File size: 35,571 Bytes
ac5fea4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 |
"""
Module for the SDM class.
"""
from operator import add, neg, pos, sub, mul
from collections import defaultdict
from sympy.utilities.iterables import _strongly_connected_components
from .exceptions import DMBadInputError, DMDomainError, DMShapeError
from .ddm import DDM
from .lll import ddm_lll, ddm_lll_transform
from sympy.polys.domains import QQ
class SDM(dict):
r"""Sparse matrix based on polys domain elements
This is a dict subclass and is a wrapper for a dict of dicts that supports
basic matrix arithmetic +, -, *, **.
In order to create a new :py:class:`~.SDM`, a dict
of dicts mapping non-zero elements to their
corresponding row and column in the matrix is needed.
We also need to specify the shape and :py:class:`~.Domain`
of our :py:class:`~.SDM` object.
We declare a 2x2 :py:class:`~.SDM` matrix belonging
to QQ domain as shown below.
The 2x2 Matrix in the example is
.. math::
A = \left[\begin{array}{ccc}
0 & \frac{1}{2} \\
0 & 0 \end{array} \right]
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1:QQ(1, 2)}}
>>> A = SDM(elemsdict, (2, 2), QQ)
>>> A
{0: {1: 1/2}}
We can manipulate :py:class:`~.SDM` the same way
as a Matrix class
>>> from sympy import ZZ
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ)
>>> A + B
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
Multiplication
>>> A*B
{0: {1: 8}, 1: {0: 3}}
>>> A*ZZ(2)
{0: {1: 4}, 1: {0: 2}}
"""
fmt = 'sparse'
def __init__(self, elemsdict, shape, domain):
super().__init__(elemsdict)
self.shape = self.rows, self.cols = m, n = shape
self.domain = domain
if not all(0 <= r < m for r in self):
raise DMBadInputError("Row out of range")
if not all(0 <= c < n for row in self.values() for c in row):
raise DMBadInputError("Column out of range")
def getitem(self, i, j):
try:
return self[i][j]
except KeyError:
m, n = self.shape
if -m <= i < m and -n <= j < n:
try:
return self[i % m][j % n]
except KeyError:
return self.domain.zero
else:
raise IndexError("index out of range")
def setitem(self, i, j, value):
m, n = self.shape
if not (-m <= i < m and -n <= j < n):
raise IndexError("index out of range")
i, j = i % m, j % n
if value:
try:
self[i][j] = value
except KeyError:
self[i] = {j: value}
else:
rowi = self.get(i, None)
if rowi is not None:
try:
del rowi[j]
except KeyError:
pass
else:
if not rowi:
del self[i]
def extract_slice(self, slice1, slice2):
m, n = self.shape
ri = range(m)[slice1]
ci = range(n)[slice2]
sdm = {}
for i, row in self.items():
if i in ri:
row = {ci.index(j): e for j, e in row.items() if j in ci}
if row:
sdm[ri.index(i)] = row
return self.new(sdm, (len(ri), len(ci)), self.domain)
def extract(self, rows, cols):
if not (self and rows and cols):
return self.zeros((len(rows), len(cols)), self.domain)
m, n = self.shape
if not (-m <= min(rows) <= max(rows) < m):
raise IndexError('Row index out of range')
if not (-n <= min(cols) <= max(cols) < n):
raise IndexError('Column index out of range')
# rows and cols can contain duplicates e.g. M[[1, 2, 2], [0, 1]]
# Build a map from row/col in self to list of rows/cols in output
rowmap = defaultdict(list)
colmap = defaultdict(list)
for i2, i1 in enumerate(rows):
rowmap[i1 % m].append(i2)
for j2, j1 in enumerate(cols):
colmap[j1 % n].append(j2)
# Used to efficiently skip zero rows/cols
rowset = set(rowmap)
colset = set(colmap)
sdm1 = self
sdm2 = {}
for i1 in rowset & set(sdm1):
row1 = sdm1[i1]
row2 = {}
for j1 in colset & set(row1):
row1_j1 = row1[j1]
for j2 in colmap[j1]:
row2[j2] = row1_j1
if row2:
for i2 in rowmap[i1]:
sdm2[i2] = row2.copy()
return self.new(sdm2, (len(rows), len(cols)), self.domain)
def __str__(self):
rowsstr = []
for i, row in self.items():
elemsstr = ', '.join('%s: %s' % (j, elem) for j, elem in row.items())
rowsstr.append('%s: {%s}' % (i, elemsstr))
return '{%s}' % ', '.join(rowsstr)
def __repr__(self):
cls = type(self).__name__
rows = dict.__repr__(self)
return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain)
@classmethod
def new(cls, sdm, shape, domain):
"""
Parameters
==========
sdm: A dict of dicts for non-zero elements in SDM
shape: tuple representing dimension of SDM
domain: Represents :py:class:`~.Domain` of SDM
Returns
=======
An :py:class:`~.SDM` object
Examples
========
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1: QQ(2)}}
>>> A = SDM.new(elemsdict, (2, 2), QQ)
>>> A
{0: {1: 2}}
"""
return cls(sdm, shape, domain)
def copy(A):
"""
Returns the copy of a :py:class:`~.SDM` object
Examples
========
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1:QQ(2)}, 1:{}}
>>> A = SDM(elemsdict, (2, 2), QQ)
>>> B = A.copy()
>>> B
{0: {1: 2}, 1: {}}
"""
Ac = {i: Ai.copy() for i, Ai in A.items()}
return A.new(Ac, A.shape, A.domain)
@classmethod
def from_list(cls, ddm, shape, domain):
"""
Parameters
==========
ddm:
list of lists containing domain elements
shape:
Dimensions of :py:class:`~.SDM` matrix
domain:
Represents :py:class:`~.Domain` of :py:class:`~.SDM` object
Returns
=======
:py:class:`~.SDM` containing elements of ddm
Examples
========
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> ddm = [[QQ(1, 2), QQ(0)], [QQ(0), QQ(3, 4)]]
>>> A = SDM.from_list(ddm, (2, 2), QQ)
>>> A
{0: {0: 1/2}, 1: {1: 3/4}}
"""
m, n = shape
if not (len(ddm) == m and all(len(row) == n for row in ddm)):
raise DMBadInputError("Inconsistent row-list/shape")
getrow = lambda i: {j:ddm[i][j] for j in range(n) if ddm[i][j]}
irows = ((i, getrow(i)) for i in range(m))
sdm = {i: row for i, row in irows if row}
return cls(sdm, shape, domain)
@classmethod
def from_ddm(cls, ddm):
"""
converts object of :py:class:`~.DDM` to
:py:class:`~.SDM`
Examples
========
>>> from sympy.polys.matrices.ddm import DDM
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> ddm = DDM( [[QQ(1, 2), 0], [0, QQ(3, 4)]], (2, 2), QQ)
>>> A = SDM.from_ddm(ddm)
>>> A
{0: {0: 1/2}, 1: {1: 3/4}}
"""
return cls.from_list(ddm, ddm.shape, ddm.domain)
def to_list(M):
"""
Converts a :py:class:`~.SDM` object to a list
Examples
========
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> elemsdict = {0:{1:QQ(2)}, 1:{}}
>>> A = SDM(elemsdict, (2, 2), QQ)
>>> A.to_list()
[[0, 2], [0, 0]]
"""
m, n = M.shape
zero = M.domain.zero
ddm = [[zero] * n for _ in range(m)]
for i, row in M.items():
for j, e in row.items():
ddm[i][j] = e
return ddm
def to_list_flat(M):
m, n = M.shape
zero = M.domain.zero
flat = [zero] * (m * n)
for i, row in M.items():
for j, e in row.items():
flat[i*n + j] = e
return flat
def to_dok(M):
return {(i, j): e for i, row in M.items() for j, e in row.items()}
def to_ddm(M):
"""
Convert a :py:class:`~.SDM` object to a :py:class:`~.DDM` object
Examples
========
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ)
>>> A.to_ddm()
[[0, 2], [0, 0]]
"""
return DDM(M.to_list(), M.shape, M.domain)
def to_sdm(M):
return M
@classmethod
def zeros(cls, shape, domain):
r"""
Returns a :py:class:`~.SDM` of size shape,
belonging to the specified domain
In the example below we declare a matrix A where,
.. math::
A := \left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \end{array} \right]
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> A = SDM.zeros((2, 3), QQ)
>>> A
{}
"""
return cls({}, shape, domain)
@classmethod
def ones(cls, shape, domain):
one = domain.one
m, n = shape
row = dict(zip(range(n), [one]*n))
sdm = {i: row.copy() for i in range(m)}
return cls(sdm, shape, domain)
@classmethod
def eye(cls, shape, domain):
"""
Returns a identity :py:class:`~.SDM` matrix of dimensions
size x size, belonging to the specified domain
Examples
========
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> I = SDM.eye((2, 2), QQ)
>>> I
{0: {0: 1}, 1: {1: 1}}
"""
rows, cols = shape
one = domain.one
sdm = {i: {i: one} for i in range(min(rows, cols))}
return cls(sdm, shape, domain)
@classmethod
def diag(cls, diagonal, domain, shape):
sdm = {i: {i: v} for i, v in enumerate(diagonal) if v}
return cls(sdm, shape, domain)
def transpose(M):
"""
Returns the transpose of a :py:class:`~.SDM` matrix
Examples
========
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import QQ
>>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ)
>>> A.transpose()
{1: {0: 2}}
"""
MT = sdm_transpose(M)
return M.new(MT, M.shape[::-1], M.domain)
def __add__(A, B):
if not isinstance(B, SDM):
return NotImplemented
return A.add(B)
def __sub__(A, B):
if not isinstance(B, SDM):
return NotImplemented
return A.sub(B)
def __neg__(A):
return A.neg()
def __mul__(A, B):
"""A * B"""
if isinstance(B, SDM):
return A.matmul(B)
elif B in A.domain:
return A.mul(B)
else:
return NotImplemented
def __rmul__(a, b):
if b in a.domain:
return a.rmul(b)
else:
return NotImplemented
def matmul(A, B):
"""
Performs matrix multiplication of two SDM matrices
Parameters
==========
A, B: SDM to multiply
Returns
=======
SDM
SDM after multiplication
Raises
======
DomainError
If domain of A does not match
with that of B
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> B = SDM({0:{0:ZZ(2), 1:ZZ(3)}, 1:{0:ZZ(4)}}, (2, 2), ZZ)
>>> A.matmul(B)
{0: {0: 8}, 1: {0: 2, 1: 3}}
"""
if A.domain != B.domain:
raise DMDomainError
m, n = A.shape
n2, o = B.shape
if n != n2:
raise DMShapeError
C = sdm_matmul(A, B, A.domain, m, o)
return A.new(C, (m, o), A.domain)
def mul(A, b):
"""
Multiplies each element of A with a scalar b
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> A.mul(ZZ(3))
{0: {1: 6}, 1: {0: 3}}
"""
Csdm = unop_dict(A, lambda aij: aij*b)
return A.new(Csdm, A.shape, A.domain)
def rmul(A, b):
Csdm = unop_dict(A, lambda aij: b*aij)
return A.new(Csdm, A.shape, A.domain)
def mul_elementwise(A, B):
if A.domain != B.domain:
raise DMDomainError
if A.shape != B.shape:
raise DMShapeError
zero = A.domain.zero
fzero = lambda e: zero
Csdm = binop_dict(A, B, mul, fzero, fzero)
return A.new(Csdm, A.shape, A.domain)
def add(A, B):
"""
Adds two :py:class:`~.SDM` matrices
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ)
>>> A.add(B)
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
"""
Csdm = binop_dict(A, B, add, pos, pos)
return A.new(Csdm, A.shape, A.domain)
def sub(A, B):
"""
Subtracts two :py:class:`~.SDM` matrices
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ)
>>> A.sub(B)
{0: {0: -3, 1: 2}, 1: {0: 1, 1: -4}}
"""
Csdm = binop_dict(A, B, sub, pos, neg)
return A.new(Csdm, A.shape, A.domain)
def neg(A):
"""
Returns the negative of a :py:class:`~.SDM` matrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> A.neg()
{0: {1: -2}, 1: {0: -1}}
"""
Csdm = unop_dict(A, neg)
return A.new(Csdm, A.shape, A.domain)
def convert_to(A, K):
"""
Converts the :py:class:`~.Domain` of a :py:class:`~.SDM` matrix to K
Examples
========
>>> from sympy import ZZ, QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
>>> A.convert_to(QQ)
{0: {1: 2}, 1: {0: 1}}
"""
Kold = A.domain
if K == Kold:
return A.copy()
Ak = unop_dict(A, lambda e: K.convert_from(e, Kold))
return A.new(Ak, A.shape, K)
def scc(A):
"""Strongly connected components of a square matrix *A*.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0: ZZ(2)}, 1:{1:ZZ(1)}}, (2, 2), ZZ)
>>> A.scc()
[[0], [1]]
See also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.scc
"""
rows, cols = A.shape
assert rows == cols
V = range(rows)
Emap = {v: list(A.get(v, [])) for v in V}
return _strongly_connected_components(V, Emap)
def rref(A):
"""
Returns reduced-row echelon form and list of pivots for the :py:class:`~.SDM`
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(2), 1:QQ(4)}}, (2, 2), QQ)
>>> A.rref()
({0: {0: 1, 1: 2}}, [0])
"""
B, pivots, _ = sdm_irref(A)
return A.new(B, A.shape, A.domain), pivots
def inv(A):
"""
Returns inverse of a matrix A
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> A.inv()
{0: {0: -2, 1: 1}, 1: {0: 3/2, 1: -1/2}}
"""
return A.from_ddm(A.to_ddm().inv())
def det(A):
"""
Returns determinant of A
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> A.det()
-2
"""
return A.to_ddm().det()
def lu(A):
"""
Returns LU decomposition for a matrix A
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> A.lu()
({0: {0: 1}, 1: {0: 3, 1: 1}}, {0: {0: 1, 1: 2}, 1: {1: -2}}, [])
"""
L, U, swaps = A.to_ddm().lu()
return A.from_ddm(L), A.from_ddm(U), swaps
def lu_solve(A, b):
"""
Uses LU decomposition to solve Ax = b,
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> b = SDM({0:{0:QQ(1)}, 1:{0:QQ(2)}}, (2, 1), QQ)
>>> A.lu_solve(b)
{1: {0: 1/2}}
"""
return A.from_ddm(A.to_ddm().lu_solve(b.to_ddm()))
def nullspace(A):
"""
Returns nullspace for a :py:class:`~.SDM` matrix A
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0: QQ(2), 1: QQ(4)}}, (2, 2), QQ)
>>> A.nullspace()
({0: {0: -2, 1: 1}}, [1])
"""
ncols = A.shape[1]
one = A.domain.one
B, pivots, nzcols = sdm_irref(A)
K, nonpivots = sdm_nullspace_from_rref(B, one, ncols, pivots, nzcols)
K = dict(enumerate(K))
shape = (len(K), ncols)
return A.new(K, shape, A.domain), nonpivots
def particular(A):
ncols = A.shape[1]
B, pivots, nzcols = sdm_irref(A)
P = sdm_particular_from_rref(B, ncols, pivots)
rep = {0:P} if P else {}
return A.new(rep, (1, ncols-1), A.domain)
def hstack(A, *B):
"""Horizontally stacks :py:class:`~.SDM` matrices.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ)
>>> A.hstack(B)
{0: {0: 1, 1: 2, 2: 5, 3: 6}, 1: {0: 3, 1: 4, 2: 7, 3: 8}}
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ)
>>> A.hstack(B, C)
{0: {0: 1, 1: 2, 2: 5, 3: 6, 4: 9, 5: 10}, 1: {0: 3, 1: 4, 2: 7, 3: 8, 4: 11, 5: 12}}
"""
Anew = dict(A.copy())
rows, cols = A.shape
domain = A.domain
for Bk in B:
Bkrows, Bkcols = Bk.shape
assert Bkrows == rows
assert Bk.domain == domain
for i, Bki in Bk.items():
Ai = Anew.get(i, None)
if Ai is None:
Anew[i] = Ai = {}
for j, Bkij in Bki.items():
Ai[j + cols] = Bkij
cols += Bkcols
return A.new(Anew, (rows, cols), A.domain)
def vstack(A, *B):
"""Vertically stacks :py:class:`~.SDM` matrices.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import SDM
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ)
>>> A.vstack(B)
{0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}}
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ)
>>> A.vstack(B, C)
{0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}, 4: {0: 9, 1: 10}, 5: {0: 11, 1: 12}}
"""
Anew = dict(A.copy())
rows, cols = A.shape
domain = A.domain
for Bk in B:
Bkrows, Bkcols = Bk.shape
assert Bkcols == cols
assert Bk.domain == domain
for i, Bki in Bk.items():
Anew[i + rows] = Bki
rows += Bkrows
return A.new(Anew, (rows, cols), A.domain)
def applyfunc(self, func, domain):
sdm = {i: {j: func(e) for j, e in row.items()} for i, row in self.items()}
return self.new(sdm, self.shape, domain)
def charpoly(A):
"""
Returns the coefficients of the characteristic polynomial
of the :py:class:`~.SDM` matrix. These elements will be domain elements.
The domain of the elements will be same as domain of the :py:class:`~.SDM`.
Examples
========
>>> from sympy import QQ, Symbol
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy.polys import Poly
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
>>> A.charpoly()
[1, -5, -2]
We can create a polynomial using the
coefficients using :py:class:`~.Poly`
>>> x = Symbol('x')
>>> p = Poly(A.charpoly(), x, domain=A.domain)
>>> p
Poly(x**2 - 5*x - 2, x, domain='QQ')
"""
return A.to_ddm().charpoly()
def is_zero_matrix(self):
"""
Says whether this matrix has all zero entries.
"""
return not self
def is_upper(self):
"""
Says whether this matrix is upper-triangular. True can be returned
even if the matrix is not square.
"""
return all(i <= j for i, row in self.items() for j in row)
def is_lower(self):
"""
Says whether this matrix is lower-triangular. True can be returned
even if the matrix is not square.
"""
return all(i >= j for i, row in self.items() for j in row)
def lll(A, delta=QQ(3, 4)):
return A.from_ddm(ddm_lll(A.to_ddm(), delta=delta))
def lll_transform(A, delta=QQ(3, 4)):
reduced, transform = ddm_lll_transform(A.to_ddm(), delta=delta)
return A.from_ddm(reduced), A.from_ddm(transform)
def binop_dict(A, B, fab, fa, fb):
Anz, Bnz = set(A), set(B)
C = {}
for i in Anz & Bnz:
Ai, Bi = A[i], B[i]
Ci = {}
Anzi, Bnzi = set(Ai), set(Bi)
for j in Anzi & Bnzi:
Cij = fab(Ai[j], Bi[j])
if Cij:
Ci[j] = Cij
for j in Anzi - Bnzi:
Cij = fa(Ai[j])
if Cij:
Ci[j] = Cij
for j in Bnzi - Anzi:
Cij = fb(Bi[j])
if Cij:
Ci[j] = Cij
if Ci:
C[i] = Ci
for i in Anz - Bnz:
Ai = A[i]
Ci = {}
for j, Aij in Ai.items():
Cij = fa(Aij)
if Cij:
Ci[j] = Cij
if Ci:
C[i] = Ci
for i in Bnz - Anz:
Bi = B[i]
Ci = {}
for j, Bij in Bi.items():
Cij = fb(Bij)
if Cij:
Ci[j] = Cij
if Ci:
C[i] = Ci
return C
def unop_dict(A, f):
B = {}
for i, Ai in A.items():
Bi = {}
for j, Aij in Ai.items():
Bij = f(Aij)
if Bij:
Bi[j] = Bij
if Bi:
B[i] = Bi
return B
def sdm_transpose(M):
MT = {}
for i, Mi in M.items():
for j, Mij in Mi.items():
try:
MT[j][i] = Mij
except KeyError:
MT[j] = {i: Mij}
return MT
def sdm_matmul(A, B, K, m, o):
#
# Should be fast if A and B are very sparse.
# Consider e.g. A = B = eye(1000).
#
# The idea here is that we compute C = A*B in terms of the rows of C and
# B since the dict of dicts representation naturally stores the matrix as
# rows. The ith row of C (Ci) is equal to the sum of Aik * Bk where Bk is
# the kth row of B. The algorithm below loops over each nonzero element
# Aik of A and if the corresponding row Bj is nonzero then we do
# Ci += Aik * Bk.
# To make this more efficient we don't need to loop over all elements Aik.
# Instead for each row Ai we compute the intersection of the nonzero
# columns in Ai with the nonzero rows in B. That gives the k such that
# Aik and Bk are both nonzero. In Python the intersection of two sets
# of int can be computed very efficiently.
#
if K.is_EXRAW:
return sdm_matmul_exraw(A, B, K, m, o)
C = {}
B_knz = set(B)
for i, Ai in A.items():
Ci = {}
Ai_knz = set(Ai)
for k in Ai_knz & B_knz:
Aik = Ai[k]
for j, Bkj in B[k].items():
Cij = Ci.get(j, None)
if Cij is not None:
Cij = Cij + Aik * Bkj
if Cij:
Ci[j] = Cij
else:
Ci.pop(j)
else:
Cij = Aik * Bkj
if Cij:
Ci[j] = Cij
if Ci:
C[i] = Ci
return C
def sdm_matmul_exraw(A, B, K, m, o):
#
# Like sdm_matmul above except that:
#
# - Handles cases like 0*oo -> nan (sdm_matmul skips multipication by zero)
# - Uses K.sum (Add(*items)) for efficient addition of Expr
#
zero = K.zero
C = {}
B_knz = set(B)
for i, Ai in A.items():
Ci_list = defaultdict(list)
Ai_knz = set(Ai)
# Nonzero row/column pair
for k in Ai_knz & B_knz:
Aik = Ai[k]
if zero * Aik == zero:
# This is the main inner loop:
for j, Bkj in B[k].items():
Ci_list[j].append(Aik * Bkj)
else:
for j in range(o):
Ci_list[j].append(Aik * B[k].get(j, zero))
# Zero row in B, check for infinities in A
for k in Ai_knz - B_knz:
zAik = zero * Ai[k]
if zAik != zero:
for j in range(o):
Ci_list[j].append(zAik)
# Add terms using K.sum (Add(*terms)) for efficiency
Ci = {}
for j, Cij_list in Ci_list.items():
Cij = K.sum(Cij_list)
if Cij:
Ci[j] = Cij
if Ci:
C[i] = Ci
# Find all infinities in B
for k, Bk in B.items():
for j, Bkj in Bk.items():
if zero * Bkj != zero:
for i in range(m):
Aik = A.get(i, {}).get(k, zero)
# If Aik is not zero then this was handled above
if Aik == zero:
Ci = C.get(i, {})
Cij = Ci.get(j, zero) + Aik * Bkj
if Cij != zero:
Ci[j] = Cij
else: # pragma: no cover
# Not sure how we could get here but let's raise an
# exception just in case.
raise RuntimeError
C[i] = Ci
return C
def sdm_irref(A):
"""RREF and pivots of a sparse matrix *A*.
Compute the reduced row echelon form (RREF) of the matrix *A* and return a
list of the pivot columns. This routine does not work in place and leaves
the original matrix *A* unmodified.
Examples
========
This routine works with a dict of dicts sparse representation of a matrix:
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import sdm_irref
>>> A = {0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}
>>> Arref, pivots, _ = sdm_irref(A)
>>> Arref
{0: {0: 1}, 1: {1: 1}}
>>> pivots
[0, 1]
The analogous calculation with :py:class:`~.Matrix` would be
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> Mrref, pivots = M.rref()
>>> Mrref
Matrix([
[1, 0],
[0, 1]])
>>> pivots
(0, 1)
Notes
=====
The cost of this algorithm is determined purely by the nonzero elements of
the matrix. No part of the cost of any step in this algorithm depends on
the number of rows or columns in the matrix. No step depends even on the
number of nonzero rows apart from the primary loop over those rows. The
implementation is much faster than ddm_rref for sparse matrices. In fact
at the time of writing it is also (slightly) faster than the dense
implementation even if the input is a fully dense matrix so it seems to be
faster in all cases.
The elements of the matrix should support exact division with ``/``. For
example elements of any domain that is a field (e.g. ``QQ``) should be
fine. No attempt is made to handle inexact arithmetic.
"""
#
# Any zeros in the matrix are not stored at all so an element is zero if
# its row dict has no index at that key. A row is entirely zero if its
# row index is not in the outer dict. Since rref reorders the rows and
# removes zero rows we can completely discard the row indices. The first
# step then copies the row dicts into a list sorted by the index of the
# first nonzero column in each row.
#
# The algorithm then processes each row Ai one at a time. Previously seen
# rows are used to cancel their pivot columns from Ai. Then a pivot from
# Ai is chosen and is cancelled from all previously seen rows. At this
# point Ai joins the previously seen rows. Once all rows are seen all
# elimination has occurred and the rows are sorted by pivot column index.
#
# The previously seen rows are stored in two separate groups. The reduced
# group consists of all rows that have been reduced to a single nonzero
# element (the pivot). There is no need to attempt any further reduction
# with these. Rows that still have other nonzeros need to be considered
# when Ai is cancelled from the previously seen rows.
#
# A dict nonzerocolumns is used to map from a column index to a set of
# previously seen rows that still have a nonzero element in that column.
# This means that we can cancel the pivot from Ai into the previously seen
# rows without needing to loop over each row that might have a zero in
# that column.
#
# Row dicts sorted by index of first nonzero column
# (Maybe sorting is not needed/useful.)
Arows = sorted((Ai.copy() for Ai in A.values()), key=min)
# Each processed row has an associated pivot column.
# pivot_row_map maps from the pivot column index to the row dict.
# This means that we can represent a set of rows purely as a set of their
# pivot indices.
pivot_row_map = {}
# Set of pivot indices for rows that are fully reduced to a single nonzero.
reduced_pivots = set()
# Set of pivot indices for rows not fully reduced
nonreduced_pivots = set()
# Map from column index to a set of pivot indices representing the rows
# that have a nonzero at that column.
nonzero_columns = defaultdict(set)
while Arows:
# Select pivot element and row
Ai = Arows.pop()
# Nonzero columns from fully reduced pivot rows can be removed
Ai = {j: Aij for j, Aij in Ai.items() if j not in reduced_pivots}
# Others require full row cancellation
for j in nonreduced_pivots & set(Ai):
Aj = pivot_row_map[j]
Aij = Ai[j]
Ainz = set(Ai)
Ajnz = set(Aj)
for k in Ajnz - Ainz:
Ai[k] = - Aij * Aj[k]
Ai.pop(j)
Ainz.remove(j)
for k in Ajnz & Ainz:
Aik = Ai[k] - Aij * Aj[k]
if Aik:
Ai[k] = Aik
else:
Ai.pop(k)
# We have now cancelled previously seen pivots from Ai.
# If it is zero then discard it.
if not Ai:
continue
# Choose a pivot from Ai:
j = min(Ai)
Aij = Ai[j]
pivot_row_map[j] = Ai
Ainz = set(Ai)
# Normalise the pivot row to make the pivot 1.
#
# This approach is slow for some domains. Cross cancellation might be
# better for e.g. QQ(x) with division delayed to the final steps.
Aijinv = Aij**-1
for l in Ai:
Ai[l] *= Aijinv
# Use Aij to cancel column j from all previously seen rows
for k in nonzero_columns.pop(j, ()):
Ak = pivot_row_map[k]
Akj = Ak[j]
Aknz = set(Ak)
for l in Ainz - Aknz:
Ak[l] = - Akj * Ai[l]
nonzero_columns[l].add(k)
Ak.pop(j)
Aknz.remove(j)
for l in Ainz & Aknz:
Akl = Ak[l] - Akj * Ai[l]
if Akl:
Ak[l] = Akl
else:
# Drop nonzero elements
Ak.pop(l)
if l != j:
nonzero_columns[l].remove(k)
if len(Ak) == 1:
reduced_pivots.add(k)
nonreduced_pivots.remove(k)
if len(Ai) == 1:
reduced_pivots.add(j)
else:
nonreduced_pivots.add(j)
for l in Ai:
if l != j:
nonzero_columns[l].add(j)
# All done!
pivots = sorted(reduced_pivots | nonreduced_pivots)
pivot2row = {p: n for n, p in enumerate(pivots)}
nonzero_columns = {c: {pivot2row[p] for p in s} for c, s in nonzero_columns.items()}
rows = [pivot_row_map[i] for i in pivots]
rref = dict(enumerate(rows))
return rref, pivots, nonzero_columns
def sdm_nullspace_from_rref(A, one, ncols, pivots, nonzero_cols):
"""Get nullspace from A which is in RREF"""
nonpivots = sorted(set(range(ncols)) - set(pivots))
K = []
for j in nonpivots:
Kj = {j:one}
for i in nonzero_cols.get(j, ()):
Kj[pivots[i]] = -A[i][j]
K.append(Kj)
return K, nonpivots
def sdm_particular_from_rref(A, ncols, pivots):
"""Get a particular solution from A which is in RREF"""
P = {}
for i, j in enumerate(pivots):
Ain = A[i].get(ncols-1, None)
if Ain is not None:
P[j] = Ain / A[i][j]
return P
|