')
156
+ reps = dict(zip(flatten([sym]), flatten([s])))
157
+ if s == sym:
158
+ condition = And(condition, c)
159
+ base_set = b
160
+ elif not c.free_symbols & sym.free_symbols:
161
+ reps = {v: k for k, v in reps.items()}
162
+ condition = And(condition, c.xreplace(reps))
163
+ base_set = b
164
+ elif not condition.free_symbols & s.free_symbols:
165
+ sym = sym.xreplace(reps)
166
+ condition = And(condition.xreplace(reps), c)
167
+ base_set = b
168
+
169
+ # flatten ConditionSet(Contains(ConditionSet())) expressions
170
+ if isinstance(condition, Contains) and (sym == condition.args[0]):
171
+ if isinstance(condition.args[1], Set):
172
+ return condition.args[1].intersect(base_set)
173
+
174
+ rv = Basic.__new__(cls, sym, condition, base_set)
175
+ return rv if know is None else Union(know, rv)
176
+
177
+ sym = property(lambda self: self.args[0])
178
+ condition = property(lambda self: self.args[1])
179
+ base_set = property(lambda self: self.args[2])
180
+
181
+ @property
182
+ def free_symbols(self):
183
+ cond_syms = self.condition.free_symbols - self.sym.free_symbols
184
+ return cond_syms | self.base_set.free_symbols
185
+
186
+ @property
187
+ def bound_symbols(self):
188
+ return flatten([self.sym])
189
+
190
+ def _contains(self, other):
191
+ def ok_sig(a, b):
192
+ tuples = [isinstance(i, Tuple) for i in (a, b)]
193
+ c = tuples.count(True)
194
+ if c == 1:
195
+ return False
196
+ if c == 0:
197
+ return True
198
+ return len(a) == len(b) and all(
199
+ ok_sig(i, j) for i, j in zip(a, b))
200
+ if not ok_sig(self.sym, other):
201
+ return S.false
202
+
203
+ # try doing base_cond first and return
204
+ # False immediately if it is False
205
+ base_cond = Contains(other, self.base_set)
206
+ if base_cond is S.false:
207
+ return S.false
208
+
209
+ # Substitute other into condition. This could raise e.g. for
210
+ # ConditionSet(x, 1/x >= 0, Reals).contains(0)
211
+ lamda = Lambda((self.sym,), self.condition)
212
+ try:
213
+ lambda_cond = lamda(other)
214
+ except TypeError:
215
+ return Contains(other, self, evaluate=False)
216
+ else:
217
+ return And(base_cond, lambda_cond)
218
+
219
+ def as_relational(self, other):
220
+ f = Lambda(self.sym, self.condition)
221
+ if isinstance(self.sym, Tuple):
222
+ f = f(*other)
223
+ else:
224
+ f = f(other)
225
+ return And(f, self.base_set.contains(other))
226
+
227
+ def _eval_subs(self, old, new):
228
+ sym, cond, base = self.args
229
+ dsym = sym.subs(old, adummy)
230
+ insym = dsym.has(adummy)
231
+ # prioritize changing a symbol in the base
232
+ newbase = base.subs(old, new)
233
+ if newbase != base:
234
+ if not insym:
235
+ cond = cond.subs(old, new)
236
+ return self.func(sym, cond, newbase)
237
+ if insym:
238
+ pass # no change of bound symbols via subs
239
+ elif getattr(new, '_diff_wrt', False):
240
+ cond = cond.subs(old, new)
241
+ else:
242
+ pass # let error about the symbol raise from __new__
243
+ return self.func(sym, cond, base)
244
+
245
+ def _kind(self):
246
+ return SetKind(self.sym.kind)
env-llmeval/lib/python3.10/site-packages/sympy/sets/contains.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import S
2
+ from sympy.core.relational import Eq, Ne
3
+ from sympy.logic.boolalg import BooleanFunction
4
+ from sympy.utilities.misc import func_name
5
+ from .sets import Set
6
+
7
+
8
+ class Contains(BooleanFunction):
9
+ """
10
+ Asserts that x is an element of the set S.
11
+
12
+ Examples
13
+ ========
14
+
15
+ >>> from sympy import Symbol, Integer, S, Contains
16
+ >>> Contains(Integer(2), S.Integers)
17
+ True
18
+ >>> Contains(Integer(-2), S.Naturals)
19
+ False
20
+ >>> i = Symbol('i', integer=True)
21
+ >>> Contains(i, S.Naturals)
22
+ Contains(i, Naturals)
23
+
24
+ References
25
+ ==========
26
+
27
+ .. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29
28
+ """
29
+ @classmethod
30
+ def eval(cls, x, s):
31
+
32
+ if not isinstance(s, Set):
33
+ raise TypeError('expecting Set, not %s' % func_name(s))
34
+
35
+ ret = s.contains(x)
36
+ if not isinstance(ret, Contains) and (
37
+ ret in (S.true, S.false) or isinstance(ret, Set)):
38
+ return ret
39
+
40
+ @property
41
+ def binary_symbols(self):
42
+ return set().union(*[i.binary_symbols
43
+ for i in self.args[1].args
44
+ if i.is_Boolean or i.is_Symbol or
45
+ isinstance(i, (Eq, Ne))])
46
+
47
+ def as_set(self):
48
+ return self.args[1]
env-llmeval/lib/python3.10/site-packages/sympy/sets/fancysets.py ADDED
@@ -0,0 +1,1521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import reduce
2
+ from itertools import product
3
+
4
+ from sympy.core.basic import Basic
5
+ from sympy.core.containers import Tuple
6
+ from sympy.core.expr import Expr
7
+ from sympy.core.function import Lambda
8
+ from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and
9
+ from sympy.core.mod import Mod
10
+ from sympy.core.numbers import oo, igcd, Rational
11
+ from sympy.core.relational import Eq, is_eq
12
+ from sympy.core.kind import NumberKind
13
+ from sympy.core.singleton import Singleton, S
14
+ from sympy.core.symbol import Dummy, symbols, Symbol
15
+ from sympy.core.sympify import _sympify, sympify, _sympy_converter
16
+ from sympy.functions.elementary.integers import ceiling, floor
17
+ from sympy.functions.elementary.trigonometric import sin, cos
18
+ from sympy.logic.boolalg import And, Or
19
+ from .sets import Set, Interval, Union, FiniteSet, ProductSet, SetKind
20
+ from sympy.utilities.misc import filldedent
21
+
22
+
23
+ class Rationals(Set, metaclass=Singleton):
24
+ """
25
+ Represents the rational numbers. This set is also available as
26
+ the singleton ``S.Rationals``.
27
+
28
+ Examples
29
+ ========
30
+
31
+ >>> from sympy import S
32
+ >>> S.Half in S.Rationals
33
+ True
34
+ >>> iterable = iter(S.Rationals)
35
+ >>> [next(iterable) for i in range(12)]
36
+ [0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
37
+ """
38
+
39
+ is_iterable = True
40
+ _inf = S.NegativeInfinity
41
+ _sup = S.Infinity
42
+ is_empty = False
43
+ is_finite_set = False
44
+
45
+ def _contains(self, other):
46
+ if not isinstance(other, Expr):
47
+ return False
48
+ return other.is_rational
49
+
50
+ def __iter__(self):
51
+ yield S.Zero
52
+ yield S.One
53
+ yield S.NegativeOne
54
+ d = 2
55
+ while True:
56
+ for n in range(d):
57
+ if igcd(n, d) == 1:
58
+ yield Rational(n, d)
59
+ yield Rational(d, n)
60
+ yield Rational(-n, d)
61
+ yield Rational(-d, n)
62
+ d += 1
63
+
64
+ @property
65
+ def _boundary(self):
66
+ return S.Reals
67
+
68
+ def _kind(self):
69
+ return SetKind(NumberKind)
70
+
71
+
72
+ class Naturals(Set, metaclass=Singleton):
73
+ """
74
+ Represents the natural numbers (or counting numbers) which are all
75
+ positive integers starting from 1. This set is also available as
76
+ the singleton ``S.Naturals``.
77
+
78
+ Examples
79
+ ========
80
+
81
+ >>> from sympy import S, Interval, pprint
82
+ >>> 5 in S.Naturals
83
+ True
84
+ >>> iterable = iter(S.Naturals)
85
+ >>> next(iterable)
86
+ 1
87
+ >>> next(iterable)
88
+ 2
89
+ >>> next(iterable)
90
+ 3
91
+ >>> pprint(S.Naturals.intersect(Interval(0, 10)))
92
+ {1, 2, ..., 10}
93
+
94
+ See Also
95
+ ========
96
+
97
+ Naturals0 : non-negative integers (i.e. includes 0, too)
98
+ Integers : also includes negative integers
99
+ """
100
+
101
+ is_iterable = True
102
+ _inf = S.One
103
+ _sup = S.Infinity
104
+ is_empty = False
105
+ is_finite_set = False
106
+
107
+ def _contains(self, other):
108
+ if not isinstance(other, Expr):
109
+ return False
110
+ elif other.is_positive and other.is_integer:
111
+ return True
112
+ elif other.is_integer is False or other.is_positive is False:
113
+ return False
114
+
115
+ def _eval_is_subset(self, other):
116
+ return Range(1, oo).is_subset(other)
117
+
118
+ def _eval_is_superset(self, other):
119
+ return Range(1, oo).is_superset(other)
120
+
121
+ def __iter__(self):
122
+ i = self._inf
123
+ while True:
124
+ yield i
125
+ i = i + 1
126
+
127
+ @property
128
+ def _boundary(self):
129
+ return self
130
+
131
+ def as_relational(self, x):
132
+ return And(Eq(floor(x), x), x >= self.inf, x < oo)
133
+
134
+ def _kind(self):
135
+ return SetKind(NumberKind)
136
+
137
+
138
+ class Naturals0(Naturals):
139
+ """Represents the whole numbers which are all the non-negative integers,
140
+ inclusive of zero.
141
+
142
+ See Also
143
+ ========
144
+
145
+ Naturals : positive integers; does not include 0
146
+ Integers : also includes the negative integers
147
+ """
148
+ _inf = S.Zero
149
+
150
+ def _contains(self, other):
151
+ if not isinstance(other, Expr):
152
+ return S.false
153
+ elif other.is_integer and other.is_nonnegative:
154
+ return S.true
155
+ elif other.is_integer is False or other.is_nonnegative is False:
156
+ return S.false
157
+
158
+ def _eval_is_subset(self, other):
159
+ return Range(oo).is_subset(other)
160
+
161
+ def _eval_is_superset(self, other):
162
+ return Range(oo).is_superset(other)
163
+
164
+
165
+ class Integers(Set, metaclass=Singleton):
166
+ """
167
+ Represents all integers: positive, negative and zero. This set is also
168
+ available as the singleton ``S.Integers``.
169
+
170
+ Examples
171
+ ========
172
+
173
+ >>> from sympy import S, Interval, pprint
174
+ >>> 5 in S.Naturals
175
+ True
176
+ >>> iterable = iter(S.Integers)
177
+ >>> next(iterable)
178
+ 0
179
+ >>> next(iterable)
180
+ 1
181
+ >>> next(iterable)
182
+ -1
183
+ >>> next(iterable)
184
+ 2
185
+
186
+ >>> pprint(S.Integers.intersect(Interval(-4, 4)))
187
+ {-4, -3, ..., 4}
188
+
189
+ See Also
190
+ ========
191
+
192
+ Naturals0 : non-negative integers
193
+ Integers : positive and negative integers and zero
194
+ """
195
+
196
+ is_iterable = True
197
+ is_empty = False
198
+ is_finite_set = False
199
+
200
+ def _contains(self, other):
201
+ if not isinstance(other, Expr):
202
+ return S.false
203
+ return other.is_integer
204
+
205
+ def __iter__(self):
206
+ yield S.Zero
207
+ i = S.One
208
+ while True:
209
+ yield i
210
+ yield -i
211
+ i = i + 1
212
+
213
+ @property
214
+ def _inf(self):
215
+ return S.NegativeInfinity
216
+
217
+ @property
218
+ def _sup(self):
219
+ return S.Infinity
220
+
221
+ @property
222
+ def _boundary(self):
223
+ return self
224
+
225
+ def _kind(self):
226
+ return SetKind(NumberKind)
227
+
228
+ def as_relational(self, x):
229
+ return And(Eq(floor(x), x), -oo < x, x < oo)
230
+
231
+ def _eval_is_subset(self, other):
232
+ return Range(-oo, oo).is_subset(other)
233
+
234
+ def _eval_is_superset(self, other):
235
+ return Range(-oo, oo).is_superset(other)
236
+
237
+
238
+ class Reals(Interval, metaclass=Singleton):
239
+ """
240
+ Represents all real numbers
241
+ from negative infinity to positive infinity,
242
+ including all integer, rational and irrational numbers.
243
+ This set is also available as the singleton ``S.Reals``.
244
+
245
+
246
+ Examples
247
+ ========
248
+
249
+ >>> from sympy import S, Rational, pi, I
250
+ >>> 5 in S.Reals
251
+ True
252
+ >>> Rational(-1, 2) in S.Reals
253
+ True
254
+ >>> pi in S.Reals
255
+ True
256
+ >>> 3*I in S.Reals
257
+ False
258
+ >>> S.Reals.contains(pi)
259
+ True
260
+
261
+
262
+ See Also
263
+ ========
264
+
265
+ ComplexRegion
266
+ """
267
+ @property
268
+ def start(self):
269
+ return S.NegativeInfinity
270
+
271
+ @property
272
+ def end(self):
273
+ return S.Infinity
274
+
275
+ @property
276
+ def left_open(self):
277
+ return True
278
+
279
+ @property
280
+ def right_open(self):
281
+ return True
282
+
283
+ def __eq__(self, other):
284
+ return other == Interval(S.NegativeInfinity, S.Infinity)
285
+
286
+ def __hash__(self):
287
+ return hash(Interval(S.NegativeInfinity, S.Infinity))
288
+
289
+
290
+ class ImageSet(Set):
291
+ """
292
+ Image of a set under a mathematical function. The transformation
293
+ must be given as a Lambda function which has as many arguments
294
+ as the elements of the set upon which it operates, e.g. 1 argument
295
+ when acting on the set of integers or 2 arguments when acting on
296
+ a complex region.
297
+
298
+ This function is not normally called directly, but is called
299
+ from ``imageset``.
300
+
301
+
302
+ Examples
303
+ ========
304
+
305
+ >>> from sympy import Symbol, S, pi, Dummy, Lambda
306
+ >>> from sympy import FiniteSet, ImageSet, Interval
307
+
308
+ >>> x = Symbol('x')
309
+ >>> N = S.Naturals
310
+ >>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
311
+ >>> 4 in squares
312
+ True
313
+ >>> 5 in squares
314
+ False
315
+
316
+ >>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
317
+ {1, 4, 9}
318
+
319
+ >>> square_iterable = iter(squares)
320
+ >>> for i in range(4):
321
+ ... next(square_iterable)
322
+ 1
323
+ 4
324
+ 9
325
+ 16
326
+
327
+ If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
328
+ `x` value is in ``base_set`` or not before passing it as args)
329
+
330
+ >>> squares.lamda(2)
331
+ 4
332
+ >>> squares.lamda(S(1)/2)
333
+ 1/4
334
+
335
+ >>> n = Dummy('n')
336
+ >>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
337
+ >>> dom = Interval(-1, 1)
338
+ >>> dom.intersect(solutions)
339
+ {0}
340
+
341
+ See Also
342
+ ========
343
+
344
+ sympy.sets.sets.imageset
345
+ """
346
+ def __new__(cls, flambda, *sets):
347
+ if not isinstance(flambda, Lambda):
348
+ raise ValueError('First argument must be a Lambda')
349
+
350
+ signature = flambda.signature
351
+
352
+ if len(signature) != len(sets):
353
+ raise ValueError('Incompatible signature')
354
+
355
+ sets = [_sympify(s) for s in sets]
356
+
357
+ if not all(isinstance(s, Set) for s in sets):
358
+ raise TypeError("Set arguments to ImageSet should of type Set")
359
+
360
+ if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
361
+ raise ValueError("Signature %s does not match sets %s" % (signature, sets))
362
+
363
+ if flambda is S.IdentityFunction and len(sets) == 1:
364
+ return sets[0]
365
+
366
+ if not set(flambda.variables) & flambda.expr.free_symbols:
367
+ is_empty = fuzzy_or(s.is_empty for s in sets)
368
+ if is_empty == True:
369
+ return S.EmptySet
370
+ elif is_empty == False:
371
+ return FiniteSet(flambda.expr)
372
+
373
+ return Basic.__new__(cls, flambda, *sets)
374
+
375
+ lamda = property(lambda self: self.args[0])
376
+ base_sets = property(lambda self: self.args[1:])
377
+
378
+ @property
379
+ def base_set(self):
380
+ # XXX: Maybe deprecate this? It is poorly defined in handling
381
+ # the multivariate case...
382
+ sets = self.base_sets
383
+ if len(sets) == 1:
384
+ return sets[0]
385
+ else:
386
+ return ProductSet(*sets).flatten()
387
+
388
+ @property
389
+ def base_pset(self):
390
+ return ProductSet(*self.base_sets)
391
+
392
+ @classmethod
393
+ def _check_sig(cls, sig_i, set_i):
394
+ if sig_i.is_symbol:
395
+ return True
396
+ elif isinstance(set_i, ProductSet):
397
+ sets = set_i.sets
398
+ if len(sig_i) != len(sets):
399
+ return False
400
+ # Recurse through the signature for nested tuples:
401
+ return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
402
+ else:
403
+ # XXX: Need a better way of checking whether a set is a set of
404
+ # Tuples or not. For example a FiniteSet can contain Tuples
405
+ # but so can an ImageSet or a ConditionSet. Others like
406
+ # Integers, Reals etc can not contain Tuples. We could just
407
+ # list the possibilities here... Current code for e.g.
408
+ # _contains probably only works for ProductSet.
409
+ return True # Give the benefit of the doubt
410
+
411
+ def __iter__(self):
412
+ already_seen = set()
413
+ for i in self.base_pset:
414
+ val = self.lamda(*i)
415
+ if val in already_seen:
416
+ continue
417
+ else:
418
+ already_seen.add(val)
419
+ yield val
420
+
421
+ def _is_multivariate(self):
422
+ return len(self.lamda.variables) > 1
423
+
424
+ def _contains(self, other):
425
+ from sympy.solvers.solveset import _solveset_multi
426
+
427
+ def get_symsetmap(signature, base_sets):
428
+ '''Attempt to get a map of symbols to base_sets'''
429
+ queue = list(zip(signature, base_sets))
430
+ symsetmap = {}
431
+ for sig, base_set in queue:
432
+ if sig.is_symbol:
433
+ symsetmap[sig] = base_set
434
+ elif base_set.is_ProductSet:
435
+ sets = base_set.sets
436
+ if len(sig) != len(sets):
437
+ raise ValueError("Incompatible signature")
438
+ # Recurse
439
+ queue.extend(zip(sig, sets))
440
+ else:
441
+ # If we get here then we have something like sig = (x, y) and
442
+ # base_set = {(1, 2), (3, 4)}. For now we give up.
443
+ return None
444
+
445
+ return symsetmap
446
+
447
+ def get_equations(expr, candidate):
448
+ '''Find the equations relating symbols in expr and candidate.'''
449
+ queue = [(expr, candidate)]
450
+ for e, c in queue:
451
+ if not isinstance(e, Tuple):
452
+ yield Eq(e, c)
453
+ elif not isinstance(c, Tuple) or len(e) != len(c):
454
+ yield False
455
+ return
456
+ else:
457
+ queue.extend(zip(e, c))
458
+
459
+ # Get the basic objects together:
460
+ other = _sympify(other)
461
+ expr = self.lamda.expr
462
+ sig = self.lamda.signature
463
+ variables = self.lamda.variables
464
+ base_sets = self.base_sets
465
+
466
+ # Use dummy symbols for ImageSet parameters so they don't match
467
+ # anything in other
468
+ rep = {v: Dummy(v.name) for v in variables}
469
+ variables = [v.subs(rep) for v in variables]
470
+ sig = sig.subs(rep)
471
+ expr = expr.subs(rep)
472
+
473
+ # Map the parts of other to those in the Lambda expr
474
+ equations = []
475
+ for eq in get_equations(expr, other):
476
+ # Unsatisfiable equation?
477
+ if eq is False:
478
+ return False
479
+ equations.append(eq)
480
+
481
+ # Map the symbols in the signature to the corresponding domains
482
+ symsetmap = get_symsetmap(sig, base_sets)
483
+ if symsetmap is None:
484
+ # Can't factor the base sets to a ProductSet
485
+ return None
486
+
487
+ # Which of the variables in the Lambda signature need to be solved for?
488
+ symss = (eq.free_symbols for eq in equations)
489
+ variables = set(variables) & reduce(set.union, symss, set())
490
+
491
+ # Use internal multivariate solveset
492
+ variables = tuple(variables)
493
+ base_sets = [symsetmap[v] for v in variables]
494
+ solnset = _solveset_multi(equations, variables, base_sets)
495
+ if solnset is None:
496
+ return None
497
+ return fuzzy_not(solnset.is_empty)
498
+
499
+ @property
500
+ def is_iterable(self):
501
+ return all(s.is_iterable for s in self.base_sets)
502
+
503
+ def doit(self, **hints):
504
+ from sympy.sets.setexpr import SetExpr
505
+ f = self.lamda
506
+ sig = f.signature
507
+ if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
508
+ base_set = self.base_sets[0]
509
+ return SetExpr(base_set)._eval_func(f).set
510
+ if all(s.is_FiniteSet for s in self.base_sets):
511
+ return FiniteSet(*(f(*a) for a in product(*self.base_sets)))
512
+ return self
513
+
514
+ def _kind(self):
515
+ return SetKind(self.lamda.expr.kind)
516
+
517
+
518
+ class Range(Set):
519
+ """
520
+ Represents a range of integers. Can be called as ``Range(stop)``,
521
+ ``Range(start, stop)``, or ``Range(start, stop, step)``; when ``step`` is
522
+ not given it defaults to 1.
523
+
524
+ ``Range(stop)`` is the same as ``Range(0, stop, 1)`` and the stop value
525
+ (just as for Python ranges) is not included in the Range values.
526
+
527
+ >>> from sympy import Range
528
+ >>> list(Range(3))
529
+ [0, 1, 2]
530
+
531
+ The step can also be negative:
532
+
533
+ >>> list(Range(10, 0, -2))
534
+ [10, 8, 6, 4, 2]
535
+
536
+ The stop value is made canonical so equivalent ranges always
537
+ have the same args:
538
+
539
+ >>> Range(0, 10, 3)
540
+ Range(0, 12, 3)
541
+
542
+ Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
543
+ set (``Range`` is always a subset of ``Integers``). If the starting point
544
+ is infinite, then the final value is ``stop - step``. To iterate such a
545
+ range, it needs to be reversed:
546
+
547
+ >>> from sympy import oo
548
+ >>> r = Range(-oo, 1)
549
+ >>> r[-1]
550
+ 0
551
+ >>> next(iter(r))
552
+ Traceback (most recent call last):
553
+ ...
554
+ TypeError: Cannot iterate over Range with infinite start
555
+ >>> next(iter(r.reversed))
556
+ 0
557
+
558
+ Although ``Range`` is a :class:`Set` (and supports the normal set
559
+ operations) it maintains the order of the elements and can
560
+ be used in contexts where ``range`` would be used.
561
+
562
+ >>> from sympy import Interval
563
+ >>> Range(0, 10, 2).intersect(Interval(3, 7))
564
+ Range(4, 8, 2)
565
+ >>> list(_)
566
+ [4, 6]
567
+
568
+ Although slicing of a Range will always return a Range -- possibly
569
+ empty -- an empty set will be returned from any intersection that
570
+ is empty:
571
+
572
+ >>> Range(3)[:0]
573
+ Range(0, 0, 1)
574
+ >>> Range(3).intersect(Interval(4, oo))
575
+ EmptySet
576
+ >>> Range(3).intersect(Range(4, oo))
577
+ EmptySet
578
+
579
+ Range will accept symbolic arguments but has very limited support
580
+ for doing anything other than displaying the Range:
581
+
582
+ >>> from sympy import Symbol, pprint
583
+ >>> from sympy.abc import i, j, k
584
+ >>> Range(i, j, k).start
585
+ i
586
+ >>> Range(i, j, k).inf
587
+ Traceback (most recent call last):
588
+ ...
589
+ ValueError: invalid method for symbolic range
590
+
591
+ Better success will be had when using integer symbols:
592
+
593
+ >>> n = Symbol('n', integer=True)
594
+ >>> r = Range(n, n + 20, 3)
595
+ >>> r.inf
596
+ n
597
+ >>> pprint(r)
598
+ {n, n + 3, ..., n + 18}
599
+ """
600
+
601
+ def __new__(cls, *args):
602
+ if len(args) == 1:
603
+ if isinstance(args[0], range):
604
+ raise TypeError(
605
+ 'use sympify(%s) to convert range to Range' % args[0])
606
+
607
+ # expand range
608
+ slc = slice(*args)
609
+
610
+ if slc.step == 0:
611
+ raise ValueError("step cannot be 0")
612
+
613
+ start, stop, step = slc.start or 0, slc.stop, slc.step or 1
614
+ try:
615
+ ok = []
616
+ for w in (start, stop, step):
617
+ w = sympify(w)
618
+ if w in [S.NegativeInfinity, S.Infinity] or (
619
+ w.has(Symbol) and w.is_integer != False):
620
+ ok.append(w)
621
+ elif not w.is_Integer:
622
+ if w.is_infinite:
623
+ raise ValueError('infinite symbols not allowed')
624
+ raise ValueError
625
+ else:
626
+ ok.append(w)
627
+ except ValueError:
628
+ raise ValueError(filldedent('''
629
+ Finite arguments to Range must be integers; `imageset` can define
630
+ other cases, e.g. use `imageset(i, i/10, Range(3))` to give
631
+ [0, 1/10, 1/5].'''))
632
+ start, stop, step = ok
633
+
634
+ null = False
635
+ if any(i.has(Symbol) for i in (start, stop, step)):
636
+ dif = stop - start
637
+ n = dif/step
638
+ if n.is_Rational:
639
+ if dif == 0:
640
+ null = True
641
+ else: # (x, x + 5, 2) or (x, 3*x, x)
642
+ n = floor(n)
643
+ end = start + n*step
644
+ if dif.is_Rational: # (x, x + 5, 2)
645
+ if (end - stop).is_negative:
646
+ end += step
647
+ else: # (x, 3*x, x)
648
+ if (end/stop - 1).is_negative:
649
+ end += step
650
+ elif n.is_extended_negative:
651
+ null = True
652
+ else:
653
+ end = stop # other methods like sup and reversed must fail
654
+ elif start.is_infinite:
655
+ span = step*(stop - start)
656
+ if span is S.NaN or span <= 0:
657
+ null = True
658
+ elif step.is_Integer and stop.is_infinite and abs(step) != 1:
659
+ raise ValueError(filldedent('''
660
+ Step size must be %s in this case.''' % (1 if step > 0 else -1)))
661
+ else:
662
+ end = stop
663
+ else:
664
+ oostep = step.is_infinite
665
+ if oostep:
666
+ step = S.One if step > 0 else S.NegativeOne
667
+ n = ceiling((stop - start)/step)
668
+ if n <= 0:
669
+ null = True
670
+ elif oostep:
671
+ step = S.One # make it canonical
672
+ end = start + step
673
+ else:
674
+ end = start + n*step
675
+ if null:
676
+ start = end = S.Zero
677
+ step = S.One
678
+ return Basic.__new__(cls, start, end, step)
679
+
680
+ start = property(lambda self: self.args[0])
681
+ stop = property(lambda self: self.args[1])
682
+ step = property(lambda self: self.args[2])
683
+
684
+ @property
685
+ def reversed(self):
686
+ """Return an equivalent Range in the opposite order.
687
+
688
+ Examples
689
+ ========
690
+
691
+ >>> from sympy import Range
692
+ >>> Range(10).reversed
693
+ Range(9, -1, -1)
694
+ """
695
+ if self.has(Symbol):
696
+ n = (self.stop - self.start)/self.step
697
+ if not n.is_extended_positive or not all(
698
+ i.is_integer or i.is_infinite for i in self.args):
699
+ raise ValueError('invalid method for symbolic range')
700
+ if self.start == self.stop:
701
+ return self
702
+ return self.func(
703
+ self.stop - self.step, self.start - self.step, -self.step)
704
+
705
+ def _kind(self):
706
+ return SetKind(NumberKind)
707
+
708
+ def _contains(self, other):
709
+ if self.start == self.stop:
710
+ return S.false
711
+ if other.is_infinite:
712
+ return S.false
713
+ if not other.is_integer:
714
+ return other.is_integer
715
+ if self.has(Symbol):
716
+ n = (self.stop - self.start)/self.step
717
+ if not n.is_extended_positive or not all(
718
+ i.is_integer or i.is_infinite for i in self.args):
719
+ return
720
+ else:
721
+ n = self.size
722
+ if self.start.is_finite:
723
+ ref = self.start
724
+ elif self.stop.is_finite:
725
+ ref = self.stop
726
+ else: # both infinite; step is +/- 1 (enforced by __new__)
727
+ return S.true
728
+ if n == 1:
729
+ return Eq(other, self[0])
730
+ res = (ref - other) % self.step
731
+ if res == S.Zero:
732
+ if self.has(Symbol):
733
+ d = Dummy('i')
734
+ return self.as_relational(d).subs(d, other)
735
+ return And(other >= self.inf, other <= self.sup)
736
+ elif res.is_Integer: # off sequence
737
+ return S.false
738
+ else: # symbolic/unsimplified residue modulo step
739
+ return None
740
+
741
+ def __iter__(self):
742
+ n = self.size # validate
743
+ if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
744
+ raise TypeError("Cannot iterate over symbolic Range")
745
+ if self.start in [S.NegativeInfinity, S.Infinity]:
746
+ raise TypeError("Cannot iterate over Range with infinite start")
747
+ elif self.start != self.stop:
748
+ i = self.start
749
+ if n.is_infinite:
750
+ while True:
751
+ yield i
752
+ i += self.step
753
+ else:
754
+ for _ in range(n):
755
+ yield i
756
+ i += self.step
757
+
758
+ @property
759
+ def is_iterable(self):
760
+ # Check that size can be determined, used by __iter__
761
+ dif = self.stop - self.start
762
+ n = dif/self.step
763
+ if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
764
+ return False
765
+ if self.start in [S.NegativeInfinity, S.Infinity]:
766
+ return False
767
+ if not (n.is_extended_nonnegative and all(i.is_integer for i in self.args)):
768
+ return False
769
+ return True
770
+
771
+ def __len__(self):
772
+ rv = self.size
773
+ if rv is S.Infinity:
774
+ raise ValueError('Use .size to get the length of an infinite Range')
775
+ return int(rv)
776
+
777
+ @property
778
+ def size(self):
779
+ if self.start == self.stop:
780
+ return S.Zero
781
+ dif = self.stop - self.start
782
+ n = dif/self.step
783
+ if n.is_infinite:
784
+ return S.Infinity
785
+ if n.is_extended_nonnegative and all(i.is_integer for i in self.args):
786
+ return abs(floor(n))
787
+ raise ValueError('Invalid method for symbolic Range')
788
+
789
+ @property
790
+ def is_finite_set(self):
791
+ if self.start.is_integer and self.stop.is_integer:
792
+ return True
793
+ return self.size.is_finite
794
+
795
+ @property
796
+ def is_empty(self):
797
+ try:
798
+ return self.size.is_zero
799
+ except ValueError:
800
+ return None
801
+
802
+ def __bool__(self):
803
+ # this only distinguishes between definite null range
804
+ # and non-null/unknown null; getting True doesn't mean
805
+ # that it actually is not null
806
+ b = is_eq(self.start, self.stop)
807
+ if b is None:
808
+ raise ValueError('cannot tell if Range is null or not')
809
+ return not bool(b)
810
+
811
+ def __getitem__(self, i):
812
+ ooslice = "cannot slice from the end with an infinite value"
813
+ zerostep = "slice step cannot be zero"
814
+ infinite = "slicing not possible on range with infinite start"
815
+ # if we had to take every other element in the following
816
+ # oo, ..., 6, 4, 2, 0
817
+ # we might get oo, ..., 4, 0 or oo, ..., 6, 2
818
+ ambiguous = "cannot unambiguously re-stride from the end " + \
819
+ "with an infinite value"
820
+ if isinstance(i, slice):
821
+ if self.size.is_finite: # validates, too
822
+ if self.start == self.stop:
823
+ return Range(0)
824
+ start, stop, step = i.indices(self.size)
825
+ n = ceiling((stop - start)/step)
826
+ if n <= 0:
827
+ return Range(0)
828
+ canonical_stop = start + n*step
829
+ end = canonical_stop - step
830
+ ss = step*self.step
831
+ return Range(self[start], self[end] + ss, ss)
832
+ else: # infinite Range
833
+ start = i.start
834
+ stop = i.stop
835
+ if i.step == 0:
836
+ raise ValueError(zerostep)
837
+ step = i.step or 1
838
+ ss = step*self.step
839
+ #---------------------
840
+ # handle infinite Range
841
+ # i.e. Range(-oo, oo) or Range(oo, -oo, -1)
842
+ # --------------------
843
+ if self.start.is_infinite and self.stop.is_infinite:
844
+ raise ValueError(infinite)
845
+ #---------------------
846
+ # handle infinite on right
847
+ # e.g. Range(0, oo) or Range(0, -oo, -1)
848
+ # --------------------
849
+ if self.stop.is_infinite:
850
+ # start and stop are not interdependent --
851
+ # they only depend on step --so we use the
852
+ # equivalent reversed values
853
+ return self.reversed[
854
+ stop if stop is None else -stop + 1:
855
+ start if start is None else -start:
856
+ step].reversed
857
+ #---------------------
858
+ # handle infinite on the left
859
+ # e.g. Range(oo, 0, -1) or Range(-oo, 0)
860
+ # --------------------
861
+ # consider combinations of
862
+ # start/stop {== None, < 0, == 0, > 0} and
863
+ # step {< 0, > 0}
864
+ if start is None:
865
+ if stop is None:
866
+ if step < 0:
867
+ return Range(self[-1], self.start, ss)
868
+ elif step > 1:
869
+ raise ValueError(ambiguous)
870
+ else: # == 1
871
+ return self
872
+ elif stop < 0:
873
+ if step < 0:
874
+ return Range(self[-1], self[stop], ss)
875
+ else: # > 0
876
+ return Range(self.start, self[stop], ss)
877
+ elif stop == 0:
878
+ if step > 0:
879
+ return Range(0)
880
+ else: # < 0
881
+ raise ValueError(ooslice)
882
+ elif stop == 1:
883
+ if step > 0:
884
+ raise ValueError(ooslice) # infinite singleton
885
+ else: # < 0
886
+ raise ValueError(ooslice)
887
+ else: # > 1
888
+ raise ValueError(ooslice)
889
+ elif start < 0:
890
+ if stop is None:
891
+ if step < 0:
892
+ return Range(self[start], self.start, ss)
893
+ else: # > 0
894
+ return Range(self[start], self.stop, ss)
895
+ elif stop < 0:
896
+ return Range(self[start], self[stop], ss)
897
+ elif stop == 0:
898
+ if step < 0:
899
+ raise ValueError(ooslice)
900
+ else: # > 0
901
+ return Range(0)
902
+ elif stop > 0:
903
+ raise ValueError(ooslice)
904
+ elif start == 0:
905
+ if stop is None:
906
+ if step < 0:
907
+ raise ValueError(ooslice) # infinite singleton
908
+ elif step > 1:
909
+ raise ValueError(ambiguous)
910
+ else: # == 1
911
+ return self
912
+ elif stop < 0:
913
+ if step > 1:
914
+ raise ValueError(ambiguous)
915
+ elif step == 1:
916
+ return Range(self.start, self[stop], ss)
917
+ else: # < 0
918
+ return Range(0)
919
+ else: # >= 0
920
+ raise ValueError(ooslice)
921
+ elif start > 0:
922
+ raise ValueError(ooslice)
923
+ else:
924
+ if self.start == self.stop:
925
+ raise IndexError('Range index out of range')
926
+ if not (all(i.is_integer or i.is_infinite
927
+ for i in self.args) and ((self.stop - self.start)/
928
+ self.step).is_extended_positive):
929
+ raise ValueError('Invalid method for symbolic Range')
930
+ if i == 0:
931
+ if self.start.is_infinite:
932
+ raise ValueError(ooslice)
933
+ return self.start
934
+ if i == -1:
935
+ if self.stop.is_infinite:
936
+ raise ValueError(ooslice)
937
+ return self.stop - self.step
938
+ n = self.size # must be known for any other index
939
+ rv = (self.stop if i < 0 else self.start) + i*self.step
940
+ if rv.is_infinite:
941
+ raise ValueError(ooslice)
942
+ val = (rv - self.start)/self.step
943
+ rel = fuzzy_or([val.is_infinite,
944
+ fuzzy_and([val.is_nonnegative, (n-val).is_nonnegative])])
945
+ if rel:
946
+ return rv
947
+ if rel is None:
948
+ raise ValueError('Invalid method for symbolic Range')
949
+ raise IndexError("Range index out of range")
950
+
951
+ @property
952
+ def _inf(self):
953
+ if not self:
954
+ return S.EmptySet.inf
955
+ if self.has(Symbol):
956
+ if all(i.is_integer or i.is_infinite for i in self.args):
957
+ dif = self.stop - self.start
958
+ if self.step.is_positive and dif.is_positive:
959
+ return self.start
960
+ elif self.step.is_negative and dif.is_negative:
961
+ return self.stop - self.step
962
+ raise ValueError('invalid method for symbolic range')
963
+ if self.step > 0:
964
+ return self.start
965
+ else:
966
+ return self.stop - self.step
967
+
968
+ @property
969
+ def _sup(self):
970
+ if not self:
971
+ return S.EmptySet.sup
972
+ if self.has(Symbol):
973
+ if all(i.is_integer or i.is_infinite for i in self.args):
974
+ dif = self.stop - self.start
975
+ if self.step.is_positive and dif.is_positive:
976
+ return self.stop - self.step
977
+ elif self.step.is_negative and dif.is_negative:
978
+ return self.start
979
+ raise ValueError('invalid method for symbolic range')
980
+ if self.step > 0:
981
+ return self.stop - self.step
982
+ else:
983
+ return self.start
984
+
985
+ @property
986
+ def _boundary(self):
987
+ return self
988
+
989
+ def as_relational(self, x):
990
+ """Rewrite a Range in terms of equalities and logic operators. """
991
+ if self.start.is_infinite:
992
+ assert not self.stop.is_infinite # by instantiation
993
+ a = self.reversed.start
994
+ else:
995
+ a = self.start
996
+ step = self.step
997
+ in_seq = Eq(Mod(x - a, step), 0)
998
+ ints = And(Eq(Mod(a, 1), 0), Eq(Mod(step, 1), 0))
999
+ n = (self.stop - self.start)/self.step
1000
+ if n == 0:
1001
+ return S.EmptySet.as_relational(x)
1002
+ if n == 1:
1003
+ return And(Eq(x, a), ints)
1004
+ try:
1005
+ a, b = self.inf, self.sup
1006
+ except ValueError:
1007
+ a = None
1008
+ if a is not None:
1009
+ range_cond = And(
1010
+ x > a if a.is_infinite else x >= a,
1011
+ x < b if b.is_infinite else x <= b)
1012
+ else:
1013
+ a, b = self.start, self.stop - self.step
1014
+ range_cond = Or(
1015
+ And(self.step >= 1, x > a if a.is_infinite else x >= a,
1016
+ x < b if b.is_infinite else x <= b),
1017
+ And(self.step <= -1, x < a if a.is_infinite else x <= a,
1018
+ x > b if b.is_infinite else x >= b))
1019
+ return And(in_seq, ints, range_cond)
1020
+
1021
+
1022
+ _sympy_converter[range] = lambda r: Range(r.start, r.stop, r.step)
1023
+
1024
+ def normalize_theta_set(theta):
1025
+ r"""
1026
+ Normalize a Real Set `theta` in the interval `[0, 2\pi)`. It returns
1027
+ a normalized value of theta in the Set. For Interval, a maximum of
1028
+ one cycle $[0, 2\pi]$, is returned i.e. for theta equal to $[0, 10\pi]$,
1029
+ returned normalized value would be $[0, 2\pi)$. As of now intervals
1030
+ with end points as non-multiples of ``pi`` is not supported.
1031
+
1032
+ Raises
1033
+ ======
1034
+
1035
+ NotImplementedError
1036
+ The algorithms for Normalizing theta Set are not yet
1037
+ implemented.
1038
+ ValueError
1039
+ The input is not valid, i.e. the input is not a real set.
1040
+ RuntimeError
1041
+ It is a bug, please report to the github issue tracker.
1042
+
1043
+ Examples
1044
+ ========
1045
+
1046
+ >>> from sympy.sets.fancysets import normalize_theta_set
1047
+ >>> from sympy import Interval, FiniteSet, pi
1048
+ >>> normalize_theta_set(Interval(9*pi/2, 5*pi))
1049
+ Interval(pi/2, pi)
1050
+ >>> normalize_theta_set(Interval(-3*pi/2, pi/2))
1051
+ Interval.Ropen(0, 2*pi)
1052
+ >>> normalize_theta_set(Interval(-pi/2, pi/2))
1053
+ Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
1054
+ >>> normalize_theta_set(Interval(-4*pi, 3*pi))
1055
+ Interval.Ropen(0, 2*pi)
1056
+ >>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
1057
+ Interval(pi/2, 3*pi/2)
1058
+ >>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
1059
+ {0, pi}
1060
+
1061
+ """
1062
+ from sympy.functions.elementary.trigonometric import _pi_coeff
1063
+
1064
+ if theta.is_Interval:
1065
+ interval_len = theta.measure
1066
+ # one complete circle
1067
+ if interval_len >= 2*S.Pi:
1068
+ if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
1069
+ k = _pi_coeff(theta.start)
1070
+ return Union(Interval(0, k*S.Pi, False, True),
1071
+ Interval(k*S.Pi, 2*S.Pi, True, True))
1072
+ return Interval(0, 2*S.Pi, False, True)
1073
+
1074
+ k_start, k_end = _pi_coeff(theta.start), _pi_coeff(theta.end)
1075
+
1076
+ if k_start is None or k_end is None:
1077
+ raise NotImplementedError("Normalizing theta without pi as coefficient is "
1078
+ "not yet implemented")
1079
+ new_start = k_start*S.Pi
1080
+ new_end = k_end*S.Pi
1081
+
1082
+ if new_start > new_end:
1083
+ return Union(Interval(S.Zero, new_end, False, theta.right_open),
1084
+ Interval(new_start, 2*S.Pi, theta.left_open, True))
1085
+ else:
1086
+ return Interval(new_start, new_end, theta.left_open, theta.right_open)
1087
+
1088
+ elif theta.is_FiniteSet:
1089
+ new_theta = []
1090
+ for element in theta:
1091
+ k = _pi_coeff(element)
1092
+ if k is None:
1093
+ raise NotImplementedError('Normalizing theta without pi as '
1094
+ 'coefficient, is not Implemented.')
1095
+ else:
1096
+ new_theta.append(k*S.Pi)
1097
+ return FiniteSet(*new_theta)
1098
+
1099
+ elif theta.is_Union:
1100
+ return Union(*[normalize_theta_set(interval) for interval in theta.args])
1101
+
1102
+ elif theta.is_subset(S.Reals):
1103
+ raise NotImplementedError("Normalizing theta when, it is of type %s is not "
1104
+ "implemented" % type(theta))
1105
+ else:
1106
+ raise ValueError(" %s is not a real set" % (theta))
1107
+
1108
+
1109
+ class ComplexRegion(Set):
1110
+ r"""
1111
+ Represents the Set of all Complex Numbers. It can represent a
1112
+ region of Complex Plane in both the standard forms Polar and
1113
+ Rectangular coordinates.
1114
+
1115
+ * Polar Form
1116
+ Input is in the form of the ProductSet or Union of ProductSets
1117
+ of the intervals of ``r`` and ``theta``, and use the flag ``polar=True``.
1118
+
1119
+ .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
1120
+
1121
+ * Rectangular Form
1122
+ Input is in the form of the ProductSet or Union of ProductSets
1123
+ of interval of x and y, the real and imaginary parts of the Complex numbers in a plane.
1124
+ Default input type is in rectangular form.
1125
+
1126
+ .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
1127
+
1128
+ Examples
1129
+ ========
1130
+
1131
+ >>> from sympy import ComplexRegion, Interval, S, I, Union
1132
+ >>> a = Interval(2, 3)
1133
+ >>> b = Interval(4, 6)
1134
+ >>> c1 = ComplexRegion(a*b) # Rectangular Form
1135
+ >>> c1
1136
+ CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))
1137
+
1138
+ * c1 represents the rectangular region in complex plane
1139
+ surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
1140
+ (2, 6), of the four vertices.
1141
+
1142
+ >>> c = Interval(1, 8)
1143
+ >>> c2 = ComplexRegion(Union(a*b, b*c))
1144
+ >>> c2
1145
+ CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))
1146
+
1147
+ * c2 represents the Union of two rectangular regions in complex
1148
+ plane. One of them surrounded by the coordinates of c1 and
1149
+ other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
1150
+ (4, 8).
1151
+
1152
+ >>> 2.5 + 4.5*I in c1
1153
+ True
1154
+ >>> 2.5 + 6.5*I in c1
1155
+ False
1156
+
1157
+ >>> r = Interval(0, 1)
1158
+ >>> theta = Interval(0, 2*S.Pi)
1159
+ >>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
1160
+ >>> c2 # unit Disk
1161
+ PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))
1162
+
1163
+ * c2 represents the region in complex plane inside the
1164
+ Unit Disk centered at the origin.
1165
+
1166
+ >>> 0.5 + 0.5*I in c2
1167
+ True
1168
+ >>> 1 + 2*I in c2
1169
+ False
1170
+
1171
+ >>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
1172
+ >>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
1173
+ >>> intersection = unit_disk.intersect(upper_half_unit_disk)
1174
+ >>> intersection
1175
+ PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
1176
+ >>> intersection == upper_half_unit_disk
1177
+ True
1178
+
1179
+ See Also
1180
+ ========
1181
+
1182
+ CartesianComplexRegion
1183
+ PolarComplexRegion
1184
+ Complexes
1185
+
1186
+ """
1187
+ is_ComplexRegion = True
1188
+
1189
+ def __new__(cls, sets, polar=False):
1190
+ if polar is False:
1191
+ return CartesianComplexRegion(sets)
1192
+ elif polar is True:
1193
+ return PolarComplexRegion(sets)
1194
+ else:
1195
+ raise ValueError("polar should be either True or False")
1196
+
1197
+ @property
1198
+ def sets(self):
1199
+ """
1200
+ Return raw input sets to the self.
1201
+
1202
+ Examples
1203
+ ========
1204
+
1205
+ >>> from sympy import Interval, ComplexRegion, Union
1206
+ >>> a = Interval(2, 3)
1207
+ >>> b = Interval(4, 5)
1208
+ >>> c = Interval(1, 7)
1209
+ >>> C1 = ComplexRegion(a*b)
1210
+ >>> C1.sets
1211
+ ProductSet(Interval(2, 3), Interval(4, 5))
1212
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
1213
+ >>> C2.sets
1214
+ Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
1215
+
1216
+ """
1217
+ return self.args[0]
1218
+
1219
+ @property
1220
+ def psets(self):
1221
+ """
1222
+ Return a tuple of sets (ProductSets) input of the self.
1223
+
1224
+ Examples
1225
+ ========
1226
+
1227
+ >>> from sympy import Interval, ComplexRegion, Union
1228
+ >>> a = Interval(2, 3)
1229
+ >>> b = Interval(4, 5)
1230
+ >>> c = Interval(1, 7)
1231
+ >>> C1 = ComplexRegion(a*b)
1232
+ >>> C1.psets
1233
+ (ProductSet(Interval(2, 3), Interval(4, 5)),)
1234
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
1235
+ >>> C2.psets
1236
+ (ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
1237
+
1238
+ """
1239
+ if self.sets.is_ProductSet:
1240
+ psets = ()
1241
+ psets = psets + (self.sets, )
1242
+ else:
1243
+ psets = self.sets.args
1244
+ return psets
1245
+
1246
+ @property
1247
+ def a_interval(self):
1248
+ """
1249
+ Return the union of intervals of `x` when, self is in
1250
+ rectangular form, or the union of intervals of `r` when
1251
+ self is in polar form.
1252
+
1253
+ Examples
1254
+ ========
1255
+
1256
+ >>> from sympy import Interval, ComplexRegion, Union
1257
+ >>> a = Interval(2, 3)
1258
+ >>> b = Interval(4, 5)
1259
+ >>> c = Interval(1, 7)
1260
+ >>> C1 = ComplexRegion(a*b)
1261
+ >>> C1.a_interval
1262
+ Interval(2, 3)
1263
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
1264
+ >>> C2.a_interval
1265
+ Union(Interval(2, 3), Interval(4, 5))
1266
+
1267
+ """
1268
+ a_interval = []
1269
+ for element in self.psets:
1270
+ a_interval.append(element.args[0])
1271
+
1272
+ a_interval = Union(*a_interval)
1273
+ return a_interval
1274
+
1275
+ @property
1276
+ def b_interval(self):
1277
+ """
1278
+ Return the union of intervals of `y` when, self is in
1279
+ rectangular form, or the union of intervals of `theta`
1280
+ when self is in polar form.
1281
+
1282
+ Examples
1283
+ ========
1284
+
1285
+ >>> from sympy import Interval, ComplexRegion, Union
1286
+ >>> a = Interval(2, 3)
1287
+ >>> b = Interval(4, 5)
1288
+ >>> c = Interval(1, 7)
1289
+ >>> C1 = ComplexRegion(a*b)
1290
+ >>> C1.b_interval
1291
+ Interval(4, 5)
1292
+ >>> C2 = ComplexRegion(Union(a*b, b*c))
1293
+ >>> C2.b_interval
1294
+ Interval(1, 7)
1295
+
1296
+ """
1297
+ b_interval = []
1298
+ for element in self.psets:
1299
+ b_interval.append(element.args[1])
1300
+
1301
+ b_interval = Union(*b_interval)
1302
+ return b_interval
1303
+
1304
+ @property
1305
+ def _measure(self):
1306
+ """
1307
+ The measure of self.sets.
1308
+
1309
+ Examples
1310
+ ========
1311
+
1312
+ >>> from sympy import Interval, ComplexRegion, S
1313
+ >>> a, b = Interval(2, 5), Interval(4, 8)
1314
+ >>> c = Interval(0, 2*S.Pi)
1315
+ >>> c1 = ComplexRegion(a*b)
1316
+ >>> c1.measure
1317
+ 12
1318
+ >>> c2 = ComplexRegion(a*c, polar=True)
1319
+ >>> c2.measure
1320
+ 6*pi
1321
+
1322
+ """
1323
+ return self.sets._measure
1324
+
1325
+ def _kind(self):
1326
+ return self.args[0].kind
1327
+
1328
+ @classmethod
1329
+ def from_real(cls, sets):
1330
+ """
1331
+ Converts given subset of real numbers to a complex region.
1332
+
1333
+ Examples
1334
+ ========
1335
+
1336
+ >>> from sympy import Interval, ComplexRegion
1337
+ >>> unit = Interval(0,1)
1338
+ >>> ComplexRegion.from_real(unit)
1339
+ CartesianComplexRegion(ProductSet(Interval(0, 1), {0}))
1340
+
1341
+ """
1342
+ if not sets.is_subset(S.Reals):
1343
+ raise ValueError("sets must be a subset of the real line")
1344
+
1345
+ return CartesianComplexRegion(sets * FiniteSet(0))
1346
+
1347
+ def _contains(self, other):
1348
+ from sympy.functions import arg, Abs
1349
+ other = sympify(other)
1350
+ isTuple = isinstance(other, Tuple)
1351
+ if isTuple and len(other) != 2:
1352
+ raise ValueError('expecting Tuple of length 2')
1353
+
1354
+ # If the other is not an Expression, and neither a Tuple
1355
+ if not isinstance(other, (Expr, Tuple)):
1356
+ return S.false
1357
+ # self in rectangular form
1358
+ if not self.polar:
1359
+ re, im = other if isTuple else other.as_real_imag()
1360
+ return fuzzy_or(fuzzy_and([
1361
+ pset.args[0]._contains(re),
1362
+ pset.args[1]._contains(im)])
1363
+ for pset in self.psets)
1364
+
1365
+ # self in polar form
1366
+ elif self.polar:
1367
+ if other.is_zero:
1368
+ # ignore undefined complex argument
1369
+ return fuzzy_or(pset.args[0]._contains(S.Zero)
1370
+ for pset in self.psets)
1371
+ if isTuple:
1372
+ r, theta = other
1373
+ else:
1374
+ r, theta = Abs(other), arg(other)
1375
+ if theta.is_real and theta.is_number:
1376
+ # angles in psets are normalized to [0, 2pi)
1377
+ theta %= 2*S.Pi
1378
+ return fuzzy_or(fuzzy_and([
1379
+ pset.args[0]._contains(r),
1380
+ pset.args[1]._contains(theta)])
1381
+ for pset in self.psets)
1382
+
1383
+
1384
+ class CartesianComplexRegion(ComplexRegion):
1385
+ r"""
1386
+ Set representing a square region of the complex plane.
1387
+
1388
+ .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}
1389
+
1390
+ Examples
1391
+ ========
1392
+
1393
+ >>> from sympy import ComplexRegion, I, Interval
1394
+ >>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
1395
+ >>> 2 + 5*I in region
1396
+ True
1397
+ >>> 5*I in region
1398
+ False
1399
+
1400
+ See also
1401
+ ========
1402
+
1403
+ ComplexRegion
1404
+ PolarComplexRegion
1405
+ Complexes
1406
+ """
1407
+
1408
+ polar = False
1409
+ variables = symbols('x, y', cls=Dummy)
1410
+
1411
+ def __new__(cls, sets):
1412
+
1413
+ if sets == S.Reals*S.Reals:
1414
+ return S.Complexes
1415
+
1416
+ if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
1417
+
1418
+ # ** ProductSet of FiniteSets in the Complex Plane. **
1419
+ # For Cases like ComplexRegion({2, 4}*{3}), It
1420
+ # would return {2 + 3*I, 4 + 3*I}
1421
+
1422
+ # FIXME: This should probably be handled with something like:
1423
+ # return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
1424
+ complex_num = []
1425
+ for x in sets.args[0]:
1426
+ for y in sets.args[1]:
1427
+ complex_num.append(x + S.ImaginaryUnit*y)
1428
+ return FiniteSet(*complex_num)
1429
+ else:
1430
+ return Set.__new__(cls, sets)
1431
+
1432
+ @property
1433
+ def expr(self):
1434
+ x, y = self.variables
1435
+ return x + S.ImaginaryUnit*y
1436
+
1437
+
1438
+ class PolarComplexRegion(ComplexRegion):
1439
+ r"""
1440
+ Set representing a polar region of the complex plane.
1441
+
1442
+ .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}
1443
+
1444
+ Examples
1445
+ ========
1446
+
1447
+ >>> from sympy import ComplexRegion, Interval, oo, pi, I
1448
+ >>> rset = Interval(0, oo)
1449
+ >>> thetaset = Interval(0, pi)
1450
+ >>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
1451
+ >>> 1 + I in upper_half_plane
1452
+ True
1453
+ >>> 1 - I in upper_half_plane
1454
+ False
1455
+
1456
+ See also
1457
+ ========
1458
+
1459
+ ComplexRegion
1460
+ CartesianComplexRegion
1461
+ Complexes
1462
+
1463
+ """
1464
+
1465
+ polar = True
1466
+ variables = symbols('r, theta', cls=Dummy)
1467
+
1468
+ def __new__(cls, sets):
1469
+
1470
+ new_sets = []
1471
+ # sets is Union of ProductSets
1472
+ if not sets.is_ProductSet:
1473
+ for k in sets.args:
1474
+ new_sets.append(k)
1475
+ # sets is ProductSets
1476
+ else:
1477
+ new_sets.append(sets)
1478
+ # Normalize input theta
1479
+ for k, v in enumerate(new_sets):
1480
+ new_sets[k] = ProductSet(v.args[0],
1481
+ normalize_theta_set(v.args[1]))
1482
+ sets = Union(*new_sets)
1483
+ return Set.__new__(cls, sets)
1484
+
1485
+ @property
1486
+ def expr(self):
1487
+ r, theta = self.variables
1488
+ return r*(cos(theta) + S.ImaginaryUnit*sin(theta))
1489
+
1490
+
1491
+ class Complexes(CartesianComplexRegion, metaclass=Singleton):
1492
+ """
1493
+ The :class:`Set` of all complex numbers
1494
+
1495
+ Examples
1496
+ ========
1497
+
1498
+ >>> from sympy import S, I
1499
+ >>> S.Complexes
1500
+ Complexes
1501
+ >>> 1 + I in S.Complexes
1502
+ True
1503
+
1504
+ See also
1505
+ ========
1506
+
1507
+ Reals
1508
+ ComplexRegion
1509
+
1510
+ """
1511
+
1512
+ is_empty = False
1513
+ is_finite_set = False
1514
+
1515
+ # Override property from superclass since Complexes has no args
1516
+ @property
1517
+ def sets(self):
1518
+ return ProductSet(S.Reals, S.Reals)
1519
+
1520
+ def __new__(cls):
1521
+ return Set.__new__(cls)
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/comparison.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/functions.cpython-310.pyc ADDED
Binary file (6.87 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/mul.cpython-310.pyc ADDED
Binary file (2.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/add.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import oo, Infinity, NegativeInfinity
2
+ from sympy.core.singleton import S
3
+ from sympy.core import Basic, Expr
4
+ from sympy.multipledispatch import Dispatcher
5
+ from sympy.sets import Interval, FiniteSet
6
+
7
+
8
+
9
+ # XXX: The functions in this module are clearly not tested and are broken in a
10
+ # number of ways.
11
+
12
+ _set_add = Dispatcher('_set_add')
13
+ _set_sub = Dispatcher('_set_sub')
14
+
15
+
16
+ @_set_add.register(Basic, Basic)
17
+ def _(x, y):
18
+ return None
19
+
20
+
21
+ @_set_add.register(Expr, Expr)
22
+ def _(x, y):
23
+ return x+y
24
+
25
+
26
+ @_set_add.register(Interval, Interval)
27
+ def _(x, y):
28
+ """
29
+ Additions in interval arithmetic
30
+ https://en.wikipedia.org/wiki/Interval_arithmetic
31
+ """
32
+ return Interval(x.start + y.start, x.end + y.end,
33
+ x.left_open or y.left_open, x.right_open or y.right_open)
34
+
35
+
36
+ @_set_add.register(Interval, Infinity)
37
+ def _(x, y):
38
+ if x.start is S.NegativeInfinity:
39
+ return Interval(-oo, oo)
40
+ return FiniteSet({S.Infinity})
41
+
42
+ @_set_add.register(Interval, NegativeInfinity)
43
+ def _(x, y):
44
+ if x.end is S.Infinity:
45
+ return Interval(-oo, oo)
46
+ return FiniteSet({S.NegativeInfinity})
47
+
48
+
49
+ @_set_sub.register(Basic, Basic)
50
+ def _(x, y):
51
+ return None
52
+
53
+
54
+ @_set_sub.register(Expr, Expr)
55
+ def _(x, y):
56
+ return x-y
57
+
58
+
59
+ @_set_sub.register(Interval, Interval)
60
+ def _(x, y):
61
+ """
62
+ Subtractions in interval arithmetic
63
+ https://en.wikipedia.org/wiki/Interval_arithmetic
64
+ """
65
+ return Interval(x.start - y.end, x.end - y.start,
66
+ x.left_open or y.right_open, x.right_open or y.left_open)
67
+
68
+
69
+ @_set_sub.register(Interval, Infinity)
70
+ def _(x, y):
71
+ if x.start is S.NegativeInfinity:
72
+ return Interval(-oo, oo)
73
+ return FiniteSet(-oo)
74
+
75
+ @_set_sub.register(Interval, NegativeInfinity)
76
+ def _(x, y):
77
+ if x.start is S.NegativeInfinity:
78
+ return Interval(-oo, oo)
79
+ return FiniteSet(-oo)
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/comparison.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.relational import Eq, is_eq
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.logic import fuzzy_and, fuzzy_bool
4
+ from sympy.logic.boolalg import And
5
+ from sympy.multipledispatch import dispatch
6
+ from sympy.sets.sets import tfn, ProductSet, Interval, FiniteSet, Set
7
+
8
+
9
+ @dispatch(Interval, FiniteSet) # type:ignore
10
+ def _eval_is_eq(lhs, rhs): # noqa: F811
11
+ return False
12
+
13
+
14
+ @dispatch(FiniteSet, Interval) # type:ignore
15
+ def _eval_is_eq(lhs, rhs): # noqa: F811
16
+ return False
17
+
18
+
19
+ @dispatch(Interval, Interval) # type:ignore
20
+ def _eval_is_eq(lhs, rhs): # noqa: F811
21
+ return And(Eq(lhs.left, rhs.left),
22
+ Eq(lhs.right, rhs.right),
23
+ lhs.left_open == rhs.left_open,
24
+ lhs.right_open == rhs.right_open)
25
+
26
+ @dispatch(FiniteSet, FiniteSet) # type:ignore
27
+ def _eval_is_eq(lhs, rhs): # noqa: F811
28
+ def all_in_both():
29
+ s_set = set(lhs.args)
30
+ o_set = set(rhs.args)
31
+ yield fuzzy_and(lhs._contains(e) for e in o_set - s_set)
32
+ yield fuzzy_and(rhs._contains(e) for e in s_set - o_set)
33
+
34
+ return tfn[fuzzy_and(all_in_both())]
35
+
36
+
37
+ @dispatch(ProductSet, ProductSet) # type:ignore
38
+ def _eval_is_eq(lhs, rhs): # noqa: F811
39
+ if len(lhs.sets) != len(rhs.sets):
40
+ return False
41
+
42
+ eqs = (is_eq(x, y) for x, y in zip(lhs.sets, rhs.sets))
43
+ return tfn[fuzzy_and(map(fuzzy_bool, eqs))]
44
+
45
+
46
+ @dispatch(Set, Basic) # type:ignore
47
+ def _eval_is_eq(lhs, rhs): # noqa: F811
48
+ return False
49
+
50
+
51
+ @dispatch(Set, Set) # type:ignore
52
+ def _eval_is_eq(lhs, rhs): # noqa: F811
53
+ return tfn[fuzzy_and(a.is_subset(b) for a, b in [(lhs, rhs), (rhs, lhs)])]
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/functions.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.sets.sets import Set
3
+ from sympy.calculus.singularities import singularities
4
+ from sympy.core import Expr, Add
5
+ from sympy.core.function import Lambda, FunctionClass, diff, expand_mul
6
+ from sympy.core.numbers import Float, oo
7
+ from sympy.core.symbol import Dummy, symbols, Wild
8
+ from sympy.functions.elementary.exponential import exp, log
9
+ from sympy.functions.elementary.miscellaneous import Min, Max
10
+ from sympy.logic.boolalg import true
11
+ from sympy.multipledispatch import Dispatcher
12
+ from sympy.sets import (imageset, Interval, FiniteSet, Union, ImageSet,
13
+ Intersection, Range, Complement)
14
+ from sympy.sets.sets import EmptySet, is_function_invertible_in_set
15
+ from sympy.sets.fancysets import Integers, Naturals, Reals
16
+ from sympy.functions.elementary.exponential import match_real_imag
17
+
18
+
19
+ _x, _y = symbols("x y")
20
+
21
+ FunctionUnion = (FunctionClass, Lambda)
22
+
23
+ _set_function = Dispatcher('_set_function')
24
+
25
+
26
+ @_set_function.register(FunctionClass, Set)
27
+ def _(f, x):
28
+ return None
29
+
30
+ @_set_function.register(FunctionUnion, FiniteSet)
31
+ def _(f, x):
32
+ return FiniteSet(*map(f, x))
33
+
34
+ @_set_function.register(Lambda, Interval)
35
+ def _(f, x):
36
+ from sympy.solvers.solveset import solveset
37
+ from sympy.series import limit
38
+ # TODO: handle functions with infinitely many solutions (eg, sin, tan)
39
+ # TODO: handle multivariate functions
40
+
41
+ expr = f.expr
42
+ if len(expr.free_symbols) > 1 or len(f.variables) != 1:
43
+ return
44
+ var = f.variables[0]
45
+ if not var.is_real:
46
+ if expr.subs(var, Dummy(real=True)).is_real is False:
47
+ return
48
+
49
+ if expr.is_Piecewise:
50
+ result = S.EmptySet
51
+ domain_set = x
52
+ for (p_expr, p_cond) in expr.args:
53
+ if p_cond is true:
54
+ intrvl = domain_set
55
+ else:
56
+ intrvl = p_cond.as_set()
57
+ intrvl = Intersection(domain_set, intrvl)
58
+
59
+ if p_expr.is_Number:
60
+ image = FiniteSet(p_expr)
61
+ else:
62
+ image = imageset(Lambda(var, p_expr), intrvl)
63
+ result = Union(result, image)
64
+
65
+ # remove the part which has been `imaged`
66
+ domain_set = Complement(domain_set, intrvl)
67
+ if domain_set is S.EmptySet:
68
+ break
69
+ return result
70
+
71
+ if not x.start.is_comparable or not x.end.is_comparable:
72
+ return
73
+
74
+ try:
75
+ from sympy.polys.polyutils import _nsort
76
+ sing = list(singularities(expr, var, x))
77
+ if len(sing) > 1:
78
+ sing = _nsort(sing)
79
+ except NotImplementedError:
80
+ return
81
+
82
+ if x.left_open:
83
+ _start = limit(expr, var, x.start, dir="+")
84
+ elif x.start not in sing:
85
+ _start = f(x.start)
86
+ if x.right_open:
87
+ _end = limit(expr, var, x.end, dir="-")
88
+ elif x.end not in sing:
89
+ _end = f(x.end)
90
+
91
+ if len(sing) == 0:
92
+ soln_expr = solveset(diff(expr, var), var)
93
+ if not (isinstance(soln_expr, FiniteSet)
94
+ or soln_expr is S.EmptySet):
95
+ return
96
+ solns = list(soln_expr)
97
+
98
+ extr = [_start, _end] + [f(i) for i in solns
99
+ if i.is_real and i in x]
100
+ start, end = Min(*extr), Max(*extr)
101
+
102
+ left_open, right_open = False, False
103
+ if _start <= _end:
104
+ # the minimum or maximum value can occur simultaneously
105
+ # on both the edge of the interval and in some interior
106
+ # point
107
+ if start == _start and start not in solns:
108
+ left_open = x.left_open
109
+ if end == _end and end not in solns:
110
+ right_open = x.right_open
111
+ else:
112
+ if start == _end and start not in solns:
113
+ left_open = x.right_open
114
+ if end == _start and end not in solns:
115
+ right_open = x.left_open
116
+
117
+ return Interval(start, end, left_open, right_open)
118
+ else:
119
+ return imageset(f, Interval(x.start, sing[0],
120
+ x.left_open, True)) + \
121
+ Union(*[imageset(f, Interval(sing[i], sing[i + 1], True, True))
122
+ for i in range(0, len(sing) - 1)]) + \
123
+ imageset(f, Interval(sing[-1], x.end, True, x.right_open))
124
+
125
+ @_set_function.register(FunctionClass, Interval)
126
+ def _(f, x):
127
+ if f == exp:
128
+ return Interval(exp(x.start), exp(x.end), x.left_open, x.right_open)
129
+ elif f == log:
130
+ return Interval(log(x.start), log(x.end), x.left_open, x.right_open)
131
+ return ImageSet(Lambda(_x, f(_x)), x)
132
+
133
+ @_set_function.register(FunctionUnion, Union)
134
+ def _(f, x):
135
+ return Union(*(imageset(f, arg) for arg in x.args))
136
+
137
+ @_set_function.register(FunctionUnion, Intersection)
138
+ def _(f, x):
139
+ # If the function is invertible, intersect the maps of the sets.
140
+ if is_function_invertible_in_set(f, x):
141
+ return Intersection(*(imageset(f, arg) for arg in x.args))
142
+ else:
143
+ return ImageSet(Lambda(_x, f(_x)), x)
144
+
145
+ @_set_function.register(FunctionUnion, EmptySet)
146
+ def _(f, x):
147
+ return x
148
+
149
+ @_set_function.register(FunctionUnion, Set)
150
+ def _(f, x):
151
+ return ImageSet(Lambda(_x, f(_x)), x)
152
+
153
+ @_set_function.register(FunctionUnion, Range)
154
+ def _(f, self):
155
+ if not self:
156
+ return S.EmptySet
157
+ if not isinstance(f.expr, Expr):
158
+ return
159
+ if self.size == 1:
160
+ return FiniteSet(f(self[0]))
161
+ if f is S.IdentityFunction:
162
+ return self
163
+
164
+ x = f.variables[0]
165
+ expr = f.expr
166
+ # handle f that is linear in f's variable
167
+ if x not in expr.free_symbols or x in expr.diff(x).free_symbols:
168
+ return
169
+ if self.start.is_finite:
170
+ F = f(self.step*x + self.start) # for i in range(len(self))
171
+ else:
172
+ F = f(-self.step*x + self[-1])
173
+ F = expand_mul(F)
174
+ if F != expr:
175
+ return imageset(x, F, Range(self.size))
176
+
177
+ @_set_function.register(FunctionUnion, Integers)
178
+ def _(f, self):
179
+ expr = f.expr
180
+ if not isinstance(expr, Expr):
181
+ return
182
+
183
+ n = f.variables[0]
184
+ if expr == abs(n):
185
+ return S.Naturals0
186
+
187
+ # f(x) + c and f(-x) + c cover the same integers
188
+ # so choose the form that has the fewest negatives
189
+ c = f(0)
190
+ fx = f(n) - c
191
+ f_x = f(-n) - c
192
+ neg_count = lambda e: sum(_.could_extract_minus_sign()
193
+ for _ in Add.make_args(e))
194
+ if neg_count(f_x) < neg_count(fx):
195
+ expr = f_x + c
196
+
197
+ a = Wild('a', exclude=[n])
198
+ b = Wild('b', exclude=[n])
199
+ match = expr.match(a*n + b)
200
+ if match and match[a] and (
201
+ not match[a].atoms(Float) and
202
+ not match[b].atoms(Float)):
203
+ # canonical shift
204
+ a, b = match[a], match[b]
205
+ if a in [1, -1]:
206
+ # drop integer addends in b
207
+ nonint = []
208
+ for bi in Add.make_args(b):
209
+ if not bi.is_integer:
210
+ nonint.append(bi)
211
+ b = Add(*nonint)
212
+ if b.is_number and a.is_real:
213
+ # avoid Mod for complex numbers, #11391
214
+ br, bi = match_real_imag(b)
215
+ if br and br.is_comparable and a.is_comparable:
216
+ br %= a
217
+ b = br + S.ImaginaryUnit*bi
218
+ elif b.is_number and a.is_imaginary:
219
+ br, bi = match_real_imag(b)
220
+ ai = a/S.ImaginaryUnit
221
+ if bi and bi.is_comparable and ai.is_comparable:
222
+ bi %= ai
223
+ b = br + S.ImaginaryUnit*bi
224
+ expr = a*n + b
225
+
226
+ if expr != f.expr:
227
+ return ImageSet(Lambda(n, expr), S.Integers)
228
+
229
+
230
+ @_set_function.register(FunctionUnion, Naturals)
231
+ def _(f, self):
232
+ expr = f.expr
233
+ if not isinstance(expr, Expr):
234
+ return
235
+
236
+ x = f.variables[0]
237
+ if not expr.free_symbols - {x}:
238
+ if expr == abs(x):
239
+ if self is S.Naturals:
240
+ return self
241
+ return S.Naturals0
242
+ step = expr.coeff(x)
243
+ c = expr.subs(x, 0)
244
+ if c.is_Integer and step.is_Integer and expr == step*x + c:
245
+ if self is S.Naturals:
246
+ c += step
247
+ if step > 0:
248
+ if step == 1:
249
+ if c == 0:
250
+ return S.Naturals0
251
+ elif c == 1:
252
+ return S.Naturals
253
+ return Range(c, oo, step)
254
+ return Range(c, -oo, step)
255
+
256
+
257
+ @_set_function.register(FunctionUnion, Reals)
258
+ def _(f, self):
259
+ expr = f.expr
260
+ if not isinstance(expr, Expr):
261
+ return
262
+ return _set_function(f, Interval(-oo, oo))
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/intersection.py ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import Lambda, expand_complex
2
+ from sympy.core.mul import Mul
3
+ from sympy.core.numbers import ilcm
4
+ from sympy.core.relational import Eq
5
+ from sympy.core.singleton import S
6
+ from sympy.core.symbol import (Dummy, symbols)
7
+ from sympy.core.sorting import ordered
8
+ from sympy.functions.elementary.complexes import sign
9
+ from sympy.functions.elementary.integers import floor, ceiling
10
+ from sympy.sets.fancysets import ComplexRegion
11
+ from sympy.sets.sets import (FiniteSet, Intersection, Interval, Set, Union)
12
+ from sympy.multipledispatch import Dispatcher
13
+ from sympy.sets.conditionset import ConditionSet
14
+ from sympy.sets.fancysets import (Integers, Naturals, Reals, Range,
15
+ ImageSet, Rationals)
16
+ from sympy.sets.sets import EmptySet, UniversalSet, imageset, ProductSet
17
+ from sympy.simplify.radsimp import numer
18
+
19
+
20
+ intersection_sets = Dispatcher('intersection_sets')
21
+
22
+
23
+ @intersection_sets.register(ConditionSet, ConditionSet)
24
+ def _(a, b):
25
+ return None
26
+
27
+ @intersection_sets.register(ConditionSet, Set)
28
+ def _(a, b):
29
+ return ConditionSet(a.sym, a.condition, Intersection(a.base_set, b))
30
+
31
+ @intersection_sets.register(Naturals, Integers)
32
+ def _(a, b):
33
+ return a
34
+
35
+ @intersection_sets.register(Naturals, Naturals)
36
+ def _(a, b):
37
+ return a if a is S.Naturals else b
38
+
39
+ @intersection_sets.register(Interval, Naturals)
40
+ def _(a, b):
41
+ return intersection_sets(b, a)
42
+
43
+ @intersection_sets.register(ComplexRegion, Set)
44
+ def _(self, other):
45
+ if other.is_ComplexRegion:
46
+ # self in rectangular form
47
+ if (not self.polar) and (not other.polar):
48
+ return ComplexRegion(Intersection(self.sets, other.sets))
49
+
50
+ # self in polar form
51
+ elif self.polar and other.polar:
52
+ r1, theta1 = self.a_interval, self.b_interval
53
+ r2, theta2 = other.a_interval, other.b_interval
54
+ new_r_interval = Intersection(r1, r2)
55
+ new_theta_interval = Intersection(theta1, theta2)
56
+
57
+ # 0 and 2*Pi means the same
58
+ if ((2*S.Pi in theta1 and S.Zero in theta2) or
59
+ (2*S.Pi in theta2 and S.Zero in theta1)):
60
+ new_theta_interval = Union(new_theta_interval,
61
+ FiniteSet(0))
62
+ return ComplexRegion(new_r_interval*new_theta_interval,
63
+ polar=True)
64
+
65
+
66
+ if other.is_subset(S.Reals):
67
+ new_interval = []
68
+ x = symbols("x", cls=Dummy, real=True)
69
+
70
+ # self in rectangular form
71
+ if not self.polar:
72
+ for element in self.psets:
73
+ if S.Zero in element.args[1]:
74
+ new_interval.append(element.args[0])
75
+ new_interval = Union(*new_interval)
76
+ return Intersection(new_interval, other)
77
+
78
+ # self in polar form
79
+ elif self.polar:
80
+ for element in self.psets:
81
+ if S.Zero in element.args[1]:
82
+ new_interval.append(element.args[0])
83
+ if S.Pi in element.args[1]:
84
+ new_interval.append(ImageSet(Lambda(x, -x), element.args[0]))
85
+ if S.Zero in element.args[0]:
86
+ new_interval.append(FiniteSet(0))
87
+ new_interval = Union(*new_interval)
88
+ return Intersection(new_interval, other)
89
+
90
+ @intersection_sets.register(Integers, Reals)
91
+ def _(a, b):
92
+ return a
93
+
94
+ @intersection_sets.register(Range, Interval)
95
+ def _(a, b):
96
+ # Check that there are no symbolic arguments
97
+ if not all(i.is_number for i in a.args + b.args[:2]):
98
+ return
99
+
100
+ # In case of null Range, return an EmptySet.
101
+ if a.size == 0:
102
+ return S.EmptySet
103
+
104
+ # trim down to self's size, and represent
105
+ # as a Range with step 1.
106
+ start = ceiling(max(b.inf, a.inf))
107
+ if start not in b:
108
+ start += 1
109
+ end = floor(min(b.sup, a.sup))
110
+ if end not in b:
111
+ end -= 1
112
+ return intersection_sets(a, Range(start, end + 1))
113
+
114
+ @intersection_sets.register(Range, Naturals)
115
+ def _(a, b):
116
+ return intersection_sets(a, Interval(b.inf, S.Infinity))
117
+
118
+ @intersection_sets.register(Range, Range)
119
+ def _(a, b):
120
+ # Check that there are no symbolic range arguments
121
+ if not all(all(v.is_number for v in r.args) for r in [a, b]):
122
+ return None
123
+
124
+ # non-overlap quick exits
125
+ if not b:
126
+ return S.EmptySet
127
+ if not a:
128
+ return S.EmptySet
129
+ if b.sup < a.inf:
130
+ return S.EmptySet
131
+ if b.inf > a.sup:
132
+ return S.EmptySet
133
+
134
+ # work with finite end at the start
135
+ r1 = a
136
+ if r1.start.is_infinite:
137
+ r1 = r1.reversed
138
+ r2 = b
139
+ if r2.start.is_infinite:
140
+ r2 = r2.reversed
141
+
142
+ # If both ends are infinite then it means that one Range is just the set
143
+ # of all integers (the step must be 1).
144
+ if r1.start.is_infinite:
145
+ return b
146
+ if r2.start.is_infinite:
147
+ return a
148
+
149
+ from sympy.solvers.diophantine.diophantine import diop_linear
150
+
151
+ # this equation represents the values of the Range;
152
+ # it's a linear equation
153
+ eq = lambda r, i: r.start + i*r.step
154
+
155
+ # we want to know when the two equations might
156
+ # have integer solutions so we use the diophantine
157
+ # solver
158
+ va, vb = diop_linear(eq(r1, Dummy('a')) - eq(r2, Dummy('b')))
159
+
160
+ # check for no solution
161
+ no_solution = va is None and vb is None
162
+ if no_solution:
163
+ return S.EmptySet
164
+
165
+ # there is a solution
166
+ # -------------------
167
+
168
+ # find the coincident point, c
169
+ a0 = va.as_coeff_Add()[0]
170
+ c = eq(r1, a0)
171
+
172
+ # find the first point, if possible, in each range
173
+ # since c may not be that point
174
+ def _first_finite_point(r1, c):
175
+ if c == r1.start:
176
+ return c
177
+ # st is the signed step we need to take to
178
+ # get from c to r1.start
179
+ st = sign(r1.start - c)*step
180
+ # use Range to calculate the first point:
181
+ # we want to get as close as possible to
182
+ # r1.start; the Range will not be null since
183
+ # it will at least contain c
184
+ s1 = Range(c, r1.start + st, st)[-1]
185
+ if s1 == r1.start:
186
+ pass
187
+ else:
188
+ # if we didn't hit r1.start then, if the
189
+ # sign of st didn't match the sign of r1.step
190
+ # we are off by one and s1 is not in r1
191
+ if sign(r1.step) != sign(st):
192
+ s1 -= st
193
+ if s1 not in r1:
194
+ return
195
+ return s1
196
+
197
+ # calculate the step size of the new Range
198
+ step = abs(ilcm(r1.step, r2.step))
199
+ s1 = _first_finite_point(r1, c)
200
+ if s1 is None:
201
+ return S.EmptySet
202
+ s2 = _first_finite_point(r2, c)
203
+ if s2 is None:
204
+ return S.EmptySet
205
+
206
+ # replace the corresponding start or stop in
207
+ # the original Ranges with these points; the
208
+ # result must have at least one point since
209
+ # we know that s1 and s2 are in the Ranges
210
+ def _updated_range(r, first):
211
+ st = sign(r.step)*step
212
+ if r.start.is_finite:
213
+ rv = Range(first, r.stop, st)
214
+ else:
215
+ rv = Range(r.start, first + st, st)
216
+ return rv
217
+ r1 = _updated_range(a, s1)
218
+ r2 = _updated_range(b, s2)
219
+
220
+ # work with them both in the increasing direction
221
+ if sign(r1.step) < 0:
222
+ r1 = r1.reversed
223
+ if sign(r2.step) < 0:
224
+ r2 = r2.reversed
225
+
226
+ # return clipped Range with positive step; it
227
+ # can't be empty at this point
228
+ start = max(r1.start, r2.start)
229
+ stop = min(r1.stop, r2.stop)
230
+ return Range(start, stop, step)
231
+
232
+
233
+ @intersection_sets.register(Range, Integers)
234
+ def _(a, b):
235
+ return a
236
+
237
+
238
+ @intersection_sets.register(Range, Rationals)
239
+ def _(a, b):
240
+ return a
241
+
242
+
243
+ @intersection_sets.register(ImageSet, Set)
244
+ def _(self, other):
245
+ from sympy.solvers.diophantine import diophantine
246
+
247
+ # Only handle the straight-forward univariate case
248
+ if (len(self.lamda.variables) > 1
249
+ or self.lamda.signature != self.lamda.variables):
250
+ return None
251
+ base_set = self.base_sets[0]
252
+
253
+ # Intersection between ImageSets with Integers as base set
254
+ # For {f(n) : n in Integers} & {g(m) : m in Integers} we solve the
255
+ # diophantine equations f(n)=g(m).
256
+ # If the solutions for n are {h(t) : t in Integers} then we return
257
+ # {f(h(t)) : t in integers}.
258
+ # If the solutions for n are {n_1, n_2, ..., n_k} then we return
259
+ # {f(n_i) : 1 <= i <= k}.
260
+ if base_set is S.Integers:
261
+ gm = None
262
+ if isinstance(other, ImageSet) and other.base_sets == (S.Integers,):
263
+ gm = other.lamda.expr
264
+ var = other.lamda.variables[0]
265
+ # Symbol of second ImageSet lambda must be distinct from first
266
+ m = Dummy('m')
267
+ gm = gm.subs(var, m)
268
+ elif other is S.Integers:
269
+ m = gm = Dummy('m')
270
+ if gm is not None:
271
+ fn = self.lamda.expr
272
+ n = self.lamda.variables[0]
273
+ try:
274
+ solns = list(diophantine(fn - gm, syms=(n, m), permute=True))
275
+ except (TypeError, NotImplementedError):
276
+ # TypeError if equation not polynomial with rational coeff.
277
+ # NotImplementedError if correct format but no solver.
278
+ return
279
+ # 3 cases are possible for solns:
280
+ # - empty set,
281
+ # - one or more parametric (infinite) solutions,
282
+ # - a finite number of (non-parametric) solution couples.
283
+ # Among those, there is one type of solution set that is
284
+ # not helpful here: multiple parametric solutions.
285
+ if len(solns) == 0:
286
+ return S.EmptySet
287
+ elif any(s.free_symbols for tupl in solns for s in tupl):
288
+ if len(solns) == 1:
289
+ soln, solm = solns[0]
290
+ (t,) = soln.free_symbols
291
+ expr = fn.subs(n, soln.subs(t, n)).expand()
292
+ return imageset(Lambda(n, expr), S.Integers)
293
+ else:
294
+ return
295
+ else:
296
+ return FiniteSet(*(fn.subs(n, s[0]) for s in solns))
297
+
298
+ if other == S.Reals:
299
+ from sympy.solvers.solvers import denoms, solve_linear
300
+
301
+ def _solution_union(exprs, sym):
302
+ # return a union of linear solutions to i in expr;
303
+ # if i cannot be solved, use a ConditionSet for solution
304
+ sols = []
305
+ for i in exprs:
306
+ x, xis = solve_linear(i, 0, [sym])
307
+ if x == sym:
308
+ sols.append(FiniteSet(xis))
309
+ else:
310
+ sols.append(ConditionSet(sym, Eq(i, 0)))
311
+ return Union(*sols)
312
+
313
+ f = self.lamda.expr
314
+ n = self.lamda.variables[0]
315
+
316
+ n_ = Dummy(n.name, real=True)
317
+ f_ = f.subs(n, n_)
318
+
319
+ re, im = f_.as_real_imag()
320
+ im = expand_complex(im)
321
+
322
+ re = re.subs(n_, n)
323
+ im = im.subs(n_, n)
324
+ ifree = im.free_symbols
325
+ lam = Lambda(n, re)
326
+ if im.is_zero:
327
+ # allow re-evaluation
328
+ # of self in this case to make
329
+ # the result canonical
330
+ pass
331
+ elif im.is_zero is False:
332
+ return S.EmptySet
333
+ elif ifree != {n}:
334
+ return None
335
+ else:
336
+ # univarite imaginary part in same variable;
337
+ # use numer instead of as_numer_denom to keep
338
+ # this as fast as possible while still handling
339
+ # simple cases
340
+ base_set &= _solution_union(
341
+ Mul.make_args(numer(im)), n)
342
+ # exclude values that make denominators 0
343
+ base_set -= _solution_union(denoms(f), n)
344
+ return imageset(lam, base_set)
345
+
346
+ elif isinstance(other, Interval):
347
+ from sympy.solvers.solveset import (invert_real, invert_complex,
348
+ solveset)
349
+
350
+ f = self.lamda.expr
351
+ n = self.lamda.variables[0]
352
+ new_inf, new_sup = None, None
353
+ new_lopen, new_ropen = other.left_open, other.right_open
354
+
355
+ if f.is_real:
356
+ inverter = invert_real
357
+ else:
358
+ inverter = invert_complex
359
+
360
+ g1, h1 = inverter(f, other.inf, n)
361
+ g2, h2 = inverter(f, other.sup, n)
362
+
363
+ if all(isinstance(i, FiniteSet) for i in (h1, h2)):
364
+ if g1 == n:
365
+ if len(h1) == 1:
366
+ new_inf = h1.args[0]
367
+ if g2 == n:
368
+ if len(h2) == 1:
369
+ new_sup = h2.args[0]
370
+ # TODO: Design a technique to handle multiple-inverse
371
+ # functions
372
+
373
+ # Any of the new boundary values cannot be determined
374
+ if any(i is None for i in (new_sup, new_inf)):
375
+ return
376
+
377
+
378
+ range_set = S.EmptySet
379
+
380
+ if all(i.is_real for i in (new_sup, new_inf)):
381
+ # this assumes continuity of underlying function
382
+ # however fixes the case when it is decreasing
383
+ if new_inf > new_sup:
384
+ new_inf, new_sup = new_sup, new_inf
385
+ new_interval = Interval(new_inf, new_sup, new_lopen, new_ropen)
386
+ range_set = base_set.intersect(new_interval)
387
+ else:
388
+ if other.is_subset(S.Reals):
389
+ solutions = solveset(f, n, S.Reals)
390
+ if not isinstance(range_set, (ImageSet, ConditionSet)):
391
+ range_set = solutions.intersect(other)
392
+ else:
393
+ return
394
+
395
+ if range_set is S.EmptySet:
396
+ return S.EmptySet
397
+ elif isinstance(range_set, Range) and range_set.size is not S.Infinity:
398
+ range_set = FiniteSet(*list(range_set))
399
+
400
+ if range_set is not None:
401
+ return imageset(Lambda(n, f), range_set)
402
+ return
403
+ else:
404
+ return
405
+
406
+
407
+ @intersection_sets.register(ProductSet, ProductSet)
408
+ def _(a, b):
409
+ if len(b.args) != len(a.args):
410
+ return S.EmptySet
411
+ return ProductSet(*(i.intersect(j) for i, j in zip(a.sets, b.sets)))
412
+
413
+
414
+ @intersection_sets.register(Interval, Interval)
415
+ def _(a, b):
416
+ # handle (-oo, oo)
417
+ infty = S.NegativeInfinity, S.Infinity
418
+ if a == Interval(*infty):
419
+ l, r = a.left, a.right
420
+ if l.is_real or l in infty or r.is_real or r in infty:
421
+ return b
422
+
423
+ # We can't intersect [0,3] with [x,6] -- we don't know if x>0 or x<0
424
+ if not a._is_comparable(b):
425
+ return None
426
+
427
+ empty = False
428
+
429
+ if a.start <= b.end and b.start <= a.end:
430
+ # Get topology right.
431
+ if a.start < b.start:
432
+ start = b.start
433
+ left_open = b.left_open
434
+ elif a.start > b.start:
435
+ start = a.start
436
+ left_open = a.left_open
437
+ else:
438
+ #this is to ensure that if Eq(a.start,b.start) but
439
+ #type(a.start) != type(b.start) the order of a and b
440
+ #does not matter for the result
441
+ start = list(ordered([a,b]))[0].start
442
+ left_open = a.left_open or b.left_open
443
+
444
+ if a.end < b.end:
445
+ end = a.end
446
+ right_open = a.right_open
447
+ elif a.end > b.end:
448
+ end = b.end
449
+ right_open = b.right_open
450
+ else:
451
+ end = list(ordered([a,b]))[0].end
452
+ right_open = a.right_open or b.right_open
453
+
454
+ if end - start == 0 and (left_open or right_open):
455
+ empty = True
456
+ else:
457
+ empty = True
458
+
459
+ if empty:
460
+ return S.EmptySet
461
+
462
+ return Interval(start, end, left_open, right_open)
463
+
464
+ @intersection_sets.register(EmptySet, Set)
465
+ def _(a, b):
466
+ return S.EmptySet
467
+
468
+ @intersection_sets.register(UniversalSet, Set)
469
+ def _(a, b):
470
+ return b
471
+
472
+ @intersection_sets.register(FiniteSet, FiniteSet)
473
+ def _(a, b):
474
+ return FiniteSet(*(a._elements & b._elements))
475
+
476
+ @intersection_sets.register(FiniteSet, Set)
477
+ def _(a, b):
478
+ try:
479
+ return FiniteSet(*[el for el in a if el in b])
480
+ except TypeError:
481
+ return None # could not evaluate `el in b` due to symbolic ranges.
482
+
483
+ @intersection_sets.register(Set, Set)
484
+ def _(a, b):
485
+ return None
486
+
487
+ @intersection_sets.register(Integers, Rationals)
488
+ def _(a, b):
489
+ return a
490
+
491
+ @intersection_sets.register(Naturals, Rationals)
492
+ def _(a, b):
493
+ return a
494
+
495
+ @intersection_sets.register(Rationals, Reals)
496
+ def _(a, b):
497
+ return a
498
+
499
+ def _intlike_interval(a, b):
500
+ try:
501
+ if b._inf is S.NegativeInfinity and b._sup is S.Infinity:
502
+ return a
503
+ s = Range(max(a.inf, ceiling(b.left)), floor(b.right) + 1)
504
+ return intersection_sets(s, b) # take out endpoints if open interval
505
+ except ValueError:
506
+ return None
507
+
508
+ @intersection_sets.register(Integers, Interval)
509
+ def _(a, b):
510
+ return _intlike_interval(a, b)
511
+
512
+ @intersection_sets.register(Naturals, Interval)
513
+ def _(a, b):
514
+ return _intlike_interval(a, b)
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/issubset.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.symbol import Symbol
3
+ from sympy.core.logic import fuzzy_and, fuzzy_bool, fuzzy_not, fuzzy_or
4
+ from sympy.core.relational import Eq
5
+ from sympy.sets.sets import FiniteSet, Interval, Set, Union, ProductSet
6
+ from sympy.sets.fancysets import Complexes, Reals, Range, Rationals
7
+ from sympy.multipledispatch import Dispatcher
8
+
9
+
10
+ _inf_sets = [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.Complexes]
11
+
12
+
13
+ is_subset_sets = Dispatcher('is_subset_sets')
14
+
15
+
16
+ @is_subset_sets.register(Set, Set)
17
+ def _(a, b):
18
+ return None
19
+
20
+ @is_subset_sets.register(Interval, Interval)
21
+ def _(a, b):
22
+ # This is correct but can be made more comprehensive...
23
+ if fuzzy_bool(a.start < b.start):
24
+ return False
25
+ if fuzzy_bool(a.end > b.end):
26
+ return False
27
+ if (b.left_open and not a.left_open and fuzzy_bool(Eq(a.start, b.start))):
28
+ return False
29
+ if (b.right_open and not a.right_open and fuzzy_bool(Eq(a.end, b.end))):
30
+ return False
31
+
32
+ @is_subset_sets.register(Interval, FiniteSet)
33
+ def _(a_interval, b_fs):
34
+ # An Interval can only be a subset of a finite set if it is finite
35
+ # which can only happen if it has zero measure.
36
+ if fuzzy_not(a_interval.measure.is_zero):
37
+ return False
38
+
39
+ @is_subset_sets.register(Interval, Union)
40
+ def _(a_interval, b_u):
41
+ if all(isinstance(s, (Interval, FiniteSet)) for s in b_u.args):
42
+ intervals = [s for s in b_u.args if isinstance(s, Interval)]
43
+ if all(fuzzy_bool(a_interval.start < s.start) for s in intervals):
44
+ return False
45
+ if all(fuzzy_bool(a_interval.end > s.end) for s in intervals):
46
+ return False
47
+ if a_interval.measure.is_nonzero:
48
+ no_overlap = lambda s1, s2: fuzzy_or([
49
+ fuzzy_bool(s1.end <= s2.start),
50
+ fuzzy_bool(s1.start >= s2.end),
51
+ ])
52
+ if all(no_overlap(s, a_interval) for s in intervals):
53
+ return False
54
+
55
+ @is_subset_sets.register(Range, Range)
56
+ def _(a, b):
57
+ if a.step == b.step == 1:
58
+ return fuzzy_and([fuzzy_bool(a.start >= b.start),
59
+ fuzzy_bool(a.stop <= b.stop)])
60
+
61
+ @is_subset_sets.register(Range, Interval)
62
+ def _(a_range, b_interval):
63
+ if a_range.step.is_positive:
64
+ if b_interval.left_open and a_range.inf.is_finite:
65
+ cond_left = a_range.inf > b_interval.left
66
+ else:
67
+ cond_left = a_range.inf >= b_interval.left
68
+ if b_interval.right_open and a_range.sup.is_finite:
69
+ cond_right = a_range.sup < b_interval.right
70
+ else:
71
+ cond_right = a_range.sup <= b_interval.right
72
+ return fuzzy_and([cond_left, cond_right])
73
+
74
+ @is_subset_sets.register(Range, FiniteSet)
75
+ def _(a_range, b_finiteset):
76
+ try:
77
+ a_size = a_range.size
78
+ except ValueError:
79
+ # symbolic Range of unknown size
80
+ return None
81
+ if a_size > len(b_finiteset):
82
+ return False
83
+ elif any(arg.has(Symbol) for arg in a_range.args):
84
+ return fuzzy_and(b_finiteset.contains(x) for x in a_range)
85
+ else:
86
+ # Checking A \ B == EmptySet is more efficient than repeated naive
87
+ # membership checks on an arbitrary FiniteSet.
88
+ a_set = set(a_range)
89
+ b_remaining = len(b_finiteset)
90
+ # Symbolic expressions and numbers of unknown type (integer or not) are
91
+ # all counted as "candidates", i.e. *potentially* matching some a in
92
+ # a_range.
93
+ cnt_candidate = 0
94
+ for b in b_finiteset:
95
+ if b.is_Integer:
96
+ a_set.discard(b)
97
+ elif fuzzy_not(b.is_integer):
98
+ pass
99
+ else:
100
+ cnt_candidate += 1
101
+ b_remaining -= 1
102
+ if len(a_set) > b_remaining + cnt_candidate:
103
+ return False
104
+ if len(a_set) == 0:
105
+ return True
106
+ return None
107
+
108
+ @is_subset_sets.register(Interval, Range)
109
+ def _(a_interval, b_range):
110
+ if a_interval.measure.is_extended_nonzero:
111
+ return False
112
+
113
+ @is_subset_sets.register(Interval, Rationals)
114
+ def _(a_interval, b_rationals):
115
+ if a_interval.measure.is_extended_nonzero:
116
+ return False
117
+
118
+ @is_subset_sets.register(Range, Complexes)
119
+ def _(a, b):
120
+ return True
121
+
122
+ @is_subset_sets.register(Complexes, Interval)
123
+ def _(a, b):
124
+ return False
125
+
126
+ @is_subset_sets.register(Complexes, Range)
127
+ def _(a, b):
128
+ return False
129
+
130
+ @is_subset_sets.register(Complexes, Rationals)
131
+ def _(a, b):
132
+ return False
133
+
134
+ @is_subset_sets.register(Rationals, Reals)
135
+ def _(a, b):
136
+ return True
137
+
138
+ @is_subset_sets.register(Rationals, Range)
139
+ def _(a, b):
140
+ return False
141
+
142
+ @is_subset_sets.register(ProductSet, FiniteSet)
143
+ def _(a_ps, b_fs):
144
+ return fuzzy_and(b_fs.contains(x) for x in a_ps)
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/mul.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Expr
2
+ from sympy.core.numbers import oo
3
+ from sympy.core.symbol import symbols
4
+ from sympy.multipledispatch import Dispatcher
5
+ from sympy.sets.setexpr import set_mul
6
+ from sympy.sets.sets import Interval, Set
7
+
8
+
9
+ _x, _y = symbols("x y")
10
+
11
+
12
+ _set_mul = Dispatcher('_set_mul')
13
+ _set_div = Dispatcher('_set_div')
14
+
15
+
16
+ @_set_mul.register(Basic, Basic)
17
+ def _(x, y):
18
+ return None
19
+
20
+ @_set_mul.register(Set, Set)
21
+ def _(x, y):
22
+ return None
23
+
24
+ @_set_mul.register(Expr, Expr)
25
+ def _(x, y):
26
+ return x*y
27
+
28
+ @_set_mul.register(Interval, Interval)
29
+ def _(x, y):
30
+ """
31
+ Multiplications in interval arithmetic
32
+ https://en.wikipedia.org/wiki/Interval_arithmetic
33
+ """
34
+ # TODO: some intervals containing 0 and oo will fail as 0*oo returns nan.
35
+ comvals = (
36
+ (x.start * y.start, bool(x.left_open or y.left_open)),
37
+ (x.start * y.end, bool(x.left_open or y.right_open)),
38
+ (x.end * y.start, bool(x.right_open or y.left_open)),
39
+ (x.end * y.end, bool(x.right_open or y.right_open)),
40
+ )
41
+ # TODO: handle symbolic intervals
42
+ minval, minopen = min(comvals)
43
+ maxval, maxopen = max(comvals)
44
+ return Interval(
45
+ minval,
46
+ maxval,
47
+ minopen,
48
+ maxopen
49
+ )
50
+
51
+ @_set_div.register(Basic, Basic)
52
+ def _(x, y):
53
+ return None
54
+
55
+ @_set_div.register(Expr, Expr)
56
+ def _(x, y):
57
+ return x/y
58
+
59
+ @_set_div.register(Set, Set)
60
+ def _(x, y):
61
+ return None
62
+
63
+ @_set_div.register(Interval, Interval)
64
+ def _(x, y):
65
+ """
66
+ Divisions in interval arithmetic
67
+ https://en.wikipedia.org/wiki/Interval_arithmetic
68
+ """
69
+ if (y.start*y.end).is_negative:
70
+ return Interval(-oo, oo)
71
+ if y.start == 0:
72
+ s2 = oo
73
+ else:
74
+ s2 = 1/y.start
75
+ if y.end == 0:
76
+ s1 = -oo
77
+ else:
78
+ s1 = 1/y.end
79
+ return set_mul(x, Interval(s1, s2, y.right_open, y.left_open))
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/power.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Expr
2
+ from sympy.core.function import Lambda
3
+ from sympy.core.numbers import oo, Infinity, NegativeInfinity, Zero, Integer
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import symbols
6
+ from sympy.functions.elementary.miscellaneous import (Max, Min)
7
+ from sympy.sets.fancysets import ImageSet
8
+ from sympy.sets.setexpr import set_div
9
+ from sympy.sets.sets import Set, Interval, FiniteSet, Union
10
+ from sympy.multipledispatch import Dispatcher
11
+
12
+
13
+ _x, _y = symbols("x y")
14
+
15
+
16
+ _set_pow = Dispatcher('_set_pow')
17
+
18
+
19
+ @_set_pow.register(Basic, Basic)
20
+ def _(x, y):
21
+ return None
22
+
23
+ @_set_pow.register(Set, Set)
24
+ def _(x, y):
25
+ return ImageSet(Lambda((_x, _y), (_x ** _y)), x, y)
26
+
27
+ @_set_pow.register(Expr, Expr)
28
+ def _(x, y):
29
+ return x**y
30
+
31
+ @_set_pow.register(Interval, Zero)
32
+ def _(x, z):
33
+ return FiniteSet(S.One)
34
+
35
+ @_set_pow.register(Interval, Integer)
36
+ def _(x, exponent):
37
+ """
38
+ Powers in interval arithmetic
39
+ https://en.wikipedia.org/wiki/Interval_arithmetic
40
+ """
41
+ s1 = x.start**exponent
42
+ s2 = x.end**exponent
43
+ if ((s2 > s1) if exponent > 0 else (x.end > -x.start)) == True:
44
+ left_open = x.left_open
45
+ right_open = x.right_open
46
+ # TODO: handle unevaluated condition.
47
+ sleft = s2
48
+ else:
49
+ # TODO: `s2 > s1` could be unevaluated.
50
+ left_open = x.right_open
51
+ right_open = x.left_open
52
+ sleft = s1
53
+
54
+ if x.start.is_positive:
55
+ return Interval(
56
+ Min(s1, s2),
57
+ Max(s1, s2), left_open, right_open)
58
+ elif x.end.is_negative:
59
+ return Interval(
60
+ Min(s1, s2),
61
+ Max(s1, s2), left_open, right_open)
62
+
63
+ # Case where x.start < 0 and x.end > 0:
64
+ if exponent.is_odd:
65
+ if exponent.is_negative:
66
+ if x.start.is_zero:
67
+ return Interval(s2, oo, x.right_open)
68
+ if x.end.is_zero:
69
+ return Interval(-oo, s1, True, x.left_open)
70
+ return Union(Interval(-oo, s1, True, x.left_open), Interval(s2, oo, x.right_open))
71
+ else:
72
+ return Interval(s1, s2, x.left_open, x.right_open)
73
+ elif exponent.is_even:
74
+ if exponent.is_negative:
75
+ if x.start.is_zero:
76
+ return Interval(s2, oo, x.right_open)
77
+ if x.end.is_zero:
78
+ return Interval(s1, oo, x.left_open)
79
+ return Interval(0, oo)
80
+ else:
81
+ return Interval(S.Zero, sleft, S.Zero not in x, left_open)
82
+
83
+ @_set_pow.register(Interval, Infinity)
84
+ def _(b, e):
85
+ # TODO: add logic for open intervals?
86
+ if b.start.is_nonnegative:
87
+ if b.end < 1:
88
+ return FiniteSet(S.Zero)
89
+ if b.start > 1:
90
+ return FiniteSet(S.Infinity)
91
+ return Interval(0, oo)
92
+ elif b.end.is_negative:
93
+ if b.start > -1:
94
+ return FiniteSet(S.Zero)
95
+ if b.end < -1:
96
+ return FiniteSet(-oo, oo)
97
+ return Interval(-oo, oo)
98
+ else:
99
+ if b.start > -1:
100
+ if b.end < 1:
101
+ return FiniteSet(S.Zero)
102
+ return Interval(0, oo)
103
+ return Interval(-oo, oo)
104
+
105
+ @_set_pow.register(Interval, NegativeInfinity)
106
+ def _(b, e):
107
+ return _set_pow(set_div(S.One, b), oo)
env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/union.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.sympify import sympify
3
+ from sympy.functions.elementary.miscellaneous import Min, Max
4
+ from sympy.sets.sets import (EmptySet, FiniteSet, Intersection,
5
+ Interval, ProductSet, Set, Union, UniversalSet)
6
+ from sympy.sets.fancysets import (ComplexRegion, Naturals, Naturals0,
7
+ Integers, Rationals, Reals)
8
+ from sympy.multipledispatch import Dispatcher
9
+
10
+
11
+ union_sets = Dispatcher('union_sets')
12
+
13
+
14
+ @union_sets.register(Naturals0, Naturals)
15
+ def _(a, b):
16
+ return a
17
+
18
+ @union_sets.register(Rationals, Naturals)
19
+ def _(a, b):
20
+ return a
21
+
22
+ @union_sets.register(Rationals, Naturals0)
23
+ def _(a, b):
24
+ return a
25
+
26
+ @union_sets.register(Reals, Naturals)
27
+ def _(a, b):
28
+ return a
29
+
30
+ @union_sets.register(Reals, Naturals0)
31
+ def _(a, b):
32
+ return a
33
+
34
+ @union_sets.register(Reals, Rationals)
35
+ def _(a, b):
36
+ return a
37
+
38
+ @union_sets.register(Integers, Set)
39
+ def _(a, b):
40
+ intersect = Intersection(a, b)
41
+ if intersect == a:
42
+ return b
43
+ elif intersect == b:
44
+ return a
45
+
46
+ @union_sets.register(ComplexRegion, Set)
47
+ def _(a, b):
48
+ if b.is_subset(S.Reals):
49
+ # treat a subset of reals as a complex region
50
+ b = ComplexRegion.from_real(b)
51
+
52
+ if b.is_ComplexRegion:
53
+ # a in rectangular form
54
+ if (not a.polar) and (not b.polar):
55
+ return ComplexRegion(Union(a.sets, b.sets))
56
+ # a in polar form
57
+ elif a.polar and b.polar:
58
+ return ComplexRegion(Union(a.sets, b.sets), polar=True)
59
+ return None
60
+
61
+ @union_sets.register(EmptySet, Set)
62
+ def _(a, b):
63
+ return b
64
+
65
+
66
+ @union_sets.register(UniversalSet, Set)
67
+ def _(a, b):
68
+ return a
69
+
70
+ @union_sets.register(ProductSet, ProductSet)
71
+ def _(a, b):
72
+ if b.is_subset(a):
73
+ return a
74
+ if len(b.sets) != len(a.sets):
75
+ return None
76
+ if len(a.sets) == 2:
77
+ a1, a2 = a.sets
78
+ b1, b2 = b.sets
79
+ if a1 == b1:
80
+ return a1 * Union(a2, b2)
81
+ if a2 == b2:
82
+ return Union(a1, b1) * a2
83
+ return None
84
+
85
+ @union_sets.register(ProductSet, Set)
86
+ def _(a, b):
87
+ if b.is_subset(a):
88
+ return a
89
+ return None
90
+
91
+ @union_sets.register(Interval, Interval)
92
+ def _(a, b):
93
+ if a._is_comparable(b):
94
+ # Non-overlapping intervals
95
+ end = Min(a.end, b.end)
96
+ start = Max(a.start, b.start)
97
+ if (end < start or
98
+ (end == start and (end not in a and end not in b))):
99
+ return None
100
+ else:
101
+ start = Min(a.start, b.start)
102
+ end = Max(a.end, b.end)
103
+
104
+ left_open = ((a.start != start or a.left_open) and
105
+ (b.start != start or b.left_open))
106
+ right_open = ((a.end != end or a.right_open) and
107
+ (b.end != end or b.right_open))
108
+ return Interval(start, end, left_open, right_open)
109
+
110
+ @union_sets.register(Interval, UniversalSet)
111
+ def _(a, b):
112
+ return S.UniversalSet
113
+
114
+ @union_sets.register(Interval, Set)
115
+ def _(a, b):
116
+ # If I have open end points and these endpoints are contained in b
117
+ # But only in case, when endpoints are finite. Because
118
+ # interval does not contain oo or -oo.
119
+ open_left_in_b_and_finite = (a.left_open and
120
+ sympify(b.contains(a.start)) is S.true and
121
+ a.start.is_finite)
122
+ open_right_in_b_and_finite = (a.right_open and
123
+ sympify(b.contains(a.end)) is S.true and
124
+ a.end.is_finite)
125
+ if open_left_in_b_and_finite or open_right_in_b_and_finite:
126
+ # Fill in my end points and return
127
+ open_left = a.left_open and a.start not in b
128
+ open_right = a.right_open and a.end not in b
129
+ new_a = Interval(a.start, a.end, open_left, open_right)
130
+ return {new_a, b}
131
+ return None
132
+
133
+ @union_sets.register(FiniteSet, FiniteSet)
134
+ def _(a, b):
135
+ return FiniteSet(*(a._elements | b._elements))
136
+
137
+ @union_sets.register(FiniteSet, Set)
138
+ def _(a, b):
139
+ # If `b` set contains one of my elements, remove it from `a`
140
+ if any(b.contains(x) == True for x in a):
141
+ return {
142
+ FiniteSet(*[x for x in a if b.contains(x) != True]), b}
143
+ return None
144
+
145
+ @union_sets.register(Set, Set)
146
+ def _(a, b):
147
+ return None
env-llmeval/lib/python3.10/site-packages/sympy/sets/ordinals.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Integer
2
+ import operator
3
+
4
+
5
+ class OmegaPower(Basic):
6
+ """
7
+ Represents ordinal exponential and multiplication terms one of the
8
+ building blocks of the :class:`Ordinal` class.
9
+ In ``OmegaPower(a, b)``, ``a`` represents exponent and ``b`` represents multiplicity.
10
+ """
11
+ def __new__(cls, a, b):
12
+ if isinstance(b, int):
13
+ b = Integer(b)
14
+ if not isinstance(b, Integer) or b <= 0:
15
+ raise TypeError("multiplicity must be a positive integer")
16
+
17
+ if not isinstance(a, Ordinal):
18
+ a = Ordinal.convert(a)
19
+
20
+ return Basic.__new__(cls, a, b)
21
+
22
+ @property
23
+ def exp(self):
24
+ return self.args[0]
25
+
26
+ @property
27
+ def mult(self):
28
+ return self.args[1]
29
+
30
+ def _compare_term(self, other, op):
31
+ if self.exp == other.exp:
32
+ return op(self.mult, other.mult)
33
+ else:
34
+ return op(self.exp, other.exp)
35
+
36
+ def __eq__(self, other):
37
+ if not isinstance(other, OmegaPower):
38
+ try:
39
+ other = OmegaPower(0, other)
40
+ except TypeError:
41
+ return NotImplemented
42
+ return self.args == other.args
43
+
44
+ def __hash__(self):
45
+ return Basic.__hash__(self)
46
+
47
+ def __lt__(self, other):
48
+ if not isinstance(other, OmegaPower):
49
+ try:
50
+ other = OmegaPower(0, other)
51
+ except TypeError:
52
+ return NotImplemented
53
+ return self._compare_term(other, operator.lt)
54
+
55
+
56
+ class Ordinal(Basic):
57
+ """
58
+ Represents ordinals in Cantor normal form.
59
+
60
+ Internally, this class is just a list of instances of OmegaPower.
61
+
62
+ Examples
63
+ ========
64
+ >>> from sympy import Ordinal, OmegaPower
65
+ >>> from sympy.sets.ordinals import omega
66
+ >>> w = omega
67
+ >>> w.is_limit_ordinal
68
+ True
69
+ >>> Ordinal(OmegaPower(w + 1, 1), OmegaPower(3, 2))
70
+ w**(w + 1) + w**3*2
71
+ >>> 3 + w
72
+ w
73
+ >>> (w + 1) * w
74
+ w**2
75
+
76
+ References
77
+ ==========
78
+
79
+ .. [1] https://en.wikipedia.org/wiki/Ordinal_arithmetic
80
+ """
81
+ def __new__(cls, *terms):
82
+ obj = super().__new__(cls, *terms)
83
+ powers = [i.exp for i in obj.args]
84
+ if not all(powers[i] >= powers[i+1] for i in range(len(powers) - 1)):
85
+ raise ValueError("powers must be in decreasing order")
86
+ return obj
87
+
88
+ @property
89
+ def terms(self):
90
+ return self.args
91
+
92
+ @property
93
+ def leading_term(self):
94
+ if self == ord0:
95
+ raise ValueError("ordinal zero has no leading term")
96
+ return self.terms[0]
97
+
98
+ @property
99
+ def trailing_term(self):
100
+ if self == ord0:
101
+ raise ValueError("ordinal zero has no trailing term")
102
+ return self.terms[-1]
103
+
104
+ @property
105
+ def is_successor_ordinal(self):
106
+ try:
107
+ return self.trailing_term.exp == ord0
108
+ except ValueError:
109
+ return False
110
+
111
+ @property
112
+ def is_limit_ordinal(self):
113
+ try:
114
+ return not self.trailing_term.exp == ord0
115
+ except ValueError:
116
+ return False
117
+
118
+ @property
119
+ def degree(self):
120
+ return self.leading_term.exp
121
+
122
+ @classmethod
123
+ def convert(cls, integer_value):
124
+ if integer_value == 0:
125
+ return ord0
126
+ return Ordinal(OmegaPower(0, integer_value))
127
+
128
+ def __eq__(self, other):
129
+ if not isinstance(other, Ordinal):
130
+ try:
131
+ other = Ordinal.convert(other)
132
+ except TypeError:
133
+ return NotImplemented
134
+ return self.terms == other.terms
135
+
136
+ def __hash__(self):
137
+ return hash(self.args)
138
+
139
+ def __lt__(self, other):
140
+ if not isinstance(other, Ordinal):
141
+ try:
142
+ other = Ordinal.convert(other)
143
+ except TypeError:
144
+ return NotImplemented
145
+ for term_self, term_other in zip(self.terms, other.terms):
146
+ if term_self != term_other:
147
+ return term_self < term_other
148
+ return len(self.terms) < len(other.terms)
149
+
150
+ def __le__(self, other):
151
+ return (self == other or self < other)
152
+
153
+ def __gt__(self, other):
154
+ return not self <= other
155
+
156
+ def __ge__(self, other):
157
+ return not self < other
158
+
159
+ def __str__(self):
160
+ net_str = ""
161
+ plus_count = 0
162
+ if self == ord0:
163
+ return 'ord0'
164
+ for i in self.terms:
165
+ if plus_count:
166
+ net_str += " + "
167
+
168
+ if i.exp == ord0:
169
+ net_str += str(i.mult)
170
+ elif i.exp == 1:
171
+ net_str += 'w'
172
+ elif len(i.exp.terms) > 1 or i.exp.is_limit_ordinal:
173
+ net_str += 'w**(%s)'%i.exp
174
+ else:
175
+ net_str += 'w**%s'%i.exp
176
+
177
+ if not i.mult == 1 and not i.exp == ord0:
178
+ net_str += '*%s'%i.mult
179
+
180
+ plus_count += 1
181
+ return(net_str)
182
+
183
+ __repr__ = __str__
184
+
185
+ def __add__(self, other):
186
+ if not isinstance(other, Ordinal):
187
+ try:
188
+ other = Ordinal.convert(other)
189
+ except TypeError:
190
+ return NotImplemented
191
+ if other == ord0:
192
+ return self
193
+ a_terms = list(self.terms)
194
+ b_terms = list(other.terms)
195
+ r = len(a_terms) - 1
196
+ b_exp = other.degree
197
+ while r >= 0 and a_terms[r].exp < b_exp:
198
+ r -= 1
199
+ if r < 0:
200
+ terms = b_terms
201
+ elif a_terms[r].exp == b_exp:
202
+ sum_term = OmegaPower(b_exp, a_terms[r].mult + other.leading_term.mult)
203
+ terms = a_terms[:r] + [sum_term] + b_terms[1:]
204
+ else:
205
+ terms = a_terms[:r+1] + b_terms
206
+ return Ordinal(*terms)
207
+
208
+ def __radd__(self, other):
209
+ if not isinstance(other, Ordinal):
210
+ try:
211
+ other = Ordinal.convert(other)
212
+ except TypeError:
213
+ return NotImplemented
214
+ return other + self
215
+
216
+ def __mul__(self, other):
217
+ if not isinstance(other, Ordinal):
218
+ try:
219
+ other = Ordinal.convert(other)
220
+ except TypeError:
221
+ return NotImplemented
222
+ if ord0 in (self, other):
223
+ return ord0
224
+ a_exp = self.degree
225
+ a_mult = self.leading_term.mult
226
+ summation = []
227
+ if other.is_limit_ordinal:
228
+ for arg in other.terms:
229
+ summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
230
+
231
+ else:
232
+ for arg in other.terms[:-1]:
233
+ summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
234
+ b_mult = other.trailing_term.mult
235
+ summation.append(OmegaPower(a_exp, a_mult*b_mult))
236
+ summation += list(self.terms[1:])
237
+ return Ordinal(*summation)
238
+
239
+ def __rmul__(self, other):
240
+ if not isinstance(other, Ordinal):
241
+ try:
242
+ other = Ordinal.convert(other)
243
+ except TypeError:
244
+ return NotImplemented
245
+ return other * self
246
+
247
+ def __pow__(self, other):
248
+ if not self == omega:
249
+ return NotImplemented
250
+ return Ordinal(OmegaPower(other, 1))
251
+
252
+
253
+ class OrdinalZero(Ordinal):
254
+ """The ordinal zero.
255
+
256
+ OrdinalZero can be imported as ``ord0``.
257
+ """
258
+ pass
259
+
260
+
261
+ class OrdinalOmega(Ordinal):
262
+ """The ordinal omega which forms the base of all ordinals in cantor normal form.
263
+
264
+ OrdinalOmega can be imported as ``omega``.
265
+
266
+ Examples
267
+ ========
268
+
269
+ >>> from sympy.sets.ordinals import omega
270
+ >>> omega + omega
271
+ w*2
272
+ """
273
+ def __new__(cls):
274
+ return Ordinal.__new__(cls)
275
+
276
+ @property
277
+ def terms(self):
278
+ return (OmegaPower(1, 1),)
279
+
280
+
281
+ ord0 = OrdinalZero()
282
+ omega = OrdinalOmega()
env-llmeval/lib/python3.10/site-packages/sympy/sets/powerset.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.decorators import _sympifyit
2
+ from sympy.core.parameters import global_parameters
3
+ from sympy.core.logic import fuzzy_bool
4
+ from sympy.core.singleton import S
5
+ from sympy.core.sympify import _sympify
6
+
7
+ from .sets import Set, FiniteSet, SetKind
8
+
9
+
10
+ class PowerSet(Set):
11
+ r"""A symbolic object representing a power set.
12
+
13
+ Parameters
14
+ ==========
15
+
16
+ arg : Set
17
+ The set to take power of.
18
+
19
+ evaluate : bool
20
+ The flag to control evaluation.
21
+
22
+ If the evaluation is disabled for finite sets, it can take
23
+ advantage of using subset test as a membership test.
24
+
25
+ Notes
26
+ =====
27
+
28
+ Power set `\mathcal{P}(S)` is defined as a set containing all the
29
+ subsets of `S`.
30
+
31
+ If the set `S` is a finite set, its power set would have
32
+ `2^{\left| S \right|}` elements, where `\left| S \right|` denotes
33
+ the cardinality of `S`.
34
+
35
+ Examples
36
+ ========
37
+
38
+ >>> from sympy import PowerSet, S, FiniteSet
39
+
40
+ A power set of a finite set:
41
+
42
+ >>> PowerSet(FiniteSet(1, 2, 3))
43
+ PowerSet({1, 2, 3})
44
+
45
+ A power set of an empty set:
46
+
47
+ >>> PowerSet(S.EmptySet)
48
+ PowerSet(EmptySet)
49
+ >>> PowerSet(PowerSet(S.EmptySet))
50
+ PowerSet(PowerSet(EmptySet))
51
+
52
+ A power set of an infinite set:
53
+
54
+ >>> PowerSet(S.Reals)
55
+ PowerSet(Reals)
56
+
57
+ Evaluating the power set of a finite set to its explicit form:
58
+
59
+ >>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
60
+ FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3})
61
+
62
+ References
63
+ ==========
64
+
65
+ .. [1] https://en.wikipedia.org/wiki/Power_set
66
+
67
+ .. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set
68
+ """
69
+ def __new__(cls, arg, evaluate=None):
70
+ if evaluate is None:
71
+ evaluate=global_parameters.evaluate
72
+
73
+ arg = _sympify(arg)
74
+
75
+ if not isinstance(arg, Set):
76
+ raise ValueError('{} must be a set.'.format(arg))
77
+
78
+ return super().__new__(cls, arg)
79
+
80
+ @property
81
+ def arg(self):
82
+ return self.args[0]
83
+
84
+ def _eval_rewrite_as_FiniteSet(self, *args, **kwargs):
85
+ arg = self.arg
86
+ if arg.is_FiniteSet:
87
+ return arg.powerset()
88
+ return None
89
+
90
+ @_sympifyit('other', NotImplemented)
91
+ def _contains(self, other):
92
+ if not isinstance(other, Set):
93
+ return None
94
+
95
+ return fuzzy_bool(self.arg.is_superset(other))
96
+
97
+ def _eval_is_subset(self, other):
98
+ if isinstance(other, PowerSet):
99
+ return self.arg.is_subset(other.arg)
100
+
101
+ def __len__(self):
102
+ return 2 ** len(self.arg)
103
+
104
+ def __iter__(self):
105
+ found = [S.EmptySet]
106
+ yield S.EmptySet
107
+
108
+ for x in self.arg:
109
+ temp = []
110
+ x = FiniteSet(x)
111
+ for y in found:
112
+ new = x + y
113
+ yield new
114
+ temp.append(new)
115
+ found.extend(temp)
116
+
117
+ @property
118
+ def kind(self):
119
+ return SetKind(self.arg.kind)
env-llmeval/lib/python3.10/site-packages/sympy/sets/setexpr.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Expr
2
+ from sympy.core.decorators import call_highest_priority, _sympifyit
3
+ from .fancysets import ImageSet
4
+ from .sets import set_add, set_sub, set_mul, set_div, set_pow, set_function
5
+
6
+
7
+ class SetExpr(Expr):
8
+ """An expression that can take on values of a set.
9
+
10
+ Examples
11
+ ========
12
+
13
+ >>> from sympy import Interval, FiniteSet
14
+ >>> from sympy.sets.setexpr import SetExpr
15
+
16
+ >>> a = SetExpr(Interval(0, 5))
17
+ >>> b = SetExpr(FiniteSet(1, 10))
18
+ >>> (a + b).set
19
+ Union(Interval(1, 6), Interval(10, 15))
20
+ >>> (2*a + b).set
21
+ Interval(1, 20)
22
+ """
23
+ _op_priority = 11.0
24
+
25
+ def __new__(cls, setarg):
26
+ return Expr.__new__(cls, setarg)
27
+
28
+ set = property(lambda self: self.args[0])
29
+
30
+ def _latex(self, printer):
31
+ return r"SetExpr\left({}\right)".format(printer._print(self.set))
32
+
33
+ @_sympifyit('other', NotImplemented)
34
+ @call_highest_priority('__radd__')
35
+ def __add__(self, other):
36
+ return _setexpr_apply_operation(set_add, self, other)
37
+
38
+ @_sympifyit('other', NotImplemented)
39
+ @call_highest_priority('__add__')
40
+ def __radd__(self, other):
41
+ return _setexpr_apply_operation(set_add, other, self)
42
+
43
+ @_sympifyit('other', NotImplemented)
44
+ @call_highest_priority('__rmul__')
45
+ def __mul__(self, other):
46
+ return _setexpr_apply_operation(set_mul, self, other)
47
+
48
+ @_sympifyit('other', NotImplemented)
49
+ @call_highest_priority('__mul__')
50
+ def __rmul__(self, other):
51
+ return _setexpr_apply_operation(set_mul, other, self)
52
+
53
+ @_sympifyit('other', NotImplemented)
54
+ @call_highest_priority('__rsub__')
55
+ def __sub__(self, other):
56
+ return _setexpr_apply_operation(set_sub, self, other)
57
+
58
+ @_sympifyit('other', NotImplemented)
59
+ @call_highest_priority('__sub__')
60
+ def __rsub__(self, other):
61
+ return _setexpr_apply_operation(set_sub, other, self)
62
+
63
+ @_sympifyit('other', NotImplemented)
64
+ @call_highest_priority('__rpow__')
65
+ def __pow__(self, other):
66
+ return _setexpr_apply_operation(set_pow, self, other)
67
+
68
+ @_sympifyit('other', NotImplemented)
69
+ @call_highest_priority('__pow__')
70
+ def __rpow__(self, other):
71
+ return _setexpr_apply_operation(set_pow, other, self)
72
+
73
+ @_sympifyit('other', NotImplemented)
74
+ @call_highest_priority('__rtruediv__')
75
+ def __truediv__(self, other):
76
+ return _setexpr_apply_operation(set_div, self, other)
77
+
78
+ @_sympifyit('other', NotImplemented)
79
+ @call_highest_priority('__truediv__')
80
+ def __rtruediv__(self, other):
81
+ return _setexpr_apply_operation(set_div, other, self)
82
+
83
+ def _eval_func(self, func):
84
+ # TODO: this could be implemented straight into `imageset`:
85
+ res = set_function(func, self.set)
86
+ if res is None:
87
+ return SetExpr(ImageSet(func, self.set))
88
+ return SetExpr(res)
89
+
90
+
91
+ def _setexpr_apply_operation(op, x, y):
92
+ if isinstance(x, SetExpr):
93
+ x = x.set
94
+ if isinstance(y, SetExpr):
95
+ y = y.set
96
+ out = op(x, y)
97
+ return SetExpr(out)
env-llmeval/lib/python3.10/site-packages/sympy/sets/sets.py ADDED
@@ -0,0 +1,2749 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Callable
2
+ from functools import reduce
3
+ from collections import defaultdict
4
+ import inspect
5
+
6
+ from sympy.core.kind import Kind, UndefinedKind, NumberKind
7
+ from sympy.core.basic import Basic
8
+ from sympy.core.containers import Tuple, TupleKind
9
+ from sympy.core.decorators import sympify_method_args, sympify_return
10
+ from sympy.core.evalf import EvalfMixin
11
+ from sympy.core.expr import Expr
12
+ from sympy.core.function import Lambda
13
+ from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and,
14
+ fuzzy_not)
15
+ from sympy.core.numbers import Float, Integer
16
+ from sympy.core.operations import LatticeOp
17
+ from sympy.core.parameters import global_parameters
18
+ from sympy.core.relational import Eq, Ne, is_lt
19
+ from sympy.core.singleton import Singleton, S
20
+ from sympy.core.sorting import ordered
21
+ from sympy.core.symbol import symbols, Symbol, Dummy, uniquely_named_symbol
22
+ from sympy.core.sympify import _sympify, sympify, _sympy_converter
23
+ from sympy.functions.elementary.exponential import exp, log
24
+ from sympy.functions.elementary.miscellaneous import Max, Min
25
+ from sympy.logic.boolalg import And, Or, Not, Xor, true, false
26
+ from sympy.utilities.decorator import deprecated
27
+ from sympy.utilities.exceptions import sympy_deprecation_warning
28
+ from sympy.utilities.iterables import (iproduct, sift, roundrobin, iterable,
29
+ subsets)
30
+ from sympy.utilities.misc import func_name, filldedent
31
+
32
+ from mpmath import mpi, mpf
33
+
34
+ from mpmath.libmp.libmpf import prec_to_dps
35
+
36
+
37
+ tfn = defaultdict(lambda: None, {
38
+ True: S.true,
39
+ S.true: S.true,
40
+ False: S.false,
41
+ S.false: S.false})
42
+
43
+
44
+ @sympify_method_args
45
+ class Set(Basic, EvalfMixin):
46
+ """
47
+ The base class for any kind of set.
48
+
49
+ Explanation
50
+ ===========
51
+
52
+ This is not meant to be used directly as a container of items. It does not
53
+ behave like the builtin ``set``; see :class:`FiniteSet` for that.
54
+
55
+ Real intervals are represented by the :class:`Interval` class and unions of
56
+ sets by the :class:`Union` class. The empty set is represented by the
57
+ :class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
58
+ """
59
+
60
+ __slots__ = ()
61
+
62
+ is_number = False
63
+ is_iterable = False
64
+ is_interval = False
65
+
66
+ is_FiniteSet = False
67
+ is_Interval = False
68
+ is_ProductSet = False
69
+ is_Union = False
70
+ is_Intersection: FuzzyBool = None
71
+ is_UniversalSet: FuzzyBool = None
72
+ is_Complement: FuzzyBool = None
73
+ is_ComplexRegion = False
74
+
75
+ is_empty: FuzzyBool = None
76
+ is_finite_set: FuzzyBool = None
77
+
78
+ @property # type: ignore
79
+ @deprecated(
80
+ """
81
+ The is_EmptySet attribute of Set objects is deprecated.
82
+ Use 's is S.EmptySet" or 's.is_empty' instead.
83
+ """,
84
+ deprecated_since_version="1.5",
85
+ active_deprecations_target="deprecated-is-emptyset",
86
+ )
87
+ def is_EmptySet(self):
88
+ return None
89
+
90
+ @staticmethod
91
+ def _infimum_key(expr):
92
+ """
93
+ Return infimum (if possible) else S.Infinity.
94
+ """
95
+ try:
96
+ infimum = expr.inf
97
+ assert infimum.is_comparable
98
+ infimum = infimum.evalf() # issue #18505
99
+ except (NotImplementedError,
100
+ AttributeError, AssertionError, ValueError):
101
+ infimum = S.Infinity
102
+ return infimum
103
+
104
+ def union(self, other):
105
+ """
106
+ Returns the union of ``self`` and ``other``.
107
+
108
+ Examples
109
+ ========
110
+
111
+ As a shortcut it is possible to use the ``+`` operator:
112
+
113
+ >>> from sympy import Interval, FiniteSet
114
+ >>> Interval(0, 1).union(Interval(2, 3))
115
+ Union(Interval(0, 1), Interval(2, 3))
116
+ >>> Interval(0, 1) + Interval(2, 3)
117
+ Union(Interval(0, 1), Interval(2, 3))
118
+ >>> Interval(1, 2, True, True) + FiniteSet(2, 3)
119
+ Union({3}, Interval.Lopen(1, 2))
120
+
121
+ Similarly it is possible to use the ``-`` operator for set differences:
122
+
123
+ >>> Interval(0, 2) - Interval(0, 1)
124
+ Interval.Lopen(1, 2)
125
+ >>> Interval(1, 3) - FiniteSet(2)
126
+ Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
127
+
128
+ """
129
+ return Union(self, other)
130
+
131
+ def intersect(self, other):
132
+ """
133
+ Returns the intersection of 'self' and 'other'.
134
+
135
+ Examples
136
+ ========
137
+
138
+ >>> from sympy import Interval
139
+
140
+ >>> Interval(1, 3).intersect(Interval(1, 2))
141
+ Interval(1, 2)
142
+
143
+ >>> from sympy import imageset, Lambda, symbols, S
144
+ >>> n, m = symbols('n m')
145
+ >>> a = imageset(Lambda(n, 2*n), S.Integers)
146
+ >>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
147
+ EmptySet
148
+
149
+ """
150
+ return Intersection(self, other)
151
+
152
+ def intersection(self, other):
153
+ """
154
+ Alias for :meth:`intersect()`
155
+ """
156
+ return self.intersect(other)
157
+
158
+ def is_disjoint(self, other):
159
+ """
160
+ Returns True if ``self`` and ``other`` are disjoint.
161
+
162
+ Examples
163
+ ========
164
+
165
+ >>> from sympy import Interval
166
+ >>> Interval(0, 2).is_disjoint(Interval(1, 2))
167
+ False
168
+ >>> Interval(0, 2).is_disjoint(Interval(3, 4))
169
+ True
170
+
171
+ References
172
+ ==========
173
+
174
+ .. [1] https://en.wikipedia.org/wiki/Disjoint_sets
175
+ """
176
+ return self.intersect(other) == S.EmptySet
177
+
178
+ def isdisjoint(self, other):
179
+ """
180
+ Alias for :meth:`is_disjoint()`
181
+ """
182
+ return self.is_disjoint(other)
183
+
184
+ def complement(self, universe):
185
+ r"""
186
+ The complement of 'self' w.r.t the given universe.
187
+
188
+ Examples
189
+ ========
190
+
191
+ >>> from sympy import Interval, S
192
+ >>> Interval(0, 1).complement(S.Reals)
193
+ Union(Interval.open(-oo, 0), Interval.open(1, oo))
194
+
195
+ >>> Interval(0, 1).complement(S.UniversalSet)
196
+ Complement(UniversalSet, Interval(0, 1))
197
+
198
+ """
199
+ return Complement(universe, self)
200
+
201
+ def _complement(self, other):
202
+ # this behaves as other - self
203
+ if isinstance(self, ProductSet) and isinstance(other, ProductSet):
204
+ # If self and other are disjoint then other - self == self
205
+ if len(self.sets) != len(other.sets):
206
+ return other
207
+
208
+ # There can be other ways to represent this but this gives:
209
+ # (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
210
+ overlaps = []
211
+ pairs = list(zip(self.sets, other.sets))
212
+ for n in range(len(pairs)):
213
+ sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
214
+ overlaps.append(ProductSet(*sets))
215
+ return Union(*overlaps)
216
+
217
+ elif isinstance(other, Interval):
218
+ if isinstance(self, (Interval, FiniteSet)):
219
+ return Intersection(other, self.complement(S.Reals))
220
+
221
+ elif isinstance(other, Union):
222
+ return Union(*(o - self for o in other.args))
223
+
224
+ elif isinstance(other, Complement):
225
+ return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
226
+
227
+ elif other is S.EmptySet:
228
+ return S.EmptySet
229
+
230
+ elif isinstance(other, FiniteSet):
231
+ sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
232
+ # ignore those that are contained in self
233
+ return Union(FiniteSet(*(sifted[False])),
234
+ Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
235
+ if sifted[None] else S.EmptySet)
236
+
237
+ def symmetric_difference(self, other):
238
+ """
239
+ Returns symmetric difference of ``self`` and ``other``.
240
+
241
+ Examples
242
+ ========
243
+
244
+ >>> from sympy import Interval, S
245
+ >>> Interval(1, 3).symmetric_difference(S.Reals)
246
+ Union(Interval.open(-oo, 1), Interval.open(3, oo))
247
+ >>> Interval(1, 10).symmetric_difference(S.Reals)
248
+ Union(Interval.open(-oo, 1), Interval.open(10, oo))
249
+
250
+ >>> from sympy import S, EmptySet
251
+ >>> S.Reals.symmetric_difference(EmptySet)
252
+ Reals
253
+
254
+ References
255
+ ==========
256
+ .. [1] https://en.wikipedia.org/wiki/Symmetric_difference
257
+
258
+ """
259
+ return SymmetricDifference(self, other)
260
+
261
+ def _symmetric_difference(self, other):
262
+ return Union(Complement(self, other), Complement(other, self))
263
+
264
+ @property
265
+ def inf(self):
266
+ """
267
+ The infimum of ``self``.
268
+
269
+ Examples
270
+ ========
271
+
272
+ >>> from sympy import Interval, Union
273
+ >>> Interval(0, 1).inf
274
+ 0
275
+ >>> Union(Interval(0, 1), Interval(2, 3)).inf
276
+ 0
277
+
278
+ """
279
+ return self._inf
280
+
281
+ @property
282
+ def _inf(self):
283
+ raise NotImplementedError("(%s)._inf" % self)
284
+
285
+ @property
286
+ def sup(self):
287
+ """
288
+ The supremum of ``self``.
289
+
290
+ Examples
291
+ ========
292
+
293
+ >>> from sympy import Interval, Union
294
+ >>> Interval(0, 1).sup
295
+ 1
296
+ >>> Union(Interval(0, 1), Interval(2, 3)).sup
297
+ 3
298
+
299
+ """
300
+ return self._sup
301
+
302
+ @property
303
+ def _sup(self):
304
+ raise NotImplementedError("(%s)._sup" % self)
305
+
306
+ def contains(self, other):
307
+ """
308
+ Returns a SymPy value indicating whether ``other`` is contained
309
+ in ``self``: ``true`` if it is, ``false`` if it is not, else
310
+ an unevaluated ``Contains`` expression (or, as in the case of
311
+ ConditionSet and a union of FiniteSet/Intervals, an expression
312
+ indicating the conditions for containment).
313
+
314
+ Examples
315
+ ========
316
+
317
+ >>> from sympy import Interval, S
318
+ >>> from sympy.abc import x
319
+
320
+ >>> Interval(0, 1).contains(0.5)
321
+ True
322
+
323
+ As a shortcut it is possible to use the ``in`` operator, but that
324
+ will raise an error unless an affirmative true or false is not
325
+ obtained.
326
+
327
+ >>> Interval(0, 1).contains(x)
328
+ (0 <= x) & (x <= 1)
329
+ >>> x in Interval(0, 1)
330
+ Traceback (most recent call last):
331
+ ...
332
+ TypeError: did not evaluate to a bool: None
333
+
334
+ The result of 'in' is a bool, not a SymPy value
335
+
336
+ >>> 1 in Interval(0, 2)
337
+ True
338
+ >>> _ is S.true
339
+ False
340
+ """
341
+ from .contains import Contains
342
+ other = sympify(other, strict=True)
343
+
344
+ c = self._contains(other)
345
+ if isinstance(c, Contains):
346
+ return c
347
+ if c is None:
348
+ return Contains(other, self, evaluate=False)
349
+ b = tfn[c]
350
+ if b is None:
351
+ return c
352
+ return b
353
+
354
+ def _contains(self, other):
355
+ raise NotImplementedError(filldedent('''
356
+ (%s)._contains(%s) is not defined. This method, when
357
+ defined, will receive a sympified object. The method
358
+ should return True, False, None or something that
359
+ expresses what must be true for the containment of that
360
+ object in self to be evaluated. If None is returned
361
+ then a generic Contains object will be returned
362
+ by the ``contains`` method.''' % (self, other)))
363
+
364
+ def is_subset(self, other):
365
+ """
366
+ Returns True if ``self`` is a subset of ``other``.
367
+
368
+ Examples
369
+ ========
370
+
371
+ >>> from sympy import Interval
372
+ >>> Interval(0, 0.5).is_subset(Interval(0, 1))
373
+ True
374
+ >>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
375
+ False
376
+
377
+ """
378
+ if not isinstance(other, Set):
379
+ raise ValueError("Unknown argument '%s'" % other)
380
+
381
+ # Handle the trivial cases
382
+ if self == other:
383
+ return True
384
+ is_empty = self.is_empty
385
+ if is_empty is True:
386
+ return True
387
+ elif fuzzy_not(is_empty) and other.is_empty:
388
+ return False
389
+ if self.is_finite_set is False and other.is_finite_set:
390
+ return False
391
+
392
+ # Dispatch on subclass rules
393
+ ret = self._eval_is_subset(other)
394
+ if ret is not None:
395
+ return ret
396
+ ret = other._eval_is_superset(self)
397
+ if ret is not None:
398
+ return ret
399
+
400
+ # Use pairwise rules from multiple dispatch
401
+ from sympy.sets.handlers.issubset import is_subset_sets
402
+ ret = is_subset_sets(self, other)
403
+ if ret is not None:
404
+ return ret
405
+
406
+ # Fall back on computing the intersection
407
+ # XXX: We shouldn't do this. A query like this should be handled
408
+ # without evaluating new Set objects. It should be the other way round
409
+ # so that the intersect method uses is_subset for evaluation.
410
+ if self.intersect(other) == self:
411
+ return True
412
+
413
+ def _eval_is_subset(self, other):
414
+ '''Returns a fuzzy bool for whether self is a subset of other.'''
415
+ return None
416
+
417
+ def _eval_is_superset(self, other):
418
+ '''Returns a fuzzy bool for whether self is a subset of other.'''
419
+ return None
420
+
421
+ # This should be deprecated:
422
+ def issubset(self, other):
423
+ """
424
+ Alias for :meth:`is_subset()`
425
+ """
426
+ return self.is_subset(other)
427
+
428
+ def is_proper_subset(self, other):
429
+ """
430
+ Returns True if ``self`` is a proper subset of ``other``.
431
+
432
+ Examples
433
+ ========
434
+
435
+ >>> from sympy import Interval
436
+ >>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
437
+ True
438
+ >>> Interval(0, 1).is_proper_subset(Interval(0, 1))
439
+ False
440
+
441
+ """
442
+ if isinstance(other, Set):
443
+ return self != other and self.is_subset(other)
444
+ else:
445
+ raise ValueError("Unknown argument '%s'" % other)
446
+
447
+ def is_superset(self, other):
448
+ """
449
+ Returns True if ``self`` is a superset of ``other``.
450
+
451
+ Examples
452
+ ========
453
+
454
+ >>> from sympy import Interval
455
+ >>> Interval(0, 0.5).is_superset(Interval(0, 1))
456
+ False
457
+ >>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
458
+ True
459
+
460
+ """
461
+ if isinstance(other, Set):
462
+ return other.is_subset(self)
463
+ else:
464
+ raise ValueError("Unknown argument '%s'" % other)
465
+
466
+ # This should be deprecated:
467
+ def issuperset(self, other):
468
+ """
469
+ Alias for :meth:`is_superset()`
470
+ """
471
+ return self.is_superset(other)
472
+
473
+ def is_proper_superset(self, other):
474
+ """
475
+ Returns True if ``self`` is a proper superset of ``other``.
476
+
477
+ Examples
478
+ ========
479
+
480
+ >>> from sympy import Interval
481
+ >>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
482
+ True
483
+ >>> Interval(0, 1).is_proper_superset(Interval(0, 1))
484
+ False
485
+
486
+ """
487
+ if isinstance(other, Set):
488
+ return self != other and self.is_superset(other)
489
+ else:
490
+ raise ValueError("Unknown argument '%s'" % other)
491
+
492
+ def _eval_powerset(self):
493
+ from .powerset import PowerSet
494
+ return PowerSet(self)
495
+
496
+ def powerset(self):
497
+ """
498
+ Find the Power set of ``self``.
499
+
500
+ Examples
501
+ ========
502
+
503
+ >>> from sympy import EmptySet, FiniteSet, Interval
504
+
505
+ A power set of an empty set:
506
+
507
+ >>> A = EmptySet
508
+ >>> A.powerset()
509
+ {EmptySet}
510
+
511
+ A power set of a finite set:
512
+
513
+ >>> A = FiniteSet(1, 2)
514
+ >>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
515
+ >>> A.powerset() == FiniteSet(a, b, c, EmptySet)
516
+ True
517
+
518
+ A power set of an interval:
519
+
520
+ >>> Interval(1, 2).powerset()
521
+ PowerSet(Interval(1, 2))
522
+
523
+ References
524
+ ==========
525
+
526
+ .. [1] https://en.wikipedia.org/wiki/Power_set
527
+
528
+ """
529
+ return self._eval_powerset()
530
+
531
+ @property
532
+ def measure(self):
533
+ """
534
+ The (Lebesgue) measure of ``self``.
535
+
536
+ Examples
537
+ ========
538
+
539
+ >>> from sympy import Interval, Union
540
+ >>> Interval(0, 1).measure
541
+ 1
542
+ >>> Union(Interval(0, 1), Interval(2, 3)).measure
543
+ 2
544
+
545
+ """
546
+ return self._measure
547
+
548
+ @property
549
+ def kind(self):
550
+ """
551
+ The kind of a Set
552
+
553
+ Explanation
554
+ ===========
555
+
556
+ Any :class:`Set` will have kind :class:`SetKind` which is
557
+ parametrised by the kind of the elements of the set. For example
558
+ most sets are sets of numbers and will have kind
559
+ ``SetKind(NumberKind)``. If elements of sets are different in kind than
560
+ their kind will ``SetKind(UndefinedKind)``. See
561
+ :class:`sympy.core.kind.Kind` for an explanation of the kind system.
562
+
563
+ Examples
564
+ ========
565
+
566
+ >>> from sympy import Interval, Matrix, FiniteSet, EmptySet, ProductSet, PowerSet
567
+
568
+ >>> FiniteSet(Matrix([1, 2])).kind
569
+ SetKind(MatrixKind(NumberKind))
570
+
571
+ >>> Interval(1, 2).kind
572
+ SetKind(NumberKind)
573
+
574
+ >>> EmptySet.kind
575
+ SetKind()
576
+
577
+ A :class:`sympy.sets.powerset.PowerSet` is a set of sets:
578
+
579
+ >>> PowerSet({1, 2, 3}).kind
580
+ SetKind(SetKind(NumberKind))
581
+
582
+ A :class:`ProductSet` represents the set of tuples of elements of
583
+ other sets. Its kind is :class:`sympy.core.containers.TupleKind`
584
+ parametrised by the kinds of the elements of those sets:
585
+
586
+ >>> p = ProductSet(FiniteSet(1, 2), FiniteSet(3, 4))
587
+ >>> list(p)
588
+ [(1, 3), (2, 3), (1, 4), (2, 4)]
589
+ >>> p.kind
590
+ SetKind(TupleKind(NumberKind, NumberKind))
591
+
592
+ When all elements of the set do not have same kind, the kind
593
+ will be returned as ``SetKind(UndefinedKind)``:
594
+
595
+ >>> FiniteSet(0, Matrix([1, 2])).kind
596
+ SetKind(UndefinedKind)
597
+
598
+ The kind of the elements of a set are given by the ``element_kind``
599
+ attribute of ``SetKind``:
600
+
601
+ >>> Interval(1, 2).kind.element_kind
602
+ NumberKind
603
+
604
+ See Also
605
+ ========
606
+
607
+ NumberKind
608
+ sympy.core.kind.UndefinedKind
609
+ sympy.core.containers.TupleKind
610
+ MatrixKind
611
+ sympy.matrices.expressions.sets.MatrixSet
612
+ sympy.sets.conditionset.ConditionSet
613
+ Rationals
614
+ Naturals
615
+ Integers
616
+ sympy.sets.fancysets.ImageSet
617
+ sympy.sets.fancysets.Range
618
+ sympy.sets.fancysets.ComplexRegion
619
+ sympy.sets.powerset.PowerSet
620
+ sympy.sets.sets.ProductSet
621
+ sympy.sets.sets.Interval
622
+ sympy.sets.sets.Union
623
+ sympy.sets.sets.Intersection
624
+ sympy.sets.sets.Complement
625
+ sympy.sets.sets.EmptySet
626
+ sympy.sets.sets.UniversalSet
627
+ sympy.sets.sets.FiniteSet
628
+ sympy.sets.sets.SymmetricDifference
629
+ sympy.sets.sets.DisjointUnion
630
+ """
631
+ return self._kind()
632
+
633
+ @property
634
+ def boundary(self):
635
+ """
636
+ The boundary or frontier of a set.
637
+
638
+ Explanation
639
+ ===========
640
+
641
+ A point x is on the boundary of a set S if
642
+
643
+ 1. x is in the closure of S.
644
+ I.e. Every neighborhood of x contains a point in S.
645
+ 2. x is not in the interior of S.
646
+ I.e. There does not exist an open set centered on x contained
647
+ entirely within S.
648
+
649
+ There are the points on the outer rim of S. If S is open then these
650
+ points need not actually be contained within S.
651
+
652
+ For example, the boundary of an interval is its start and end points.
653
+ This is true regardless of whether or not the interval is open.
654
+
655
+ Examples
656
+ ========
657
+
658
+ >>> from sympy import Interval
659
+ >>> Interval(0, 1).boundary
660
+ {0, 1}
661
+ >>> Interval(0, 1, True, False).boundary
662
+ {0, 1}
663
+ """
664
+ return self._boundary
665
+
666
+ @property
667
+ def is_open(self):
668
+ """
669
+ Property method to check whether a set is open.
670
+
671
+ Explanation
672
+ ===========
673
+
674
+ A set is open if and only if it has an empty intersection with its
675
+ boundary. In particular, a subset A of the reals is open if and only
676
+ if each one of its points is contained in an open interval that is a
677
+ subset of A.
678
+
679
+ Examples
680
+ ========
681
+ >>> from sympy import S
682
+ >>> S.Reals.is_open
683
+ True
684
+ >>> S.Rationals.is_open
685
+ False
686
+ """
687
+ return Intersection(self, self.boundary).is_empty
688
+
689
+ @property
690
+ def is_closed(self):
691
+ """
692
+ A property method to check whether a set is closed.
693
+
694
+ Explanation
695
+ ===========
696
+
697
+ A set is closed if its complement is an open set. The closedness of a
698
+ subset of the reals is determined with respect to R and its standard
699
+ topology.
700
+
701
+ Examples
702
+ ========
703
+ >>> from sympy import Interval
704
+ >>> Interval(0, 1).is_closed
705
+ True
706
+ """
707
+ return self.boundary.is_subset(self)
708
+
709
+ @property
710
+ def closure(self):
711
+ """
712
+ Property method which returns the closure of a set.
713
+ The closure is defined as the union of the set itself and its
714
+ boundary.
715
+
716
+ Examples
717
+ ========
718
+ >>> from sympy import S, Interval
719
+ >>> S.Reals.closure
720
+ Reals
721
+ >>> Interval(0, 1).closure
722
+ Interval(0, 1)
723
+ """
724
+ return self + self.boundary
725
+
726
+ @property
727
+ def interior(self):
728
+ """
729
+ Property method which returns the interior of a set.
730
+ The interior of a set S consists all points of S that do not
731
+ belong to the boundary of S.
732
+
733
+ Examples
734
+ ========
735
+ >>> from sympy import Interval
736
+ >>> Interval(0, 1).interior
737
+ Interval.open(0, 1)
738
+ >>> Interval(0, 1).boundary.interior
739
+ EmptySet
740
+ """
741
+ return self - self.boundary
742
+
743
+ @property
744
+ def _boundary(self):
745
+ raise NotImplementedError()
746
+
747
+ @property
748
+ def _measure(self):
749
+ raise NotImplementedError("(%s)._measure" % self)
750
+
751
+ def _kind(self):
752
+ return SetKind(UndefinedKind)
753
+
754
+ def _eval_evalf(self, prec):
755
+ dps = prec_to_dps(prec)
756
+ return self.func(*[arg.evalf(n=dps) for arg in self.args])
757
+
758
+ @sympify_return([('other', 'Set')], NotImplemented)
759
+ def __add__(self, other):
760
+ return self.union(other)
761
+
762
+ @sympify_return([('other', 'Set')], NotImplemented)
763
+ def __or__(self, other):
764
+ return self.union(other)
765
+
766
+ @sympify_return([('other', 'Set')], NotImplemented)
767
+ def __and__(self, other):
768
+ return self.intersect(other)
769
+
770
+ @sympify_return([('other', 'Set')], NotImplemented)
771
+ def __mul__(self, other):
772
+ return ProductSet(self, other)
773
+
774
+ @sympify_return([('other', 'Set')], NotImplemented)
775
+ def __xor__(self, other):
776
+ return SymmetricDifference(self, other)
777
+
778
+ @sympify_return([('exp', Expr)], NotImplemented)
779
+ def __pow__(self, exp):
780
+ if not (exp.is_Integer and exp >= 0):
781
+ raise ValueError("%s: Exponent must be a positive Integer" % exp)
782
+ return ProductSet(*[self]*exp)
783
+
784
+ @sympify_return([('other', 'Set')], NotImplemented)
785
+ def __sub__(self, other):
786
+ return Complement(self, other)
787
+
788
+ def __contains__(self, other):
789
+ other = _sympify(other)
790
+ c = self._contains(other)
791
+ b = tfn[c]
792
+ if b is None:
793
+ # x in y must evaluate to T or F; to entertain a None
794
+ # result with Set use y.contains(x)
795
+ raise TypeError('did not evaluate to a bool: %r' % c)
796
+ return b
797
+
798
+
799
+ class ProductSet(Set):
800
+ """
801
+ Represents a Cartesian Product of Sets.
802
+
803
+ Explanation
804
+ ===========
805
+
806
+ Returns a Cartesian product given several sets as either an iterable
807
+ or individual arguments.
808
+
809
+ Can use ``*`` operator on any sets for convenient shorthand.
810
+
811
+ Examples
812
+ ========
813
+
814
+ >>> from sympy import Interval, FiniteSet, ProductSet
815
+ >>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
816
+ >>> ProductSet(I, S)
817
+ ProductSet(Interval(0, 5), {1, 2, 3})
818
+
819
+ >>> (2, 2) in ProductSet(I, S)
820
+ True
821
+
822
+ >>> Interval(0, 1) * Interval(0, 1) # The unit square
823
+ ProductSet(Interval(0, 1), Interval(0, 1))
824
+
825
+ >>> coin = FiniteSet('H', 'T')
826
+ >>> set(coin**2)
827
+ {(H, H), (H, T), (T, H), (T, T)}
828
+
829
+ The Cartesian product is not commutative or associative e.g.:
830
+
831
+ >>> I*S == S*I
832
+ False
833
+ >>> (I*I)*I == I*(I*I)
834
+ False
835
+
836
+ Notes
837
+ =====
838
+
839
+ - Passes most operations down to the argument sets
840
+
841
+ References
842
+ ==========
843
+
844
+ .. [1] https://en.wikipedia.org/wiki/Cartesian_product
845
+ """
846
+ is_ProductSet = True
847
+
848
+ def __new__(cls, *sets, **assumptions):
849
+ if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
850
+ sympy_deprecation_warning(
851
+ """
852
+ ProductSet(iterable) is deprecated. Use ProductSet(*iterable) instead.
853
+ """,
854
+ deprecated_since_version="1.5",
855
+ active_deprecations_target="deprecated-productset-iterable",
856
+ )
857
+ sets = tuple(sets[0])
858
+
859
+ sets = [sympify(s) for s in sets]
860
+
861
+ if not all(isinstance(s, Set) for s in sets):
862
+ raise TypeError("Arguments to ProductSet should be of type Set")
863
+
864
+ # Nullary product of sets is *not* the empty set
865
+ if len(sets) == 0:
866
+ return FiniteSet(())
867
+
868
+ if S.EmptySet in sets:
869
+ return S.EmptySet
870
+
871
+ return Basic.__new__(cls, *sets, **assumptions)
872
+
873
+ @property
874
+ def sets(self):
875
+ return self.args
876
+
877
+ def flatten(self):
878
+ def _flatten(sets):
879
+ for s in sets:
880
+ if s.is_ProductSet:
881
+ yield from _flatten(s.sets)
882
+ else:
883
+ yield s
884
+ return ProductSet(*_flatten(self.sets))
885
+
886
+
887
+
888
+ def _contains(self, element):
889
+ """
890
+ ``in`` operator for ProductSets.
891
+
892
+ Examples
893
+ ========
894
+
895
+ >>> from sympy import Interval
896
+ >>> (2, 3) in Interval(0, 5) * Interval(0, 5)
897
+ True
898
+
899
+ >>> (10, 10) in Interval(0, 5) * Interval(0, 5)
900
+ False
901
+
902
+ Passes operation on to constituent sets
903
+ """
904
+ if element.is_Symbol:
905
+ return None
906
+
907
+ if not isinstance(element, Tuple) or len(element) != len(self.sets):
908
+ return False
909
+
910
+ return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
911
+
912
+ def as_relational(self, *symbols):
913
+ symbols = [_sympify(s) for s in symbols]
914
+ if len(symbols) != len(self.sets) or not all(
915
+ i.is_Symbol for i in symbols):
916
+ raise ValueError(
917
+ 'number of symbols must match the number of sets')
918
+ return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
919
+
920
+ @property
921
+ def _boundary(self):
922
+ return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
923
+ for j, b in enumerate(self.sets)))
924
+ for i, a in enumerate(self.sets)))
925
+
926
+ @property
927
+ def is_iterable(self):
928
+ """
929
+ A property method which tests whether a set is iterable or not.
930
+ Returns True if set is iterable, otherwise returns False.
931
+
932
+ Examples
933
+ ========
934
+
935
+ >>> from sympy import FiniteSet, Interval
936
+ >>> I = Interval(0, 1)
937
+ >>> A = FiniteSet(1, 2, 3, 4, 5)
938
+ >>> I.is_iterable
939
+ False
940
+ >>> A.is_iterable
941
+ True
942
+
943
+ """
944
+ return all(set.is_iterable for set in self.sets)
945
+
946
+ def __iter__(self):
947
+ """
948
+ A method which implements is_iterable property method.
949
+ If self.is_iterable returns True (both constituent sets are iterable),
950
+ then return the Cartesian Product. Otherwise, raise TypeError.
951
+ """
952
+ return iproduct(*self.sets)
953
+
954
+ @property
955
+ def is_empty(self):
956
+ return fuzzy_or(s.is_empty for s in self.sets)
957
+
958
+ @property
959
+ def is_finite_set(self):
960
+ all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
961
+ return fuzzy_or([self.is_empty, all_finite])
962
+
963
+ @property
964
+ def _measure(self):
965
+ measure = 1
966
+ for s in self.sets:
967
+ measure *= s.measure
968
+ return measure
969
+
970
+ def _kind(self):
971
+ return SetKind(TupleKind(*(i.kind.element_kind for i in self.args)))
972
+
973
+ def __len__(self):
974
+ return reduce(lambda a, b: a*b, (len(s) for s in self.args))
975
+
976
+ def __bool__(self):
977
+ return all(self.sets)
978
+
979
+
980
+ class Interval(Set):
981
+ """
982
+ Represents a real interval as a Set.
983
+
984
+ Usage:
985
+ Returns an interval with end points ``start`` and ``end``.
986
+
987
+ For ``left_open=True`` (default ``left_open`` is ``False``) the interval
988
+ will be open on the left. Similarly, for ``right_open=True`` the interval
989
+ will be open on the right.
990
+
991
+ Examples
992
+ ========
993
+
994
+ >>> from sympy import Symbol, Interval
995
+ >>> Interval(0, 1)
996
+ Interval(0, 1)
997
+ >>> Interval.Ropen(0, 1)
998
+ Interval.Ropen(0, 1)
999
+ >>> Interval.Ropen(0, 1)
1000
+ Interval.Ropen(0, 1)
1001
+ >>> Interval.Lopen(0, 1)
1002
+ Interval.Lopen(0, 1)
1003
+ >>> Interval.open(0, 1)
1004
+ Interval.open(0, 1)
1005
+
1006
+ >>> a = Symbol('a', real=True)
1007
+ >>> Interval(0, a)
1008
+ Interval(0, a)
1009
+
1010
+ Notes
1011
+ =====
1012
+ - Only real end points are supported
1013
+ - ``Interval(a, b)`` with $a > b$ will return the empty set
1014
+ - Use the ``evalf()`` method to turn an Interval into an mpmath
1015
+ ``mpi`` interval instance
1016
+
1017
+ References
1018
+ ==========
1019
+
1020
+ .. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
1021
+ """
1022
+ is_Interval = True
1023
+
1024
+ def __new__(cls, start, end, left_open=False, right_open=False):
1025
+
1026
+ start = _sympify(start)
1027
+ end = _sympify(end)
1028
+ left_open = _sympify(left_open)
1029
+ right_open = _sympify(right_open)
1030
+
1031
+ if not all(isinstance(a, (type(true), type(false)))
1032
+ for a in [left_open, right_open]):
1033
+ raise NotImplementedError(
1034
+ "left_open and right_open can have only true/false values, "
1035
+ "got %s and %s" % (left_open, right_open))
1036
+
1037
+ # Only allow real intervals
1038
+ if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))):
1039
+ raise ValueError("Non-real intervals are not supported")
1040
+
1041
+ # evaluate if possible
1042
+ if is_lt(end, start):
1043
+ return S.EmptySet
1044
+ elif (end - start).is_negative:
1045
+ return S.EmptySet
1046
+
1047
+ if end == start and (left_open or right_open):
1048
+ return S.EmptySet
1049
+ if end == start and not (left_open or right_open):
1050
+ if start is S.Infinity or start is S.NegativeInfinity:
1051
+ return S.EmptySet
1052
+ return FiniteSet(end)
1053
+
1054
+ # Make sure infinite interval end points are open.
1055
+ if start is S.NegativeInfinity:
1056
+ left_open = true
1057
+ if end is S.Infinity:
1058
+ right_open = true
1059
+ if start == S.Infinity or end == S.NegativeInfinity:
1060
+ return S.EmptySet
1061
+
1062
+ return Basic.__new__(cls, start, end, left_open, right_open)
1063
+
1064
+ @property
1065
+ def start(self):
1066
+ """
1067
+ The left end point of the interval.
1068
+
1069
+ This property takes the same value as the ``inf`` property.
1070
+
1071
+ Examples
1072
+ ========
1073
+
1074
+ >>> from sympy import Interval
1075
+ >>> Interval(0, 1).start
1076
+ 0
1077
+
1078
+ """
1079
+ return self._args[0]
1080
+
1081
+ @property
1082
+ def end(self):
1083
+ """
1084
+ The right end point of the interval.
1085
+
1086
+ This property takes the same value as the ``sup`` property.
1087
+
1088
+ Examples
1089
+ ========
1090
+
1091
+ >>> from sympy import Interval
1092
+ >>> Interval(0, 1).end
1093
+ 1
1094
+
1095
+ """
1096
+ return self._args[1]
1097
+
1098
+ @property
1099
+ def left_open(self):
1100
+ """
1101
+ True if interval is left-open.
1102
+
1103
+ Examples
1104
+ ========
1105
+
1106
+ >>> from sympy import Interval
1107
+ >>> Interval(0, 1, left_open=True).left_open
1108
+ True
1109
+ >>> Interval(0, 1, left_open=False).left_open
1110
+ False
1111
+
1112
+ """
1113
+ return self._args[2]
1114
+
1115
+ @property
1116
+ def right_open(self):
1117
+ """
1118
+ True if interval is right-open.
1119
+
1120
+ Examples
1121
+ ========
1122
+
1123
+ >>> from sympy import Interval
1124
+ >>> Interval(0, 1, right_open=True).right_open
1125
+ True
1126
+ >>> Interval(0, 1, right_open=False).right_open
1127
+ False
1128
+
1129
+ """
1130
+ return self._args[3]
1131
+
1132
+ @classmethod
1133
+ def open(cls, a, b):
1134
+ """Return an interval including neither boundary."""
1135
+ return cls(a, b, True, True)
1136
+
1137
+ @classmethod
1138
+ def Lopen(cls, a, b):
1139
+ """Return an interval not including the left boundary."""
1140
+ return cls(a, b, True, False)
1141
+
1142
+ @classmethod
1143
+ def Ropen(cls, a, b):
1144
+ """Return an interval not including the right boundary."""
1145
+ return cls(a, b, False, True)
1146
+
1147
+ @property
1148
+ def _inf(self):
1149
+ return self.start
1150
+
1151
+ @property
1152
+ def _sup(self):
1153
+ return self.end
1154
+
1155
+ @property
1156
+ def left(self):
1157
+ return self.start
1158
+
1159
+ @property
1160
+ def right(self):
1161
+ return self.end
1162
+
1163
+ @property
1164
+ def is_empty(self):
1165
+ if self.left_open or self.right_open:
1166
+ cond = self.start >= self.end # One/both bounds open
1167
+ else:
1168
+ cond = self.start > self.end # Both bounds closed
1169
+ return fuzzy_bool(cond)
1170
+
1171
+ @property
1172
+ def is_finite_set(self):
1173
+ return self.measure.is_zero
1174
+
1175
+ def _complement(self, other):
1176
+ if other == S.Reals:
1177
+ a = Interval(S.NegativeInfinity, self.start,
1178
+ True, not self.left_open)
1179
+ b = Interval(self.end, S.Infinity, not self.right_open, True)
1180
+ return Union(a, b)
1181
+
1182
+ if isinstance(other, FiniteSet):
1183
+ nums = [m for m in other.args if m.is_number]
1184
+ if nums == []:
1185
+ return None
1186
+
1187
+ return Set._complement(self, other)
1188
+
1189
+ @property
1190
+ def _boundary(self):
1191
+ finite_points = [p for p in (self.start, self.end)
1192
+ if abs(p) != S.Infinity]
1193
+ return FiniteSet(*finite_points)
1194
+
1195
+ def _contains(self, other):
1196
+ if (not isinstance(other, Expr) or other is S.NaN
1197
+ or other.is_real is False or other.has(S.ComplexInfinity)):
1198
+ # if an expression has zoo it will be zoo or nan
1199
+ # and neither of those is real
1200
+ return false
1201
+
1202
+ if self.start is S.NegativeInfinity and self.end is S.Infinity:
1203
+ if other.is_real is not None:
1204
+ return other.is_real
1205
+
1206
+ d = Dummy()
1207
+ return self.as_relational(d).subs(d, other)
1208
+
1209
+ def as_relational(self, x):
1210
+ """Rewrite an interval in terms of inequalities and logic operators."""
1211
+ x = sympify(x)
1212
+ if self.right_open:
1213
+ right = x < self.end
1214
+ else:
1215
+ right = x <= self.end
1216
+ if self.left_open:
1217
+ left = self.start < x
1218
+ else:
1219
+ left = self.start <= x
1220
+ return And(left, right)
1221
+
1222
+ @property
1223
+ def _measure(self):
1224
+ return self.end - self.start
1225
+
1226
+ def _kind(self):
1227
+ return SetKind(NumberKind)
1228
+
1229
+ def to_mpi(self, prec=53):
1230
+ return mpi(mpf(self.start._eval_evalf(prec)),
1231
+ mpf(self.end._eval_evalf(prec)))
1232
+
1233
+ def _eval_evalf(self, prec):
1234
+ return Interval(self.left._evalf(prec), self.right._evalf(prec),
1235
+ left_open=self.left_open, right_open=self.right_open)
1236
+
1237
+ def _is_comparable(self, other):
1238
+ is_comparable = self.start.is_comparable
1239
+ is_comparable &= self.end.is_comparable
1240
+ is_comparable &= other.start.is_comparable
1241
+ is_comparable &= other.end.is_comparable
1242
+
1243
+ return is_comparable
1244
+
1245
+ @property
1246
+ def is_left_unbounded(self):
1247
+ """Return ``True`` if the left endpoint is negative infinity. """
1248
+ return self.left is S.NegativeInfinity or self.left == Float("-inf")
1249
+
1250
+ @property
1251
+ def is_right_unbounded(self):
1252
+ """Return ``True`` if the right endpoint is positive infinity. """
1253
+ return self.right is S.Infinity or self.right == Float("+inf")
1254
+
1255
+ def _eval_Eq(self, other):
1256
+ if not isinstance(other, Interval):
1257
+ if isinstance(other, FiniteSet):
1258
+ return false
1259
+ elif isinstance(other, Set):
1260
+ return None
1261
+ return false
1262
+
1263
+
1264
+ class Union(Set, LatticeOp):
1265
+ """
1266
+ Represents a union of sets as a :class:`Set`.
1267
+
1268
+ Examples
1269
+ ========
1270
+
1271
+ >>> from sympy import Union, Interval
1272
+ >>> Union(Interval(1, 2), Interval(3, 4))
1273
+ Union(Interval(1, 2), Interval(3, 4))
1274
+
1275
+ The Union constructor will always try to merge overlapping intervals,
1276
+ if possible. For example:
1277
+
1278
+ >>> Union(Interval(1, 2), Interval(2, 3))
1279
+ Interval(1, 3)
1280
+
1281
+ See Also
1282
+ ========
1283
+
1284
+ Intersection
1285
+
1286
+ References
1287
+ ==========
1288
+
1289
+ .. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
1290
+ """
1291
+ is_Union = True
1292
+
1293
+ @property
1294
+ def identity(self):
1295
+ return S.EmptySet
1296
+
1297
+ @property
1298
+ def zero(self):
1299
+ return S.UniversalSet
1300
+
1301
+ def __new__(cls, *args, **kwargs):
1302
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
1303
+
1304
+ # flatten inputs to merge intersections and iterables
1305
+ args = _sympify(args)
1306
+
1307
+ # Reduce sets using known rules
1308
+ if evaluate:
1309
+ args = list(cls._new_args_filter(args))
1310
+ return simplify_union(args)
1311
+
1312
+ args = list(ordered(args, Set._infimum_key))
1313
+
1314
+ obj = Basic.__new__(cls, *args)
1315
+ obj._argset = frozenset(args)
1316
+ return obj
1317
+
1318
+ @property
1319
+ def args(self):
1320
+ return self._args
1321
+
1322
+ def _complement(self, universe):
1323
+ # DeMorgan's Law
1324
+ return Intersection(s.complement(universe) for s in self.args)
1325
+
1326
+ @property
1327
+ def _inf(self):
1328
+ # We use Min so that sup is meaningful in combination with symbolic
1329
+ # interval end points.
1330
+ return Min(*[set.inf for set in self.args])
1331
+
1332
+ @property
1333
+ def _sup(self):
1334
+ # We use Max so that sup is meaningful in combination with symbolic
1335
+ # end points.
1336
+ return Max(*[set.sup for set in self.args])
1337
+
1338
+ @property
1339
+ def is_empty(self):
1340
+ return fuzzy_and(set.is_empty for set in self.args)
1341
+
1342
+ @property
1343
+ def is_finite_set(self):
1344
+ return fuzzy_and(set.is_finite_set for set in self.args)
1345
+
1346
+ @property
1347
+ def _measure(self):
1348
+ # Measure of a union is the sum of the measures of the sets minus
1349
+ # the sum of their pairwise intersections plus the sum of their
1350
+ # triple-wise intersections minus ... etc...
1351
+
1352
+ # Sets is a collection of intersections and a set of elementary
1353
+ # sets which made up those intersections (called "sos" for set of sets)
1354
+ # An example element might of this list might be:
1355
+ # ( {A,B,C}, A.intersect(B).intersect(C) )
1356
+
1357
+ # Start with just elementary sets ( ({A}, A), ({B}, B), ... )
1358
+ # Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
1359
+ sets = [(FiniteSet(s), s) for s in self.args]
1360
+ measure = 0
1361
+ parity = 1
1362
+ while sets:
1363
+ # Add up the measure of these sets and add or subtract it to total
1364
+ measure += parity * sum(inter.measure for sos, inter in sets)
1365
+
1366
+ # For each intersection in sets, compute the intersection with every
1367
+ # other set not already part of the intersection.
1368
+ sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
1369
+ for sos, intersection in sets for newset in self.args
1370
+ if newset not in sos)
1371
+
1372
+ # Clear out sets with no measure
1373
+ sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
1374
+
1375
+ # Clear out duplicates
1376
+ sos_list = []
1377
+ sets_list = []
1378
+ for _set in sets:
1379
+ if _set[0] in sos_list:
1380
+ continue
1381
+ else:
1382
+ sos_list.append(_set[0])
1383
+ sets_list.append(_set)
1384
+ sets = sets_list
1385
+
1386
+ # Flip Parity - next time subtract/add if we added/subtracted here
1387
+ parity *= -1
1388
+ return measure
1389
+
1390
+ def _kind(self):
1391
+ kinds = tuple(arg.kind for arg in self.args if arg is not S.EmptySet)
1392
+ if not kinds:
1393
+ return SetKind()
1394
+ elif all(i == kinds[0] for i in kinds):
1395
+ return kinds[0]
1396
+ else:
1397
+ return SetKind(UndefinedKind)
1398
+
1399
+ @property
1400
+ def _boundary(self):
1401
+ def boundary_of_set(i):
1402
+ """ The boundary of set i minus interior of all other sets """
1403
+ b = self.args[i].boundary
1404
+ for j, a in enumerate(self.args):
1405
+ if j != i:
1406
+ b = b - a.interior
1407
+ return b
1408
+ return Union(*map(boundary_of_set, range(len(self.args))))
1409
+
1410
+ def _contains(self, other):
1411
+ return Or(*[s.contains(other) for s in self.args])
1412
+
1413
+ def is_subset(self, other):
1414
+ return fuzzy_and(s.is_subset(other) for s in self.args)
1415
+
1416
+ def as_relational(self, symbol):
1417
+ """Rewrite a Union in terms of equalities and logic operators. """
1418
+ if (len(self.args) == 2 and
1419
+ all(isinstance(i, Interval) for i in self.args)):
1420
+ # optimization to give 3 args as (x > 1) & (x < 5) & Ne(x, 3)
1421
+ # instead of as 4, ((1 <= x) & (x < 3)) | ((x <= 5) & (3 < x))
1422
+ # XXX: This should be ideally be improved to handle any number of
1423
+ # intervals and also not to assume that the intervals are in any
1424
+ # particular sorted order.
1425
+ a, b = self.args
1426
+ if a.sup == b.inf and a.right_open and b.left_open:
1427
+ mincond = symbol > a.inf if a.left_open else symbol >= a.inf
1428
+ maxcond = symbol < b.sup if b.right_open else symbol <= b.sup
1429
+ necond = Ne(symbol, a.sup)
1430
+ return And(necond, mincond, maxcond)
1431
+ return Or(*[i.as_relational(symbol) for i in self.args])
1432
+
1433
+ @property
1434
+ def is_iterable(self):
1435
+ return all(arg.is_iterable for arg in self.args)
1436
+
1437
+ def __iter__(self):
1438
+ return roundrobin(*(iter(arg) for arg in self.args))
1439
+
1440
+
1441
+ class Intersection(Set, LatticeOp):
1442
+ """
1443
+ Represents an intersection of sets as a :class:`Set`.
1444
+
1445
+ Examples
1446
+ ========
1447
+
1448
+ >>> from sympy import Intersection, Interval
1449
+ >>> Intersection(Interval(1, 3), Interval(2, 4))
1450
+ Interval(2, 3)
1451
+
1452
+ We often use the .intersect method
1453
+
1454
+ >>> Interval(1,3).intersect(Interval(2,4))
1455
+ Interval(2, 3)
1456
+
1457
+ See Also
1458
+ ========
1459
+
1460
+ Union
1461
+
1462
+ References
1463
+ ==========
1464
+
1465
+ .. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
1466
+ """
1467
+ is_Intersection = True
1468
+
1469
+ @property
1470
+ def identity(self):
1471
+ return S.UniversalSet
1472
+
1473
+ @property
1474
+ def zero(self):
1475
+ return S.EmptySet
1476
+
1477
+ def __new__(cls, *args, **kwargs):
1478
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
1479
+
1480
+ # flatten inputs to merge intersections and iterables
1481
+ args = list(ordered(set(_sympify(args))))
1482
+
1483
+ # Reduce sets using known rules
1484
+ if evaluate:
1485
+ args = list(cls._new_args_filter(args))
1486
+ return simplify_intersection(args)
1487
+
1488
+ args = list(ordered(args, Set._infimum_key))
1489
+
1490
+ obj = Basic.__new__(cls, *args)
1491
+ obj._argset = frozenset(args)
1492
+ return obj
1493
+
1494
+ @property
1495
+ def args(self):
1496
+ return self._args
1497
+
1498
+ @property
1499
+ def is_iterable(self):
1500
+ return any(arg.is_iterable for arg in self.args)
1501
+
1502
+ @property
1503
+ def is_finite_set(self):
1504
+ if fuzzy_or(arg.is_finite_set for arg in self.args):
1505
+ return True
1506
+
1507
+ def _kind(self):
1508
+ kinds = tuple(arg.kind for arg in self.args if arg is not S.UniversalSet)
1509
+ if not kinds:
1510
+ return SetKind(UndefinedKind)
1511
+ elif all(i == kinds[0] for i in kinds):
1512
+ return kinds[0]
1513
+ else:
1514
+ return SetKind()
1515
+
1516
+ @property
1517
+ def _inf(self):
1518
+ raise NotImplementedError()
1519
+
1520
+ @property
1521
+ def _sup(self):
1522
+ raise NotImplementedError()
1523
+
1524
+ def _contains(self, other):
1525
+ return And(*[set.contains(other) for set in self.args])
1526
+
1527
+ def __iter__(self):
1528
+ sets_sift = sift(self.args, lambda x: x.is_iterable)
1529
+
1530
+ completed = False
1531
+ candidates = sets_sift[True] + sets_sift[None]
1532
+
1533
+ finite_candidates, others = [], []
1534
+ for candidate in candidates:
1535
+ length = None
1536
+ try:
1537
+ length = len(candidate)
1538
+ except TypeError:
1539
+ others.append(candidate)
1540
+
1541
+ if length is not None:
1542
+ finite_candidates.append(candidate)
1543
+ finite_candidates.sort(key=len)
1544
+
1545
+ for s in finite_candidates + others:
1546
+ other_sets = set(self.args) - {s}
1547
+ other = Intersection(*other_sets, evaluate=False)
1548
+ completed = True
1549
+ for x in s:
1550
+ try:
1551
+ if x in other:
1552
+ yield x
1553
+ except TypeError:
1554
+ completed = False
1555
+ if completed:
1556
+ return
1557
+
1558
+ if not completed:
1559
+ if not candidates:
1560
+ raise TypeError("None of the constituent sets are iterable")
1561
+ raise TypeError(
1562
+ "The computation had not completed because of the "
1563
+ "undecidable set membership is found in every candidates.")
1564
+
1565
+ @staticmethod
1566
+ def _handle_finite_sets(args):
1567
+ '''Simplify intersection of one or more FiniteSets and other sets'''
1568
+
1569
+ # First separate the FiniteSets from the others
1570
+ fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
1571
+
1572
+ # Let the caller handle intersection of non-FiniteSets
1573
+ if not fs_args:
1574
+ return
1575
+
1576
+ # Convert to Python sets and build the set of all elements
1577
+ fs_sets = [set(fs) for fs in fs_args]
1578
+ all_elements = reduce(lambda a, b: a | b, fs_sets, set())
1579
+
1580
+ # Extract elements that are definitely in or definitely not in the
1581
+ # intersection. Here we check contains for all of args.
1582
+ definite = set()
1583
+ for e in all_elements:
1584
+ inall = fuzzy_and(s.contains(e) for s in args)
1585
+ if inall is True:
1586
+ definite.add(e)
1587
+ if inall is not None:
1588
+ for s in fs_sets:
1589
+ s.discard(e)
1590
+
1591
+ # At this point all elements in all of fs_sets are possibly in the
1592
+ # intersection. In some cases this is because they are definitely in
1593
+ # the intersection of the finite sets but it's not clear if they are
1594
+ # members of others. We might have {m, n}, {m}, and Reals where we
1595
+ # don't know if m or n is real. We want to remove n here but it is
1596
+ # possibly in because it might be equal to m. So what we do now is
1597
+ # extract the elements that are definitely in the remaining finite
1598
+ # sets iteratively until we end up with {n}, {}. At that point if we
1599
+ # get any empty set all remaining elements are discarded.
1600
+
1601
+ fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
1602
+
1603
+ # Need fuzzy containment testing
1604
+ fs_symsets = [FiniteSet(*s) for s in fs_sets]
1605
+
1606
+ while fs_elements:
1607
+ for e in fs_elements:
1608
+ infs = fuzzy_and(s.contains(e) for s in fs_symsets)
1609
+ if infs is True:
1610
+ definite.add(e)
1611
+ if infs is not None:
1612
+ for n, s in enumerate(fs_sets):
1613
+ # Update Python set and FiniteSet
1614
+ if e in s:
1615
+ s.remove(e)
1616
+ fs_symsets[n] = FiniteSet(*s)
1617
+ fs_elements.remove(e)
1618
+ break
1619
+ # If we completed the for loop without removing anything we are
1620
+ # done so quit the outer while loop
1621
+ else:
1622
+ break
1623
+
1624
+ # If any of the sets of remainder elements is empty then we discard
1625
+ # all of them for the intersection.
1626
+ if not all(fs_sets):
1627
+ fs_sets = [set()]
1628
+
1629
+ # Here we fold back the definitely included elements into each fs.
1630
+ # Since they are definitely included they must have been members of
1631
+ # each FiniteSet to begin with. We could instead fold these in with a
1632
+ # Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
1633
+ if definite:
1634
+ fs_sets = [fs | definite for fs in fs_sets]
1635
+
1636
+ if fs_sets == [set()]:
1637
+ return S.EmptySet
1638
+
1639
+ sets = [FiniteSet(*s) for s in fs_sets]
1640
+
1641
+ # Any set in others is redundant if it contains all the elements that
1642
+ # are in the finite sets so we don't need it in the Intersection
1643
+ all_elements = reduce(lambda a, b: a | b, fs_sets, set())
1644
+ is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
1645
+ others = [o for o in others if not is_redundant(o)]
1646
+
1647
+ if others:
1648
+ rest = Intersection(*others)
1649
+ # XXX: Maybe this shortcut should be at the beginning. For large
1650
+ # FiniteSets it could much more efficient to process the other
1651
+ # sets first...
1652
+ if rest is S.EmptySet:
1653
+ return S.EmptySet
1654
+ # Flatten the Intersection
1655
+ if rest.is_Intersection:
1656
+ sets.extend(rest.args)
1657
+ else:
1658
+ sets.append(rest)
1659
+
1660
+ if len(sets) == 1:
1661
+ return sets[0]
1662
+ else:
1663
+ return Intersection(*sets, evaluate=False)
1664
+
1665
+ def as_relational(self, symbol):
1666
+ """Rewrite an Intersection in terms of equalities and logic operators"""
1667
+ return And(*[set.as_relational(symbol) for set in self.args])
1668
+
1669
+
1670
+ class Complement(Set):
1671
+ r"""Represents the set difference or relative complement of a set with
1672
+ another set.
1673
+
1674
+ $$A - B = \{x \in A \mid x \notin B\}$$
1675
+
1676
+
1677
+ Examples
1678
+ ========
1679
+
1680
+ >>> from sympy import Complement, FiniteSet
1681
+ >>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
1682
+ {0, 2}
1683
+
1684
+ See Also
1685
+ =========
1686
+
1687
+ Intersection, Union
1688
+
1689
+ References
1690
+ ==========
1691
+
1692
+ .. [1] https://mathworld.wolfram.com/ComplementSet.html
1693
+ """
1694
+
1695
+ is_Complement = True
1696
+
1697
+ def __new__(cls, a, b, evaluate=True):
1698
+ a, b = map(_sympify, (a, b))
1699
+ if evaluate:
1700
+ return Complement.reduce(a, b)
1701
+
1702
+ return Basic.__new__(cls, a, b)
1703
+
1704
+ @staticmethod
1705
+ def reduce(A, B):
1706
+ """
1707
+ Simplify a :class:`Complement`.
1708
+
1709
+ """
1710
+ if B == S.UniversalSet or A.is_subset(B):
1711
+ return S.EmptySet
1712
+
1713
+ if isinstance(B, Union):
1714
+ return Intersection(*(s.complement(A) for s in B.args))
1715
+
1716
+ result = B._complement(A)
1717
+ if result is not None:
1718
+ return result
1719
+ else:
1720
+ return Complement(A, B, evaluate=False)
1721
+
1722
+ def _contains(self, other):
1723
+ A = self.args[0]
1724
+ B = self.args[1]
1725
+ return And(A.contains(other), Not(B.contains(other)))
1726
+
1727
+ def as_relational(self, symbol):
1728
+ """Rewrite a complement in terms of equalities and logic
1729
+ operators"""
1730
+ A, B = self.args
1731
+
1732
+ A_rel = A.as_relational(symbol)
1733
+ B_rel = Not(B.as_relational(symbol))
1734
+
1735
+ return And(A_rel, B_rel)
1736
+
1737
+ def _kind(self):
1738
+ return self.args[0].kind
1739
+
1740
+ @property
1741
+ def is_iterable(self):
1742
+ if self.args[0].is_iterable:
1743
+ return True
1744
+
1745
+ @property
1746
+ def is_finite_set(self):
1747
+ A, B = self.args
1748
+ a_finite = A.is_finite_set
1749
+ if a_finite is True:
1750
+ return True
1751
+ elif a_finite is False and B.is_finite_set:
1752
+ return False
1753
+
1754
+ def __iter__(self):
1755
+ A, B = self.args
1756
+ for a in A:
1757
+ if a not in B:
1758
+ yield a
1759
+ else:
1760
+ continue
1761
+
1762
+
1763
+ class EmptySet(Set, metaclass=Singleton):
1764
+ """
1765
+ Represents the empty set. The empty set is available as a singleton
1766
+ as ``S.EmptySet``.
1767
+
1768
+ Examples
1769
+ ========
1770
+
1771
+ >>> from sympy import S, Interval
1772
+ >>> S.EmptySet
1773
+ EmptySet
1774
+
1775
+ >>> Interval(1, 2).intersect(S.EmptySet)
1776
+ EmptySet
1777
+
1778
+ See Also
1779
+ ========
1780
+
1781
+ UniversalSet
1782
+
1783
+ References
1784
+ ==========
1785
+
1786
+ .. [1] https://en.wikipedia.org/wiki/Empty_set
1787
+ """
1788
+ is_empty = True
1789
+ is_finite_set = True
1790
+ is_FiniteSet = True
1791
+
1792
+ @property # type: ignore
1793
+ @deprecated(
1794
+ """
1795
+ The is_EmptySet attribute of Set objects is deprecated.
1796
+ Use 's is S.EmptySet" or 's.is_empty' instead.
1797
+ """,
1798
+ deprecated_since_version="1.5",
1799
+ active_deprecations_target="deprecated-is-emptyset",
1800
+ )
1801
+ def is_EmptySet(self):
1802
+ return True
1803
+
1804
+ @property
1805
+ def _measure(self):
1806
+ return 0
1807
+
1808
+ def _contains(self, other):
1809
+ return false
1810
+
1811
+ def as_relational(self, symbol):
1812
+ return false
1813
+
1814
+ def __len__(self):
1815
+ return 0
1816
+
1817
+ def __iter__(self):
1818
+ return iter([])
1819
+
1820
+ def _eval_powerset(self):
1821
+ return FiniteSet(self)
1822
+
1823
+ @property
1824
+ def _boundary(self):
1825
+ return self
1826
+
1827
+ def _complement(self, other):
1828
+ return other
1829
+
1830
+ def _kind(self):
1831
+ return SetKind()
1832
+
1833
+ def _symmetric_difference(self, other):
1834
+ return other
1835
+
1836
+
1837
+ class UniversalSet(Set, metaclass=Singleton):
1838
+ """
1839
+ Represents the set of all things.
1840
+ The universal set is available as a singleton as ``S.UniversalSet``.
1841
+
1842
+ Examples
1843
+ ========
1844
+
1845
+ >>> from sympy import S, Interval
1846
+ >>> S.UniversalSet
1847
+ UniversalSet
1848
+
1849
+ >>> Interval(1, 2).intersect(S.UniversalSet)
1850
+ Interval(1, 2)
1851
+
1852
+ See Also
1853
+ ========
1854
+
1855
+ EmptySet
1856
+
1857
+ References
1858
+ ==========
1859
+
1860
+ .. [1] https://en.wikipedia.org/wiki/Universal_set
1861
+ """
1862
+
1863
+ is_UniversalSet = True
1864
+ is_empty = False
1865
+ is_finite_set = False
1866
+
1867
+ def _complement(self, other):
1868
+ return S.EmptySet
1869
+
1870
+ def _symmetric_difference(self, other):
1871
+ return other
1872
+
1873
+ @property
1874
+ def _measure(self):
1875
+ return S.Infinity
1876
+
1877
+ def _kind(self):
1878
+ return SetKind(UndefinedKind)
1879
+
1880
+ def _contains(self, other):
1881
+ return true
1882
+
1883
+ def as_relational(self, symbol):
1884
+ return true
1885
+
1886
+ @property
1887
+ def _boundary(self):
1888
+ return S.EmptySet
1889
+
1890
+
1891
+ class FiniteSet(Set):
1892
+ """
1893
+ Represents a finite set of Sympy expressions.
1894
+
1895
+ Examples
1896
+ ========
1897
+
1898
+ >>> from sympy import FiniteSet, Symbol, Interval, Naturals0
1899
+ >>> FiniteSet(1, 2, 3, 4)
1900
+ {1, 2, 3, 4}
1901
+ >>> 3 in FiniteSet(1, 2, 3, 4)
1902
+ True
1903
+ >>> FiniteSet(1, (1, 2), Symbol('x'))
1904
+ {1, x, (1, 2)}
1905
+ >>> FiniteSet(Interval(1, 2), Naturals0, {1, 2})
1906
+ FiniteSet({1, 2}, Interval(1, 2), Naturals0)
1907
+ >>> members = [1, 2, 3, 4]
1908
+ >>> f = FiniteSet(*members)
1909
+ >>> f
1910
+ {1, 2, 3, 4}
1911
+ >>> f - FiniteSet(2)
1912
+ {1, 3, 4}
1913
+ >>> f + FiniteSet(2, 5)
1914
+ {1, 2, 3, 4, 5}
1915
+
1916
+ References
1917
+ ==========
1918
+
1919
+ .. [1] https://en.wikipedia.org/wiki/Finite_set
1920
+ """
1921
+ is_FiniteSet = True
1922
+ is_iterable = True
1923
+ is_empty = False
1924
+ is_finite_set = True
1925
+
1926
+ def __new__(cls, *args, **kwargs):
1927
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
1928
+ if evaluate:
1929
+ args = list(map(sympify, args))
1930
+
1931
+ if len(args) == 0:
1932
+ return S.EmptySet
1933
+ else:
1934
+ args = list(map(sympify, args))
1935
+
1936
+ # keep the form of the first canonical arg
1937
+ dargs = {}
1938
+ for i in reversed(list(ordered(args))):
1939
+ if i.is_Symbol:
1940
+ dargs[i] = i
1941
+ else:
1942
+ try:
1943
+ dargs[i.as_dummy()] = i
1944
+ except TypeError:
1945
+ # e.g. i = class without args like `Interval`
1946
+ dargs[i] = i
1947
+ _args_set = set(dargs.values())
1948
+ args = list(ordered(_args_set, Set._infimum_key))
1949
+ obj = Basic.__new__(cls, *args)
1950
+ obj._args_set = _args_set
1951
+ return obj
1952
+
1953
+
1954
+ def __iter__(self):
1955
+ return iter(self.args)
1956
+
1957
+ def _complement(self, other):
1958
+ if isinstance(other, Interval):
1959
+ # Splitting in sub-intervals is only done for S.Reals;
1960
+ # other cases that need splitting will first pass through
1961
+ # Set._complement().
1962
+ nums, syms = [], []
1963
+ for m in self.args:
1964
+ if m.is_number and m.is_real:
1965
+ nums.append(m)
1966
+ elif m.is_real == False:
1967
+ pass # drop non-reals
1968
+ else:
1969
+ syms.append(m) # various symbolic expressions
1970
+ if other == S.Reals and nums != []:
1971
+ nums.sort()
1972
+ intervals = [] # Build up a list of intervals between the elements
1973
+ intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
1974
+ for a, b in zip(nums[:-1], nums[1:]):
1975
+ intervals.append(Interval(a, b, True, True)) # both open
1976
+ intervals.append(Interval(nums[-1], S.Infinity, True, True))
1977
+ if syms != []:
1978
+ return Complement(Union(*intervals, evaluate=False),
1979
+ FiniteSet(*syms), evaluate=False)
1980
+ else:
1981
+ return Union(*intervals, evaluate=False)
1982
+ elif nums == []: # no splitting necessary or possible:
1983
+ if syms:
1984
+ return Complement(other, FiniteSet(*syms), evaluate=False)
1985
+ else:
1986
+ return other
1987
+
1988
+ elif isinstance(other, FiniteSet):
1989
+ unk = []
1990
+ for i in self:
1991
+ c = sympify(other.contains(i))
1992
+ if c is not S.true and c is not S.false:
1993
+ unk.append(i)
1994
+ unk = FiniteSet(*unk)
1995
+ if unk == self:
1996
+ return
1997
+ not_true = []
1998
+ for i in other:
1999
+ c = sympify(self.contains(i))
2000
+ if c is not S.true:
2001
+ not_true.append(i)
2002
+ return Complement(FiniteSet(*not_true), unk)
2003
+
2004
+ return Set._complement(self, other)
2005
+
2006
+ def _contains(self, other):
2007
+ """
2008
+ Tests whether an element, other, is in the set.
2009
+
2010
+ Explanation
2011
+ ===========
2012
+
2013
+ The actual test is for mathematical equality (as opposed to
2014
+ syntactical equality). In the worst case all elements of the
2015
+ set must be checked.
2016
+
2017
+ Examples
2018
+ ========
2019
+
2020
+ >>> from sympy import FiniteSet
2021
+ >>> 1 in FiniteSet(1, 2)
2022
+ True
2023
+ >>> 5 in FiniteSet(1, 2)
2024
+ False
2025
+
2026
+ """
2027
+ if other in self._args_set:
2028
+ return True
2029
+ else:
2030
+ # evaluate=True is needed to override evaluate=False context;
2031
+ # we need Eq to do the evaluation
2032
+ return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
2033
+ for e in self.args)
2034
+
2035
+ def _eval_is_subset(self, other):
2036
+ return fuzzy_and(other._contains(e) for e in self.args)
2037
+
2038
+ @property
2039
+ def _boundary(self):
2040
+ return self
2041
+
2042
+ @property
2043
+ def _inf(self):
2044
+ return Min(*self)
2045
+
2046
+ @property
2047
+ def _sup(self):
2048
+ return Max(*self)
2049
+
2050
+ @property
2051
+ def measure(self):
2052
+ return 0
2053
+
2054
+ def _kind(self):
2055
+ if not self.args:
2056
+ return SetKind()
2057
+ elif all(i.kind == self.args[0].kind for i in self.args):
2058
+ return SetKind(self.args[0].kind)
2059
+ else:
2060
+ return SetKind(UndefinedKind)
2061
+
2062
+ def __len__(self):
2063
+ return len(self.args)
2064
+
2065
+ def as_relational(self, symbol):
2066
+ """Rewrite a FiniteSet in terms of equalities and logic operators. """
2067
+ return Or(*[Eq(symbol, elem) for elem in self])
2068
+
2069
+ def compare(self, other):
2070
+ return (hash(self) - hash(other))
2071
+
2072
+ def _eval_evalf(self, prec):
2073
+ dps = prec_to_dps(prec)
2074
+ return FiniteSet(*[elem.evalf(n=dps) for elem in self])
2075
+
2076
+ def _eval_simplify(self, **kwargs):
2077
+ from sympy.simplify import simplify
2078
+ return FiniteSet(*[simplify(elem, **kwargs) for elem in self])
2079
+
2080
+ @property
2081
+ def _sorted_args(self):
2082
+ return self.args
2083
+
2084
+ def _eval_powerset(self):
2085
+ return self.func(*[self.func(*s) for s in subsets(self.args)])
2086
+
2087
+ def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
2088
+ """Rewriting method for a finite set to a power set."""
2089
+ from .powerset import PowerSet
2090
+
2091
+ is2pow = lambda n: bool(n and not n & (n - 1))
2092
+ if not is2pow(len(self)):
2093
+ return None
2094
+
2095
+ fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
2096
+ if not all(fs_test(arg) for arg in args):
2097
+ return None
2098
+
2099
+ biggest = max(args, key=len)
2100
+ for arg in subsets(biggest.args):
2101
+ arg_set = FiniteSet(*arg)
2102
+ if arg_set not in args:
2103
+ return None
2104
+ return PowerSet(biggest)
2105
+
2106
+ def __ge__(self, other):
2107
+ if not isinstance(other, Set):
2108
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
2109
+ return other.is_subset(self)
2110
+
2111
+ def __gt__(self, other):
2112
+ if not isinstance(other, Set):
2113
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
2114
+ return self.is_proper_superset(other)
2115
+
2116
+ def __le__(self, other):
2117
+ if not isinstance(other, Set):
2118
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
2119
+ return self.is_subset(other)
2120
+
2121
+ def __lt__(self, other):
2122
+ if not isinstance(other, Set):
2123
+ raise TypeError("Invalid comparison of set with %s" % func_name(other))
2124
+ return self.is_proper_subset(other)
2125
+
2126
+ def __eq__(self, other):
2127
+ if isinstance(other, (set, frozenset)):
2128
+ return self._args_set == other
2129
+ return super().__eq__(other)
2130
+
2131
+ __hash__ : Callable[[Basic], Any] = Basic.__hash__
2132
+
2133
+ _sympy_converter[set] = lambda x: FiniteSet(*x)
2134
+ _sympy_converter[frozenset] = lambda x: FiniteSet(*x)
2135
+
2136
+
2137
+ class SymmetricDifference(Set):
2138
+ """Represents the set of elements which are in either of the
2139
+ sets and not in their intersection.
2140
+
2141
+ Examples
2142
+ ========
2143
+
2144
+ >>> from sympy import SymmetricDifference, FiniteSet
2145
+ >>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
2146
+ {1, 2, 4, 5}
2147
+
2148
+ See Also
2149
+ ========
2150
+
2151
+ Complement, Union
2152
+
2153
+ References
2154
+ ==========
2155
+
2156
+ .. [1] https://en.wikipedia.org/wiki/Symmetric_difference
2157
+ """
2158
+
2159
+ is_SymmetricDifference = True
2160
+
2161
+ def __new__(cls, a, b, evaluate=True):
2162
+ if evaluate:
2163
+ return SymmetricDifference.reduce(a, b)
2164
+
2165
+ return Basic.__new__(cls, a, b)
2166
+
2167
+ @staticmethod
2168
+ def reduce(A, B):
2169
+ result = B._symmetric_difference(A)
2170
+ if result is not None:
2171
+ return result
2172
+ else:
2173
+ return SymmetricDifference(A, B, evaluate=False)
2174
+
2175
+ def as_relational(self, symbol):
2176
+ """Rewrite a symmetric_difference in terms of equalities and
2177
+ logic operators"""
2178
+ A, B = self.args
2179
+
2180
+ A_rel = A.as_relational(symbol)
2181
+ B_rel = B.as_relational(symbol)
2182
+
2183
+ return Xor(A_rel, B_rel)
2184
+
2185
+ @property
2186
+ def is_iterable(self):
2187
+ if all(arg.is_iterable for arg in self.args):
2188
+ return True
2189
+
2190
+ def __iter__(self):
2191
+
2192
+ args = self.args
2193
+ union = roundrobin(*(iter(arg) for arg in args))
2194
+
2195
+ for item in union:
2196
+ count = 0
2197
+ for s in args:
2198
+ if item in s:
2199
+ count += 1
2200
+
2201
+ if count % 2 == 1:
2202
+ yield item
2203
+
2204
+
2205
+
2206
+ class DisjointUnion(Set):
2207
+ """ Represents the disjoint union (also known as the external disjoint union)
2208
+ of a finite number of sets.
2209
+
2210
+ Examples
2211
+ ========
2212
+
2213
+ >>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
2214
+ >>> A = FiniteSet(1, 2, 3)
2215
+ >>> B = Interval(0, 5)
2216
+ >>> DisjointUnion(A, B)
2217
+ DisjointUnion({1, 2, 3}, Interval(0, 5))
2218
+ >>> DisjointUnion(A, B).rewrite(Union)
2219
+ Union(ProductSet({1, 2, 3}, {0}), ProductSet(Interval(0, 5), {1}))
2220
+ >>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z'))
2221
+ >>> DisjointUnion(C, C)
2222
+ DisjointUnion({x, y, z}, {x, y, z})
2223
+ >>> DisjointUnion(C, C).rewrite(Union)
2224
+ ProductSet({x, y, z}, {0, 1})
2225
+
2226
+ References
2227
+ ==========
2228
+
2229
+ https://en.wikipedia.org/wiki/Disjoint_union
2230
+ """
2231
+
2232
+ def __new__(cls, *sets):
2233
+ dj_collection = []
2234
+ for set_i in sets:
2235
+ if isinstance(set_i, Set):
2236
+ dj_collection.append(set_i)
2237
+ else:
2238
+ raise TypeError("Invalid input: '%s', input args \
2239
+ to DisjointUnion must be Sets" % set_i)
2240
+ obj = Basic.__new__(cls, *dj_collection)
2241
+ return obj
2242
+
2243
+ @property
2244
+ def sets(self):
2245
+ return self.args
2246
+
2247
+ @property
2248
+ def is_empty(self):
2249
+ return fuzzy_and(s.is_empty for s in self.sets)
2250
+
2251
+ @property
2252
+ def is_finite_set(self):
2253
+ all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
2254
+ return fuzzy_or([self.is_empty, all_finite])
2255
+
2256
+ @property
2257
+ def is_iterable(self):
2258
+ if self.is_empty:
2259
+ return False
2260
+ iter_flag = True
2261
+ for set_i in self.sets:
2262
+ if not set_i.is_empty:
2263
+ iter_flag = iter_flag and set_i.is_iterable
2264
+ return iter_flag
2265
+
2266
+ def _eval_rewrite_as_Union(self, *sets):
2267
+ """
2268
+ Rewrites the disjoint union as the union of (``set`` x {``i``})
2269
+ where ``set`` is the element in ``sets`` at index = ``i``
2270
+ """
2271
+
2272
+ dj_union = S.EmptySet
2273
+ index = 0
2274
+ for set_i in sets:
2275
+ if isinstance(set_i, Set):
2276
+ cross = ProductSet(set_i, FiniteSet(index))
2277
+ dj_union = Union(dj_union, cross)
2278
+ index = index + 1
2279
+ return dj_union
2280
+
2281
+ def _contains(self, element):
2282
+ """
2283
+ ``in`` operator for DisjointUnion
2284
+
2285
+ Examples
2286
+ ========
2287
+
2288
+ >>> from sympy import Interval, DisjointUnion
2289
+ >>> D = DisjointUnion(Interval(0, 1), Interval(0, 2))
2290
+ >>> (0.5, 0) in D
2291
+ True
2292
+ >>> (0.5, 1) in D
2293
+ True
2294
+ >>> (1.5, 0) in D
2295
+ False
2296
+ >>> (1.5, 1) in D
2297
+ True
2298
+
2299
+ Passes operation on to constituent sets
2300
+ """
2301
+ if not isinstance(element, Tuple) or len(element) != 2:
2302
+ return False
2303
+
2304
+ if not element[1].is_Integer:
2305
+ return False
2306
+
2307
+ if element[1] >= len(self.sets) or element[1] < 0:
2308
+ return False
2309
+
2310
+ return element[0] in self.sets[element[1]]
2311
+
2312
+ def _kind(self):
2313
+ if not self.args:
2314
+ return SetKind()
2315
+ elif all(i.kind == self.args[0].kind for i in self.args):
2316
+ return self.args[0].kind
2317
+ else:
2318
+ return SetKind(UndefinedKind)
2319
+
2320
+ def __iter__(self):
2321
+ if self.is_iterable:
2322
+
2323
+ iters = []
2324
+ for i, s in enumerate(self.sets):
2325
+ iters.append(iproduct(s, {Integer(i)}))
2326
+
2327
+ return iter(roundrobin(*iters))
2328
+ else:
2329
+ raise ValueError("'%s' is not iterable." % self)
2330
+
2331
+ def __len__(self):
2332
+ """
2333
+ Returns the length of the disjoint union, i.e., the number of elements in the set.
2334
+
2335
+ Examples
2336
+ ========
2337
+
2338
+ >>> from sympy import FiniteSet, DisjointUnion, EmptySet
2339
+ >>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5))
2340
+ >>> len(D1)
2341
+ 7
2342
+ >>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7))
2343
+ >>> len(D2)
2344
+ 6
2345
+ >>> D3 = DisjointUnion(EmptySet, EmptySet)
2346
+ >>> len(D3)
2347
+ 0
2348
+
2349
+ Adds up the lengths of the constituent sets.
2350
+ """
2351
+
2352
+ if self.is_finite_set:
2353
+ size = 0
2354
+ for set in self.sets:
2355
+ size += len(set)
2356
+ return size
2357
+ else:
2358
+ raise ValueError("'%s' is not a finite set." % self)
2359
+
2360
+
2361
+ def imageset(*args):
2362
+ r"""
2363
+ Return an image of the set under transformation ``f``.
2364
+
2365
+ Explanation
2366
+ ===========
2367
+
2368
+ If this function cannot compute the image, it returns an
2369
+ unevaluated ImageSet object.
2370
+
2371
+ .. math::
2372
+ \{ f(x) \mid x \in \mathrm{self} \}
2373
+
2374
+ Examples
2375
+ ========
2376
+
2377
+ >>> from sympy import S, Interval, imageset, sin, Lambda
2378
+ >>> from sympy.abc import x
2379
+
2380
+ >>> imageset(x, 2*x, Interval(0, 2))
2381
+ Interval(0, 4)
2382
+
2383
+ >>> imageset(lambda x: 2*x, Interval(0, 2))
2384
+ Interval(0, 4)
2385
+
2386
+ >>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
2387
+ ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
2388
+
2389
+ >>> imageset(sin, Interval(-2, 1))
2390
+ ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
2391
+ >>> imageset(lambda y: x + y, Interval(-2, 1))
2392
+ ImageSet(Lambda(y, x + y), Interval(-2, 1))
2393
+
2394
+ Expressions applied to the set of Integers are simplified
2395
+ to show as few negatives as possible and linear expressions
2396
+ are converted to a canonical form. If this is not desirable
2397
+ then the unevaluated ImageSet should be used.
2398
+
2399
+ >>> imageset(x, -2*x + 5, S.Integers)
2400
+ ImageSet(Lambda(x, 2*x + 1), Integers)
2401
+
2402
+ See Also
2403
+ ========
2404
+
2405
+ sympy.sets.fancysets.ImageSet
2406
+
2407
+ """
2408
+ from .fancysets import ImageSet
2409
+ from .setexpr import set_function
2410
+
2411
+ if len(args) < 2:
2412
+ raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
2413
+
2414
+ if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
2415
+ f = Lambda(args[0], args[1])
2416
+ set_list = args[2:]
2417
+ else:
2418
+ f = args[0]
2419
+ set_list = args[1:]
2420
+
2421
+ if isinstance(f, Lambda):
2422
+ pass
2423
+ elif callable(f):
2424
+ nargs = getattr(f, 'nargs', {})
2425
+ if nargs:
2426
+ if len(nargs) != 1:
2427
+ raise NotImplementedError(filldedent('''
2428
+ This function can take more than 1 arg
2429
+ but the potentially complicated set input
2430
+ has not been analyzed at this point to
2431
+ know its dimensions. TODO
2432
+ '''))
2433
+ N = nargs.args[0]
2434
+ if N == 1:
2435
+ s = 'x'
2436
+ else:
2437
+ s = [Symbol('x%i' % i) for i in range(1, N + 1)]
2438
+ else:
2439
+ s = inspect.signature(f).parameters
2440
+
2441
+ dexpr = _sympify(f(*[Dummy() for i in s]))
2442
+ var = tuple(uniquely_named_symbol(
2443
+ Symbol(i), dexpr) for i in s)
2444
+ f = Lambda(var, f(*var))
2445
+ else:
2446
+ raise TypeError(filldedent('''
2447
+ expecting lambda, Lambda, or FunctionClass,
2448
+ not \'%s\'.''' % func_name(f)))
2449
+
2450
+ if any(not isinstance(s, Set) for s in set_list):
2451
+ name = [func_name(s) for s in set_list]
2452
+ raise ValueError(
2453
+ 'arguments after mapping should be sets, not %s' % name)
2454
+
2455
+ if len(set_list) == 1:
2456
+ set = set_list[0]
2457
+ try:
2458
+ # TypeError if arg count != set dimensions
2459
+ r = set_function(f, set)
2460
+ if r is None:
2461
+ raise TypeError
2462
+ if not r:
2463
+ return r
2464
+ except TypeError:
2465
+ r = ImageSet(f, set)
2466
+ if isinstance(r, ImageSet):
2467
+ f, set = r.args
2468
+
2469
+ if f.variables[0] == f.expr:
2470
+ return set
2471
+
2472
+ if isinstance(set, ImageSet):
2473
+ # XXX: Maybe this should just be:
2474
+ # f2 = set.lambda
2475
+ # fun = Lambda(f2.signature, f(*f2.expr))
2476
+ # return imageset(fun, *set.base_sets)
2477
+ if len(set.lamda.variables) == 1 and len(f.variables) == 1:
2478
+ x = set.lamda.variables[0]
2479
+ y = f.variables[0]
2480
+ return imageset(
2481
+ Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
2482
+
2483
+ if r is not None:
2484
+ return r
2485
+
2486
+ return ImageSet(f, *set_list)
2487
+
2488
+
2489
+ def is_function_invertible_in_set(func, setv):
2490
+ """
2491
+ Checks whether function ``func`` is invertible when the domain is
2492
+ restricted to set ``setv``.
2493
+ """
2494
+ # Functions known to always be invertible:
2495
+ if func in (exp, log):
2496
+ return True
2497
+ u = Dummy("u")
2498
+ fdiff = func(u).diff(u)
2499
+ # monotonous functions:
2500
+ # TODO: check subsets (`func` in `setv`)
2501
+ if (fdiff > 0) == True or (fdiff < 0) == True:
2502
+ return True
2503
+ # TODO: support more
2504
+ return None
2505
+
2506
+
2507
+ def simplify_union(args):
2508
+ """
2509
+ Simplify a :class:`Union` using known rules.
2510
+
2511
+ Explanation
2512
+ ===========
2513
+
2514
+ We first start with global rules like 'Merge all FiniteSets'
2515
+
2516
+ Then we iterate through all pairs and ask the constituent sets if they
2517
+ can simplify themselves with any other constituent. This process depends
2518
+ on ``union_sets(a, b)`` functions.
2519
+ """
2520
+ from sympy.sets.handlers.union import union_sets
2521
+
2522
+ # ===== Global Rules =====
2523
+ if not args:
2524
+ return S.EmptySet
2525
+
2526
+ for arg in args:
2527
+ if not isinstance(arg, Set):
2528
+ raise TypeError("Input args to Union must be Sets")
2529
+
2530
+ # Merge all finite sets
2531
+ finite_sets = [x for x in args if x.is_FiniteSet]
2532
+ if len(finite_sets) > 1:
2533
+ a = (x for set in finite_sets for x in set)
2534
+ finite_set = FiniteSet(*a)
2535
+ args = [finite_set] + [x for x in args if not x.is_FiniteSet]
2536
+
2537
+ # ===== Pair-wise Rules =====
2538
+ # Here we depend on rules built into the constituent sets
2539
+ args = set(args)
2540
+ new_args = True
2541
+ while new_args:
2542
+ for s in args:
2543
+ new_args = False
2544
+ for t in args - {s}:
2545
+ new_set = union_sets(s, t)
2546
+ # This returns None if s does not know how to intersect
2547
+ # with t. Returns the newly intersected set otherwise
2548
+ if new_set is not None:
2549
+ if not isinstance(new_set, set):
2550
+ new_set = {new_set}
2551
+ new_args = (args - {s, t}).union(new_set)
2552
+ break
2553
+ if new_args:
2554
+ args = new_args
2555
+ break
2556
+
2557
+ if len(args) == 1:
2558
+ return args.pop()
2559
+ else:
2560
+ return Union(*args, evaluate=False)
2561
+
2562
+
2563
+ def simplify_intersection(args):
2564
+ """
2565
+ Simplify an intersection using known rules.
2566
+
2567
+ Explanation
2568
+ ===========
2569
+
2570
+ We first start with global rules like
2571
+ 'if any empty sets return empty set' and 'distribute any unions'
2572
+
2573
+ Then we iterate through all pairs and ask the constituent sets if they
2574
+ can simplify themselves with any other constituent
2575
+ """
2576
+
2577
+ # ===== Global Rules =====
2578
+ if not args:
2579
+ return S.UniversalSet
2580
+
2581
+ for arg in args:
2582
+ if not isinstance(arg, Set):
2583
+ raise TypeError("Input args to Union must be Sets")
2584
+
2585
+ # If any EmptySets return EmptySet
2586
+ if S.EmptySet in args:
2587
+ return S.EmptySet
2588
+
2589
+ # Handle Finite sets
2590
+ rv = Intersection._handle_finite_sets(args)
2591
+
2592
+ if rv is not None:
2593
+ return rv
2594
+
2595
+ # If any of the sets are unions, return a Union of Intersections
2596
+ for s in args:
2597
+ if s.is_Union:
2598
+ other_sets = set(args) - {s}
2599
+ if len(other_sets) > 0:
2600
+ other = Intersection(*other_sets)
2601
+ return Union(*(Intersection(arg, other) for arg in s.args))
2602
+ else:
2603
+ return Union(*s.args)
2604
+
2605
+ for s in args:
2606
+ if s.is_Complement:
2607
+ args.remove(s)
2608
+ other_sets = args + [s.args[0]]
2609
+ return Complement(Intersection(*other_sets), s.args[1])
2610
+
2611
+ from sympy.sets.handlers.intersection import intersection_sets
2612
+
2613
+ # At this stage we are guaranteed not to have any
2614
+ # EmptySets, FiniteSets, or Unions in the intersection
2615
+
2616
+ # ===== Pair-wise Rules =====
2617
+ # Here we depend on rules built into the constituent sets
2618
+ args = set(args)
2619
+ new_args = True
2620
+ while new_args:
2621
+ for s in args:
2622
+ new_args = False
2623
+ for t in args - {s}:
2624
+ new_set = intersection_sets(s, t)
2625
+ # This returns None if s does not know how to intersect
2626
+ # with t. Returns the newly intersected set otherwise
2627
+
2628
+ if new_set is not None:
2629
+ new_args = (args - {s, t}).union({new_set})
2630
+ break
2631
+ if new_args:
2632
+ args = new_args
2633
+ break
2634
+
2635
+ if len(args) == 1:
2636
+ return args.pop()
2637
+ else:
2638
+ return Intersection(*args, evaluate=False)
2639
+
2640
+
2641
+ def _handle_finite_sets(op, x, y, commutative):
2642
+ # Handle finite sets:
2643
+ fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
2644
+ if len(fs_args) == 2:
2645
+ return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
2646
+ elif len(fs_args) == 1:
2647
+ sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
2648
+ return Union(*sets)
2649
+ else:
2650
+ return None
2651
+
2652
+
2653
+ def _apply_operation(op, x, y, commutative):
2654
+ from .fancysets import ImageSet
2655
+ d = Dummy('d')
2656
+
2657
+ out = _handle_finite_sets(op, x, y, commutative)
2658
+ if out is None:
2659
+ out = op(x, y)
2660
+
2661
+ if out is None and commutative:
2662
+ out = op(y, x)
2663
+ if out is None:
2664
+ _x, _y = symbols("x y")
2665
+ if isinstance(x, Set) and not isinstance(y, Set):
2666
+ out = ImageSet(Lambda(d, op(d, y)), x).doit()
2667
+ elif not isinstance(x, Set) and isinstance(y, Set):
2668
+ out = ImageSet(Lambda(d, op(x, d)), y).doit()
2669
+ else:
2670
+ out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
2671
+ return out
2672
+
2673
+
2674
+ def set_add(x, y):
2675
+ from sympy.sets.handlers.add import _set_add
2676
+ return _apply_operation(_set_add, x, y, commutative=True)
2677
+
2678
+
2679
+ def set_sub(x, y):
2680
+ from sympy.sets.handlers.add import _set_sub
2681
+ return _apply_operation(_set_sub, x, y, commutative=False)
2682
+
2683
+
2684
+ def set_mul(x, y):
2685
+ from sympy.sets.handlers.mul import _set_mul
2686
+ return _apply_operation(_set_mul, x, y, commutative=True)
2687
+
2688
+
2689
+ def set_div(x, y):
2690
+ from sympy.sets.handlers.mul import _set_div
2691
+ return _apply_operation(_set_div, x, y, commutative=False)
2692
+
2693
+
2694
+ def set_pow(x, y):
2695
+ from sympy.sets.handlers.power import _set_pow
2696
+ return _apply_operation(_set_pow, x, y, commutative=False)
2697
+
2698
+
2699
+ def set_function(f, x):
2700
+ from sympy.sets.handlers.functions import _set_function
2701
+ return _set_function(f, x)
2702
+
2703
+
2704
+ class SetKind(Kind):
2705
+ """
2706
+ SetKind is kind for all Sets
2707
+
2708
+ Every instance of Set will have kind ``SetKind`` parametrised by the kind
2709
+ of the elements of the ``Set``. The kind of the elements might be
2710
+ ``NumberKind``, or ``TupleKind`` or something else. When not all elements
2711
+ have the same kind then the kind of the elements will be given as
2712
+ ``UndefinedKind``.
2713
+
2714
+ Parameters
2715
+ ==========
2716
+
2717
+ element_kind: Kind (optional)
2718
+ The kind of the elements of the set. In a well defined set all elements
2719
+ will have the same kind. Otherwise the kind should
2720
+ :class:`sympy.core.kind.UndefinedKind`. The ``element_kind`` argument is optional but
2721
+ should only be omitted in the case of ``EmptySet`` whose kind is simply
2722
+ ``SetKind()``
2723
+
2724
+ Examples
2725
+ ========
2726
+
2727
+ >>> from sympy import Interval
2728
+ >>> Interval(1, 2).kind
2729
+ SetKind(NumberKind)
2730
+ >>> Interval(1,2).kind.element_kind
2731
+ NumberKind
2732
+
2733
+ See Also
2734
+ ========
2735
+
2736
+ sympy.core.kind.NumberKind
2737
+ sympy.matrices.common.MatrixKind
2738
+ sympy.core.containers.TupleKind
2739
+ """
2740
+ def __new__(cls, element_kind=None):
2741
+ obj = super().__new__(cls, element_kind)
2742
+ obj.element_kind = element_kind
2743
+ return obj
2744
+
2745
+ def __repr__(self):
2746
+ if not self.element_kind:
2747
+ return "SetKind()"
2748
+ else:
2749
+ return "SetKind(%s)" % self.element_kind
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (181 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_conditionset.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc ADDED
Binary file (49.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc ADDED
Binary file (4.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc ADDED
Binary file (10 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/__pycache__/test_sets.cpython-310.pyc ADDED
Binary file (62.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_conditionset.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import unchanged
2
+ from sympy.sets import (ConditionSet, Intersection, FiniteSet,
3
+ EmptySet, Union, Contains, ImageSet)
4
+ from sympy.sets.sets import SetKind
5
+ from sympy.core.function import (Function, Lambda)
6
+ from sympy.core.mod import Mod
7
+ from sympy.core.kind import NumberKind
8
+ from sympy.core.numbers import (oo, pi)
9
+ from sympy.core.relational import (Eq, Ne)
10
+ from sympy.core.singleton import S
11
+ from sympy.core.symbol import (Symbol, symbols)
12
+ from sympy.functions.elementary.complexes import Abs
13
+ from sympy.functions.elementary.trigonometric import (asin, sin)
14
+ from sympy.logic.boolalg import And
15
+ from sympy.matrices.dense import Matrix
16
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
17
+ from sympy.sets.sets import Interval
18
+ from sympy.testing.pytest import raises, warns_deprecated_sympy
19
+
20
+
21
+ w = Symbol('w')
22
+ x = Symbol('x')
23
+ y = Symbol('y')
24
+ z = Symbol('z')
25
+ f = Function('f')
26
+
27
+
28
+ def test_CondSet():
29
+ sin_sols_principal = ConditionSet(x, Eq(sin(x), 0),
30
+ Interval(0, 2*pi, False, True))
31
+ assert pi in sin_sols_principal
32
+ assert pi/2 not in sin_sols_principal
33
+ assert 3*pi not in sin_sols_principal
34
+ assert oo not in sin_sols_principal
35
+ assert 5 in ConditionSet(x, x**2 > 4, S.Reals)
36
+ assert 1 not in ConditionSet(x, x**2 > 4, S.Reals)
37
+ # in this case, 0 is not part of the base set so
38
+ # it can't be in any subset selected by the condition
39
+ assert 0 not in ConditionSet(x, y > 5, Interval(1, 7))
40
+ # since 'in' requires a true/false, the following raises
41
+ # an error because the given value provides no information
42
+ # for the condition to evaluate (since the condition does
43
+ # not depend on the dummy symbol): the result is `y > 5`.
44
+ # In this case, ConditionSet is just acting like
45
+ # Piecewise((Interval(1, 7), y > 5), (S.EmptySet, True)).
46
+ raises(TypeError, lambda: 6 in ConditionSet(x, y > 5,
47
+ Interval(1, 7)))
48
+
49
+ X = MatrixSymbol('X', 2, 2)
50
+ matrix_set = ConditionSet(X, Eq(X*Matrix([[1, 1], [1, 1]]), X))
51
+ Y = Matrix([[0, 0], [0, 0]])
52
+ assert matrix_set.contains(Y).doit() is S.true
53
+ Z = Matrix([[1, 2], [3, 4]])
54
+ assert matrix_set.contains(Z).doit() is S.false
55
+
56
+ assert isinstance(ConditionSet(x, x < 1, {x, y}).base_set,
57
+ FiniteSet)
58
+ raises(TypeError, lambda: ConditionSet(x, x + 1, {x, y}))
59
+ raises(TypeError, lambda: ConditionSet(x, x, 1))
60
+
61
+ I = S.Integers
62
+ U = S.UniversalSet
63
+ C = ConditionSet
64
+ assert C(x, False, I) is S.EmptySet
65
+ assert C(x, True, I) is I
66
+ assert C(x, x < 1, C(x, x < 2, I)
67
+ ) == C(x, (x < 1) & (x < 2), I)
68
+ assert C(y, y < 1, C(x, y < 2, I)
69
+ ) == C(x, (x < 1) & (y < 2), I), C(y, y < 1, C(x, y < 2, I))
70
+ assert C(y, y < 1, C(x, x < 2, I)
71
+ ) == C(y, (y < 1) & (y < 2), I)
72
+ assert C(y, y < 1, C(x, y < x, I)
73
+ ) == C(x, (x < 1) & (y < x), I)
74
+ assert unchanged(C, y, x < 1, C(x, y < x, I))
75
+ assert ConditionSet(x, x < 1).base_set is U
76
+ # arg checking is not done at instantiation but this
77
+ # will raise an error when containment is tested
78
+ assert ConditionSet((x,), x < 1).base_set is U
79
+
80
+ c = ConditionSet((x, y), x < y, I**2)
81
+ assert (1, 2) in c
82
+ assert (1, pi) not in c
83
+
84
+ raises(TypeError, lambda: C(x, x > 1, C((x, y), x > 1, I**2)))
85
+ # signature mismatch since only 3 args are accepted
86
+ raises(TypeError, lambda: C((x, y), x + y < 2, U, U))
87
+
88
+
89
+ def test_CondSet_intersect():
90
+ input_conditionset = ConditionSet(x, x**2 > 4, Interval(1, 4, False,
91
+ False))
92
+ other_domain = Interval(0, 3, False, False)
93
+ output_conditionset = ConditionSet(x, x**2 > 4, Interval(
94
+ 1, 3, False, False))
95
+ assert Intersection(input_conditionset, other_domain
96
+ ) == output_conditionset
97
+
98
+
99
+ def test_issue_9849():
100
+ assert ConditionSet(x, Eq(x, x), S.Naturals
101
+ ) is S.Naturals
102
+ assert ConditionSet(x, Eq(Abs(sin(x)), -1), S.Naturals
103
+ ) == S.EmptySet
104
+
105
+
106
+ def test_simplified_FiniteSet_in_CondSet():
107
+ assert ConditionSet(x, And(x < 1, x > -3), FiniteSet(0, 1, 2)
108
+ ) == FiniteSet(0)
109
+ assert ConditionSet(x, x < 0, FiniteSet(0, 1, 2)) == EmptySet
110
+ assert ConditionSet(x, And(x < -3), EmptySet) == EmptySet
111
+ y = Symbol('y')
112
+ assert (ConditionSet(x, And(x > 0), FiniteSet(-1, 0, 1, y)) ==
113
+ Union(FiniteSet(1), ConditionSet(x, And(x > 0), FiniteSet(y))))
114
+ assert (ConditionSet(x, Eq(Mod(x, 3), 1), FiniteSet(1, 4, 2, y)) ==
115
+ Union(FiniteSet(1, 4), ConditionSet(x, Eq(Mod(x, 3), 1),
116
+ FiniteSet(y))))
117
+
118
+
119
+ def test_free_symbols():
120
+ assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
121
+ ).free_symbols == {y, z}
122
+ assert ConditionSet(x, Eq(x, 0), FiniteSet(z)
123
+ ).free_symbols == {z}
124
+ assert ConditionSet(x, Eq(x, 0), FiniteSet(x, z)
125
+ ).free_symbols == {x, z}
126
+ assert ConditionSet(x, Eq(x, 0), ImageSet(Lambda(y, y**2),
127
+ S.Integers)).free_symbols == set()
128
+
129
+
130
+ def test_bound_symbols():
131
+ assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
132
+ ).bound_symbols == [x]
133
+ assert ConditionSet(x, Eq(x, 0), FiniteSet(x, y)
134
+ ).bound_symbols == [x]
135
+ assert ConditionSet(x, x < 10, ImageSet(Lambda(y, y**2), S.Integers)
136
+ ).bound_symbols == [x]
137
+ assert ConditionSet(x, x < 10, ConditionSet(y, y > 1, S.Integers)
138
+ ).bound_symbols == [x]
139
+
140
+
141
+ def test_as_dummy():
142
+ _0, _1 = symbols('_0 _1')
143
+ assert ConditionSet(x, x < 1, Interval(y, oo)
144
+ ).as_dummy() == ConditionSet(_0, _0 < 1, Interval(y, oo))
145
+ assert ConditionSet(x, x < 1, Interval(x, oo)
146
+ ).as_dummy() == ConditionSet(_0, _0 < 1, Interval(x, oo))
147
+ assert ConditionSet(x, x < 1, ImageSet(Lambda(y, y**2), S.Integers)
148
+ ).as_dummy() == ConditionSet(
149
+ _0, _0 < 1, ImageSet(Lambda(_0, _0**2), S.Integers))
150
+ e = ConditionSet((x, y), x <= y, S.Reals**2)
151
+ assert e.bound_symbols == [x, y]
152
+ assert e.as_dummy() == ConditionSet((_0, _1), _0 <= _1, S.Reals**2)
153
+ assert e.as_dummy() == ConditionSet((y, x), y <= x, S.Reals**2
154
+ ).as_dummy()
155
+
156
+
157
+ def test_subs_CondSet():
158
+ s = FiniteSet(z, y)
159
+ c = ConditionSet(x, x < 2, s)
160
+ assert c.subs(x, y) == c
161
+ assert c.subs(z, y) == ConditionSet(x, x < 2, FiniteSet(y))
162
+ assert c.xreplace({x: y}) == ConditionSet(y, y < 2, s)
163
+
164
+ assert ConditionSet(x, x < y, s
165
+ ).subs(y, w) == ConditionSet(x, x < w, s.subs(y, w))
166
+ # if the user uses assumptions that cause the condition
167
+ # to evaluate, that can't be helped from SymPy's end
168
+ n = Symbol('n', negative=True)
169
+ assert ConditionSet(n, 0 < n, S.Integers) is S.EmptySet
170
+ p = Symbol('p', positive=True)
171
+ assert ConditionSet(n, n < y, S.Integers
172
+ ).subs(n, x) == ConditionSet(n, n < y, S.Integers)
173
+ raises(ValueError, lambda: ConditionSet(
174
+ x + 1, x < 1, S.Integers))
175
+ assert ConditionSet(
176
+ p, n < x, Interval(-5, 5)).subs(x, p) == Interval(-5, 5), ConditionSet(
177
+ p, n < x, Interval(-5, 5)).subs(x, p)
178
+ assert ConditionSet(
179
+ n, n < x, Interval(-oo, 0)).subs(x, p
180
+ ) == Interval(-oo, 0)
181
+
182
+ assert ConditionSet(f(x), f(x) < 1, {w, z}
183
+ ).subs(f(x), y) == ConditionSet(f(x), f(x) < 1, {w, z})
184
+
185
+ # issue 17341
186
+ k = Symbol('k')
187
+ img1 = ImageSet(Lambda(k, 2*k*pi + asin(y)), S.Integers)
188
+ img2 = ImageSet(Lambda(k, 2*k*pi + asin(S.One/3)), S.Integers)
189
+ assert ConditionSet(x, Contains(
190
+ y, Interval(-1,1)), img1).subs(y, S.One/3).dummy_eq(img2)
191
+
192
+ assert (0, 1) in ConditionSet((x, y), x + y < 3, S.Integers**2)
193
+
194
+ raises(TypeError, lambda: ConditionSet(n, n < -10, Interval(0, 10)))
195
+
196
+
197
+ def test_subs_CondSet_tebr():
198
+ with warns_deprecated_sympy():
199
+ assert ConditionSet((x, y), {x + 1, x + y}, S.Reals**2) == \
200
+ ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
201
+
202
+
203
+ def test_dummy_eq():
204
+ C = ConditionSet
205
+ I = S.Integers
206
+ c = C(x, x < 1, I)
207
+ assert c.dummy_eq(C(y, y < 1, I))
208
+ assert c.dummy_eq(1) == False
209
+ assert c.dummy_eq(C(x, x < 1, S.Reals)) == False
210
+
211
+ c1 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
212
+ c2 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
213
+ c3 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Complexes**2)
214
+ assert c1.dummy_eq(c2)
215
+ assert c1.dummy_eq(c3) is False
216
+ assert c.dummy_eq(c1) is False
217
+ assert c1.dummy_eq(c) is False
218
+
219
+ # issue 19496
220
+ m = Symbol('m')
221
+ n = Symbol('n')
222
+ a = Symbol('a')
223
+ d1 = ImageSet(Lambda(m, m*pi), S.Integers)
224
+ d2 = ImageSet(Lambda(n, n*pi), S.Integers)
225
+ c1 = ConditionSet(x, Ne(a, 0), d1)
226
+ c2 = ConditionSet(x, Ne(a, 0), d2)
227
+ assert c1.dummy_eq(c2)
228
+
229
+
230
+ def test_contains():
231
+ assert 6 in ConditionSet(x, x > 5, Interval(1, 7))
232
+ assert (8 in ConditionSet(x, y > 5, Interval(1, 7))) is False
233
+ # `in` should give True or False; in this case there is not
234
+ # enough information for that result
235
+ raises(TypeError,
236
+ lambda: 6 in ConditionSet(x, y > 5, Interval(1, 7)))
237
+ # here, there is enough information but the comparison is
238
+ # not defined
239
+ raises(TypeError, lambda: 0 in ConditionSet(x, 1/x >= 0, S.Reals))
240
+ assert ConditionSet(x, y > 5, Interval(1, 7)
241
+ ).contains(6) == (y > 5)
242
+ assert ConditionSet(x, y > 5, Interval(1, 7)
243
+ ).contains(8) is S.false
244
+ assert ConditionSet(x, y > 5, Interval(1, 7)
245
+ ).contains(w) == And(Contains(w, Interval(1, 7)), y > 5)
246
+ # This returns an unevaluated Contains object
247
+ # because 1/0 should not be defined for 1 and 0 in the context of
248
+ # reals.
249
+ assert ConditionSet(x, 1/x >= 0, S.Reals).contains(0) == \
250
+ Contains(0, ConditionSet(x, 1/x >= 0, S.Reals), evaluate=False)
251
+ c = ConditionSet((x, y), x + y > 1, S.Integers**2)
252
+ assert not c.contains(1)
253
+ assert c.contains((2, 1))
254
+ assert not c.contains((0, 1))
255
+ c = ConditionSet((w, (x, y)), w + x + y > 1, S.Integers*S.Integers**2)
256
+ assert not c.contains(1)
257
+ assert not c.contains((1, 2))
258
+ assert not c.contains(((1, 2), 3))
259
+ assert not c.contains(((1, 2), (3, 4)))
260
+ assert c.contains((1, (3, 4)))
261
+
262
+
263
+ def test_as_relational():
264
+ assert ConditionSet((x, y), x > 1, S.Integers**2).as_relational((x, y)
265
+ ) == (x > 1) & Contains((x, y), S.Integers**2)
266
+ assert ConditionSet(x, x > 1, S.Integers).as_relational(x
267
+ ) == Contains(x, S.Integers) & (x > 1)
268
+
269
+
270
+ def test_flatten():
271
+ """Tests whether there is basic denesting functionality"""
272
+ inner = ConditionSet(x, sin(x) + x > 0)
273
+ outer = ConditionSet(x, Contains(x, inner), S.Reals)
274
+ assert outer == ConditionSet(x, sin(x) + x > 0, S.Reals)
275
+
276
+ inner = ConditionSet(y, sin(y) + y > 0)
277
+ outer = ConditionSet(x, Contains(y, inner), S.Reals)
278
+ assert outer != ConditionSet(x, sin(x) + x > 0, S.Reals)
279
+
280
+ inner = ConditionSet(x, sin(x) + x > 0).intersect(Interval(-1, 1))
281
+ outer = ConditionSet(x, Contains(x, inner), S.Reals)
282
+ assert outer == ConditionSet(x, sin(x) + x > 0, Interval(-1, 1))
283
+
284
+
285
+ def test_duplicate():
286
+ from sympy.core.function import BadSignatureError
287
+ # test coverage for line 95 in conditionset.py, check for duplicates in symbols
288
+ dup = symbols('a,a')
289
+ raises(BadSignatureError, lambda: ConditionSet(dup, x < 0))
290
+
291
+
292
+ def test_SetKind_ConditionSet():
293
+ assert ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi)).kind is SetKind(NumberKind)
294
+ assert ConditionSet(x, x < 0).kind is SetKind(NumberKind)
env-llmeval/lib/python3.10/site-packages/sympy/sets/tests/test_contains.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import unchanged
2
+ from sympy.core.numbers import oo
3
+ from sympy.core.relational import Eq
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import Symbol
6
+ from sympy.sets.contains import Contains
7
+ from sympy.sets.sets import (FiniteSet, Interval)
8
+ from sympy.testing.pytest import raises
9
+
10
+ def test_contains_basic():
11
+ raises(TypeError, lambda: Contains(S.Integers, 1))
12
+ assert Contains(2, S.Integers) is S.true
13
+ assert Contains(-2, S.Naturals) is S.false
14
+
15
+ i = Symbol('i', integer=True)
16
+ assert Contains(i, S.Naturals) == Contains(i, S.Naturals, evaluate=False)
17
+
18
+
19
+ def test_issue_6194():
20
+ x = Symbol('x')
21
+ assert unchanged(Contains, x, Interval(0, 1))
22
+ assert Interval(0, 1).contains(x) == (S.Zero <= x) & (x <= 1)
23
+ assert Contains(x, FiniteSet(0)) != S.false
24
+ assert Contains(x, Interval(1, 1)) != S.false
25
+ assert Contains(x, S.Integers) != S.false
26
+
27
+
28
+ def test_issue_10326():
29
+ assert Contains(oo, Interval(-oo, oo)) == False
30
+ assert Contains(-oo, Interval(-oo, oo)) == False
31
+
32
+
33
+ def test_binary_symbols():
34
+ x = Symbol('x')
35
+ y = Symbol('y')
36
+ z = Symbol('z')
37
+ assert Contains(x, FiniteSet(y, Eq(z, True))
38
+ ).binary_symbols == {y, z}
39
+
40
+
41
+ def test_as_set():
42
+ x = Symbol('x')
43
+ y = Symbol('y')
44
+ assert Contains(x, FiniteSet(y)).as_set() == FiniteSet(y)
45
+ assert Contains(x, S.Integers).as_set() == S.Integers
46
+ assert Contains(x, S.Reals).as_set() == S.Reals
47
+
48
+ def test_type_error():
49
+ # Pass in a parameter not of type "set"
50
+ raises(TypeError, lambda: Contains(2, None))