File size: 33,910 Bytes
6fdfda2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
r"""
Parameters used in test and benchmark methods.

Collections of test cases suitable for testing 1-D root-finders
  'original': The original benchmarking functions.
     Real-valued functions of real-valued inputs on an interval
     with a zero.
     f1, .., f3 are continuous and infinitely differentiable
     f4 has a left- and right- discontinuity at the root
     f5 has a root at 1 replacing a 1st order pole
     f6 is randomly positive on one side of the root,
     randomly negative on the other.
     f4 - f6 are not continuous at the root.

  'aps': The test problems in the 1995 paper
     TOMS "Algorithm 748: Enclosing Zeros of Continuous Functions"
     by Alefeld, Potra and Shi. Real-valued functions of
     real-valued inputs on an interval with a zero.
     Suitable for methods which start with an enclosing interval, and
     derivatives up to 2nd order.

  'complex': Some complex-valued functions of complex-valued inputs.
     No enclosing bracket is provided.
     Suitable for methods which use one or more starting values, and
     derivatives up to 2nd order.

  The test cases are provided as a list of dictionaries. The dictionary
  keys will be a subset of:
  ["f", "fprime", "fprime2", "args", "bracket", "smoothness",
  "a", "b", "x0", "x1", "root", "ID"]
"""

# Sources:
#  [1] Alefeld, G. E. and Potra, F. A. and Shi, Yixun,
#      "Algorithm 748: Enclosing Zeros of Continuous Functions",
#      ACM Trans. Math. Softw. Volume 221(1995)
#       doi = {10.1145/210089.210111},
#  [2] Chandrupatla, Tirupathi R. "A new hybrid quadratic/bisection algorithm
#      for finding the zero of a nonlinear function without using derivatives."
#      Advances in Engineering Software 28.3 (1997): 145-149.

from random import random

import numpy as np

from scipy.optimize import _zeros_py as cc

# "description" refers to the original functions
description = """
f2 is a symmetric parabola, x**2 - 1
f3 is a quartic polynomial with large hump in interval
f4 is step function with a discontinuity at 1
f5 is a hyperbola with vertical asymptote at 1
f6 has random values positive to left of 1, negative to right

Of course, these are not real problems. They just test how the
'good' solvers behave in bad circumstances where bisection is
really the best. A good solver should not be much worse than
bisection in such circumstance, while being faster for smooth
monotone sorts of functions.
"""


def f1(x):
    r"""f1 is a quadratic with roots at 0 and 1"""
    return x * (x - 1.)


def f1_fp(x):
    return 2 * x - 1


def f1_fpp(x):
    return 2


def f2(x):
    r"""f2 is a symmetric parabola, x**2 - 1"""
    return x**2 - 1


def f2_fp(x):
    return 2 * x


def f2_fpp(x):
    return 2


def f3(x):
    r"""A quartic with roots at 0, 1, 2 and 3"""
    return x * (x - 1.) * (x - 2.) * (x - 3.)  # x**4 - 6x**3 + 11x**2 - 6x


def f3_fp(x):
    return 4 * x**3 - 18 * x**2 + 22 * x - 6


def f3_fpp(x):
    return 12 * x**2 - 36 * x + 22


def f4(x):
    r"""Piecewise linear, left- and right- discontinuous at x=1, the root."""
    if x > 1:
        return 1.0 + .1 * x
    if x < 1:
        return -1.0 + .1 * x
    return 0


def f5(x):
    r"""
    Hyperbola with a pole at x=1, but pole replaced with 0. Not continuous at root.
    """
    if x != 1:
        return 1.0 / (1. - x)
    return 0


# f6(x) returns random value. Without memoization, calling twice with the
# same x returns different values, hence a "random value", not a
# "function with random values"
_f6_cache = {}
def f6(x):
    v = _f6_cache.get(x, None)
    if v is None:
        if x > 1:
            v = random()
        elif x < 1:
            v = -random()
        else:
            v = 0
        _f6_cache[x] = v
    return v


# Each Original test case has
# - a function and its two derivatives,
# - additional arguments,
# - a bracket enclosing a root,
# - the order of differentiability (smoothness) on this interval
# - a starting value for methods which don't require a bracket
# - the root (inside the bracket)
# - an Identifier of the test case

_ORIGINAL_TESTS_KEYS = [
    "f", "fprime", "fprime2", "args", "bracket", "smoothness", "x0", "root", "ID"
]
_ORIGINAL_TESTS = [
    [f1, f1_fp, f1_fpp, (), [0.5, np.sqrt(3)], np.inf, 0.6, 1.0, "original.01.00"],
    [f2, f2_fp, f2_fpp, (), [0.5, np.sqrt(3)], np.inf, 0.6, 1.0, "original.02.00"],
    [f3, f3_fp, f3_fpp, (), [0.5, np.sqrt(3)], np.inf, 0.6, 1.0, "original.03.00"],
    [f4, None, None, (), [0.5, np.sqrt(3)], -1, 0.6, 1.0, "original.04.00"],
    [f5, None, None, (), [0.5, np.sqrt(3)], -1, 0.6, 1.0, "original.05.00"],
    [f6, None, None, (), [0.5, np.sqrt(3)], -np.inf, 0.6, 1.0, "original.05.00"]
]

_ORIGINAL_TESTS_DICTS = [
    dict(zip(_ORIGINAL_TESTS_KEYS, testcase)) for testcase in _ORIGINAL_TESTS
]

#   ##################
#   "APS" test cases
#   Functions and test cases that appear in [1]


def aps01_f(x):
    r"""Straightforward sum of trigonometric function and polynomial"""
    return np.sin(x) - x / 2


def aps01_fp(x):
    return np.cos(x) - 1.0 / 2


def aps01_fpp(x):
    return -np.sin(x)


def aps02_f(x):
    r"""poles at x=n**2, 1st and 2nd derivatives at root are also close to 0"""
    ii = np.arange(1, 21)
    return -2 * np.sum((2 * ii - 5)**2 / (x - ii**2)**3)


def aps02_fp(x):
    ii = np.arange(1, 21)
    return 6 * np.sum((2 * ii - 5)**2 / (x - ii**2)**4)


def aps02_fpp(x):
    ii = np.arange(1, 21)
    return 24 * np.sum((2 * ii - 5)**2 / (x - ii**2)**5)


def aps03_f(x, a, b):
    r"""Rapidly changing at the root"""
    return a * x * np.exp(b * x)


def aps03_fp(x, a, b):
    return a * (b * x + 1) * np.exp(b * x)


def aps03_fpp(x, a, b):
    return a * (b * (b * x + 1) + b) * np.exp(b * x)


def aps04_f(x, n, a):
    r"""Medium-degree polynomial"""
    return x**n - a


def aps04_fp(x, n, a):
    return n * x**(n - 1)


def aps04_fpp(x, n, a):
    return n * (n - 1) * x**(n - 2)


def aps05_f(x):
    r"""Simple Trigonometric function"""
    return np.sin(x) - 1.0 / 2


def aps05_fp(x):
    return np.cos(x)


def aps05_fpp(x):
    return -np.sin(x)


def aps06_f(x, n):
    r"""Exponential rapidly changing from -1 to 1 at x=0"""
    return 2 * x * np.exp(-n) - 2 * np.exp(-n * x) + 1


def aps06_fp(x, n):
    return 2 * np.exp(-n) + 2 * n * np.exp(-n * x)


def aps06_fpp(x, n):
    return -2 * n * n * np.exp(-n * x)


def aps07_f(x, n):
    r"""Upside down parabola with parametrizable height"""
    return (1 + (1 - n)**2) * x - (1 - n * x)**2


def aps07_fp(x, n):
    return (1 + (1 - n)**2) + 2 * n * (1 - n * x)


def aps07_fpp(x, n):
    return -2 * n * n


def aps08_f(x, n):
    r"""Degree n polynomial"""
    return x * x - (1 - x)**n


def aps08_fp(x, n):
    return 2 * x + n * (1 - x)**(n - 1)


def aps08_fpp(x, n):
    return 2 - n * (n - 1) * (1 - x)**(n - 2)


def aps09_f(x, n):
    r"""Upside down quartic with parametrizable height"""
    return (1 + (1 - n)**4) * x - (1 - n * x)**4


def aps09_fp(x, n):
    return (1 + (1 - n)**4) + 4 * n * (1 - n * x)**3


def aps09_fpp(x, n):
    return -12 * n * (1 - n * x)**2


def aps10_f(x, n):
    r"""Exponential plus a polynomial"""
    return np.exp(-n * x) * (x - 1) + x**n


def aps10_fp(x, n):
    return np.exp(-n * x) * (-n * (x - 1) + 1) + n * x**(n - 1)


def aps10_fpp(x, n):
    return (np.exp(-n * x) * (-n * (-n * (x - 1) + 1) + -n * x)
            + n * (n - 1) * x**(n - 2))


def aps11_f(x, n):
    r"""Rational function with a zero at x=1/n and a pole at x=0"""
    return (n * x - 1) / ((n - 1) * x)


def aps11_fp(x, n):
    return 1 / (n - 1) / x**2


def aps11_fpp(x, n):
    return -2 / (n - 1) / x**3


def aps12_f(x, n):
    r"""nth root of x, with a zero at x=n"""
    return np.power(x, 1.0 / n) - np.power(n, 1.0 / n)


def aps12_fp(x, n):
    return np.power(x, (1.0 - n) / n) / n


def aps12_fpp(x, n):
    return np.power(x, (1.0 - 2 * n) / n) * (1.0 / n) * (1.0 - n) / n


_MAX_EXPABLE = np.log(np.finfo(float).max)


def aps13_f(x):
    r"""Function with *all* derivatives 0 at the root"""
    if x == 0:
        return 0
    # x2 = 1.0/x**2
    # if x2 > 708:
    #     return 0
    y = 1 / x**2
    if y > _MAX_EXPABLE:
        return 0
    return x / np.exp(y)


def aps13_fp(x):
    if x == 0:
        return 0
    y = 1 / x**2
    if y > _MAX_EXPABLE:
        return 0
    return (1 + 2 / x**2) / np.exp(y)


def aps13_fpp(x):
    if x == 0:
        return 0
    y = 1 / x**2
    if y > _MAX_EXPABLE:
        return 0
    return 2 * (2 - x**2) / x**5 / np.exp(y)


def aps14_f(x, n):
    r"""0 for negative x-values, trigonometric+linear for x positive"""
    if x <= 0:
        return -n / 20.0
    return n / 20.0 * (x / 1.5 + np.sin(x) - 1)


def aps14_fp(x, n):
    if x <= 0:
        return 0
    return n / 20.0 * (1.0 / 1.5 + np.cos(x))


def aps14_fpp(x, n):
    if x <= 0:
        return 0
    return -n / 20.0 * (np.sin(x))


def aps15_f(x, n):
    r"""piecewise linear, constant outside of [0, 0.002/(1+n)]"""
    if x < 0:
        return -0.859
    if x > 2 * 1e-3 / (1 + n):
        return np.e - 1.859
    return np.exp((n + 1) * x / 2 * 1000) - 1.859


def aps15_fp(x, n):
    if not 0 <= x <= 2 * 1e-3 / (1 + n):
        return np.e - 1.859
    return np.exp((n + 1) * x / 2 * 1000) * (n + 1) / 2 * 1000


def aps15_fpp(x, n):
    if not 0 <= x <= 2 * 1e-3 / (1 + n):
        return np.e - 1.859
    return np.exp((n + 1) * x / 2 * 1000) * (n + 1) / 2 * 1000 * (n + 1) / 2 * 1000


# Each APS test case has
# - a function and its two derivatives,
# - additional arguments,
# - a bracket enclosing a root,
# - the order of differentiability of the function on this interval
# - a starting value for methods which don't require a bracket
# - the root (inside the bracket)
# - an Identifier of the test case
#
# Algorithm 748 is a bracketing algorithm so a bracketing interval was provided
# in [1] for each test case. Newton and Halley methods need a single
# starting point x0, which was chosen to be near the middle of the interval,
# unless that would have made the problem too easy.

_APS_TESTS_KEYS = [
    "f", "fprime", "fprime2", "args", "bracket", "smoothness", "x0", "root", "ID"
]
_APS_TESTS = [
    [aps01_f, aps01_fp, aps01_fpp, (), [np.pi / 2, np.pi], np.inf,
     3, 1.89549426703398094e+00, "aps.01.00"],
    [aps02_f, aps02_fp, aps02_fpp, (), [1 + 1e-9, 4 - 1e-9], np.inf,
     2, 3.02291534727305677e+00, "aps.02.00"],
    [aps02_f, aps02_fp, aps02_fpp, (), [4 + 1e-9, 9 - 1e-9], np.inf,
     5, 6.68375356080807848e+00, "aps.02.01"],
    [aps02_f, aps02_fp, aps02_fpp, (), [9 + 1e-9, 16 - 1e-9], np.inf,
     10, 1.12387016550022114e+01, "aps.02.02"],
    [aps02_f, aps02_fp, aps02_fpp, (), [16 + 1e-9, 25 - 1e-9], np.inf,
     17, 1.96760000806234103e+01, "aps.02.03"],
    [aps02_f, aps02_fp, aps02_fpp, (), [25 + 1e-9, 36 - 1e-9], np.inf,
     26, 2.98282273265047557e+01, "aps.02.04"],
    [aps02_f, aps02_fp, aps02_fpp, (), [36 + 1e-9, 49 - 1e-9], np.inf,
     37, 4.19061161952894139e+01, "aps.02.05"],
    [aps02_f, aps02_fp, aps02_fpp, (), [49 + 1e-9, 64 - 1e-9], np.inf,
     50, 5.59535958001430913e+01, "aps.02.06"],
    [aps02_f, aps02_fp, aps02_fpp, (), [64 + 1e-9, 81 - 1e-9], np.inf,
     65, 7.19856655865877997e+01, "aps.02.07"],
    [aps02_f, aps02_fp, aps02_fpp, (), [81 + 1e-9, 100 - 1e-9], np.inf,
     82, 9.00088685391666701e+01, "aps.02.08"],
    [aps02_f, aps02_fp, aps02_fpp, (), [100 + 1e-9, 121 - 1e-9], np.inf,
     101, 1.10026532748330197e+02, "aps.02.09"],
    [aps03_f, aps03_fp, aps03_fpp, (-40, -1), [-9, 31], np.inf,
     -2, 0, "aps.03.00"],
    [aps03_f, aps03_fp, aps03_fpp, (-100, -2), [-9, 31], np.inf,
     -2, 0, "aps.03.01"],
    [aps03_f, aps03_fp, aps03_fpp, (-200, -3), [-9, 31], np.inf,
     -2, 0, "aps.03.02"],
    [aps04_f, aps04_fp, aps04_fpp, (4, 0.2), [0, 5], np.inf,
     2.5, 6.68740304976422006e-01, "aps.04.00"],
    [aps04_f, aps04_fp, aps04_fpp, (6, 0.2), [0, 5], np.inf,
     2.5, 7.64724491331730039e-01, "aps.04.01"],
    [aps04_f, aps04_fp, aps04_fpp, (8, 0.2), [0, 5], np.inf,
     2.5, 8.17765433957942545e-01, "aps.04.02"],
    [aps04_f, aps04_fp, aps04_fpp, (10, 0.2), [0, 5], np.inf,
     2.5, 8.51339922520784609e-01, "aps.04.03"],
    [aps04_f, aps04_fp, aps04_fpp, (12, 0.2), [0, 5], np.inf,
     2.5, 8.74485272221167897e-01, "aps.04.04"],
    [aps04_f, aps04_fp, aps04_fpp, (4, 1), [0, 5], np.inf,
     2.5, 1, "aps.04.05"],
    [aps04_f, aps04_fp, aps04_fpp, (6, 1), [0, 5], np.inf,
     2.5, 1, "aps.04.06"],
    [aps04_f, aps04_fp, aps04_fpp, (8, 1), [0, 5], np.inf,
     2.5, 1, "aps.04.07"],
    [aps04_f, aps04_fp, aps04_fpp, (10, 1), [0, 5], np.inf,
     2.5, 1, "aps.04.08"],
    [aps04_f, aps04_fp, aps04_fpp, (12, 1), [0, 5], np.inf,
     2.5, 1, "aps.04.09"],
    [aps04_f, aps04_fp, aps04_fpp, (8, 1), [-0.95, 4.05], np.inf,
     1.5, 1, "aps.04.10"],
    [aps04_f, aps04_fp, aps04_fpp, (10, 1), [-0.95, 4.05], np.inf,
     1.5, 1, "aps.04.11"],
    [aps04_f, aps04_fp, aps04_fpp, (12, 1), [-0.95, 4.05], np.inf,
     1.5, 1, "aps.04.12"],
    [aps04_f, aps04_fp, aps04_fpp, (14, 1), [-0.95, 4.05], np.inf,
     1.5, 1, "aps.04.13"],
    [aps05_f, aps05_fp, aps05_fpp, (), [0, 1.5], np.inf,
     1.3, np.pi / 6, "aps.05.00"],
    [aps06_f, aps06_fp, aps06_fpp, (1,), [0, 1], np.inf,
     0.5, 4.22477709641236709e-01, "aps.06.00"],
    [aps06_f, aps06_fp, aps06_fpp, (2,), [0, 1], np.inf,
     0.5, 3.06699410483203705e-01, "aps.06.01"],
    [aps06_f, aps06_fp, aps06_fpp, (3,), [0, 1], np.inf,
     0.5, 2.23705457654662959e-01, "aps.06.02"],
    [aps06_f, aps06_fp, aps06_fpp, (4,), [0, 1], np.inf,
     0.5, 1.71719147519508369e-01, "aps.06.03"],
    [aps06_f, aps06_fp, aps06_fpp, (5,), [0, 1], np.inf,
     0.4, 1.38257155056824066e-01, "aps.06.04"],
    [aps06_f, aps06_fp, aps06_fpp, (20,), [0, 1], np.inf,
     0.1, 3.46573590208538521e-02, "aps.06.05"],
    [aps06_f, aps06_fp, aps06_fpp, (40,), [0, 1], np.inf,
     5e-02, 1.73286795139986315e-02, "aps.06.06"],
    [aps06_f, aps06_fp, aps06_fpp, (60,), [0, 1], np.inf,
     1.0 / 30, 1.15524530093324210e-02, "aps.06.07"],
    [aps06_f, aps06_fp, aps06_fpp, (80,), [0, 1], np.inf,
     2.5e-02, 8.66433975699931573e-03, "aps.06.08"],
    [aps06_f, aps06_fp, aps06_fpp, (100,), [0, 1], np.inf,
     2e-02, 6.93147180559945415e-03, "aps.06.09"],
    [aps07_f, aps07_fp, aps07_fpp, (5,), [0, 1], np.inf,
     0.4, 3.84025518406218985e-02, "aps.07.00"],
    [aps07_f, aps07_fp, aps07_fpp, (10,), [0, 1], np.inf,
     0.4, 9.90000999800049949e-03, "aps.07.01"],
    [aps07_f, aps07_fp, aps07_fpp, (20,), [0, 1], np.inf,
     0.4, 2.49375003906201174e-03, "aps.07.02"],
    [aps08_f, aps08_fp, aps08_fpp, (2,), [0, 1], np.inf,
     0.9, 0.5, "aps.08.00"],
    [aps08_f, aps08_fp, aps08_fpp, (5,), [0, 1], np.inf,
     0.9, 3.45954815848242059e-01, "aps.08.01"],
    [aps08_f, aps08_fp, aps08_fpp, (10,), [0, 1], np.inf,
     0.9, 2.45122333753307220e-01, "aps.08.02"],
    [aps08_f, aps08_fp, aps08_fpp, (15,), [0, 1], np.inf,
     0.9, 1.95547623536565629e-01, "aps.08.03"],
    [aps08_f, aps08_fp, aps08_fpp, (20,), [0, 1], np.inf,
     0.9, 1.64920957276440960e-01, "aps.08.04"],
    [aps09_f, aps09_fp, aps09_fpp, (1,), [0, 1], np.inf,
     0.5, 2.75508040999484394e-01, "aps.09.00"],
    [aps09_f, aps09_fp, aps09_fpp, (2,), [0, 1], np.inf,
     0.5, 1.37754020499742197e-01, "aps.09.01"],
    [aps09_f, aps09_fp, aps09_fpp, (4,), [0, 1], np.inf,
     0.5, 1.03052837781564422e-02, "aps.09.02"],
    [aps09_f, aps09_fp, aps09_fpp, (5,), [0, 1], np.inf,
     0.5, 3.61710817890406339e-03, "aps.09.03"],
    [aps09_f, aps09_fp, aps09_fpp, (8,), [0, 1], np.inf,
     0.5, 4.10872918496395375e-04, "aps.09.04"],
    [aps09_f, aps09_fp, aps09_fpp, (15,), [0, 1], np.inf,
     0.5, 2.59895758929076292e-05, "aps.09.05"],
    [aps09_f, aps09_fp, aps09_fpp, (20,), [0, 1], np.inf,
     0.5, 7.66859512218533719e-06, "aps.09.06"],
    [aps10_f, aps10_fp, aps10_fpp, (1,), [0, 1], np.inf,
     0.9, 4.01058137541547011e-01, "aps.10.00"],
    [aps10_f, aps10_fp, aps10_fpp, (5,), [0, 1], np.inf,
     0.9, 5.16153518757933583e-01, "aps.10.01"],
    [aps10_f, aps10_fp, aps10_fpp, (10,), [0, 1], np.inf,
     0.9, 5.39522226908415781e-01, "aps.10.02"],
    [aps10_f, aps10_fp, aps10_fpp, (15,), [0, 1], np.inf,
     0.9, 5.48182294340655241e-01, "aps.10.03"],
    [aps10_f, aps10_fp, aps10_fpp, (20,), [0, 1], np.inf,
     0.9, 5.52704666678487833e-01, "aps.10.04"],
    [aps11_f, aps11_fp, aps11_fpp, (2,), [0.01, 1], np.inf,
     1e-02, 1.0 / 2, "aps.11.00"],
    [aps11_f, aps11_fp, aps11_fpp, (5,), [0.01, 1], np.inf,
     1e-02, 1.0 / 5, "aps.11.01"],
    [aps11_f, aps11_fp, aps11_fpp, (15,), [0.01, 1], np.inf,
     1e-02, 1.0 / 15, "aps.11.02"],
    [aps11_f, aps11_fp, aps11_fpp, (20,), [0.01, 1], np.inf,
     1e-02, 1.0 / 20, "aps.11.03"],
    [aps12_f, aps12_fp, aps12_fpp, (2,), [1, 100], np.inf,
     1.1, 2, "aps.12.00"],
    [aps12_f, aps12_fp, aps12_fpp, (3,), [1, 100], np.inf,
     1.1, 3, "aps.12.01"],
    [aps12_f, aps12_fp, aps12_fpp, (4,), [1, 100], np.inf,
     1.1, 4, "aps.12.02"],
    [aps12_f, aps12_fp, aps12_fpp, (5,), [1, 100], np.inf,
     1.1, 5, "aps.12.03"],
    [aps12_f, aps12_fp, aps12_fpp, (6,), [1, 100], np.inf,
     1.1, 6, "aps.12.04"],
    [aps12_f, aps12_fp, aps12_fpp, (7,), [1, 100], np.inf,
     1.1, 7, "aps.12.05"],
    [aps12_f, aps12_fp, aps12_fpp, (9,), [1, 100], np.inf,
     1.1, 9, "aps.12.06"],
    [aps12_f, aps12_fp, aps12_fpp, (11,), [1, 100], np.inf,
     1.1, 11, "aps.12.07"],
    [aps12_f, aps12_fp, aps12_fpp, (13,), [1, 100], np.inf,
     1.1, 13, "aps.12.08"],
    [aps12_f, aps12_fp, aps12_fpp, (15,), [1, 100], np.inf,
     1.1, 15, "aps.12.09"],
    [aps12_f, aps12_fp, aps12_fpp, (17,), [1, 100], np.inf,
     1.1, 17, "aps.12.10"],
    [aps12_f, aps12_fp, aps12_fpp, (19,), [1, 100], np.inf,
     1.1, 19, "aps.12.11"],
    [aps12_f, aps12_fp, aps12_fpp, (21,), [1, 100], np.inf,
     1.1, 21, "aps.12.12"],
    [aps12_f, aps12_fp, aps12_fpp, (23,), [1, 100], np.inf,
     1.1, 23, "aps.12.13"],
    [aps12_f, aps12_fp, aps12_fpp, (25,), [1, 100], np.inf,
     1.1, 25, "aps.12.14"],
    [aps12_f, aps12_fp, aps12_fpp, (27,), [1, 100], np.inf,
     1.1, 27, "aps.12.15"],
    [aps12_f, aps12_fp, aps12_fpp, (29,), [1, 100], np.inf,
     1.1, 29, "aps.12.16"],
    [aps12_f, aps12_fp, aps12_fpp, (31,), [1, 100], np.inf,
     1.1, 31, "aps.12.17"],
    [aps12_f, aps12_fp, aps12_fpp, (33,), [1, 100], np.inf,
     1.1, 33, "aps.12.18"],
    [aps13_f, aps13_fp, aps13_fpp, (), [-1, 4], np.inf,
     1.5, 0, "aps.13.00"],
    [aps14_f, aps14_fp, aps14_fpp, (1,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.00"],
    [aps14_f, aps14_fp, aps14_fpp, (2,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.01"],
    [aps14_f, aps14_fp, aps14_fpp, (3,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.02"],
    [aps14_f, aps14_fp, aps14_fpp, (4,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.03"],
    [aps14_f, aps14_fp, aps14_fpp, (5,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.04"],
    [aps14_f, aps14_fp, aps14_fpp, (6,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.05"],
    [aps14_f, aps14_fp, aps14_fpp, (7,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.06"],
    [aps14_f, aps14_fp, aps14_fpp, (8,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.07"],
    [aps14_f, aps14_fp, aps14_fpp, (9,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.08"],
    [aps14_f, aps14_fp, aps14_fpp, (10,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.09"],
    [aps14_f, aps14_fp, aps14_fpp, (11,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.10"],
    [aps14_f, aps14_fp, aps14_fpp, (12,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.11"],
    [aps14_f, aps14_fp, aps14_fpp, (13,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.12"],
    [aps14_f, aps14_fp, aps14_fpp, (14,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.13"],
    [aps14_f, aps14_fp, aps14_fpp, (15,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.14"],
    [aps14_f, aps14_fp, aps14_fpp, (16,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.15"],
    [aps14_f, aps14_fp, aps14_fpp, (17,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.16"],
    [aps14_f, aps14_fp, aps14_fpp, (18,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.17"],
    [aps14_f, aps14_fp, aps14_fpp, (19,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.18"],
    [aps14_f, aps14_fp, aps14_fpp, (20,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.19"],
    [aps14_f, aps14_fp, aps14_fpp, (21,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.20"],
    [aps14_f, aps14_fp, aps14_fpp, (22,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.21"],
    [aps14_f, aps14_fp, aps14_fpp, (23,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.22"],
    [aps14_f, aps14_fp, aps14_fpp, (24,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.23"],
    [aps14_f, aps14_fp, aps14_fpp, (25,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.24"],
    [aps14_f, aps14_fp, aps14_fpp, (26,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.25"],
    [aps14_f, aps14_fp, aps14_fpp, (27,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.26"],
    [aps14_f, aps14_fp, aps14_fpp, (28,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.27"],
    [aps14_f, aps14_fp, aps14_fpp, (29,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.28"],
    [aps14_f, aps14_fp, aps14_fpp, (30,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.29"],
    [aps14_f, aps14_fp, aps14_fpp, (31,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.30"],
    [aps14_f, aps14_fp, aps14_fpp, (32,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.31"],
    [aps14_f, aps14_fp, aps14_fpp, (33,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.32"],
    [aps14_f, aps14_fp, aps14_fpp, (34,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.33"],
    [aps14_f, aps14_fp, aps14_fpp, (35,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.34"],
    [aps14_f, aps14_fp, aps14_fpp, (36,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.35"],
    [aps14_f, aps14_fp, aps14_fpp, (37,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.36"],
    [aps14_f, aps14_fp, aps14_fpp, (38,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.37"],
    [aps14_f, aps14_fp, aps14_fpp, (39,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.38"],
    [aps14_f, aps14_fp, aps14_fpp, (40,), [-1000, np.pi / 2], 0,
     1, 6.23806518961612433e-01, "aps.14.39"],
    [aps15_f, aps15_fp, aps15_fpp, (20,), [-1000, 1e-4], 0,
     -2, 5.90513055942197166e-05, "aps.15.00"],
    [aps15_f, aps15_fp, aps15_fpp, (21,), [-1000, 1e-4], 0,
     -2, 5.63671553399369967e-05, "aps.15.01"],
    [aps15_f, aps15_fp, aps15_fpp, (22,), [-1000, 1e-4], 0,
     -2, 5.39164094555919196e-05, "aps.15.02"],
    [aps15_f, aps15_fp, aps15_fpp, (23,), [-1000, 1e-4], 0,
     -2, 5.16698923949422470e-05, "aps.15.03"],
    [aps15_f, aps15_fp, aps15_fpp, (24,), [-1000, 1e-4], 0,
     -2, 4.96030966991445609e-05, "aps.15.04"],
    [aps15_f, aps15_fp, aps15_fpp, (25,), [-1000, 1e-4], 0,
     -2, 4.76952852876389951e-05, "aps.15.05"],
    [aps15_f, aps15_fp, aps15_fpp, (26,), [-1000, 1e-4], 0,
     -2, 4.59287932399486662e-05, "aps.15.06"],
    [aps15_f, aps15_fp, aps15_fpp, (27,), [-1000, 1e-4], 0,
     -2, 4.42884791956647841e-05, "aps.15.07"],
    [aps15_f, aps15_fp, aps15_fpp, (28,), [-1000, 1e-4], 0,
     -2, 4.27612902578832391e-05, "aps.15.08"],
    [aps15_f, aps15_fp, aps15_fpp, (29,), [-1000, 1e-4], 0,
     -2, 4.13359139159538030e-05, "aps.15.09"],
    [aps15_f, aps15_fp, aps15_fpp, (30,), [-1000, 1e-4], 0,
     -2, 4.00024973380198076e-05, "aps.15.10"],
    [aps15_f, aps15_fp, aps15_fpp, (31,), [-1000, 1e-4], 0,
     -2, 3.87524192962066869e-05, "aps.15.11"],
    [aps15_f, aps15_fp, aps15_fpp, (32,), [-1000, 1e-4], 0,
     -2, 3.75781035599579910e-05, "aps.15.12"],
    [aps15_f, aps15_fp, aps15_fpp, (33,), [-1000, 1e-4], 0,
     -2, 3.64728652199592355e-05, "aps.15.13"],
    [aps15_f, aps15_fp, aps15_fpp, (34,), [-1000, 1e-4], 0,
     -2, 3.54307833565318273e-05, "aps.15.14"],
    [aps15_f, aps15_fp, aps15_fpp, (35,), [-1000, 1e-4], 0,
     -2, 3.44465949299614980e-05, "aps.15.15"],
    [aps15_f, aps15_fp, aps15_fpp, (36,), [-1000, 1e-4], 0,
     -2, 3.35156058778003705e-05, "aps.15.16"],
    [aps15_f, aps15_fp, aps15_fpp, (37,), [-1000, 1e-4], 0,
     -2, 3.26336162494372125e-05, "aps.15.17"],
    [aps15_f, aps15_fp, aps15_fpp, (38,), [-1000, 1e-4], 0,
     -2, 3.17968568584260013e-05, "aps.15.18"],
    [aps15_f, aps15_fp, aps15_fpp, (39,), [-1000, 1e-4], 0,
     -2, 3.10019354369653455e-05, "aps.15.19"],
    [aps15_f, aps15_fp, aps15_fpp, (40,), [-1000, 1e-4], 0,
     -2, 3.02457906702100968e-05, "aps.15.20"],
    [aps15_f, aps15_fp, aps15_fpp, (100,), [-1000, 1e-4], 0,
     -2, 1.22779942324615231e-05, "aps.15.21"],
    [aps15_f, aps15_fp, aps15_fpp, (200,), [-1000, 1e-4], 0,
     -2, 6.16953939044086617e-06, "aps.15.22"],
    [aps15_f, aps15_fp, aps15_fpp, (300,), [-1000, 1e-4], 0,
     -2, 4.11985852982928163e-06, "aps.15.23"],
    [aps15_f, aps15_fp, aps15_fpp, (400,), [-1000, 1e-4], 0,
     -2, 3.09246238772721682e-06, "aps.15.24"],
    [aps15_f, aps15_fp, aps15_fpp, (500,), [-1000, 1e-4], 0,
     -2, 2.47520442610501789e-06, "aps.15.25"],
    [aps15_f, aps15_fp, aps15_fpp, (600,), [-1000, 1e-4], 0,
     -2, 2.06335676785127107e-06, "aps.15.26"],
    [aps15_f, aps15_fp, aps15_fpp, (700,), [-1000, 1e-4], 0,
     -2, 1.76901200781542651e-06, "aps.15.27"],
    [aps15_f, aps15_fp, aps15_fpp, (800,), [-1000, 1e-4], 0,
     -2, 1.54816156988591016e-06, "aps.15.28"],
    [aps15_f, aps15_fp, aps15_fpp, (900,), [-1000, 1e-4], 0,
     -2, 1.37633453660223511e-06, "aps.15.29"],
    [aps15_f, aps15_fp, aps15_fpp, (1000,), [-1000, 1e-4], 0,
     -2, 1.23883857889971403e-06, "aps.15.30"]
]

_APS_TESTS_DICTS = [dict(zip(_APS_TESTS_KEYS, testcase)) for testcase in _APS_TESTS]


#   ##################
#   "complex" test cases
#   A few simple, complex-valued, functions, defined on the complex plane.


def cplx01_f(z, n, a):
    r"""z**n-a:  Use to find the nth root of a"""
    return z**n - a


def cplx01_fp(z, n, a):
    return n * z**(n - 1)


def cplx01_fpp(z, n, a):
    return n * (n - 1) * z**(n - 2)


def cplx02_f(z, a):
    r"""e**z - a: Use to find the log of a"""
    return np.exp(z) - a


def cplx02_fp(z, a):
    return np.exp(z)


def cplx02_fpp(z, a):
    return np.exp(z)


# Each "complex" test case has
# - a function and its two derivatives,
# - additional arguments,
# - the order of differentiability of the function on this interval
# - two starting values x0 and x1
# - the root
# - an Identifier of the test case
#
# Algorithm 748 is a bracketing algorithm so a bracketing interval was provided
# in [1] for each test case. Newton and Halley need a single starting point
# x0, which was chosen to be near the middle of the interval, unless that
# would make the problem too easy.


_COMPLEX_TESTS_KEYS = [
    "f", "fprime", "fprime2", "args", "smoothness", "x0", "x1", "root", "ID"
]
_COMPLEX_TESTS = [
    [cplx01_f, cplx01_fp, cplx01_fpp, (2, -1), np.inf,
     (1 + 1j), (0.5 + 0.5j), 1j, "complex.01.00"],
    [cplx01_f, cplx01_fp, cplx01_fpp, (3, 1), np.inf,
     (-1 + 1j), (-0.5 + 2.0j), (-0.5 + np.sqrt(3) / 2 * 1.0j),
     "complex.01.01"],
    [cplx01_f, cplx01_fp, cplx01_fpp, (3, -1), np.inf,
     1j, (0.5 + 0.5j), (0.5 + np.sqrt(3) / 2 * 1.0j),
     "complex.01.02"],
    [cplx01_f, cplx01_fp, cplx01_fpp, (3, 8), np.inf,
     5, 4, 2, "complex.01.03"],
    [cplx02_f, cplx02_fp, cplx02_fpp, (-1,), np.inf,
     (1 + 2j), (0.5 + 0.5j), np.pi * 1.0j, "complex.02.00"],
    [cplx02_f, cplx02_fp, cplx02_fpp, (1j,), np.inf,
     (1 + 2j), (0.5 + 0.5j), np.pi * 0.5j, "complex.02.01"],
]

_COMPLEX_TESTS_DICTS = [
    dict(zip(_COMPLEX_TESTS_KEYS, testcase)) for testcase in _COMPLEX_TESTS
]


def _add_a_b(tests):
    r"""Add "a" and "b" keys to each test from the "bracket" value"""
    for d in tests:
        for k, v in zip(['a', 'b'], d.get('bracket', [])):
            d[k] = v


_add_a_b(_ORIGINAL_TESTS_DICTS)
_add_a_b(_APS_TESTS_DICTS)
_add_a_b(_COMPLEX_TESTS_DICTS)


def get_tests(collection='original', smoothness=None):
    r"""Return the requested collection of test cases, as an array of dicts with subset-specific keys

    Allowed values of collection:
    'original': The original benchmarking functions.
         Real-valued functions of real-valued inputs on an interval with a zero.
         f1, .., f3 are continuous and infinitely differentiable
         f4 has a single discontinuity at the root
         f5 has a root at 1 replacing a 1st order pole
         f6 is randomly positive on one side of the root, randomly negative on the other
    'aps': The test problems in the TOMS "Algorithm 748: Enclosing Zeros of Continuous Functions"
         paper by Alefeld, Potra and Shi. Real-valued functions of
         real-valued inputs on an interval with a zero.
         Suitable for methods which start with an enclosing interval, and
         derivatives up to 2nd order.
    'complex': Some complex-valued functions of complex-valued inputs.
         No enclosing bracket is provided.
         Suitable for methods which use one or more starting values, and
         derivatives up to 2nd order.

    The dictionary keys will be a subset of
    ["f", "fprime", "fprime2", "args", "bracket", "a", b", "smoothness", "x0", "x1", "root", "ID"]
    """  # noqa: E501
    collection = collection or "original"
    subsets = {"aps": _APS_TESTS_DICTS,
               "complex": _COMPLEX_TESTS_DICTS,
               "original": _ORIGINAL_TESTS_DICTS,
               "chandrupatla": _CHANDRUPATLA_TESTS_DICTS}
    tests = subsets.get(collection, [])
    if smoothness is not None:
        tests = [tc for tc in tests if tc['smoothness'] >= smoothness]
    return tests


# Backwards compatibility
methods = [cc.bisect, cc.ridder, cc.brenth, cc.brentq]
mstrings = ['cc.bisect', 'cc.ridder', 'cc.brenth', 'cc.brentq']
functions = [f2, f3, f4, f5, f6]
fstrings = ['f2', 'f3', 'f4', 'f5', 'f6']

#   ##################
#   "Chandrupatla" test cases
#   Functions and test cases that appear in [2]

def fun1(x):
    return x**3 - 2*x - 5
fun1.root = 2.0945514815423265  # additional precision using mpmath.findroot


def fun2(x):
    return 1 - 1/x**2
fun2.root = 1


def fun3(x):
    return (x-3)**3
fun3.root = 3


def fun4(x):
    return 6*(x-2)**5
fun4.root = 2


def fun5(x):
    return x**9
fun5.root = 0


def fun6(x):
    return x**19
fun6.root = 0


def fun7(x):
    return 0 if abs(x) < 3.8e-4 else x*np.exp(-x**(-2))
fun7.root = 0


def fun8(x):
    xi = 0.61489
    return -(3062*(1-xi)*np.exp(-x))/(xi + (1-xi)*np.exp(-x)) - 1013 + 1628/x
fun8.root = 1.0375360332870405


def fun9(x):
    return np.exp(x) - 2 - 0.01/x**2 + .000002/x**3
fun9.root = 0.7032048403631358

# Each "chandropatla" test case has
# - a function,
# - two starting values x0 and x1
# - the root
# - the number of function evaluations required by Chandrupatla's algorithm
# - an Identifier of the test case
#
# Chandrupatla's is a bracketing algorithm, so a bracketing interval was
# provided in [2] for each test case. No special support for testing with
# secant/Newton/Halley is provided.

_CHANDRUPATLA_TESTS_KEYS = ["f", "bracket", "root", "nfeval", "ID"]
_CHANDRUPATLA_TESTS = [
    [fun1, [2, 3], fun1.root, 7],
    [fun1, [1, 10], fun1.root, 11],
    [fun1, [1, 100], fun1.root, 14],
    [fun1, [-1e4, 1e4], fun1.root, 23],
    [fun1, [-1e10, 1e10], fun1.root, 43],
    [fun2, [0.5, 1.51], fun2.root, 8],
    [fun2, [1e-4, 1e4], fun2.root, 22],
    [fun2, [1e-6, 1e6], fun2.root, 28],
    [fun2, [1e-10, 1e10], fun2.root, 41],
    [fun2, [1e-12, 1e12], fun2.root, 48],
    [fun3, [0, 5], fun3.root, 21],
    [fun3, [-10, 10], fun3.root, 23],
    [fun3, [-1e4, 1e4], fun3.root, 36],
    [fun3, [-1e6, 1e6], fun3.root, 45],
    [fun3, [-1e10, 1e10], fun3.root, 55],
    [fun4, [0, 5], fun4.root, 21],
    [fun4, [-10, 10], fun4.root, 23],
    [fun4, [-1e4, 1e4], fun4.root, 33],
    [fun4, [-1e6, 1e6], fun4.root, 43],
    [fun4, [-1e10, 1e10], fun4.root, 54],
    [fun5, [-1, 4], fun5.root, 21],
    [fun5, [-2, 5], fun5.root, 22],
    [fun5, [-1, 10], fun5.root, 23],
    [fun5, [-5, 50], fun5.root, 25],
    [fun5, [-10, 100], fun5.root, 26],
    [fun6, [-1., 4.], fun6.root, 21],
    [fun6, [-2., 5.], fun6.root, 22],
    [fun6, [-1., 10.], fun6.root, 23],
    [fun6, [-5., 50.], fun6.root, 25],
    [fun6, [-10., 100.], fun6.root, 26],
    [fun7, [-1, 4], fun7.root, 8],
    [fun7, [-2, 5], fun7.root, 8],
    [fun7, [-1, 10], fun7.root, 11],
    [fun7, [-5, 50], fun7.root, 18],
    [fun7, [-10, 100], fun7.root, 19],
    [fun8, [2e-4, 2], fun8.root, 9],
    [fun8, [2e-4, 3], fun8.root, 10],
    [fun8, [2e-4, 9], fun8.root, 11],
    [fun8, [2e-4, 27], fun8.root, 12],
    [fun8, [2e-4, 81], fun8.root, 14],
    [fun9, [2e-4, 1], fun9.root, 7],
    [fun9, [2e-4, 3], fun9.root, 8],
    [fun9, [2e-4, 9], fun9.root, 10],
    [fun9, [2e-4, 27], fun9.root, 11],
    [fun9, [2e-4, 81], fun9.root, 13],
]
_CHANDRUPATLA_TESTS = [test + [f'{test[0].__name__}.{i%5+1}']
                       for i, test in enumerate(_CHANDRUPATLA_TESTS)]

_CHANDRUPATLA_TESTS_DICTS = [dict(zip(_CHANDRUPATLA_TESTS_KEYS, testcase))
                             for testcase in _CHANDRUPATLA_TESTS]
_add_a_b(_CHANDRUPATLA_TESTS_DICTS)