Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/__config__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/_distributor_init.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/conftest.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/version.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/constants/__init__.py +347 -0
- llmeval-env/lib/python3.10/site-packages/scipy/constants/_codata.py +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/constants/_constants.py +362 -0
- llmeval-env/lib/python3.10/site-packages/scipy/constants/codata.py +24 -0
- llmeval-env/lib/python3.10/site-packages/scipy/constants/constants.py +53 -0
- llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__init__.py +103 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_basic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_helper.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_pseudo_diffs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_realtransforms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/basic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/helper.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/pseudo_diffs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/realtransforms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_basic.py +428 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_helper.py +115 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_pseudo_diffs.py +551 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_realtransforms.py +598 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/basic.py +20 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/convolve.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/helper.py +19 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/pseudo_diffs.py +22 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/realtransforms.py +19 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_basic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_helper.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_import.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_pseudo_diffs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_real_transforms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_basic.py +873 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_helper.py +54 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_import.py +31 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_pseudo_diffs.py +380 -0
- llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_real_transforms.py +815 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_quadrature.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/dop.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/README +76 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__init__.py +451 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/_basinhopping.py +753 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/_dcsrch.py +728 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/_differentiable_functions.py +646 -0
llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/__config__.cpython-310.pyc
ADDED
Binary file (3.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/_distributor_init.cpython-310.pyc
ADDED
Binary file (813 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (6.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/__pycache__/version.cpython-310.pyc
ADDED
Binary file (325 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/constants/__init__.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
==================================
|
3 |
+
Constants (:mod:`scipy.constants`)
|
4 |
+
==================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.constants
|
7 |
+
|
8 |
+
Physical and mathematical constants and units.
|
9 |
+
|
10 |
+
|
11 |
+
Mathematical constants
|
12 |
+
======================
|
13 |
+
|
14 |
+
================ =================================================================
|
15 |
+
``pi`` Pi
|
16 |
+
``golden`` Golden ratio
|
17 |
+
``golden_ratio`` Golden ratio
|
18 |
+
================ =================================================================
|
19 |
+
|
20 |
+
|
21 |
+
Physical constants
|
22 |
+
==================
|
23 |
+
|
24 |
+
=========================== =================================================================
|
25 |
+
``c`` speed of light in vacuum
|
26 |
+
``speed_of_light`` speed of light in vacuum
|
27 |
+
``mu_0`` the magnetic constant :math:`\mu_0`
|
28 |
+
``epsilon_0`` the electric constant (vacuum permittivity), :math:`\epsilon_0`
|
29 |
+
``h`` the Planck constant :math:`h`
|
30 |
+
``Planck`` the Planck constant :math:`h`
|
31 |
+
``hbar`` :math:`\hbar = h/(2\pi)`
|
32 |
+
``G`` Newtonian constant of gravitation
|
33 |
+
``gravitational_constant`` Newtonian constant of gravitation
|
34 |
+
``g`` standard acceleration of gravity
|
35 |
+
``e`` elementary charge
|
36 |
+
``elementary_charge`` elementary charge
|
37 |
+
``R`` molar gas constant
|
38 |
+
``gas_constant`` molar gas constant
|
39 |
+
``alpha`` fine-structure constant
|
40 |
+
``fine_structure`` fine-structure constant
|
41 |
+
``N_A`` Avogadro constant
|
42 |
+
``Avogadro`` Avogadro constant
|
43 |
+
``k`` Boltzmann constant
|
44 |
+
``Boltzmann`` Boltzmann constant
|
45 |
+
``sigma`` Stefan-Boltzmann constant :math:`\sigma`
|
46 |
+
``Stefan_Boltzmann`` Stefan-Boltzmann constant :math:`\sigma`
|
47 |
+
``Wien`` Wien displacement law constant
|
48 |
+
``Rydberg`` Rydberg constant
|
49 |
+
``m_e`` electron mass
|
50 |
+
``electron_mass`` electron mass
|
51 |
+
``m_p`` proton mass
|
52 |
+
``proton_mass`` proton mass
|
53 |
+
``m_n`` neutron mass
|
54 |
+
``neutron_mass`` neutron mass
|
55 |
+
=========================== =================================================================
|
56 |
+
|
57 |
+
|
58 |
+
Constants database
|
59 |
+
------------------
|
60 |
+
|
61 |
+
In addition to the above variables, :mod:`scipy.constants` also contains the
|
62 |
+
2018 CODATA recommended values [CODATA2018]_ database containing more physical
|
63 |
+
constants.
|
64 |
+
|
65 |
+
.. autosummary::
|
66 |
+
:toctree: generated/
|
67 |
+
|
68 |
+
value -- Value in physical_constants indexed by key
|
69 |
+
unit -- Unit in physical_constants indexed by key
|
70 |
+
precision -- Relative precision in physical_constants indexed by key
|
71 |
+
find -- Return list of physical_constant keys with a given string
|
72 |
+
ConstantWarning -- Constant sought not in newest CODATA data set
|
73 |
+
|
74 |
+
.. data:: physical_constants
|
75 |
+
|
76 |
+
Dictionary of physical constants, of the format
|
77 |
+
``physical_constants[name] = (value, unit, uncertainty)``.
|
78 |
+
|
79 |
+
Available constants:
|
80 |
+
|
81 |
+
====================================================================== ====
|
82 |
+
%(constant_names)s
|
83 |
+
====================================================================== ====
|
84 |
+
|
85 |
+
|
86 |
+
Units
|
87 |
+
=====
|
88 |
+
|
89 |
+
SI prefixes
|
90 |
+
-----------
|
91 |
+
|
92 |
+
============ =================================================================
|
93 |
+
``quetta`` :math:`10^{30}`
|
94 |
+
``ronna`` :math:`10^{27}`
|
95 |
+
``yotta`` :math:`10^{24}`
|
96 |
+
``zetta`` :math:`10^{21}`
|
97 |
+
``exa`` :math:`10^{18}`
|
98 |
+
``peta`` :math:`10^{15}`
|
99 |
+
``tera`` :math:`10^{12}`
|
100 |
+
``giga`` :math:`10^{9}`
|
101 |
+
``mega`` :math:`10^{6}`
|
102 |
+
``kilo`` :math:`10^{3}`
|
103 |
+
``hecto`` :math:`10^{2}`
|
104 |
+
``deka`` :math:`10^{1}`
|
105 |
+
``deci`` :math:`10^{-1}`
|
106 |
+
``centi`` :math:`10^{-2}`
|
107 |
+
``milli`` :math:`10^{-3}`
|
108 |
+
``micro`` :math:`10^{-6}`
|
109 |
+
``nano`` :math:`10^{-9}`
|
110 |
+
``pico`` :math:`10^{-12}`
|
111 |
+
``femto`` :math:`10^{-15}`
|
112 |
+
``atto`` :math:`10^{-18}`
|
113 |
+
``zepto`` :math:`10^{-21}`
|
114 |
+
``yocto`` :math:`10^{-24}`
|
115 |
+
``ronto`` :math:`10^{-27}`
|
116 |
+
``quecto`` :math:`10^{-30}`
|
117 |
+
============ =================================================================
|
118 |
+
|
119 |
+
Binary prefixes
|
120 |
+
---------------
|
121 |
+
|
122 |
+
============ =================================================================
|
123 |
+
``kibi`` :math:`2^{10}`
|
124 |
+
``mebi`` :math:`2^{20}`
|
125 |
+
``gibi`` :math:`2^{30}`
|
126 |
+
``tebi`` :math:`2^{40}`
|
127 |
+
``pebi`` :math:`2^{50}`
|
128 |
+
``exbi`` :math:`2^{60}`
|
129 |
+
``zebi`` :math:`2^{70}`
|
130 |
+
``yobi`` :math:`2^{80}`
|
131 |
+
============ =================================================================
|
132 |
+
|
133 |
+
Mass
|
134 |
+
----
|
135 |
+
|
136 |
+
================= ============================================================
|
137 |
+
``gram`` :math:`10^{-3}` kg
|
138 |
+
``metric_ton`` :math:`10^{3}` kg
|
139 |
+
``grain`` one grain in kg
|
140 |
+
``lb`` one pound (avoirdupous) in kg
|
141 |
+
``pound`` one pound (avoirdupous) in kg
|
142 |
+
``blob`` one inch version of a slug in kg (added in 1.0.0)
|
143 |
+
``slinch`` one inch version of a slug in kg (added in 1.0.0)
|
144 |
+
``slug`` one slug in kg (added in 1.0.0)
|
145 |
+
``oz`` one ounce in kg
|
146 |
+
``ounce`` one ounce in kg
|
147 |
+
``stone`` one stone in kg
|
148 |
+
``grain`` one grain in kg
|
149 |
+
``long_ton`` one long ton in kg
|
150 |
+
``short_ton`` one short ton in kg
|
151 |
+
``troy_ounce`` one Troy ounce in kg
|
152 |
+
``troy_pound`` one Troy pound in kg
|
153 |
+
``carat`` one carat in kg
|
154 |
+
``m_u`` atomic mass constant (in kg)
|
155 |
+
``u`` atomic mass constant (in kg)
|
156 |
+
``atomic_mass`` atomic mass constant (in kg)
|
157 |
+
================= ============================================================
|
158 |
+
|
159 |
+
Angle
|
160 |
+
-----
|
161 |
+
|
162 |
+
================= ============================================================
|
163 |
+
``degree`` degree in radians
|
164 |
+
``arcmin`` arc minute in radians
|
165 |
+
``arcminute`` arc minute in radians
|
166 |
+
``arcsec`` arc second in radians
|
167 |
+
``arcsecond`` arc second in radians
|
168 |
+
================= ============================================================
|
169 |
+
|
170 |
+
|
171 |
+
Time
|
172 |
+
----
|
173 |
+
|
174 |
+
================= ============================================================
|
175 |
+
``minute`` one minute in seconds
|
176 |
+
``hour`` one hour in seconds
|
177 |
+
``day`` one day in seconds
|
178 |
+
``week`` one week in seconds
|
179 |
+
``year`` one year (365 days) in seconds
|
180 |
+
``Julian_year`` one Julian year (365.25 days) in seconds
|
181 |
+
================= ============================================================
|
182 |
+
|
183 |
+
|
184 |
+
Length
|
185 |
+
------
|
186 |
+
|
187 |
+
===================== ============================================================
|
188 |
+
``inch`` one inch in meters
|
189 |
+
``foot`` one foot in meters
|
190 |
+
``yard`` one yard in meters
|
191 |
+
``mile`` one mile in meters
|
192 |
+
``mil`` one mil in meters
|
193 |
+
``pt`` one point in meters
|
194 |
+
``point`` one point in meters
|
195 |
+
``survey_foot`` one survey foot in meters
|
196 |
+
``survey_mile`` one survey mile in meters
|
197 |
+
``nautical_mile`` one nautical mile in meters
|
198 |
+
``fermi`` one Fermi in meters
|
199 |
+
``angstrom`` one Angstrom in meters
|
200 |
+
``micron`` one micron in meters
|
201 |
+
``au`` one astronomical unit in meters
|
202 |
+
``astronomical_unit`` one astronomical unit in meters
|
203 |
+
``light_year`` one light year in meters
|
204 |
+
``parsec`` one parsec in meters
|
205 |
+
===================== ============================================================
|
206 |
+
|
207 |
+
Pressure
|
208 |
+
--------
|
209 |
+
|
210 |
+
================= ============================================================
|
211 |
+
``atm`` standard atmosphere in pascals
|
212 |
+
``atmosphere`` standard atmosphere in pascals
|
213 |
+
``bar`` one bar in pascals
|
214 |
+
``torr`` one torr (mmHg) in pascals
|
215 |
+
``mmHg`` one torr (mmHg) in pascals
|
216 |
+
``psi`` one psi in pascals
|
217 |
+
================= ============================================================
|
218 |
+
|
219 |
+
Area
|
220 |
+
----
|
221 |
+
|
222 |
+
================= ============================================================
|
223 |
+
``hectare`` one hectare in square meters
|
224 |
+
``acre`` one acre in square meters
|
225 |
+
================= ============================================================
|
226 |
+
|
227 |
+
|
228 |
+
Volume
|
229 |
+
------
|
230 |
+
|
231 |
+
=================== ========================================================
|
232 |
+
``liter`` one liter in cubic meters
|
233 |
+
``litre`` one liter in cubic meters
|
234 |
+
``gallon`` one gallon (US) in cubic meters
|
235 |
+
``gallon_US`` one gallon (US) in cubic meters
|
236 |
+
``gallon_imp`` one gallon (UK) in cubic meters
|
237 |
+
``fluid_ounce`` one fluid ounce (US) in cubic meters
|
238 |
+
``fluid_ounce_US`` one fluid ounce (US) in cubic meters
|
239 |
+
``fluid_ounce_imp`` one fluid ounce (UK) in cubic meters
|
240 |
+
``bbl`` one barrel in cubic meters
|
241 |
+
``barrel`` one barrel in cubic meters
|
242 |
+
=================== ========================================================
|
243 |
+
|
244 |
+
Speed
|
245 |
+
-----
|
246 |
+
|
247 |
+
================== ==========================================================
|
248 |
+
``kmh`` kilometers per hour in meters per second
|
249 |
+
``mph`` miles per hour in meters per second
|
250 |
+
``mach`` one Mach (approx., at 15 C, 1 atm) in meters per second
|
251 |
+
``speed_of_sound`` one Mach (approx., at 15 C, 1 atm) in meters per second
|
252 |
+
``knot`` one knot in meters per second
|
253 |
+
================== ==========================================================
|
254 |
+
|
255 |
+
|
256 |
+
Temperature
|
257 |
+
-----------
|
258 |
+
|
259 |
+
===================== =======================================================
|
260 |
+
``zero_Celsius`` zero of Celsius scale in Kelvin
|
261 |
+
``degree_Fahrenheit`` one Fahrenheit (only differences) in Kelvins
|
262 |
+
===================== =======================================================
|
263 |
+
|
264 |
+
.. autosummary::
|
265 |
+
:toctree: generated/
|
266 |
+
|
267 |
+
convert_temperature
|
268 |
+
|
269 |
+
Energy
|
270 |
+
------
|
271 |
+
|
272 |
+
==================== =======================================================
|
273 |
+
``eV`` one electron volt in Joules
|
274 |
+
``electron_volt`` one electron volt in Joules
|
275 |
+
``calorie`` one calorie (thermochemical) in Joules
|
276 |
+
``calorie_th`` one calorie (thermochemical) in Joules
|
277 |
+
``calorie_IT`` one calorie (International Steam Table calorie, 1956) in Joules
|
278 |
+
``erg`` one erg in Joules
|
279 |
+
``Btu`` one British thermal unit (International Steam Table) in Joules
|
280 |
+
``Btu_IT`` one British thermal unit (International Steam Table) in Joules
|
281 |
+
``Btu_th`` one British thermal unit (thermochemical) in Joules
|
282 |
+
``ton_TNT`` one ton of TNT in Joules
|
283 |
+
==================== =======================================================
|
284 |
+
|
285 |
+
Power
|
286 |
+
-----
|
287 |
+
|
288 |
+
==================== =======================================================
|
289 |
+
``hp`` one horsepower in watts
|
290 |
+
``horsepower`` one horsepower in watts
|
291 |
+
==================== =======================================================
|
292 |
+
|
293 |
+
Force
|
294 |
+
-----
|
295 |
+
|
296 |
+
==================== =======================================================
|
297 |
+
``dyn`` one dyne in newtons
|
298 |
+
``dyne`` one dyne in newtons
|
299 |
+
``lbf`` one pound force in newtons
|
300 |
+
``pound_force`` one pound force in newtons
|
301 |
+
``kgf`` one kilogram force in newtons
|
302 |
+
``kilogram_force`` one kilogram force in newtons
|
303 |
+
==================== =======================================================
|
304 |
+
|
305 |
+
Optics
|
306 |
+
------
|
307 |
+
|
308 |
+
.. autosummary::
|
309 |
+
:toctree: generated/
|
310 |
+
|
311 |
+
lambda2nu
|
312 |
+
nu2lambda
|
313 |
+
|
314 |
+
References
|
315 |
+
==========
|
316 |
+
|
317 |
+
.. [CODATA2018] CODATA Recommended Values of the Fundamental
|
318 |
+
Physical Constants 2018.
|
319 |
+
|
320 |
+
https://physics.nist.gov/cuu/Constants/
|
321 |
+
|
322 |
+
""" # noqa: E501
|
323 |
+
# Modules contributed by BasSw ([email protected])
|
324 |
+
from ._codata import *
|
325 |
+
from ._constants import *
|
326 |
+
from ._codata import _obsolete_constants, physical_constants
|
327 |
+
|
328 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
329 |
+
from . import codata, constants
|
330 |
+
|
331 |
+
_constant_names_list = [(_k.lower(), _k, _v)
|
332 |
+
for _k, _v in physical_constants.items()
|
333 |
+
if _k not in _obsolete_constants]
|
334 |
+
_constant_names = "\n".join(["``{}``{} {} {}".format(_x[1], " "*(66-len(_x[1])),
|
335 |
+
_x[2][0], _x[2][1])
|
336 |
+
for _x in sorted(_constant_names_list)])
|
337 |
+
if __doc__:
|
338 |
+
__doc__ = __doc__ % dict(constant_names=_constant_names)
|
339 |
+
|
340 |
+
del _constant_names
|
341 |
+
del _constant_names_list
|
342 |
+
|
343 |
+
__all__ = [s for s in dir() if not s.startswith('_')]
|
344 |
+
|
345 |
+
from scipy._lib._testutils import PytestTester
|
346 |
+
test = PytestTester(__name__)
|
347 |
+
del PytestTester
|
llmeval-env/lib/python3.10/site-packages/scipy/constants/_codata.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/scipy/constants/_constants.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Collection of physical constants and conversion factors.
|
3 |
+
|
4 |
+
Most constants are in SI units, so you can do
|
5 |
+
print '10 mile per minute is', 10*mile/minute, 'm/s or', 10*mile/(minute*knot), 'knots'
|
6 |
+
|
7 |
+
The list is not meant to be comprehensive, but just convenient for everyday use.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import math as _math
|
13 |
+
from typing import TYPE_CHECKING, Any
|
14 |
+
|
15 |
+
from ._codata import value as _cd
|
16 |
+
import numpy as _np
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
import numpy.typing as npt
|
20 |
+
|
21 |
+
"""
|
22 |
+
BasSw 2006
|
23 |
+
physical constants: imported from CODATA
|
24 |
+
unit conversion: see e.g., NIST special publication 811
|
25 |
+
Use at own risk: double-check values before calculating your Mars orbit-insertion burn.
|
26 |
+
Some constants exist in a few variants, which are marked with suffixes.
|
27 |
+
The ones without any suffix should be the most common ones.
|
28 |
+
"""
|
29 |
+
|
30 |
+
__all__ = [
|
31 |
+
'Avogadro', 'Boltzmann', 'Btu', 'Btu_IT', 'Btu_th', 'G',
|
32 |
+
'Julian_year', 'N_A', 'Planck', 'R', 'Rydberg',
|
33 |
+
'Stefan_Boltzmann', 'Wien', 'acre', 'alpha',
|
34 |
+
'angstrom', 'arcmin', 'arcminute', 'arcsec',
|
35 |
+
'arcsecond', 'astronomical_unit', 'atm',
|
36 |
+
'atmosphere', 'atomic_mass', 'atto', 'au', 'bar',
|
37 |
+
'barrel', 'bbl', 'blob', 'c', 'calorie',
|
38 |
+
'calorie_IT', 'calorie_th', 'carat', 'centi',
|
39 |
+
'convert_temperature', 'day', 'deci', 'degree',
|
40 |
+
'degree_Fahrenheit', 'deka', 'dyn', 'dyne', 'e',
|
41 |
+
'eV', 'electron_mass', 'electron_volt',
|
42 |
+
'elementary_charge', 'epsilon_0', 'erg',
|
43 |
+
'exa', 'exbi', 'femto', 'fermi', 'fine_structure',
|
44 |
+
'fluid_ounce', 'fluid_ounce_US', 'fluid_ounce_imp',
|
45 |
+
'foot', 'g', 'gallon', 'gallon_US', 'gallon_imp',
|
46 |
+
'gas_constant', 'gibi', 'giga', 'golden', 'golden_ratio',
|
47 |
+
'grain', 'gram', 'gravitational_constant', 'h', 'hbar',
|
48 |
+
'hectare', 'hecto', 'horsepower', 'hour', 'hp',
|
49 |
+
'inch', 'k', 'kgf', 'kibi', 'kilo', 'kilogram_force',
|
50 |
+
'kmh', 'knot', 'lambda2nu', 'lb', 'lbf',
|
51 |
+
'light_year', 'liter', 'litre', 'long_ton', 'm_e',
|
52 |
+
'm_n', 'm_p', 'm_u', 'mach', 'mebi', 'mega',
|
53 |
+
'metric_ton', 'micro', 'micron', 'mil', 'mile',
|
54 |
+
'milli', 'minute', 'mmHg', 'mph', 'mu_0', 'nano',
|
55 |
+
'nautical_mile', 'neutron_mass', 'nu2lambda',
|
56 |
+
'ounce', 'oz', 'parsec', 'pebi', 'peta',
|
57 |
+
'pi', 'pico', 'point', 'pound', 'pound_force',
|
58 |
+
'proton_mass', 'psi', 'pt', 'quecto', 'quetta', 'ronna', 'ronto',
|
59 |
+
'short_ton', 'sigma', 'slinch', 'slug', 'speed_of_light',
|
60 |
+
'speed_of_sound', 'stone', 'survey_foot',
|
61 |
+
'survey_mile', 'tebi', 'tera', 'ton_TNT',
|
62 |
+
'torr', 'troy_ounce', 'troy_pound', 'u',
|
63 |
+
'week', 'yard', 'year', 'yobi', 'yocto',
|
64 |
+
'yotta', 'zebi', 'zepto', 'zero_Celsius', 'zetta'
|
65 |
+
]
|
66 |
+
|
67 |
+
|
68 |
+
# mathematical constants
|
69 |
+
pi = _math.pi
|
70 |
+
golden = golden_ratio = (1 + _math.sqrt(5)) / 2
|
71 |
+
|
72 |
+
# SI prefixes
|
73 |
+
quetta = 1e30
|
74 |
+
ronna = 1e27
|
75 |
+
yotta = 1e24
|
76 |
+
zetta = 1e21
|
77 |
+
exa = 1e18
|
78 |
+
peta = 1e15
|
79 |
+
tera = 1e12
|
80 |
+
giga = 1e9
|
81 |
+
mega = 1e6
|
82 |
+
kilo = 1e3
|
83 |
+
hecto = 1e2
|
84 |
+
deka = 1e1
|
85 |
+
deci = 1e-1
|
86 |
+
centi = 1e-2
|
87 |
+
milli = 1e-3
|
88 |
+
micro = 1e-6
|
89 |
+
nano = 1e-9
|
90 |
+
pico = 1e-12
|
91 |
+
femto = 1e-15
|
92 |
+
atto = 1e-18
|
93 |
+
zepto = 1e-21
|
94 |
+
yocto = 1e-24
|
95 |
+
ronto = 1e-27
|
96 |
+
quecto = 1e-30
|
97 |
+
|
98 |
+
# binary prefixes
|
99 |
+
kibi = 2**10
|
100 |
+
mebi = 2**20
|
101 |
+
gibi = 2**30
|
102 |
+
tebi = 2**40
|
103 |
+
pebi = 2**50
|
104 |
+
exbi = 2**60
|
105 |
+
zebi = 2**70
|
106 |
+
yobi = 2**80
|
107 |
+
|
108 |
+
# physical constants
|
109 |
+
c = speed_of_light = _cd('speed of light in vacuum')
|
110 |
+
mu_0 = _cd('vacuum mag. permeability')
|
111 |
+
epsilon_0 = _cd('vacuum electric permittivity')
|
112 |
+
h = Planck = _cd('Planck constant')
|
113 |
+
hbar = h / (2 * pi)
|
114 |
+
G = gravitational_constant = _cd('Newtonian constant of gravitation')
|
115 |
+
g = _cd('standard acceleration of gravity')
|
116 |
+
e = elementary_charge = _cd('elementary charge')
|
117 |
+
R = gas_constant = _cd('molar gas constant')
|
118 |
+
alpha = fine_structure = _cd('fine-structure constant')
|
119 |
+
N_A = Avogadro = _cd('Avogadro constant')
|
120 |
+
k = Boltzmann = _cd('Boltzmann constant')
|
121 |
+
sigma = Stefan_Boltzmann = _cd('Stefan-Boltzmann constant')
|
122 |
+
Wien = _cd('Wien wavelength displacement law constant')
|
123 |
+
Rydberg = _cd('Rydberg constant')
|
124 |
+
|
125 |
+
# mass in kg
|
126 |
+
gram = 1e-3
|
127 |
+
metric_ton = 1e3
|
128 |
+
grain = 64.79891e-6
|
129 |
+
lb = pound = 7000 * grain # avoirdupois
|
130 |
+
blob = slinch = pound * g / 0.0254 # lbf*s**2/in (added in 1.0.0)
|
131 |
+
slug = blob / 12 # lbf*s**2/foot (added in 1.0.0)
|
132 |
+
oz = ounce = pound / 16
|
133 |
+
stone = 14 * pound
|
134 |
+
long_ton = 2240 * pound
|
135 |
+
short_ton = 2000 * pound
|
136 |
+
|
137 |
+
troy_ounce = 480 * grain # only for metals / gems
|
138 |
+
troy_pound = 12 * troy_ounce
|
139 |
+
carat = 200e-6
|
140 |
+
|
141 |
+
m_e = electron_mass = _cd('electron mass')
|
142 |
+
m_p = proton_mass = _cd('proton mass')
|
143 |
+
m_n = neutron_mass = _cd('neutron mass')
|
144 |
+
m_u = u = atomic_mass = _cd('atomic mass constant')
|
145 |
+
|
146 |
+
# angle in rad
|
147 |
+
degree = pi / 180
|
148 |
+
arcmin = arcminute = degree / 60
|
149 |
+
arcsec = arcsecond = arcmin / 60
|
150 |
+
|
151 |
+
# time in second
|
152 |
+
minute = 60.0
|
153 |
+
hour = 60 * minute
|
154 |
+
day = 24 * hour
|
155 |
+
week = 7 * day
|
156 |
+
year = 365 * day
|
157 |
+
Julian_year = 365.25 * day
|
158 |
+
|
159 |
+
# length in meter
|
160 |
+
inch = 0.0254
|
161 |
+
foot = 12 * inch
|
162 |
+
yard = 3 * foot
|
163 |
+
mile = 1760 * yard
|
164 |
+
mil = inch / 1000
|
165 |
+
pt = point = inch / 72 # typography
|
166 |
+
survey_foot = 1200.0 / 3937
|
167 |
+
survey_mile = 5280 * survey_foot
|
168 |
+
nautical_mile = 1852.0
|
169 |
+
fermi = 1e-15
|
170 |
+
angstrom = 1e-10
|
171 |
+
micron = 1e-6
|
172 |
+
au = astronomical_unit = 149597870700.0
|
173 |
+
light_year = Julian_year * c
|
174 |
+
parsec = au / arcsec
|
175 |
+
|
176 |
+
# pressure in pascal
|
177 |
+
atm = atmosphere = _cd('standard atmosphere')
|
178 |
+
bar = 1e5
|
179 |
+
torr = mmHg = atm / 760
|
180 |
+
psi = pound * g / (inch * inch)
|
181 |
+
|
182 |
+
# area in meter**2
|
183 |
+
hectare = 1e4
|
184 |
+
acre = 43560 * foot**2
|
185 |
+
|
186 |
+
# volume in meter**3
|
187 |
+
litre = liter = 1e-3
|
188 |
+
gallon = gallon_US = 231 * inch**3 # US
|
189 |
+
# pint = gallon_US / 8
|
190 |
+
fluid_ounce = fluid_ounce_US = gallon_US / 128
|
191 |
+
bbl = barrel = 42 * gallon_US # for oil
|
192 |
+
|
193 |
+
gallon_imp = 4.54609e-3 # UK
|
194 |
+
fluid_ounce_imp = gallon_imp / 160
|
195 |
+
|
196 |
+
# speed in meter per second
|
197 |
+
kmh = 1e3 / hour
|
198 |
+
mph = mile / hour
|
199 |
+
# approx value of mach at 15 degrees in 1 atm. Is this a common value?
|
200 |
+
mach = speed_of_sound = 340.5
|
201 |
+
knot = nautical_mile / hour
|
202 |
+
|
203 |
+
# temperature in kelvin
|
204 |
+
zero_Celsius = 273.15
|
205 |
+
degree_Fahrenheit = 1/1.8 # only for differences
|
206 |
+
|
207 |
+
# energy in joule
|
208 |
+
eV = electron_volt = elementary_charge # * 1 Volt
|
209 |
+
calorie = calorie_th = 4.184
|
210 |
+
calorie_IT = 4.1868
|
211 |
+
erg = 1e-7
|
212 |
+
Btu_th = pound * degree_Fahrenheit * calorie_th / gram
|
213 |
+
Btu = Btu_IT = pound * degree_Fahrenheit * calorie_IT / gram
|
214 |
+
ton_TNT = 1e9 * calorie_th
|
215 |
+
# Wh = watt_hour
|
216 |
+
|
217 |
+
# power in watt
|
218 |
+
hp = horsepower = 550 * foot * pound * g
|
219 |
+
|
220 |
+
# force in newton
|
221 |
+
dyn = dyne = 1e-5
|
222 |
+
lbf = pound_force = pound * g
|
223 |
+
kgf = kilogram_force = g # * 1 kg
|
224 |
+
|
225 |
+
# functions for conversions that are not linear
|
226 |
+
|
227 |
+
|
228 |
+
def convert_temperature(
|
229 |
+
val: npt.ArrayLike,
|
230 |
+
old_scale: str,
|
231 |
+
new_scale: str,
|
232 |
+
) -> Any:
|
233 |
+
"""
|
234 |
+
Convert from a temperature scale to another one among Celsius, Kelvin,
|
235 |
+
Fahrenheit, and Rankine scales.
|
236 |
+
|
237 |
+
Parameters
|
238 |
+
----------
|
239 |
+
val : array_like
|
240 |
+
Value(s) of the temperature(s) to be converted expressed in the
|
241 |
+
original scale.
|
242 |
+
old_scale : str
|
243 |
+
Specifies as a string the original scale from which the temperature
|
244 |
+
value(s) will be converted. Supported scales are Celsius ('Celsius',
|
245 |
+
'celsius', 'C' or 'c'), Kelvin ('Kelvin', 'kelvin', 'K', 'k'),
|
246 |
+
Fahrenheit ('Fahrenheit', 'fahrenheit', 'F' or 'f'), and Rankine
|
247 |
+
('Rankine', 'rankine', 'R', 'r').
|
248 |
+
new_scale : str
|
249 |
+
Specifies as a string the new scale to which the temperature
|
250 |
+
value(s) will be converted. Supported scales are Celsius ('Celsius',
|
251 |
+
'celsius', 'C' or 'c'), Kelvin ('Kelvin', 'kelvin', 'K', 'k'),
|
252 |
+
Fahrenheit ('Fahrenheit', 'fahrenheit', 'F' or 'f'), and Rankine
|
253 |
+
('Rankine', 'rankine', 'R', 'r').
|
254 |
+
|
255 |
+
Returns
|
256 |
+
-------
|
257 |
+
res : float or array of floats
|
258 |
+
Value(s) of the converted temperature(s) expressed in the new scale.
|
259 |
+
|
260 |
+
Notes
|
261 |
+
-----
|
262 |
+
.. versionadded:: 0.18.0
|
263 |
+
|
264 |
+
Examples
|
265 |
+
--------
|
266 |
+
>>> from scipy.constants import convert_temperature
|
267 |
+
>>> import numpy as np
|
268 |
+
>>> convert_temperature(np.array([-40, 40]), 'Celsius', 'Kelvin')
|
269 |
+
array([ 233.15, 313.15])
|
270 |
+
|
271 |
+
"""
|
272 |
+
# Convert from `old_scale` to Kelvin
|
273 |
+
if old_scale.lower() in ['celsius', 'c']:
|
274 |
+
tempo = _np.asanyarray(val) + zero_Celsius
|
275 |
+
elif old_scale.lower() in ['kelvin', 'k']:
|
276 |
+
tempo = _np.asanyarray(val)
|
277 |
+
elif old_scale.lower() in ['fahrenheit', 'f']:
|
278 |
+
tempo = (_np.asanyarray(val) - 32) * 5 / 9 + zero_Celsius
|
279 |
+
elif old_scale.lower() in ['rankine', 'r']:
|
280 |
+
tempo = _np.asanyarray(val) * 5 / 9
|
281 |
+
else:
|
282 |
+
raise NotImplementedError("%s scale is unsupported: supported scales "
|
283 |
+
"are Celsius, Kelvin, Fahrenheit, and "
|
284 |
+
"Rankine" % old_scale)
|
285 |
+
# and from Kelvin to `new_scale`.
|
286 |
+
if new_scale.lower() in ['celsius', 'c']:
|
287 |
+
res = tempo - zero_Celsius
|
288 |
+
elif new_scale.lower() in ['kelvin', 'k']:
|
289 |
+
res = tempo
|
290 |
+
elif new_scale.lower() in ['fahrenheit', 'f']:
|
291 |
+
res = (tempo - zero_Celsius) * 9 / 5 + 32
|
292 |
+
elif new_scale.lower() in ['rankine', 'r']:
|
293 |
+
res = tempo * 9 / 5
|
294 |
+
else:
|
295 |
+
raise NotImplementedError("'%s' scale is unsupported: supported "
|
296 |
+
"scales are 'Celsius', 'Kelvin', "
|
297 |
+
"'Fahrenheit', and 'Rankine'" % new_scale)
|
298 |
+
|
299 |
+
return res
|
300 |
+
|
301 |
+
|
302 |
+
# optics
|
303 |
+
|
304 |
+
|
305 |
+
def lambda2nu(lambda_: npt.ArrayLike) -> Any:
|
306 |
+
"""
|
307 |
+
Convert wavelength to optical frequency
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
----------
|
311 |
+
lambda_ : array_like
|
312 |
+
Wavelength(s) to be converted.
|
313 |
+
|
314 |
+
Returns
|
315 |
+
-------
|
316 |
+
nu : float or array of floats
|
317 |
+
Equivalent optical frequency.
|
318 |
+
|
319 |
+
Notes
|
320 |
+
-----
|
321 |
+
Computes ``nu = c / lambda`` where c = 299792458.0, i.e., the
|
322 |
+
(vacuum) speed of light in meters/second.
|
323 |
+
|
324 |
+
Examples
|
325 |
+
--------
|
326 |
+
>>> from scipy.constants import lambda2nu, speed_of_light
|
327 |
+
>>> import numpy as np
|
328 |
+
>>> lambda2nu(np.array((1, speed_of_light)))
|
329 |
+
array([ 2.99792458e+08, 1.00000000e+00])
|
330 |
+
|
331 |
+
"""
|
332 |
+
return c / _np.asanyarray(lambda_)
|
333 |
+
|
334 |
+
|
335 |
+
def nu2lambda(nu: npt.ArrayLike) -> Any:
|
336 |
+
"""
|
337 |
+
Convert optical frequency to wavelength.
|
338 |
+
|
339 |
+
Parameters
|
340 |
+
----------
|
341 |
+
nu : array_like
|
342 |
+
Optical frequency to be converted.
|
343 |
+
|
344 |
+
Returns
|
345 |
+
-------
|
346 |
+
lambda : float or array of floats
|
347 |
+
Equivalent wavelength(s).
|
348 |
+
|
349 |
+
Notes
|
350 |
+
-----
|
351 |
+
Computes ``lambda = c / nu`` where c = 299792458.0, i.e., the
|
352 |
+
(vacuum) speed of light in meters/second.
|
353 |
+
|
354 |
+
Examples
|
355 |
+
--------
|
356 |
+
>>> from scipy.constants import nu2lambda, speed_of_light
|
357 |
+
>>> import numpy as np
|
358 |
+
>>> nu2lambda(np.array((1, speed_of_light)))
|
359 |
+
array([ 2.99792458e+08, 1.00000000e+00])
|
360 |
+
|
361 |
+
"""
|
362 |
+
return c / _np.asanyarray(nu)
|
llmeval-env/lib/python3.10/site-packages/scipy/constants/codata.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.constants` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'physical_constants', 'value', 'unit', 'precision', 'find',
|
9 |
+
'ConstantWarning', 'txt2002', 'txt2006', 'txt2010', 'txt2014',
|
10 |
+
'txt2018', 'parse_constants_2002to2014',
|
11 |
+
'parse_constants_2018toXXXX', 'k', 'c', 'mu0', 'epsilon0',
|
12 |
+
'exact_values', 'key', 'val', 'v'
|
13 |
+
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
def __dir__():
|
18 |
+
return __all__
|
19 |
+
|
20 |
+
|
21 |
+
def __getattr__(name):
|
22 |
+
return _sub_module_deprecation(sub_package="constants", module="codata",
|
23 |
+
private_modules=["_codata"], all=__all__,
|
24 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/constants/constants.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.constants` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'Avogadro', 'Boltzmann', 'Btu', 'Btu_IT', 'Btu_th', 'G',
|
10 |
+
'Julian_year', 'N_A', 'Planck', 'R', 'Rydberg',
|
11 |
+
'Stefan_Boltzmann', 'Wien', 'acre', 'alpha',
|
12 |
+
'angstrom', 'arcmin', 'arcminute', 'arcsec',
|
13 |
+
'arcsecond', 'astronomical_unit', 'atm',
|
14 |
+
'atmosphere', 'atomic_mass', 'atto', 'au', 'bar',
|
15 |
+
'barrel', 'bbl', 'blob', 'c', 'calorie',
|
16 |
+
'calorie_IT', 'calorie_th', 'carat', 'centi',
|
17 |
+
'convert_temperature', 'day', 'deci', 'degree',
|
18 |
+
'degree_Fahrenheit', 'deka', 'dyn', 'dyne', 'e',
|
19 |
+
'eV', 'electron_mass', 'electron_volt',
|
20 |
+
'elementary_charge', 'epsilon_0', 'erg',
|
21 |
+
'exa', 'exbi', 'femto', 'fermi', 'fine_structure',
|
22 |
+
'fluid_ounce', 'fluid_ounce_US', 'fluid_ounce_imp',
|
23 |
+
'foot', 'g', 'gallon', 'gallon_US', 'gallon_imp',
|
24 |
+
'gas_constant', 'gibi', 'giga', 'golden', 'golden_ratio',
|
25 |
+
'grain', 'gram', 'gravitational_constant', 'h', 'hbar',
|
26 |
+
'hectare', 'hecto', 'horsepower', 'hour', 'hp',
|
27 |
+
'inch', 'k', 'kgf', 'kibi', 'kilo', 'kilogram_force',
|
28 |
+
'kmh', 'knot', 'lambda2nu', 'lb', 'lbf',
|
29 |
+
'light_year', 'liter', 'litre', 'long_ton', 'm_e',
|
30 |
+
'm_n', 'm_p', 'm_u', 'mach', 'mebi', 'mega',
|
31 |
+
'metric_ton', 'micro', 'micron', 'mil', 'mile',
|
32 |
+
'milli', 'minute', 'mmHg', 'mph', 'mu_0', 'nano',
|
33 |
+
'nautical_mile', 'neutron_mass', 'nu2lambda',
|
34 |
+
'ounce', 'oz', 'parsec', 'pebi', 'peta',
|
35 |
+
'pi', 'pico', 'point', 'pound', 'pound_force',
|
36 |
+
'proton_mass', 'psi', 'pt', 'short_ton',
|
37 |
+
'sigma', 'slinch', 'slug', 'speed_of_light',
|
38 |
+
'speed_of_sound', 'stone', 'survey_foot',
|
39 |
+
'survey_mile', 'tebi', 'tera', 'ton_TNT',
|
40 |
+
'torr', 'troy_ounce', 'troy_pound', 'u',
|
41 |
+
'week', 'yard', 'year', 'yobi', 'yocto',
|
42 |
+
'yotta', 'zebi', 'zepto', 'zero_Celsius', 'zetta'
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
def __dir__():
|
47 |
+
return __all__
|
48 |
+
|
49 |
+
|
50 |
+
def __getattr__(name):
|
51 |
+
return _sub_module_deprecation(sub_package="constants", module="constants",
|
52 |
+
private_modules=["_constants"], all=__all__,
|
53 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__init__.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=========================================================
|
3 |
+
Legacy discrete Fourier transforms (:mod:`scipy.fftpack`)
|
4 |
+
=========================================================
|
5 |
+
|
6 |
+
.. legacy::
|
7 |
+
|
8 |
+
New code should use :mod:`scipy.fft`.
|
9 |
+
|
10 |
+
Fast Fourier Transforms (FFTs)
|
11 |
+
==============================
|
12 |
+
|
13 |
+
.. autosummary::
|
14 |
+
:toctree: generated/
|
15 |
+
|
16 |
+
fft - Fast (discrete) Fourier Transform (FFT)
|
17 |
+
ifft - Inverse FFT
|
18 |
+
fft2 - 2-D FFT
|
19 |
+
ifft2 - 2-D inverse FFT
|
20 |
+
fftn - N-D FFT
|
21 |
+
ifftn - N-D inverse FFT
|
22 |
+
rfft - FFT of strictly real-valued sequence
|
23 |
+
irfft - Inverse of rfft
|
24 |
+
dct - Discrete cosine transform
|
25 |
+
idct - Inverse discrete cosine transform
|
26 |
+
dctn - N-D Discrete cosine transform
|
27 |
+
idctn - N-D Inverse discrete cosine transform
|
28 |
+
dst - Discrete sine transform
|
29 |
+
idst - Inverse discrete sine transform
|
30 |
+
dstn - N-D Discrete sine transform
|
31 |
+
idstn - N-D Inverse discrete sine transform
|
32 |
+
|
33 |
+
Differential and pseudo-differential operators
|
34 |
+
==============================================
|
35 |
+
|
36 |
+
.. autosummary::
|
37 |
+
:toctree: generated/
|
38 |
+
|
39 |
+
diff - Differentiation and integration of periodic sequences
|
40 |
+
tilbert - Tilbert transform: cs_diff(x,h,h)
|
41 |
+
itilbert - Inverse Tilbert transform: sc_diff(x,h,h)
|
42 |
+
hilbert - Hilbert transform: cs_diff(x,inf,inf)
|
43 |
+
ihilbert - Inverse Hilbert transform: sc_diff(x,inf,inf)
|
44 |
+
cs_diff - cosh/sinh pseudo-derivative of periodic sequences
|
45 |
+
sc_diff - sinh/cosh pseudo-derivative of periodic sequences
|
46 |
+
ss_diff - sinh/sinh pseudo-derivative of periodic sequences
|
47 |
+
cc_diff - cosh/cosh pseudo-derivative of periodic sequences
|
48 |
+
shift - Shift periodic sequences
|
49 |
+
|
50 |
+
Helper functions
|
51 |
+
================
|
52 |
+
|
53 |
+
.. autosummary::
|
54 |
+
:toctree: generated/
|
55 |
+
|
56 |
+
fftshift - Shift the zero-frequency component to the center of the spectrum
|
57 |
+
ifftshift - The inverse of `fftshift`
|
58 |
+
fftfreq - Return the Discrete Fourier Transform sample frequencies
|
59 |
+
rfftfreq - DFT sample frequencies (for usage with rfft, irfft)
|
60 |
+
next_fast_len - Find the optimal length to zero-pad an FFT for speed
|
61 |
+
|
62 |
+
Note that ``fftshift``, ``ifftshift`` and ``fftfreq`` are numpy functions
|
63 |
+
exposed by ``fftpack``; importing them from ``numpy`` should be preferred.
|
64 |
+
|
65 |
+
Convolutions (:mod:`scipy.fftpack.convolve`)
|
66 |
+
============================================
|
67 |
+
|
68 |
+
.. module:: scipy.fftpack.convolve
|
69 |
+
|
70 |
+
.. autosummary::
|
71 |
+
:toctree: generated/
|
72 |
+
|
73 |
+
convolve
|
74 |
+
convolve_z
|
75 |
+
init_convolution_kernel
|
76 |
+
destroy_convolve_cache
|
77 |
+
|
78 |
+
"""
|
79 |
+
|
80 |
+
|
81 |
+
__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
|
82 |
+
'fft2','ifft2',
|
83 |
+
'diff',
|
84 |
+
'tilbert','itilbert','hilbert','ihilbert',
|
85 |
+
'sc_diff','cs_diff','cc_diff','ss_diff',
|
86 |
+
'shift',
|
87 |
+
'fftfreq', 'rfftfreq',
|
88 |
+
'fftshift', 'ifftshift',
|
89 |
+
'next_fast_len',
|
90 |
+
'dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn'
|
91 |
+
]
|
92 |
+
|
93 |
+
from ._basic import *
|
94 |
+
from ._pseudo_diffs import *
|
95 |
+
from ._helper import *
|
96 |
+
from ._realtransforms import *
|
97 |
+
|
98 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
99 |
+
from . import basic, helper, pseudo_diffs, realtransforms
|
100 |
+
|
101 |
+
from scipy._lib._testutils import PytestTester
|
102 |
+
test = PytestTester(__name__)
|
103 |
+
del PytestTester
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_basic.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_helper.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_pseudo_diffs.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_realtransforms.cpython-310.pyc
ADDED
Binary file (19.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/basic.cpython-310.pyc
ADDED
Binary file (646 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/helper.cpython-310.pyc
ADDED
Binary file (654 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/pseudo_diffs.cpython-310.pyc
ADDED
Binary file (728 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/__pycache__/realtransforms.cpython-310.pyc
ADDED
Binary file (671 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_basic.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Discrete Fourier Transforms - _basic.py
|
3 |
+
"""
|
4 |
+
# Created by Pearu Peterson, August,September 2002
|
5 |
+
__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
|
6 |
+
'fft2','ifft2']
|
7 |
+
|
8 |
+
from scipy.fft import _pocketfft
|
9 |
+
from ._helper import _good_shape
|
10 |
+
|
11 |
+
|
12 |
+
def fft(x, n=None, axis=-1, overwrite_x=False):
|
13 |
+
"""
|
14 |
+
Return discrete Fourier transform of real or complex sequence.
|
15 |
+
|
16 |
+
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
|
17 |
+
|
18 |
+
``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
x : array_like
|
23 |
+
Array to Fourier transform.
|
24 |
+
n : int, optional
|
25 |
+
Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is
|
26 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
27 |
+
default results in ``n = x.shape[axis]``.
|
28 |
+
axis : int, optional
|
29 |
+
Axis along which the fft's are computed; the default is over the
|
30 |
+
last axis (i.e., ``axis=-1``).
|
31 |
+
overwrite_x : bool, optional
|
32 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
33 |
+
|
34 |
+
Returns
|
35 |
+
-------
|
36 |
+
z : complex ndarray
|
37 |
+
with the elements::
|
38 |
+
|
39 |
+
[y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even
|
40 |
+
[y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd
|
41 |
+
|
42 |
+
where::
|
43 |
+
|
44 |
+
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1
|
45 |
+
|
46 |
+
See Also
|
47 |
+
--------
|
48 |
+
ifft : Inverse FFT
|
49 |
+
rfft : FFT of a real sequence
|
50 |
+
|
51 |
+
Notes
|
52 |
+
-----
|
53 |
+
The packing of the result is "standard": If ``A = fft(a, n)``, then
|
54 |
+
``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the
|
55 |
+
positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency
|
56 |
+
terms, in order of decreasingly negative frequency. So ,for an 8-point
|
57 |
+
transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1].
|
58 |
+
To rearrange the fft output so that the zero-frequency component is
|
59 |
+
centered, like [-4, -3, -2, -1, 0, 1, 2, 3], use `fftshift`.
|
60 |
+
|
61 |
+
Both single and double precision routines are implemented. Half precision
|
62 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
63 |
+
will be converted to double precision. Long-double precision inputs are
|
64 |
+
not supported.
|
65 |
+
|
66 |
+
This function is most efficient when `n` is a power of two, and least
|
67 |
+
efficient when `n` is prime.
|
68 |
+
|
69 |
+
Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``.
|
70 |
+
If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real.
|
71 |
+
|
72 |
+
If the data type of `x` is real, a "real FFT" algorithm is automatically
|
73 |
+
used, which roughly halves the computation time. To increase efficiency
|
74 |
+
a little further, use `rfft`, which does the same calculation, but only
|
75 |
+
outputs half of the symmetrical spectrum. If the data is both real and
|
76 |
+
symmetrical, the `dct` can again double the efficiency by generating
|
77 |
+
half of the spectrum from half of the signal.
|
78 |
+
|
79 |
+
Examples
|
80 |
+
--------
|
81 |
+
>>> import numpy as np
|
82 |
+
>>> from scipy.fftpack import fft, ifft
|
83 |
+
>>> x = np.arange(5)
|
84 |
+
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
|
85 |
+
True
|
86 |
+
|
87 |
+
"""
|
88 |
+
return _pocketfft.fft(x, n, axis, None, overwrite_x)
|
89 |
+
|
90 |
+
|
91 |
+
def ifft(x, n=None, axis=-1, overwrite_x=False):
|
92 |
+
"""
|
93 |
+
Return discrete inverse Fourier transform of real or complex sequence.
|
94 |
+
|
95 |
+
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
|
96 |
+
|
97 |
+
``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``.
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
x : array_like
|
102 |
+
Transformed data to invert.
|
103 |
+
n : int, optional
|
104 |
+
Length of the inverse Fourier transform. If ``n < x.shape[axis]``,
|
105 |
+
`x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded.
|
106 |
+
The default results in ``n = x.shape[axis]``.
|
107 |
+
axis : int, optional
|
108 |
+
Axis along which the ifft's are computed; the default is over the
|
109 |
+
last axis (i.e., ``axis=-1``).
|
110 |
+
overwrite_x : bool, optional
|
111 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
112 |
+
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
ifft : ndarray of floats
|
116 |
+
The inverse discrete Fourier transform.
|
117 |
+
|
118 |
+
See Also
|
119 |
+
--------
|
120 |
+
fft : Forward FFT
|
121 |
+
|
122 |
+
Notes
|
123 |
+
-----
|
124 |
+
Both single and double precision routines are implemented. Half precision
|
125 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
126 |
+
will be converted to double precision. Long-double precision inputs are
|
127 |
+
not supported.
|
128 |
+
|
129 |
+
This function is most efficient when `n` is a power of two, and least
|
130 |
+
efficient when `n` is prime.
|
131 |
+
|
132 |
+
If the data type of `x` is real, a "real IFFT" algorithm is automatically
|
133 |
+
used, which roughly halves the computation time.
|
134 |
+
|
135 |
+
Examples
|
136 |
+
--------
|
137 |
+
>>> from scipy.fftpack import fft, ifft
|
138 |
+
>>> import numpy as np
|
139 |
+
>>> x = np.arange(5)
|
140 |
+
>>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy.
|
141 |
+
True
|
142 |
+
|
143 |
+
"""
|
144 |
+
return _pocketfft.ifft(x, n, axis, None, overwrite_x)
|
145 |
+
|
146 |
+
|
147 |
+
def rfft(x, n=None, axis=-1, overwrite_x=False):
|
148 |
+
"""
|
149 |
+
Discrete Fourier transform of a real sequence.
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
x : array_like, real-valued
|
154 |
+
The data to transform.
|
155 |
+
n : int, optional
|
156 |
+
Defines the length of the Fourier transform. If `n` is not specified
|
157 |
+
(the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``,
|
158 |
+
`x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded.
|
159 |
+
axis : int, optional
|
160 |
+
The axis along which the transform is applied. The default is the
|
161 |
+
last axis.
|
162 |
+
overwrite_x : bool, optional
|
163 |
+
If set to true, the contents of `x` can be overwritten. Default is
|
164 |
+
False.
|
165 |
+
|
166 |
+
Returns
|
167 |
+
-------
|
168 |
+
z : real ndarray
|
169 |
+
The returned real array contains::
|
170 |
+
|
171 |
+
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even
|
172 |
+
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd
|
173 |
+
|
174 |
+
where::
|
175 |
+
|
176 |
+
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
|
177 |
+
j = 0..n-1
|
178 |
+
|
179 |
+
See Also
|
180 |
+
--------
|
181 |
+
fft, irfft, scipy.fft.rfft
|
182 |
+
|
183 |
+
Notes
|
184 |
+
-----
|
185 |
+
Within numerical accuracy, ``y == rfft(irfft(y))``.
|
186 |
+
|
187 |
+
Both single and double precision routines are implemented. Half precision
|
188 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
189 |
+
will be converted to double precision. Long-double precision inputs are
|
190 |
+
not supported.
|
191 |
+
|
192 |
+
To get an output with a complex datatype, consider using the newer
|
193 |
+
function `scipy.fft.rfft`.
|
194 |
+
|
195 |
+
Examples
|
196 |
+
--------
|
197 |
+
>>> from scipy.fftpack import fft, rfft
|
198 |
+
>>> a = [9, -9, 1, 3]
|
199 |
+
>>> fft(a)
|
200 |
+
array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
|
201 |
+
>>> rfft(a)
|
202 |
+
array([ 4., 8., 12., 16.])
|
203 |
+
|
204 |
+
"""
|
205 |
+
return _pocketfft.rfft_fftpack(x, n, axis, None, overwrite_x)
|
206 |
+
|
207 |
+
|
208 |
+
def irfft(x, n=None, axis=-1, overwrite_x=False):
|
209 |
+
"""
|
210 |
+
Return inverse discrete Fourier transform of real sequence x.
|
211 |
+
|
212 |
+
The contents of `x` are interpreted as the output of the `rfft`
|
213 |
+
function.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
----------
|
217 |
+
x : array_like
|
218 |
+
Transformed data to invert.
|
219 |
+
n : int, optional
|
220 |
+
Length of the inverse Fourier transform.
|
221 |
+
If n < x.shape[axis], x is truncated.
|
222 |
+
If n > x.shape[axis], x is zero-padded.
|
223 |
+
The default results in n = x.shape[axis].
|
224 |
+
axis : int, optional
|
225 |
+
Axis along which the ifft's are computed; the default is over
|
226 |
+
the last axis (i.e., axis=-1).
|
227 |
+
overwrite_x : bool, optional
|
228 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
229 |
+
|
230 |
+
Returns
|
231 |
+
-------
|
232 |
+
irfft : ndarray of floats
|
233 |
+
The inverse discrete Fourier transform.
|
234 |
+
|
235 |
+
See Also
|
236 |
+
--------
|
237 |
+
rfft, ifft, scipy.fft.irfft
|
238 |
+
|
239 |
+
Notes
|
240 |
+
-----
|
241 |
+
The returned real array contains::
|
242 |
+
|
243 |
+
[y(0),y(1),...,y(n-1)]
|
244 |
+
|
245 |
+
where for n is even::
|
246 |
+
|
247 |
+
y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
|
248 |
+
* exp(sqrt(-1)*j*k* 2*pi/n)
|
249 |
+
+ c.c. + x[0] + (-1)**(j) x[n-1])
|
250 |
+
|
251 |
+
and for n is odd::
|
252 |
+
|
253 |
+
y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
|
254 |
+
* exp(sqrt(-1)*j*k* 2*pi/n)
|
255 |
+
+ c.c. + x[0])
|
256 |
+
|
257 |
+
c.c. denotes complex conjugate of preceding expression.
|
258 |
+
|
259 |
+
For details on input parameters, see `rfft`.
|
260 |
+
|
261 |
+
To process (conjugate-symmetric) frequency-domain data with a complex
|
262 |
+
datatype, consider using the newer function `scipy.fft.irfft`.
|
263 |
+
|
264 |
+
Examples
|
265 |
+
--------
|
266 |
+
>>> from scipy.fftpack import rfft, irfft
|
267 |
+
>>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
|
268 |
+
>>> irfft(a)
|
269 |
+
array([ 2.6 , -3.16405192, 1.24398433, -1.14955713, 1.46962473])
|
270 |
+
>>> irfft(rfft(a))
|
271 |
+
array([1., 2., 3., 4., 5.])
|
272 |
+
|
273 |
+
"""
|
274 |
+
return _pocketfft.irfft_fftpack(x, n, axis, None, overwrite_x)
|
275 |
+
|
276 |
+
|
277 |
+
def fftn(x, shape=None, axes=None, overwrite_x=False):
|
278 |
+
"""
|
279 |
+
Return multidimensional discrete Fourier transform.
|
280 |
+
|
281 |
+
The returned array contains::
|
282 |
+
|
283 |
+
y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
|
284 |
+
x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)
|
285 |
+
|
286 |
+
where d = len(x.shape) and n = x.shape.
|
287 |
+
|
288 |
+
Parameters
|
289 |
+
----------
|
290 |
+
x : array_like
|
291 |
+
The (N-D) array to transform.
|
292 |
+
shape : int or array_like of ints or None, optional
|
293 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
294 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
295 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
296 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
297 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
298 |
+
length ``shape[i]``.
|
299 |
+
If any element of `shape` is -1, the size of the corresponding
|
300 |
+
dimension of `x` is used.
|
301 |
+
axes : int or array_like of ints or None, optional
|
302 |
+
The axes of `x` (`y` if `shape` is not None) along which the
|
303 |
+
transform is applied.
|
304 |
+
The default is over all axes.
|
305 |
+
overwrite_x : bool, optional
|
306 |
+
If True, the contents of `x` can be destroyed. Default is False.
|
307 |
+
|
308 |
+
Returns
|
309 |
+
-------
|
310 |
+
y : complex-valued N-D NumPy array
|
311 |
+
The (N-D) DFT of the input array.
|
312 |
+
|
313 |
+
See Also
|
314 |
+
--------
|
315 |
+
ifftn
|
316 |
+
|
317 |
+
Notes
|
318 |
+
-----
|
319 |
+
If ``x`` is real-valued, then
|
320 |
+
``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``.
|
321 |
+
|
322 |
+
Both single and double precision routines are implemented. Half precision
|
323 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
324 |
+
will be converted to double precision. Long-double precision inputs are
|
325 |
+
not supported.
|
326 |
+
|
327 |
+
Examples
|
328 |
+
--------
|
329 |
+
>>> import numpy as np
|
330 |
+
>>> from scipy.fftpack import fftn, ifftn
|
331 |
+
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
|
332 |
+
>>> np.allclose(y, fftn(ifftn(y)))
|
333 |
+
True
|
334 |
+
|
335 |
+
"""
|
336 |
+
shape = _good_shape(x, shape, axes)
|
337 |
+
return _pocketfft.fftn(x, shape, axes, None, overwrite_x)
|
338 |
+
|
339 |
+
|
340 |
+
def ifftn(x, shape=None, axes=None, overwrite_x=False):
|
341 |
+
"""
|
342 |
+
Return inverse multidimensional discrete Fourier transform.
|
343 |
+
|
344 |
+
The sequence can be of an arbitrary type.
|
345 |
+
|
346 |
+
The returned array contains::
|
347 |
+
|
348 |
+
y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
|
349 |
+
x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)
|
350 |
+
|
351 |
+
where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``.
|
352 |
+
|
353 |
+
For description of parameters see `fftn`.
|
354 |
+
|
355 |
+
See Also
|
356 |
+
--------
|
357 |
+
fftn : for detailed information.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
--------
|
361 |
+
>>> from scipy.fftpack import fftn, ifftn
|
362 |
+
>>> import numpy as np
|
363 |
+
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
|
364 |
+
>>> np.allclose(y, ifftn(fftn(y)))
|
365 |
+
True
|
366 |
+
|
367 |
+
"""
|
368 |
+
shape = _good_shape(x, shape, axes)
|
369 |
+
return _pocketfft.ifftn(x, shape, axes, None, overwrite_x)
|
370 |
+
|
371 |
+
|
372 |
+
def fft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
|
373 |
+
"""
|
374 |
+
2-D discrete Fourier transform.
|
375 |
+
|
376 |
+
Return the 2-D discrete Fourier transform of the 2-D argument
|
377 |
+
`x`.
|
378 |
+
|
379 |
+
See Also
|
380 |
+
--------
|
381 |
+
fftn : for detailed information.
|
382 |
+
|
383 |
+
Examples
|
384 |
+
--------
|
385 |
+
>>> import numpy as np
|
386 |
+
>>> from scipy.fftpack import fft2, ifft2
|
387 |
+
>>> y = np.mgrid[:5, :5][0]
|
388 |
+
>>> y
|
389 |
+
array([[0, 0, 0, 0, 0],
|
390 |
+
[1, 1, 1, 1, 1],
|
391 |
+
[2, 2, 2, 2, 2],
|
392 |
+
[3, 3, 3, 3, 3],
|
393 |
+
[4, 4, 4, 4, 4]])
|
394 |
+
>>> np.allclose(y, ifft2(fft2(y)))
|
395 |
+
True
|
396 |
+
"""
|
397 |
+
return fftn(x,shape,axes,overwrite_x)
|
398 |
+
|
399 |
+
|
400 |
+
def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
|
401 |
+
"""
|
402 |
+
2-D discrete inverse Fourier transform of real or complex sequence.
|
403 |
+
|
404 |
+
Return inverse 2-D discrete Fourier transform of
|
405 |
+
arbitrary type sequence x.
|
406 |
+
|
407 |
+
See `ifft` for more information.
|
408 |
+
|
409 |
+
See Also
|
410 |
+
--------
|
411 |
+
fft2, ifft
|
412 |
+
|
413 |
+
Examples
|
414 |
+
--------
|
415 |
+
>>> import numpy as np
|
416 |
+
>>> from scipy.fftpack import fft2, ifft2
|
417 |
+
>>> y = np.mgrid[:5, :5][0]
|
418 |
+
>>> y
|
419 |
+
array([[0, 0, 0, 0, 0],
|
420 |
+
[1, 1, 1, 1, 1],
|
421 |
+
[2, 2, 2, 2, 2],
|
422 |
+
[3, 3, 3, 3, 3],
|
423 |
+
[4, 4, 4, 4, 4]])
|
424 |
+
>>> np.allclose(y, fft2(ifft2(y)))
|
425 |
+
True
|
426 |
+
|
427 |
+
"""
|
428 |
+
return ifftn(x,shape,axes,overwrite_x)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_helper.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy.fft import fftshift, ifftshift, fftfreq
|
5 |
+
|
6 |
+
import scipy.fft._pocketfft.helper as _helper
|
7 |
+
|
8 |
+
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq', 'next_fast_len']
|
9 |
+
|
10 |
+
|
11 |
+
def rfftfreq(n, d=1.0):
|
12 |
+
"""DFT sample frequencies (for usage with rfft, irfft).
|
13 |
+
|
14 |
+
The returned float array contains the frequency bins in
|
15 |
+
cycles/unit (with zero at the start) given a window length `n` and a
|
16 |
+
sample spacing `d`::
|
17 |
+
|
18 |
+
f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n) if n is even
|
19 |
+
f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n) if n is odd
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
n : int
|
24 |
+
Window length.
|
25 |
+
d : scalar, optional
|
26 |
+
Sample spacing. Default is 1.
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
out : ndarray
|
31 |
+
The array of length `n`, containing the sample frequencies.
|
32 |
+
|
33 |
+
Examples
|
34 |
+
--------
|
35 |
+
>>> import numpy as np
|
36 |
+
>>> from scipy import fftpack
|
37 |
+
>>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
38 |
+
>>> sig_fft = fftpack.rfft(sig)
|
39 |
+
>>> n = sig_fft.size
|
40 |
+
>>> timestep = 0.1
|
41 |
+
>>> freq = fftpack.rfftfreq(n, d=timestep)
|
42 |
+
>>> freq
|
43 |
+
array([ 0. , 1.25, 1.25, 2.5 , 2.5 , 3.75, 3.75, 5. ])
|
44 |
+
|
45 |
+
"""
|
46 |
+
n = operator.index(n)
|
47 |
+
if n < 0:
|
48 |
+
raise ValueError("n = %s is not valid. "
|
49 |
+
"n must be a nonnegative integer." % n)
|
50 |
+
|
51 |
+
return (np.arange(1, n + 1, dtype=int) // 2) / float(n * d)
|
52 |
+
|
53 |
+
|
54 |
+
def next_fast_len(target):
|
55 |
+
"""
|
56 |
+
Find the next fast size of input data to `fft`, for zero-padding, etc.
|
57 |
+
|
58 |
+
SciPy's FFTPACK has efficient functions for radix {2, 3, 4, 5}, so this
|
59 |
+
returns the next composite of the prime factors 2, 3, and 5 which is
|
60 |
+
greater than or equal to `target`. (These are also known as 5-smooth
|
61 |
+
numbers, regular numbers, or Hamming numbers.)
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
target : int
|
66 |
+
Length to start searching from. Must be a positive integer.
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
out : int
|
71 |
+
The first 5-smooth number greater than or equal to `target`.
|
72 |
+
|
73 |
+
Notes
|
74 |
+
-----
|
75 |
+
.. versionadded:: 0.18.0
|
76 |
+
|
77 |
+
Examples
|
78 |
+
--------
|
79 |
+
On a particular machine, an FFT of prime length takes 133 ms:
|
80 |
+
|
81 |
+
>>> from scipy import fftpack
|
82 |
+
>>> import numpy as np
|
83 |
+
>>> rng = np.random.default_rng()
|
84 |
+
>>> min_len = 10007 # prime length is worst case for speed
|
85 |
+
>>> a = rng.standard_normal(min_len)
|
86 |
+
>>> b = fftpack.fft(a)
|
87 |
+
|
88 |
+
Zero-padding to the next 5-smooth length reduces computation time to
|
89 |
+
211 us, a speedup of 630 times:
|
90 |
+
|
91 |
+
>>> fftpack.next_fast_len(min_len)
|
92 |
+
10125
|
93 |
+
>>> b = fftpack.fft(a, 10125)
|
94 |
+
|
95 |
+
Rounding up to the next power of 2 is not optimal, taking 367 us to
|
96 |
+
compute, 1.7 times as long as the 5-smooth size:
|
97 |
+
|
98 |
+
>>> b = fftpack.fft(a, 16384)
|
99 |
+
|
100 |
+
"""
|
101 |
+
# Real transforms use regular sizes so this is backwards compatible
|
102 |
+
return _helper.good_size(target, True)
|
103 |
+
|
104 |
+
|
105 |
+
def _good_shape(x, shape, axes):
|
106 |
+
"""Ensure that shape argument is valid for scipy.fftpack
|
107 |
+
|
108 |
+
scipy.fftpack does not support len(shape) < x.ndim when axes is not given.
|
109 |
+
"""
|
110 |
+
if shape is not None and axes is None:
|
111 |
+
shape = _helper._iterable_of_int(shape, 'shape')
|
112 |
+
if len(shape) != np.ndim(x):
|
113 |
+
raise ValueError("when given, axes and shape arguments"
|
114 |
+
" have to be of the same length")
|
115 |
+
return shape
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_pseudo_diffs.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Differential and pseudo-differential operators.
|
3 |
+
"""
|
4 |
+
# Created by Pearu Peterson, September 2002
|
5 |
+
|
6 |
+
__all__ = ['diff',
|
7 |
+
'tilbert','itilbert','hilbert','ihilbert',
|
8 |
+
'cs_diff','cc_diff','sc_diff','ss_diff',
|
9 |
+
'shift']
|
10 |
+
|
11 |
+
from numpy import pi, asarray, sin, cos, sinh, cosh, tanh, iscomplexobj
|
12 |
+
from . import convolve
|
13 |
+
|
14 |
+
from scipy.fft._pocketfft.helper import _datacopied
|
15 |
+
|
16 |
+
|
17 |
+
_cache = {}
|
18 |
+
|
19 |
+
|
20 |
+
def diff(x,order=1,period=None, _cache=_cache):
|
21 |
+
"""
|
22 |
+
Return kth derivative (or integral) of a periodic sequence x.
|
23 |
+
|
24 |
+
If x_j and y_j are Fourier coefficients of periodic functions x
|
25 |
+
and y, respectively, then::
|
26 |
+
|
27 |
+
y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
|
28 |
+
y_0 = 0 if order is not 0.
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
x : array_like
|
33 |
+
Input array.
|
34 |
+
order : int, optional
|
35 |
+
The order of differentiation. Default order is 1. If order is
|
36 |
+
negative, then integration is carried out under the assumption
|
37 |
+
that ``x_0 == 0``.
|
38 |
+
period : float, optional
|
39 |
+
The assumed period of the sequence. Default is ``2*pi``.
|
40 |
+
|
41 |
+
Notes
|
42 |
+
-----
|
43 |
+
If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within
|
44 |
+
numerical accuracy).
|
45 |
+
|
46 |
+
For odd order and even ``len(x)``, the Nyquist mode is taken zero.
|
47 |
+
|
48 |
+
"""
|
49 |
+
tmp = asarray(x)
|
50 |
+
if order == 0:
|
51 |
+
return tmp
|
52 |
+
if iscomplexobj(tmp):
|
53 |
+
return diff(tmp.real,order,period)+1j*diff(tmp.imag,order,period)
|
54 |
+
if period is not None:
|
55 |
+
c = 2*pi/period
|
56 |
+
else:
|
57 |
+
c = 1.0
|
58 |
+
n = len(x)
|
59 |
+
omega = _cache.get((n,order,c))
|
60 |
+
if omega is None:
|
61 |
+
if len(_cache) > 20:
|
62 |
+
while _cache:
|
63 |
+
_cache.popitem()
|
64 |
+
|
65 |
+
def kernel(k,order=order,c=c):
|
66 |
+
if k:
|
67 |
+
return pow(c*k,order)
|
68 |
+
return 0
|
69 |
+
omega = convolve.init_convolution_kernel(n,kernel,d=order,
|
70 |
+
zero_nyquist=1)
|
71 |
+
_cache[(n,order,c)] = omega
|
72 |
+
overwrite_x = _datacopied(tmp, x)
|
73 |
+
return convolve.convolve(tmp,omega,swap_real_imag=order % 2,
|
74 |
+
overwrite_x=overwrite_x)
|
75 |
+
|
76 |
+
|
77 |
+
del _cache
|
78 |
+
|
79 |
+
|
80 |
+
_cache = {}
|
81 |
+
|
82 |
+
|
83 |
+
def tilbert(x, h, period=None, _cache=_cache):
|
84 |
+
"""
|
85 |
+
Return h-Tilbert transform of a periodic sequence x.
|
86 |
+
|
87 |
+
If x_j and y_j are Fourier coefficients of periodic functions x
|
88 |
+
and y, respectively, then::
|
89 |
+
|
90 |
+
y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
|
91 |
+
y_0 = 0
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
x : array_like
|
96 |
+
The input array to transform.
|
97 |
+
h : float
|
98 |
+
Defines the parameter of the Tilbert transform.
|
99 |
+
period : float, optional
|
100 |
+
The assumed period of the sequence. Default period is ``2*pi``.
|
101 |
+
|
102 |
+
Returns
|
103 |
+
-------
|
104 |
+
tilbert : ndarray
|
105 |
+
The result of the transform.
|
106 |
+
|
107 |
+
Notes
|
108 |
+
-----
|
109 |
+
If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then
|
110 |
+
``tilbert(itilbert(x)) == x``.
|
111 |
+
|
112 |
+
If ``2 * pi * h / period`` is approximately 10 or larger, then
|
113 |
+
numerically ``tilbert == hilbert``
|
114 |
+
(theoretically oo-Tilbert == Hilbert).
|
115 |
+
|
116 |
+
For even ``len(x)``, the Nyquist mode of ``x`` is taken zero.
|
117 |
+
|
118 |
+
"""
|
119 |
+
tmp = asarray(x)
|
120 |
+
if iscomplexobj(tmp):
|
121 |
+
return tilbert(tmp.real, h, period) + \
|
122 |
+
1j * tilbert(tmp.imag, h, period)
|
123 |
+
|
124 |
+
if period is not None:
|
125 |
+
h = h * 2 * pi / period
|
126 |
+
|
127 |
+
n = len(x)
|
128 |
+
omega = _cache.get((n, h))
|
129 |
+
if omega is None:
|
130 |
+
if len(_cache) > 20:
|
131 |
+
while _cache:
|
132 |
+
_cache.popitem()
|
133 |
+
|
134 |
+
def kernel(k, h=h):
|
135 |
+
if k:
|
136 |
+
return 1.0/tanh(h*k)
|
137 |
+
|
138 |
+
return 0
|
139 |
+
|
140 |
+
omega = convolve.init_convolution_kernel(n, kernel, d=1)
|
141 |
+
_cache[(n,h)] = omega
|
142 |
+
|
143 |
+
overwrite_x = _datacopied(tmp, x)
|
144 |
+
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
|
145 |
+
|
146 |
+
|
147 |
+
del _cache
|
148 |
+
|
149 |
+
|
150 |
+
_cache = {}
|
151 |
+
|
152 |
+
|
153 |
+
def itilbert(x,h,period=None, _cache=_cache):
|
154 |
+
"""
|
155 |
+
Return inverse h-Tilbert transform of a periodic sequence x.
|
156 |
+
|
157 |
+
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
|
158 |
+
and y, respectively, then::
|
159 |
+
|
160 |
+
y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
|
161 |
+
y_0 = 0
|
162 |
+
|
163 |
+
For more details, see `tilbert`.
|
164 |
+
|
165 |
+
"""
|
166 |
+
tmp = asarray(x)
|
167 |
+
if iscomplexobj(tmp):
|
168 |
+
return itilbert(tmp.real,h,period) + \
|
169 |
+
1j*itilbert(tmp.imag,h,period)
|
170 |
+
if period is not None:
|
171 |
+
h = h*2*pi/period
|
172 |
+
n = len(x)
|
173 |
+
omega = _cache.get((n,h))
|
174 |
+
if omega is None:
|
175 |
+
if len(_cache) > 20:
|
176 |
+
while _cache:
|
177 |
+
_cache.popitem()
|
178 |
+
|
179 |
+
def kernel(k,h=h):
|
180 |
+
if k:
|
181 |
+
return -tanh(h*k)
|
182 |
+
return 0
|
183 |
+
omega = convolve.init_convolution_kernel(n,kernel,d=1)
|
184 |
+
_cache[(n,h)] = omega
|
185 |
+
overwrite_x = _datacopied(tmp, x)
|
186 |
+
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
|
187 |
+
|
188 |
+
|
189 |
+
del _cache
|
190 |
+
|
191 |
+
|
192 |
+
_cache = {}
|
193 |
+
|
194 |
+
|
195 |
+
def hilbert(x, _cache=_cache):
|
196 |
+
"""
|
197 |
+
Return Hilbert transform of a periodic sequence x.
|
198 |
+
|
199 |
+
If x_j and y_j are Fourier coefficients of periodic functions x
|
200 |
+
and y, respectively, then::
|
201 |
+
|
202 |
+
y_j = sqrt(-1)*sign(j) * x_j
|
203 |
+
y_0 = 0
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
x : array_like
|
208 |
+
The input array, should be periodic.
|
209 |
+
_cache : dict, optional
|
210 |
+
Dictionary that contains the kernel used to do a convolution with.
|
211 |
+
|
212 |
+
Returns
|
213 |
+
-------
|
214 |
+
y : ndarray
|
215 |
+
The transformed input.
|
216 |
+
|
217 |
+
See Also
|
218 |
+
--------
|
219 |
+
scipy.signal.hilbert : Compute the analytic signal, using the Hilbert
|
220 |
+
transform.
|
221 |
+
|
222 |
+
Notes
|
223 |
+
-----
|
224 |
+
If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``.
|
225 |
+
|
226 |
+
For even len(x), the Nyquist mode of x is taken zero.
|
227 |
+
|
228 |
+
The sign of the returned transform does not have a factor -1 that is more
|
229 |
+
often than not found in the definition of the Hilbert transform. Note also
|
230 |
+
that `scipy.signal.hilbert` does have an extra -1 factor compared to this
|
231 |
+
function.
|
232 |
+
|
233 |
+
"""
|
234 |
+
tmp = asarray(x)
|
235 |
+
if iscomplexobj(tmp):
|
236 |
+
return hilbert(tmp.real)+1j*hilbert(tmp.imag)
|
237 |
+
n = len(x)
|
238 |
+
omega = _cache.get(n)
|
239 |
+
if omega is None:
|
240 |
+
if len(_cache) > 20:
|
241 |
+
while _cache:
|
242 |
+
_cache.popitem()
|
243 |
+
|
244 |
+
def kernel(k):
|
245 |
+
if k > 0:
|
246 |
+
return 1.0
|
247 |
+
elif k < 0:
|
248 |
+
return -1.0
|
249 |
+
return 0.0
|
250 |
+
omega = convolve.init_convolution_kernel(n,kernel,d=1)
|
251 |
+
_cache[n] = omega
|
252 |
+
overwrite_x = _datacopied(tmp, x)
|
253 |
+
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
|
254 |
+
|
255 |
+
|
256 |
+
del _cache
|
257 |
+
|
258 |
+
|
259 |
+
def ihilbert(x):
|
260 |
+
"""
|
261 |
+
Return inverse Hilbert transform of a periodic sequence x.
|
262 |
+
|
263 |
+
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
|
264 |
+
and y, respectively, then::
|
265 |
+
|
266 |
+
y_j = -sqrt(-1)*sign(j) * x_j
|
267 |
+
y_0 = 0
|
268 |
+
|
269 |
+
"""
|
270 |
+
return -hilbert(x)
|
271 |
+
|
272 |
+
|
273 |
+
_cache = {}
|
274 |
+
|
275 |
+
|
276 |
+
def cs_diff(x, a, b, period=None, _cache=_cache):
|
277 |
+
"""
|
278 |
+
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.
|
279 |
+
|
280 |
+
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
|
281 |
+
and y, respectively, then::
|
282 |
+
|
283 |
+
y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
|
284 |
+
y_0 = 0
|
285 |
+
|
286 |
+
Parameters
|
287 |
+
----------
|
288 |
+
x : array_like
|
289 |
+
The array to take the pseudo-derivative from.
|
290 |
+
a, b : float
|
291 |
+
Defines the parameters of the cosh/sinh pseudo-differential
|
292 |
+
operator.
|
293 |
+
period : float, optional
|
294 |
+
The period of the sequence. Default period is ``2*pi``.
|
295 |
+
|
296 |
+
Returns
|
297 |
+
-------
|
298 |
+
cs_diff : ndarray
|
299 |
+
Pseudo-derivative of periodic sequence `x`.
|
300 |
+
|
301 |
+
Notes
|
302 |
+
-----
|
303 |
+
For even len(`x`), the Nyquist mode of `x` is taken as zero.
|
304 |
+
|
305 |
+
"""
|
306 |
+
tmp = asarray(x)
|
307 |
+
if iscomplexobj(tmp):
|
308 |
+
return cs_diff(tmp.real,a,b,period) + \
|
309 |
+
1j*cs_diff(tmp.imag,a,b,period)
|
310 |
+
if period is not None:
|
311 |
+
a = a*2*pi/period
|
312 |
+
b = b*2*pi/period
|
313 |
+
n = len(x)
|
314 |
+
omega = _cache.get((n,a,b))
|
315 |
+
if omega is None:
|
316 |
+
if len(_cache) > 20:
|
317 |
+
while _cache:
|
318 |
+
_cache.popitem()
|
319 |
+
|
320 |
+
def kernel(k,a=a,b=b):
|
321 |
+
if k:
|
322 |
+
return -cosh(a*k)/sinh(b*k)
|
323 |
+
return 0
|
324 |
+
omega = convolve.init_convolution_kernel(n,kernel,d=1)
|
325 |
+
_cache[(n,a,b)] = omega
|
326 |
+
overwrite_x = _datacopied(tmp, x)
|
327 |
+
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
|
328 |
+
|
329 |
+
|
330 |
+
del _cache
|
331 |
+
|
332 |
+
|
333 |
+
_cache = {}
|
334 |
+
|
335 |
+
|
336 |
+
def sc_diff(x, a, b, period=None, _cache=_cache):
|
337 |
+
"""
|
338 |
+
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.
|
339 |
+
|
340 |
+
If x_j and y_j are Fourier coefficients of periodic functions x
|
341 |
+
and y, respectively, then::
|
342 |
+
|
343 |
+
y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
|
344 |
+
y_0 = 0
|
345 |
+
|
346 |
+
Parameters
|
347 |
+
----------
|
348 |
+
x : array_like
|
349 |
+
Input array.
|
350 |
+
a,b : float
|
351 |
+
Defines the parameters of the sinh/cosh pseudo-differential
|
352 |
+
operator.
|
353 |
+
period : float, optional
|
354 |
+
The period of the sequence x. Default is 2*pi.
|
355 |
+
|
356 |
+
Notes
|
357 |
+
-----
|
358 |
+
``sc_diff(cs_diff(x,a,b),b,a) == x``
|
359 |
+
For even ``len(x)``, the Nyquist mode of x is taken as zero.
|
360 |
+
|
361 |
+
"""
|
362 |
+
tmp = asarray(x)
|
363 |
+
if iscomplexobj(tmp):
|
364 |
+
return sc_diff(tmp.real,a,b,period) + \
|
365 |
+
1j*sc_diff(tmp.imag,a,b,period)
|
366 |
+
if period is not None:
|
367 |
+
a = a*2*pi/period
|
368 |
+
b = b*2*pi/period
|
369 |
+
n = len(x)
|
370 |
+
omega = _cache.get((n,a,b))
|
371 |
+
if omega is None:
|
372 |
+
if len(_cache) > 20:
|
373 |
+
while _cache:
|
374 |
+
_cache.popitem()
|
375 |
+
|
376 |
+
def kernel(k,a=a,b=b):
|
377 |
+
if k:
|
378 |
+
return sinh(a*k)/cosh(b*k)
|
379 |
+
return 0
|
380 |
+
omega = convolve.init_convolution_kernel(n,kernel,d=1)
|
381 |
+
_cache[(n,a,b)] = omega
|
382 |
+
overwrite_x = _datacopied(tmp, x)
|
383 |
+
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
|
384 |
+
|
385 |
+
|
386 |
+
del _cache
|
387 |
+
|
388 |
+
|
389 |
+
_cache = {}
|
390 |
+
|
391 |
+
|
392 |
+
def ss_diff(x, a, b, period=None, _cache=_cache):
|
393 |
+
"""
|
394 |
+
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.
|
395 |
+
|
396 |
+
If x_j and y_j are Fourier coefficients of periodic functions x
|
397 |
+
and y, respectively, then::
|
398 |
+
|
399 |
+
y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
|
400 |
+
y_0 = a/b * x_0
|
401 |
+
|
402 |
+
Parameters
|
403 |
+
----------
|
404 |
+
x : array_like
|
405 |
+
The array to take the pseudo-derivative from.
|
406 |
+
a,b
|
407 |
+
Defines the parameters of the sinh/sinh pseudo-differential
|
408 |
+
operator.
|
409 |
+
period : float, optional
|
410 |
+
The period of the sequence x. Default is ``2*pi``.
|
411 |
+
|
412 |
+
Notes
|
413 |
+
-----
|
414 |
+
``ss_diff(ss_diff(x,a,b),b,a) == x``
|
415 |
+
|
416 |
+
"""
|
417 |
+
tmp = asarray(x)
|
418 |
+
if iscomplexobj(tmp):
|
419 |
+
return ss_diff(tmp.real,a,b,period) + \
|
420 |
+
1j*ss_diff(tmp.imag,a,b,period)
|
421 |
+
if period is not None:
|
422 |
+
a = a*2*pi/period
|
423 |
+
b = b*2*pi/period
|
424 |
+
n = len(x)
|
425 |
+
omega = _cache.get((n,a,b))
|
426 |
+
if omega is None:
|
427 |
+
if len(_cache) > 20:
|
428 |
+
while _cache:
|
429 |
+
_cache.popitem()
|
430 |
+
|
431 |
+
def kernel(k,a=a,b=b):
|
432 |
+
if k:
|
433 |
+
return sinh(a*k)/sinh(b*k)
|
434 |
+
return float(a)/b
|
435 |
+
omega = convolve.init_convolution_kernel(n,kernel)
|
436 |
+
_cache[(n,a,b)] = omega
|
437 |
+
overwrite_x = _datacopied(tmp, x)
|
438 |
+
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
|
439 |
+
|
440 |
+
|
441 |
+
del _cache
|
442 |
+
|
443 |
+
|
444 |
+
_cache = {}
|
445 |
+
|
446 |
+
|
447 |
+
def cc_diff(x, a, b, period=None, _cache=_cache):
|
448 |
+
"""
|
449 |
+
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.
|
450 |
+
|
451 |
+
If x_j and y_j are Fourier coefficients of periodic functions x
|
452 |
+
and y, respectively, then::
|
453 |
+
|
454 |
+
y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
|
455 |
+
|
456 |
+
Parameters
|
457 |
+
----------
|
458 |
+
x : array_like
|
459 |
+
The array to take the pseudo-derivative from.
|
460 |
+
a,b : float
|
461 |
+
Defines the parameters of the sinh/sinh pseudo-differential
|
462 |
+
operator.
|
463 |
+
period : float, optional
|
464 |
+
The period of the sequence x. Default is ``2*pi``.
|
465 |
+
|
466 |
+
Returns
|
467 |
+
-------
|
468 |
+
cc_diff : ndarray
|
469 |
+
Pseudo-derivative of periodic sequence `x`.
|
470 |
+
|
471 |
+
Notes
|
472 |
+
-----
|
473 |
+
``cc_diff(cc_diff(x,a,b),b,a) == x``
|
474 |
+
|
475 |
+
"""
|
476 |
+
tmp = asarray(x)
|
477 |
+
if iscomplexobj(tmp):
|
478 |
+
return cc_diff(tmp.real,a,b,period) + \
|
479 |
+
1j*cc_diff(tmp.imag,a,b,period)
|
480 |
+
if period is not None:
|
481 |
+
a = a*2*pi/period
|
482 |
+
b = b*2*pi/period
|
483 |
+
n = len(x)
|
484 |
+
omega = _cache.get((n,a,b))
|
485 |
+
if omega is None:
|
486 |
+
if len(_cache) > 20:
|
487 |
+
while _cache:
|
488 |
+
_cache.popitem()
|
489 |
+
|
490 |
+
def kernel(k,a=a,b=b):
|
491 |
+
return cosh(a*k)/cosh(b*k)
|
492 |
+
omega = convolve.init_convolution_kernel(n,kernel)
|
493 |
+
_cache[(n,a,b)] = omega
|
494 |
+
overwrite_x = _datacopied(tmp, x)
|
495 |
+
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
|
496 |
+
|
497 |
+
|
498 |
+
del _cache
|
499 |
+
|
500 |
+
|
501 |
+
_cache = {}
|
502 |
+
|
503 |
+
|
504 |
+
def shift(x, a, period=None, _cache=_cache):
|
505 |
+
"""
|
506 |
+
Shift periodic sequence x by a: y(u) = x(u+a).
|
507 |
+
|
508 |
+
If x_j and y_j are Fourier coefficients of periodic functions x
|
509 |
+
and y, respectively, then::
|
510 |
+
|
511 |
+
y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f
|
512 |
+
|
513 |
+
Parameters
|
514 |
+
----------
|
515 |
+
x : array_like
|
516 |
+
The array to take the pseudo-derivative from.
|
517 |
+
a : float
|
518 |
+
Defines the parameters of the sinh/sinh pseudo-differential
|
519 |
+
period : float, optional
|
520 |
+
The period of the sequences x and y. Default period is ``2*pi``.
|
521 |
+
"""
|
522 |
+
tmp = asarray(x)
|
523 |
+
if iscomplexobj(tmp):
|
524 |
+
return shift(tmp.real,a,period)+1j*shift(tmp.imag,a,period)
|
525 |
+
if period is not None:
|
526 |
+
a = a*2*pi/period
|
527 |
+
n = len(x)
|
528 |
+
omega = _cache.get((n,a))
|
529 |
+
if omega is None:
|
530 |
+
if len(_cache) > 20:
|
531 |
+
while _cache:
|
532 |
+
_cache.popitem()
|
533 |
+
|
534 |
+
def kernel_real(k,a=a):
|
535 |
+
return cos(a*k)
|
536 |
+
|
537 |
+
def kernel_imag(k,a=a):
|
538 |
+
return sin(a*k)
|
539 |
+
omega_real = convolve.init_convolution_kernel(n,kernel_real,d=0,
|
540 |
+
zero_nyquist=0)
|
541 |
+
omega_imag = convolve.init_convolution_kernel(n,kernel_imag,d=1,
|
542 |
+
zero_nyquist=0)
|
543 |
+
_cache[(n,a)] = omega_real,omega_imag
|
544 |
+
else:
|
545 |
+
omega_real,omega_imag = omega
|
546 |
+
overwrite_x = _datacopied(tmp, x)
|
547 |
+
return convolve.convolve_z(tmp,omega_real,omega_imag,
|
548 |
+
overwrite_x=overwrite_x)
|
549 |
+
|
550 |
+
|
551 |
+
del _cache
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/_realtransforms.py
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Real spectrum transforms (DCT, DST, MDCT)
|
3 |
+
"""
|
4 |
+
|
5 |
+
__all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
|
6 |
+
|
7 |
+
from scipy.fft import _pocketfft
|
8 |
+
from ._helper import _good_shape
|
9 |
+
|
10 |
+
_inverse_typemap = {1: 1, 2: 3, 3: 2, 4: 4}
|
11 |
+
|
12 |
+
|
13 |
+
def dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
14 |
+
"""
|
15 |
+
Return multidimensional Discrete Cosine Transform along the specified axes.
|
16 |
+
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
x : array_like
|
20 |
+
The input array.
|
21 |
+
type : {1, 2, 3, 4}, optional
|
22 |
+
Type of the DCT (see Notes). Default type is 2.
|
23 |
+
shape : int or array_like of ints or None, optional
|
24 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
25 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
26 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
27 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
28 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
29 |
+
length ``shape[i]``.
|
30 |
+
If any element of `shape` is -1, the size of the corresponding
|
31 |
+
dimension of `x` is used.
|
32 |
+
axes : int or array_like of ints or None, optional
|
33 |
+
Axes along which the DCT is computed.
|
34 |
+
The default is over all axes.
|
35 |
+
norm : {None, 'ortho'}, optional
|
36 |
+
Normalization mode (see Notes). Default is None.
|
37 |
+
overwrite_x : bool, optional
|
38 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
y : ndarray of real
|
43 |
+
The transformed input array.
|
44 |
+
|
45 |
+
See Also
|
46 |
+
--------
|
47 |
+
idctn : Inverse multidimensional DCT
|
48 |
+
|
49 |
+
Notes
|
50 |
+
-----
|
51 |
+
For full details of the DCT types and normalization modes, as well as
|
52 |
+
references, see `dct`.
|
53 |
+
|
54 |
+
Examples
|
55 |
+
--------
|
56 |
+
>>> import numpy as np
|
57 |
+
>>> from scipy.fftpack import dctn, idctn
|
58 |
+
>>> rng = np.random.default_rng()
|
59 |
+
>>> y = rng.standard_normal((16, 16))
|
60 |
+
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
|
61 |
+
True
|
62 |
+
|
63 |
+
"""
|
64 |
+
shape = _good_shape(x, shape, axes)
|
65 |
+
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
|
66 |
+
|
67 |
+
|
68 |
+
def idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
69 |
+
"""
|
70 |
+
Return multidimensional Discrete Cosine Transform along the specified axes.
|
71 |
+
|
72 |
+
Parameters
|
73 |
+
----------
|
74 |
+
x : array_like
|
75 |
+
The input array.
|
76 |
+
type : {1, 2, 3, 4}, optional
|
77 |
+
Type of the DCT (see Notes). Default type is 2.
|
78 |
+
shape : int or array_like of ints or None, optional
|
79 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
80 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
81 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
82 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
83 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
84 |
+
length ``shape[i]``.
|
85 |
+
If any element of `shape` is -1, the size of the corresponding
|
86 |
+
dimension of `x` is used.
|
87 |
+
axes : int or array_like of ints or None, optional
|
88 |
+
Axes along which the IDCT is computed.
|
89 |
+
The default is over all axes.
|
90 |
+
norm : {None, 'ortho'}, optional
|
91 |
+
Normalization mode (see Notes). Default is None.
|
92 |
+
overwrite_x : bool, optional
|
93 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
94 |
+
|
95 |
+
Returns
|
96 |
+
-------
|
97 |
+
y : ndarray of real
|
98 |
+
The transformed input array.
|
99 |
+
|
100 |
+
See Also
|
101 |
+
--------
|
102 |
+
dctn : multidimensional DCT
|
103 |
+
|
104 |
+
Notes
|
105 |
+
-----
|
106 |
+
For full details of the IDCT types and normalization modes, as well as
|
107 |
+
references, see `idct`.
|
108 |
+
|
109 |
+
Examples
|
110 |
+
--------
|
111 |
+
>>> import numpy as np
|
112 |
+
>>> from scipy.fftpack import dctn, idctn
|
113 |
+
>>> rng = np.random.default_rng()
|
114 |
+
>>> y = rng.standard_normal((16, 16))
|
115 |
+
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
|
116 |
+
True
|
117 |
+
|
118 |
+
"""
|
119 |
+
type = _inverse_typemap[type]
|
120 |
+
shape = _good_shape(x, shape, axes)
|
121 |
+
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
|
122 |
+
|
123 |
+
|
124 |
+
def dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
125 |
+
"""
|
126 |
+
Return multidimensional Discrete Sine Transform along the specified axes.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
x : array_like
|
131 |
+
The input array.
|
132 |
+
type : {1, 2, 3, 4}, optional
|
133 |
+
Type of the DST (see Notes). Default type is 2.
|
134 |
+
shape : int or array_like of ints or None, optional
|
135 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
136 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
137 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
138 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
139 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
140 |
+
length ``shape[i]``.
|
141 |
+
If any element of `shape` is -1, the size of the corresponding
|
142 |
+
dimension of `x` is used.
|
143 |
+
axes : int or array_like of ints or None, optional
|
144 |
+
Axes along which the DCT is computed.
|
145 |
+
The default is over all axes.
|
146 |
+
norm : {None, 'ortho'}, optional
|
147 |
+
Normalization mode (see Notes). Default is None.
|
148 |
+
overwrite_x : bool, optional
|
149 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
150 |
+
|
151 |
+
Returns
|
152 |
+
-------
|
153 |
+
y : ndarray of real
|
154 |
+
The transformed input array.
|
155 |
+
|
156 |
+
See Also
|
157 |
+
--------
|
158 |
+
idstn : Inverse multidimensional DST
|
159 |
+
|
160 |
+
Notes
|
161 |
+
-----
|
162 |
+
For full details of the DST types and normalization modes, as well as
|
163 |
+
references, see `dst`.
|
164 |
+
|
165 |
+
Examples
|
166 |
+
--------
|
167 |
+
>>> import numpy as np
|
168 |
+
>>> from scipy.fftpack import dstn, idstn
|
169 |
+
>>> rng = np.random.default_rng()
|
170 |
+
>>> y = rng.standard_normal((16, 16))
|
171 |
+
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
|
172 |
+
True
|
173 |
+
|
174 |
+
"""
|
175 |
+
shape = _good_shape(x, shape, axes)
|
176 |
+
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
|
177 |
+
|
178 |
+
|
179 |
+
def idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
180 |
+
"""
|
181 |
+
Return multidimensional Discrete Sine Transform along the specified axes.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
----------
|
185 |
+
x : array_like
|
186 |
+
The input array.
|
187 |
+
type : {1, 2, 3, 4}, optional
|
188 |
+
Type of the DST (see Notes). Default type is 2.
|
189 |
+
shape : int or array_like of ints or None, optional
|
190 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
191 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
192 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
193 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
194 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
195 |
+
length ``shape[i]``.
|
196 |
+
If any element of `shape` is -1, the size of the corresponding
|
197 |
+
dimension of `x` is used.
|
198 |
+
axes : int or array_like of ints or None, optional
|
199 |
+
Axes along which the IDST is computed.
|
200 |
+
The default is over all axes.
|
201 |
+
norm : {None, 'ortho'}, optional
|
202 |
+
Normalization mode (see Notes). Default is None.
|
203 |
+
overwrite_x : bool, optional
|
204 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
205 |
+
|
206 |
+
Returns
|
207 |
+
-------
|
208 |
+
y : ndarray of real
|
209 |
+
The transformed input array.
|
210 |
+
|
211 |
+
See Also
|
212 |
+
--------
|
213 |
+
dstn : multidimensional DST
|
214 |
+
|
215 |
+
Notes
|
216 |
+
-----
|
217 |
+
For full details of the IDST types and normalization modes, as well as
|
218 |
+
references, see `idst`.
|
219 |
+
|
220 |
+
Examples
|
221 |
+
--------
|
222 |
+
>>> import numpy as np
|
223 |
+
>>> from scipy.fftpack import dstn, idstn
|
224 |
+
>>> rng = np.random.default_rng()
|
225 |
+
>>> y = rng.standard_normal((16, 16))
|
226 |
+
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
|
227 |
+
True
|
228 |
+
|
229 |
+
"""
|
230 |
+
type = _inverse_typemap[type]
|
231 |
+
shape = _good_shape(x, shape, axes)
|
232 |
+
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
|
233 |
+
|
234 |
+
|
235 |
+
def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
236 |
+
r"""
|
237 |
+
Return the Discrete Cosine Transform of arbitrary type sequence x.
|
238 |
+
|
239 |
+
Parameters
|
240 |
+
----------
|
241 |
+
x : array_like
|
242 |
+
The input array.
|
243 |
+
type : {1, 2, 3, 4}, optional
|
244 |
+
Type of the DCT (see Notes). Default type is 2.
|
245 |
+
n : int, optional
|
246 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
247 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
248 |
+
default results in ``n = x.shape[axis]``.
|
249 |
+
axis : int, optional
|
250 |
+
Axis along which the dct is computed; the default is over the
|
251 |
+
last axis (i.e., ``axis=-1``).
|
252 |
+
norm : {None, 'ortho'}, optional
|
253 |
+
Normalization mode (see Notes). Default is None.
|
254 |
+
overwrite_x : bool, optional
|
255 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
256 |
+
|
257 |
+
Returns
|
258 |
+
-------
|
259 |
+
y : ndarray of real
|
260 |
+
The transformed input array.
|
261 |
+
|
262 |
+
See Also
|
263 |
+
--------
|
264 |
+
idct : Inverse DCT
|
265 |
+
|
266 |
+
Notes
|
267 |
+
-----
|
268 |
+
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
|
269 |
+
MATLAB ``dct(x)``.
|
270 |
+
|
271 |
+
There are, theoretically, 8 types of the DCT, only the first 4 types are
|
272 |
+
implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
|
273 |
+
Inverse DCT generally refers to DCT type 3.
|
274 |
+
|
275 |
+
**Type I**
|
276 |
+
|
277 |
+
There are several definitions of the DCT-I; we use the following
|
278 |
+
(for ``norm=None``)
|
279 |
+
|
280 |
+
.. math::
|
281 |
+
|
282 |
+
y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
|
283 |
+
\frac{\pi k n}{N-1} \right)
|
284 |
+
|
285 |
+
If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling
|
286 |
+
factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor
|
287 |
+
``f``
|
288 |
+
|
289 |
+
.. math::
|
290 |
+
|
291 |
+
f = \begin{cases}
|
292 |
+
\frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\
|
293 |
+
\frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases}
|
294 |
+
|
295 |
+
.. versionadded:: 1.2.0
|
296 |
+
Orthonormalization in DCT-I.
|
297 |
+
|
298 |
+
.. note::
|
299 |
+
The DCT-I is only supported for input size > 1.
|
300 |
+
|
301 |
+
**Type II**
|
302 |
+
|
303 |
+
There are several definitions of the DCT-II; we use the following
|
304 |
+
(for ``norm=None``)
|
305 |
+
|
306 |
+
.. math::
|
307 |
+
|
308 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
|
309 |
+
|
310 |
+
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
|
311 |
+
|
312 |
+
.. math::
|
313 |
+
f = \begin{cases}
|
314 |
+
\sqrt{\frac{1}{4N}} & \text{if }k=0, \\
|
315 |
+
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
|
316 |
+
|
317 |
+
which makes the corresponding matrix of coefficients orthonormal
|
318 |
+
(``O @ O.T = np.eye(N)``).
|
319 |
+
|
320 |
+
**Type III**
|
321 |
+
|
322 |
+
There are several definitions, we use the following (for ``norm=None``)
|
323 |
+
|
324 |
+
.. math::
|
325 |
+
|
326 |
+
y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
|
327 |
+
|
328 |
+
or, for ``norm='ortho'``
|
329 |
+
|
330 |
+
.. math::
|
331 |
+
|
332 |
+
y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n
|
333 |
+
\cos\left(\frac{\pi(2k+1)n}{2N}\right)
|
334 |
+
|
335 |
+
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
|
336 |
+
to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
|
337 |
+
the orthonormalized DCT-II.
|
338 |
+
|
339 |
+
**Type IV**
|
340 |
+
|
341 |
+
There are several definitions of the DCT-IV; we use the following
|
342 |
+
(for ``norm=None``)
|
343 |
+
|
344 |
+
.. math::
|
345 |
+
|
346 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
|
347 |
+
|
348 |
+
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
|
349 |
+
|
350 |
+
.. math::
|
351 |
+
|
352 |
+
f = \frac{1}{\sqrt{2N}}
|
353 |
+
|
354 |
+
.. versionadded:: 1.2.0
|
355 |
+
Support for DCT-IV.
|
356 |
+
|
357 |
+
References
|
358 |
+
----------
|
359 |
+
.. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
|
360 |
+
Makhoul, `IEEE Transactions on acoustics, speech and signal
|
361 |
+
processing` vol. 28(1), pp. 27-34,
|
362 |
+
:doi:`10.1109/TASSP.1980.1163351` (1980).
|
363 |
+
.. [2] Wikipedia, "Discrete cosine transform",
|
364 |
+
https://en.wikipedia.org/wiki/Discrete_cosine_transform
|
365 |
+
|
366 |
+
Examples
|
367 |
+
--------
|
368 |
+
The Type 1 DCT is equivalent to the FFT (though faster) for real,
|
369 |
+
even-symmetrical inputs. The output is also real and even-symmetrical.
|
370 |
+
Half of the FFT input is used to generate half of the FFT output:
|
371 |
+
|
372 |
+
>>> from scipy.fftpack import fft, dct
|
373 |
+
>>> import numpy as np
|
374 |
+
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
|
375 |
+
array([ 30., -8., 6., -2., 6., -8.])
|
376 |
+
>>> dct(np.array([4., 3., 5., 10.]), 1)
|
377 |
+
array([ 30., -8., 6., -2.])
|
378 |
+
|
379 |
+
"""
|
380 |
+
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
|
381 |
+
|
382 |
+
|
383 |
+
def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
384 |
+
"""
|
385 |
+
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
|
386 |
+
|
387 |
+
Parameters
|
388 |
+
----------
|
389 |
+
x : array_like
|
390 |
+
The input array.
|
391 |
+
type : {1, 2, 3, 4}, optional
|
392 |
+
Type of the DCT (see Notes). Default type is 2.
|
393 |
+
n : int, optional
|
394 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
395 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
396 |
+
default results in ``n = x.shape[axis]``.
|
397 |
+
axis : int, optional
|
398 |
+
Axis along which the idct is computed; the default is over the
|
399 |
+
last axis (i.e., ``axis=-1``).
|
400 |
+
norm : {None, 'ortho'}, optional
|
401 |
+
Normalization mode (see Notes). Default is None.
|
402 |
+
overwrite_x : bool, optional
|
403 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
404 |
+
|
405 |
+
Returns
|
406 |
+
-------
|
407 |
+
idct : ndarray of real
|
408 |
+
The transformed input array.
|
409 |
+
|
410 |
+
See Also
|
411 |
+
--------
|
412 |
+
dct : Forward DCT
|
413 |
+
|
414 |
+
Notes
|
415 |
+
-----
|
416 |
+
For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
|
417 |
+
MATLAB ``idct(x)``.
|
418 |
+
|
419 |
+
'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.
|
420 |
+
|
421 |
+
IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
|
422 |
+
3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT
|
423 |
+
of type 4. For the definition of these types, see `dct`.
|
424 |
+
|
425 |
+
Examples
|
426 |
+
--------
|
427 |
+
The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
|
428 |
+
inputs. The output is also real and even-symmetrical. Half of the IFFT
|
429 |
+
input is used to generate half of the IFFT output:
|
430 |
+
|
431 |
+
>>> from scipy.fftpack import ifft, idct
|
432 |
+
>>> import numpy as np
|
433 |
+
>>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
|
434 |
+
array([ 4., 3., 5., 10., 5., 3.])
|
435 |
+
>>> idct(np.array([ 30., -8., 6., -2.]), 1) / 6
|
436 |
+
array([ 4., 3., 5., 10.])
|
437 |
+
|
438 |
+
"""
|
439 |
+
type = _inverse_typemap[type]
|
440 |
+
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
|
441 |
+
|
442 |
+
|
443 |
+
def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
444 |
+
r"""
|
445 |
+
Return the Discrete Sine Transform of arbitrary type sequence x.
|
446 |
+
|
447 |
+
Parameters
|
448 |
+
----------
|
449 |
+
x : array_like
|
450 |
+
The input array.
|
451 |
+
type : {1, 2, 3, 4}, optional
|
452 |
+
Type of the DST (see Notes). Default type is 2.
|
453 |
+
n : int, optional
|
454 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
455 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
456 |
+
default results in ``n = x.shape[axis]``.
|
457 |
+
axis : int, optional
|
458 |
+
Axis along which the dst is computed; the default is over the
|
459 |
+
last axis (i.e., ``axis=-1``).
|
460 |
+
norm : {None, 'ortho'}, optional
|
461 |
+
Normalization mode (see Notes). Default is None.
|
462 |
+
overwrite_x : bool, optional
|
463 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
464 |
+
|
465 |
+
Returns
|
466 |
+
-------
|
467 |
+
dst : ndarray of reals
|
468 |
+
The transformed input array.
|
469 |
+
|
470 |
+
See Also
|
471 |
+
--------
|
472 |
+
idst : Inverse DST
|
473 |
+
|
474 |
+
Notes
|
475 |
+
-----
|
476 |
+
For a single dimension array ``x``.
|
477 |
+
|
478 |
+
There are, theoretically, 8 types of the DST for different combinations of
|
479 |
+
even/odd boundary conditions and boundary off sets [1]_, only the first
|
480 |
+
4 types are implemented in scipy.
|
481 |
+
|
482 |
+
**Type I**
|
483 |
+
|
484 |
+
There are several definitions of the DST-I; we use the following
|
485 |
+
for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`.
|
486 |
+
|
487 |
+
.. math::
|
488 |
+
|
489 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
|
490 |
+
|
491 |
+
Note that the DST-I is only supported for input size > 1.
|
492 |
+
The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`.
|
493 |
+
The orthonormalized DST-I is exactly its own inverse.
|
494 |
+
|
495 |
+
**Type II**
|
496 |
+
|
497 |
+
There are several definitions of the DST-II; we use the following for
|
498 |
+
``norm=None``. DST-II assumes the input is odd around `n=-1/2` and
|
499 |
+
`n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1`
|
500 |
+
|
501 |
+
.. math::
|
502 |
+
|
503 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
|
504 |
+
|
505 |
+
if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
|
506 |
+
|
507 |
+
.. math::
|
508 |
+
|
509 |
+
f = \begin{cases}
|
510 |
+
\sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
|
511 |
+
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
|
512 |
+
|
513 |
+
**Type III**
|
514 |
+
|
515 |
+
There are several definitions of the DST-III, we use the following (for
|
516 |
+
``norm=None``). DST-III assumes the input is odd around `n=-1` and even
|
517 |
+
around `n=N-1`
|
518 |
+
|
519 |
+
.. math::
|
520 |
+
|
521 |
+
y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
|
522 |
+
\frac{\pi(2k+1)(n+1)}{2N}\right)
|
523 |
+
|
524 |
+
The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
|
525 |
+
to a factor `2N`. The orthonormalized DST-III is exactly the inverse of the
|
526 |
+
orthonormalized DST-II.
|
527 |
+
|
528 |
+
.. versionadded:: 0.11.0
|
529 |
+
|
530 |
+
**Type IV**
|
531 |
+
|
532 |
+
There are several definitions of the DST-IV, we use the following (for
|
533 |
+
``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even
|
534 |
+
around `n=N-0.5`
|
535 |
+
|
536 |
+
.. math::
|
537 |
+
|
538 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
|
539 |
+
|
540 |
+
The (unnormalized) DST-IV is its own inverse, up to a factor `2N`. The
|
541 |
+
orthonormalized DST-IV is exactly its own inverse.
|
542 |
+
|
543 |
+
.. versionadded:: 1.2.0
|
544 |
+
Support for DST-IV.
|
545 |
+
|
546 |
+
References
|
547 |
+
----------
|
548 |
+
.. [1] Wikipedia, "Discrete sine transform",
|
549 |
+
https://en.wikipedia.org/wiki/Discrete_sine_transform
|
550 |
+
|
551 |
+
"""
|
552 |
+
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
|
553 |
+
|
554 |
+
|
555 |
+
def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
556 |
+
"""
|
557 |
+
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
|
558 |
+
|
559 |
+
Parameters
|
560 |
+
----------
|
561 |
+
x : array_like
|
562 |
+
The input array.
|
563 |
+
type : {1, 2, 3, 4}, optional
|
564 |
+
Type of the DST (see Notes). Default type is 2.
|
565 |
+
n : int, optional
|
566 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
567 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
568 |
+
default results in ``n = x.shape[axis]``.
|
569 |
+
axis : int, optional
|
570 |
+
Axis along which the idst is computed; the default is over the
|
571 |
+
last axis (i.e., ``axis=-1``).
|
572 |
+
norm : {None, 'ortho'}, optional
|
573 |
+
Normalization mode (see Notes). Default is None.
|
574 |
+
overwrite_x : bool, optional
|
575 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
576 |
+
|
577 |
+
Returns
|
578 |
+
-------
|
579 |
+
idst : ndarray of real
|
580 |
+
The transformed input array.
|
581 |
+
|
582 |
+
See Also
|
583 |
+
--------
|
584 |
+
dst : Forward DST
|
585 |
+
|
586 |
+
Notes
|
587 |
+
-----
|
588 |
+
'The' IDST is the IDST of type 2, which is the same as DST of type 3.
|
589 |
+
|
590 |
+
IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
|
591 |
+
3, and IDST of type 3 is the DST of type 2. For the definition of these
|
592 |
+
types, see `dst`.
|
593 |
+
|
594 |
+
.. versionadded:: 0.11.0
|
595 |
+
|
596 |
+
"""
|
597 |
+
type = _inverse_typemap[type]
|
598 |
+
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/basic.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.fftpack` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'fft','ifft','fftn','ifftn','rfft','irfft',
|
9 |
+
'fft2','ifft2'
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
def __dir__():
|
14 |
+
return __all__
|
15 |
+
|
16 |
+
|
17 |
+
def __getattr__(name):
|
18 |
+
return _sub_module_deprecation(sub_package="fftpack", module="basic",
|
19 |
+
private_modules=["_basic"], all=__all__,
|
20 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/convolve.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (273 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/helper.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.fftpack` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'fftshift', 'ifftshift', 'fftfreq', 'rfftfreq', 'next_fast_len'
|
9 |
+
]
|
10 |
+
|
11 |
+
|
12 |
+
def __dir__():
|
13 |
+
return __all__
|
14 |
+
|
15 |
+
|
16 |
+
def __getattr__(name):
|
17 |
+
return _sub_module_deprecation(sub_package="fftpack", module="helper",
|
18 |
+
private_modules=["_helper"], all=__all__,
|
19 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/pseudo_diffs.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.fftpack` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'diff',
|
9 |
+
'tilbert', 'itilbert', 'hilbert', 'ihilbert',
|
10 |
+
'cs_diff', 'cc_diff', 'sc_diff', 'ss_diff',
|
11 |
+
'shift', 'iscomplexobj', 'convolve'
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
def __dir__():
|
16 |
+
return __all__
|
17 |
+
|
18 |
+
|
19 |
+
def __getattr__(name):
|
20 |
+
return _sub_module_deprecation(sub_package="fftpack", module="pseudo_diffs",
|
21 |
+
private_modules=["_pseudo_diffs"], all=__all__,
|
22 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/realtransforms.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.fftpack` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn'
|
9 |
+
]
|
10 |
+
|
11 |
+
|
12 |
+
def __dir__():
|
13 |
+
return __all__
|
14 |
+
|
15 |
+
|
16 |
+
def __getattr__(name):
|
17 |
+
return _sub_module_deprecation(sub_package="fftpack", module="realtransforms",
|
18 |
+
private_modules=["_realtransforms"], all=__all__,
|
19 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_basic.cpython-310.pyc
ADDED
Binary file (28.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_helper.cpython-310.pyc
ADDED
Binary file (2.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_import.cpython-310.pyc
ADDED
Binary file (1.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_pseudo_diffs.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_real_transforms.cpython-310.pyc
ADDED
Binary file (25.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_basic.py
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by Pearu Peterson, September 2002
|
2 |
+
|
3 |
+
from numpy.testing import (assert_, assert_equal, assert_array_almost_equal,
|
4 |
+
assert_array_almost_equal_nulp, assert_array_less)
|
5 |
+
import pytest
|
6 |
+
from pytest import raises as assert_raises
|
7 |
+
from scipy.fftpack import ifft, fft, fftn, ifftn, rfft, irfft, fft2
|
8 |
+
|
9 |
+
from numpy import (arange, array, asarray, zeros, dot, exp, pi,
|
10 |
+
swapaxes, double, cdouble)
|
11 |
+
import numpy as np
|
12 |
+
import numpy.fft
|
13 |
+
from numpy.random import rand
|
14 |
+
|
15 |
+
# "large" composite numbers supported by FFTPACK
|
16 |
+
LARGE_COMPOSITE_SIZES = [
|
17 |
+
2**13,
|
18 |
+
2**5 * 3**5,
|
19 |
+
2**3 * 3**3 * 5**2,
|
20 |
+
]
|
21 |
+
SMALL_COMPOSITE_SIZES = [
|
22 |
+
2,
|
23 |
+
2*3*5,
|
24 |
+
2*2*3*3,
|
25 |
+
]
|
26 |
+
# prime
|
27 |
+
LARGE_PRIME_SIZES = [
|
28 |
+
2011
|
29 |
+
]
|
30 |
+
SMALL_PRIME_SIZES = [
|
31 |
+
29
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
def _assert_close_in_norm(x, y, rtol, size, rdt):
|
36 |
+
# helper function for testing
|
37 |
+
err_msg = f"size: {size} rdt: {rdt}"
|
38 |
+
assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg)
|
39 |
+
|
40 |
+
|
41 |
+
def random(size):
|
42 |
+
return rand(*size)
|
43 |
+
|
44 |
+
|
45 |
+
def direct_dft(x):
|
46 |
+
x = asarray(x)
|
47 |
+
n = len(x)
|
48 |
+
y = zeros(n, dtype=cdouble)
|
49 |
+
w = -arange(n)*(2j*pi/n)
|
50 |
+
for i in range(n):
|
51 |
+
y[i] = dot(exp(i*w), x)
|
52 |
+
return y
|
53 |
+
|
54 |
+
|
55 |
+
def direct_idft(x):
|
56 |
+
x = asarray(x)
|
57 |
+
n = len(x)
|
58 |
+
y = zeros(n, dtype=cdouble)
|
59 |
+
w = arange(n)*(2j*pi/n)
|
60 |
+
for i in range(n):
|
61 |
+
y[i] = dot(exp(i*w), x)/n
|
62 |
+
return y
|
63 |
+
|
64 |
+
|
65 |
+
def direct_dftn(x):
|
66 |
+
x = asarray(x)
|
67 |
+
for axis in range(len(x.shape)):
|
68 |
+
x = fft(x, axis=axis)
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
def direct_idftn(x):
|
73 |
+
x = asarray(x)
|
74 |
+
for axis in range(len(x.shape)):
|
75 |
+
x = ifft(x, axis=axis)
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
def direct_rdft(x):
|
80 |
+
x = asarray(x)
|
81 |
+
n = len(x)
|
82 |
+
w = -arange(n)*(2j*pi/n)
|
83 |
+
r = zeros(n, dtype=double)
|
84 |
+
for i in range(n//2+1):
|
85 |
+
y = dot(exp(i*w), x)
|
86 |
+
if i:
|
87 |
+
r[2*i-1] = y.real
|
88 |
+
if 2*i < n:
|
89 |
+
r[2*i] = y.imag
|
90 |
+
else:
|
91 |
+
r[0] = y.real
|
92 |
+
return r
|
93 |
+
|
94 |
+
|
95 |
+
def direct_irdft(x):
|
96 |
+
x = asarray(x)
|
97 |
+
n = len(x)
|
98 |
+
x1 = zeros(n, dtype=cdouble)
|
99 |
+
for i in range(n//2+1):
|
100 |
+
if i:
|
101 |
+
if 2*i < n:
|
102 |
+
x1[i] = x[2*i-1] + 1j*x[2*i]
|
103 |
+
x1[n-i] = x[2*i-1] - 1j*x[2*i]
|
104 |
+
else:
|
105 |
+
x1[i] = x[2*i-1]
|
106 |
+
else:
|
107 |
+
x1[0] = x[0]
|
108 |
+
return direct_idft(x1).real
|
109 |
+
|
110 |
+
|
111 |
+
class _TestFFTBase:
|
112 |
+
def setup_method(self):
|
113 |
+
self.cdt = None
|
114 |
+
self.rdt = None
|
115 |
+
np.random.seed(1234)
|
116 |
+
|
117 |
+
def test_definition(self):
|
118 |
+
x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt)
|
119 |
+
y = fft(x)
|
120 |
+
assert_equal(y.dtype, self.cdt)
|
121 |
+
y1 = direct_dft(x)
|
122 |
+
assert_array_almost_equal(y,y1)
|
123 |
+
x = np.array([1,2,3,4+0j,5], dtype=self.cdt)
|
124 |
+
assert_array_almost_equal(fft(x),direct_dft(x))
|
125 |
+
|
126 |
+
def test_n_argument_real(self):
|
127 |
+
x1 = np.array([1,2,3,4], dtype=self.rdt)
|
128 |
+
x2 = np.array([1,2,3,4], dtype=self.rdt)
|
129 |
+
y = fft([x1,x2],n=4)
|
130 |
+
assert_equal(y.dtype, self.cdt)
|
131 |
+
assert_equal(y.shape,(2,4))
|
132 |
+
assert_array_almost_equal(y[0],direct_dft(x1))
|
133 |
+
assert_array_almost_equal(y[1],direct_dft(x2))
|
134 |
+
|
135 |
+
def _test_n_argument_complex(self):
|
136 |
+
x1 = np.array([1,2,3,4+1j], dtype=self.cdt)
|
137 |
+
x2 = np.array([1,2,3,4+1j], dtype=self.cdt)
|
138 |
+
y = fft([x1,x2],n=4)
|
139 |
+
assert_equal(y.dtype, self.cdt)
|
140 |
+
assert_equal(y.shape,(2,4))
|
141 |
+
assert_array_almost_equal(y[0],direct_dft(x1))
|
142 |
+
assert_array_almost_equal(y[1],direct_dft(x2))
|
143 |
+
|
144 |
+
def test_invalid_sizes(self):
|
145 |
+
assert_raises(ValueError, fft, [])
|
146 |
+
assert_raises(ValueError, fft, [[1,1],[2,2]], -5)
|
147 |
+
|
148 |
+
|
149 |
+
class TestDoubleFFT(_TestFFTBase):
|
150 |
+
def setup_method(self):
|
151 |
+
self.cdt = np.complex128
|
152 |
+
self.rdt = np.float64
|
153 |
+
|
154 |
+
|
155 |
+
class TestSingleFFT(_TestFFTBase):
|
156 |
+
def setup_method(self):
|
157 |
+
self.cdt = np.complex64
|
158 |
+
self.rdt = np.float32
|
159 |
+
|
160 |
+
reason = ("single-precision FFT implementation is partially disabled, "
|
161 |
+
"until accuracy issues with large prime powers are resolved")
|
162 |
+
|
163 |
+
@pytest.mark.xfail(run=False, reason=reason)
|
164 |
+
def test_notice(self):
|
165 |
+
pass
|
166 |
+
|
167 |
+
|
168 |
+
class TestFloat16FFT:
|
169 |
+
|
170 |
+
def test_1_argument_real(self):
|
171 |
+
x1 = np.array([1, 2, 3, 4], dtype=np.float16)
|
172 |
+
y = fft(x1, n=4)
|
173 |
+
assert_equal(y.dtype, np.complex64)
|
174 |
+
assert_equal(y.shape, (4, ))
|
175 |
+
assert_array_almost_equal(y, direct_dft(x1.astype(np.float32)))
|
176 |
+
|
177 |
+
def test_n_argument_real(self):
|
178 |
+
x1 = np.array([1, 2, 3, 4], dtype=np.float16)
|
179 |
+
x2 = np.array([1, 2, 3, 4], dtype=np.float16)
|
180 |
+
y = fft([x1, x2], n=4)
|
181 |
+
assert_equal(y.dtype, np.complex64)
|
182 |
+
assert_equal(y.shape, (2, 4))
|
183 |
+
assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32)))
|
184 |
+
assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32)))
|
185 |
+
|
186 |
+
|
187 |
+
class _TestIFFTBase:
|
188 |
+
def setup_method(self):
|
189 |
+
np.random.seed(1234)
|
190 |
+
|
191 |
+
def test_definition(self):
|
192 |
+
x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt)
|
193 |
+
y = ifft(x)
|
194 |
+
y1 = direct_idft(x)
|
195 |
+
assert_equal(y.dtype, self.cdt)
|
196 |
+
assert_array_almost_equal(y,y1)
|
197 |
+
|
198 |
+
x = np.array([1,2,3,4+0j,5], self.cdt)
|
199 |
+
assert_array_almost_equal(ifft(x),direct_idft(x))
|
200 |
+
|
201 |
+
def test_definition_real(self):
|
202 |
+
x = np.array([1,2,3,4,1,2,3,4], self.rdt)
|
203 |
+
y = ifft(x)
|
204 |
+
assert_equal(y.dtype, self.cdt)
|
205 |
+
y1 = direct_idft(x)
|
206 |
+
assert_array_almost_equal(y,y1)
|
207 |
+
|
208 |
+
x = np.array([1,2,3,4,5], dtype=self.rdt)
|
209 |
+
assert_equal(y.dtype, self.cdt)
|
210 |
+
assert_array_almost_equal(ifft(x),direct_idft(x))
|
211 |
+
|
212 |
+
def test_random_complex(self):
|
213 |
+
for size in [1,51,111,100,200,64,128,256,1024]:
|
214 |
+
x = random([size]).astype(self.cdt)
|
215 |
+
x = random([size]).astype(self.cdt) + 1j*x
|
216 |
+
y1 = ifft(fft(x))
|
217 |
+
y2 = fft(ifft(x))
|
218 |
+
assert_equal(y1.dtype, self.cdt)
|
219 |
+
assert_equal(y2.dtype, self.cdt)
|
220 |
+
assert_array_almost_equal(y1, x)
|
221 |
+
assert_array_almost_equal(y2, x)
|
222 |
+
|
223 |
+
def test_random_real(self):
|
224 |
+
for size in [1,51,111,100,200,64,128,256,1024]:
|
225 |
+
x = random([size]).astype(self.rdt)
|
226 |
+
y1 = ifft(fft(x))
|
227 |
+
y2 = fft(ifft(x))
|
228 |
+
assert_equal(y1.dtype, self.cdt)
|
229 |
+
assert_equal(y2.dtype, self.cdt)
|
230 |
+
assert_array_almost_equal(y1, x)
|
231 |
+
assert_array_almost_equal(y2, x)
|
232 |
+
|
233 |
+
def test_size_accuracy(self):
|
234 |
+
# Sanity check for the accuracy for prime and non-prime sized inputs
|
235 |
+
if self.rdt == np.float32:
|
236 |
+
rtol = 1e-5
|
237 |
+
elif self.rdt == np.float64:
|
238 |
+
rtol = 1e-10
|
239 |
+
|
240 |
+
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
|
241 |
+
np.random.seed(1234)
|
242 |
+
x = np.random.rand(size).astype(self.rdt)
|
243 |
+
y = ifft(fft(x))
|
244 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
245 |
+
y = fft(ifft(x))
|
246 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
247 |
+
|
248 |
+
x = (x + 1j*np.random.rand(size)).astype(self.cdt)
|
249 |
+
y = ifft(fft(x))
|
250 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
251 |
+
y = fft(ifft(x))
|
252 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
253 |
+
|
254 |
+
def test_invalid_sizes(self):
|
255 |
+
assert_raises(ValueError, ifft, [])
|
256 |
+
assert_raises(ValueError, ifft, [[1,1],[2,2]], -5)
|
257 |
+
|
258 |
+
|
259 |
+
class TestDoubleIFFT(_TestIFFTBase):
|
260 |
+
def setup_method(self):
|
261 |
+
self.cdt = np.complex128
|
262 |
+
self.rdt = np.float64
|
263 |
+
|
264 |
+
|
265 |
+
class TestSingleIFFT(_TestIFFTBase):
|
266 |
+
def setup_method(self):
|
267 |
+
self.cdt = np.complex64
|
268 |
+
self.rdt = np.float32
|
269 |
+
|
270 |
+
|
271 |
+
class _TestRFFTBase:
|
272 |
+
def setup_method(self):
|
273 |
+
np.random.seed(1234)
|
274 |
+
|
275 |
+
def test_definition(self):
|
276 |
+
for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]:
|
277 |
+
x = np.array(t, dtype=self.rdt)
|
278 |
+
y = rfft(x)
|
279 |
+
y1 = direct_rdft(x)
|
280 |
+
assert_array_almost_equal(y,y1)
|
281 |
+
assert_equal(y.dtype, self.rdt)
|
282 |
+
|
283 |
+
def test_invalid_sizes(self):
|
284 |
+
assert_raises(ValueError, rfft, [])
|
285 |
+
assert_raises(ValueError, rfft, [[1,1],[2,2]], -5)
|
286 |
+
|
287 |
+
# See gh-5790
|
288 |
+
class MockSeries:
|
289 |
+
def __init__(self, data):
|
290 |
+
self.data = np.asarray(data)
|
291 |
+
|
292 |
+
def __getattr__(self, item):
|
293 |
+
try:
|
294 |
+
return getattr(self.data, item)
|
295 |
+
except AttributeError as e:
|
296 |
+
raise AttributeError("'MockSeries' object "
|
297 |
+
f"has no attribute '{item}'") from e
|
298 |
+
|
299 |
+
def test_non_ndarray_with_dtype(self):
|
300 |
+
x = np.array([1., 2., 3., 4., 5.])
|
301 |
+
xs = _TestRFFTBase.MockSeries(x)
|
302 |
+
|
303 |
+
expected = [1, 2, 3, 4, 5]
|
304 |
+
rfft(xs)
|
305 |
+
|
306 |
+
# Data should not have been overwritten
|
307 |
+
assert_equal(x, expected)
|
308 |
+
assert_equal(xs.data, expected)
|
309 |
+
|
310 |
+
def test_complex_input(self):
|
311 |
+
assert_raises(TypeError, rfft, np.arange(4, dtype=np.complex64))
|
312 |
+
|
313 |
+
|
314 |
+
class TestRFFTDouble(_TestRFFTBase):
|
315 |
+
def setup_method(self):
|
316 |
+
self.cdt = np.complex128
|
317 |
+
self.rdt = np.float64
|
318 |
+
|
319 |
+
|
320 |
+
class TestRFFTSingle(_TestRFFTBase):
|
321 |
+
def setup_method(self):
|
322 |
+
self.cdt = np.complex64
|
323 |
+
self.rdt = np.float32
|
324 |
+
|
325 |
+
|
326 |
+
class _TestIRFFTBase:
|
327 |
+
def setup_method(self):
|
328 |
+
np.random.seed(1234)
|
329 |
+
|
330 |
+
def test_definition(self):
|
331 |
+
x1 = [1,2,3,4,1,2,3,4]
|
332 |
+
x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j]
|
333 |
+
x2 = [1,2,3,4,1,2,3,4,5]
|
334 |
+
x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j]
|
335 |
+
|
336 |
+
def _test(x, xr):
|
337 |
+
y = irfft(np.array(x, dtype=self.rdt))
|
338 |
+
y1 = direct_irdft(x)
|
339 |
+
assert_equal(y.dtype, self.rdt)
|
340 |
+
assert_array_almost_equal(y,y1, decimal=self.ndec)
|
341 |
+
assert_array_almost_equal(y,ifft(xr), decimal=self.ndec)
|
342 |
+
|
343 |
+
_test(x1, x1_1)
|
344 |
+
_test(x2, x2_1)
|
345 |
+
|
346 |
+
def test_random_real(self):
|
347 |
+
for size in [1,51,111,100,200,64,128,256,1024]:
|
348 |
+
x = random([size]).astype(self.rdt)
|
349 |
+
y1 = irfft(rfft(x))
|
350 |
+
y2 = rfft(irfft(x))
|
351 |
+
assert_equal(y1.dtype, self.rdt)
|
352 |
+
assert_equal(y2.dtype, self.rdt)
|
353 |
+
assert_array_almost_equal(y1, x, decimal=self.ndec,
|
354 |
+
err_msg="size=%d" % size)
|
355 |
+
assert_array_almost_equal(y2, x, decimal=self.ndec,
|
356 |
+
err_msg="size=%d" % size)
|
357 |
+
|
358 |
+
def test_size_accuracy(self):
|
359 |
+
# Sanity check for the accuracy for prime and non-prime sized inputs
|
360 |
+
if self.rdt == np.float32:
|
361 |
+
rtol = 1e-5
|
362 |
+
elif self.rdt == np.float64:
|
363 |
+
rtol = 1e-10
|
364 |
+
|
365 |
+
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
|
366 |
+
np.random.seed(1234)
|
367 |
+
x = np.random.rand(size).astype(self.rdt)
|
368 |
+
y = irfft(rfft(x))
|
369 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
370 |
+
y = rfft(irfft(x))
|
371 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
372 |
+
|
373 |
+
def test_invalid_sizes(self):
|
374 |
+
assert_raises(ValueError, irfft, [])
|
375 |
+
assert_raises(ValueError, irfft, [[1,1],[2,2]], -5)
|
376 |
+
|
377 |
+
def test_complex_input(self):
|
378 |
+
assert_raises(TypeError, irfft, np.arange(4, dtype=np.complex64))
|
379 |
+
|
380 |
+
|
381 |
+
# self.ndec is bogus; we should have a assert_array_approx_equal for number of
|
382 |
+
# significant digits
|
383 |
+
|
384 |
+
class TestIRFFTDouble(_TestIRFFTBase):
|
385 |
+
def setup_method(self):
|
386 |
+
self.cdt = np.complex128
|
387 |
+
self.rdt = np.float64
|
388 |
+
self.ndec = 14
|
389 |
+
|
390 |
+
|
391 |
+
class TestIRFFTSingle(_TestIRFFTBase):
|
392 |
+
def setup_method(self):
|
393 |
+
self.cdt = np.complex64
|
394 |
+
self.rdt = np.float32
|
395 |
+
self.ndec = 5
|
396 |
+
|
397 |
+
|
398 |
+
class Testfft2:
|
399 |
+
def setup_method(self):
|
400 |
+
np.random.seed(1234)
|
401 |
+
|
402 |
+
def test_regression_244(self):
|
403 |
+
"""FFT returns wrong result with axes parameter."""
|
404 |
+
# fftn (and hence fft2) used to break when both axes and shape were
|
405 |
+
# used
|
406 |
+
x = numpy.ones((4, 4, 2))
|
407 |
+
y = fft2(x, shape=(8, 8), axes=(-3, -2))
|
408 |
+
y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2))
|
409 |
+
assert_array_almost_equal(y, y_r)
|
410 |
+
|
411 |
+
def test_invalid_sizes(self):
|
412 |
+
assert_raises(ValueError, fft2, [[]])
|
413 |
+
assert_raises(ValueError, fft2, [[1, 1], [2, 2]], (4, -3))
|
414 |
+
|
415 |
+
|
416 |
+
class TestFftnSingle:
|
417 |
+
def setup_method(self):
|
418 |
+
np.random.seed(1234)
|
419 |
+
|
420 |
+
def test_definition(self):
|
421 |
+
x = [[1, 2, 3],
|
422 |
+
[4, 5, 6],
|
423 |
+
[7, 8, 9]]
|
424 |
+
y = fftn(np.array(x, np.float32))
|
425 |
+
assert_(y.dtype == np.complex64,
|
426 |
+
msg="double precision output with single precision")
|
427 |
+
|
428 |
+
y_r = np.array(fftn(x), np.complex64)
|
429 |
+
assert_array_almost_equal_nulp(y, y_r)
|
430 |
+
|
431 |
+
@pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
|
432 |
+
def test_size_accuracy_small(self, size):
|
433 |
+
x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
|
434 |
+
y1 = fftn(x.real.astype(np.float32))
|
435 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
436 |
+
|
437 |
+
assert_equal(y1.dtype, np.complex64)
|
438 |
+
assert_array_almost_equal_nulp(y1, y2, 2000)
|
439 |
+
|
440 |
+
@pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
|
441 |
+
def test_size_accuracy_large(self, size):
|
442 |
+
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
|
443 |
+
y1 = fftn(x.real.astype(np.float32))
|
444 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
445 |
+
|
446 |
+
assert_equal(y1.dtype, np.complex64)
|
447 |
+
assert_array_almost_equal_nulp(y1, y2, 2000)
|
448 |
+
|
449 |
+
def test_definition_float16(self):
|
450 |
+
x = [[1, 2, 3],
|
451 |
+
[4, 5, 6],
|
452 |
+
[7, 8, 9]]
|
453 |
+
y = fftn(np.array(x, np.float16))
|
454 |
+
assert_equal(y.dtype, np.complex64)
|
455 |
+
y_r = np.array(fftn(x), np.complex64)
|
456 |
+
assert_array_almost_equal_nulp(y, y_r)
|
457 |
+
|
458 |
+
@pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
|
459 |
+
def test_float16_input_small(self, size):
|
460 |
+
x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
|
461 |
+
y1 = fftn(x.real.astype(np.float16))
|
462 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
463 |
+
|
464 |
+
assert_equal(y1.dtype, np.complex64)
|
465 |
+
assert_array_almost_equal_nulp(y1, y2, 5e5)
|
466 |
+
|
467 |
+
@pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
|
468 |
+
def test_float16_input_large(self, size):
|
469 |
+
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
|
470 |
+
y1 = fftn(x.real.astype(np.float16))
|
471 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
472 |
+
|
473 |
+
assert_equal(y1.dtype, np.complex64)
|
474 |
+
assert_array_almost_equal_nulp(y1, y2, 2e6)
|
475 |
+
|
476 |
+
|
477 |
+
class TestFftn:
|
478 |
+
def setup_method(self):
|
479 |
+
np.random.seed(1234)
|
480 |
+
|
481 |
+
def test_definition(self):
|
482 |
+
x = [[1, 2, 3],
|
483 |
+
[4, 5, 6],
|
484 |
+
[7, 8, 9]]
|
485 |
+
y = fftn(x)
|
486 |
+
assert_array_almost_equal(y, direct_dftn(x))
|
487 |
+
|
488 |
+
x = random((20, 26))
|
489 |
+
assert_array_almost_equal(fftn(x), direct_dftn(x))
|
490 |
+
|
491 |
+
x = random((5, 4, 3, 20))
|
492 |
+
assert_array_almost_equal(fftn(x), direct_dftn(x))
|
493 |
+
|
494 |
+
def test_axes_argument(self):
|
495 |
+
# plane == ji_plane, x== kji_space
|
496 |
+
plane1 = [[1, 2, 3],
|
497 |
+
[4, 5, 6],
|
498 |
+
[7, 8, 9]]
|
499 |
+
plane2 = [[10, 11, 12],
|
500 |
+
[13, 14, 15],
|
501 |
+
[16, 17, 18]]
|
502 |
+
plane3 = [[19, 20, 21],
|
503 |
+
[22, 23, 24],
|
504 |
+
[25, 26, 27]]
|
505 |
+
ki_plane1 = [[1, 2, 3],
|
506 |
+
[10, 11, 12],
|
507 |
+
[19, 20, 21]]
|
508 |
+
ki_plane2 = [[4, 5, 6],
|
509 |
+
[13, 14, 15],
|
510 |
+
[22, 23, 24]]
|
511 |
+
ki_plane3 = [[7, 8, 9],
|
512 |
+
[16, 17, 18],
|
513 |
+
[25, 26, 27]]
|
514 |
+
jk_plane1 = [[1, 10, 19],
|
515 |
+
[4, 13, 22],
|
516 |
+
[7, 16, 25]]
|
517 |
+
jk_plane2 = [[2, 11, 20],
|
518 |
+
[5, 14, 23],
|
519 |
+
[8, 17, 26]]
|
520 |
+
jk_plane3 = [[3, 12, 21],
|
521 |
+
[6, 15, 24],
|
522 |
+
[9, 18, 27]]
|
523 |
+
kj_plane1 = [[1, 4, 7],
|
524 |
+
[10, 13, 16], [19, 22, 25]]
|
525 |
+
kj_plane2 = [[2, 5, 8],
|
526 |
+
[11, 14, 17], [20, 23, 26]]
|
527 |
+
kj_plane3 = [[3, 6, 9],
|
528 |
+
[12, 15, 18], [21, 24, 27]]
|
529 |
+
ij_plane1 = [[1, 4, 7],
|
530 |
+
[2, 5, 8],
|
531 |
+
[3, 6, 9]]
|
532 |
+
ij_plane2 = [[10, 13, 16],
|
533 |
+
[11, 14, 17],
|
534 |
+
[12, 15, 18]]
|
535 |
+
ij_plane3 = [[19, 22, 25],
|
536 |
+
[20, 23, 26],
|
537 |
+
[21, 24, 27]]
|
538 |
+
ik_plane1 = [[1, 10, 19],
|
539 |
+
[2, 11, 20],
|
540 |
+
[3, 12, 21]]
|
541 |
+
ik_plane2 = [[4, 13, 22],
|
542 |
+
[5, 14, 23],
|
543 |
+
[6, 15, 24]]
|
544 |
+
ik_plane3 = [[7, 16, 25],
|
545 |
+
[8, 17, 26],
|
546 |
+
[9, 18, 27]]
|
547 |
+
ijk_space = [jk_plane1, jk_plane2, jk_plane3]
|
548 |
+
ikj_space = [kj_plane1, kj_plane2, kj_plane3]
|
549 |
+
jik_space = [ik_plane1, ik_plane2, ik_plane3]
|
550 |
+
jki_space = [ki_plane1, ki_plane2, ki_plane3]
|
551 |
+
kij_space = [ij_plane1, ij_plane2, ij_plane3]
|
552 |
+
x = array([plane1, plane2, plane3])
|
553 |
+
|
554 |
+
assert_array_almost_equal(fftn(x),
|
555 |
+
fftn(x, axes=(-3, -2, -1))) # kji_space
|
556 |
+
assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2)))
|
557 |
+
assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1)))
|
558 |
+
y = fftn(x, axes=(2, 1, 0)) # ijk_space
|
559 |
+
assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space))
|
560 |
+
y = fftn(x, axes=(2, 0, 1)) # ikj_space
|
561 |
+
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2),
|
562 |
+
fftn(ikj_space))
|
563 |
+
y = fftn(x, axes=(1, 2, 0)) # jik_space
|
564 |
+
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2),
|
565 |
+
fftn(jik_space))
|
566 |
+
y = fftn(x, axes=(1, 0, 2)) # jki_space
|
567 |
+
assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space))
|
568 |
+
y = fftn(x, axes=(0, 2, 1)) # kij_space
|
569 |
+
assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space))
|
570 |
+
|
571 |
+
y = fftn(x, axes=(-2, -1)) # ji_plane
|
572 |
+
assert_array_almost_equal(fftn(plane1), y[0])
|
573 |
+
assert_array_almost_equal(fftn(plane2), y[1])
|
574 |
+
assert_array_almost_equal(fftn(plane3), y[2])
|
575 |
+
|
576 |
+
y = fftn(x, axes=(1, 2)) # ji_plane
|
577 |
+
assert_array_almost_equal(fftn(plane1), y[0])
|
578 |
+
assert_array_almost_equal(fftn(plane2), y[1])
|
579 |
+
assert_array_almost_equal(fftn(plane3), y[2])
|
580 |
+
|
581 |
+
y = fftn(x, axes=(-3, -2)) # kj_plane
|
582 |
+
assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0])
|
583 |
+
assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1])
|
584 |
+
assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2])
|
585 |
+
|
586 |
+
y = fftn(x, axes=(-3, -1)) # ki_plane
|
587 |
+
assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :])
|
588 |
+
assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :])
|
589 |
+
assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :])
|
590 |
+
|
591 |
+
y = fftn(x, axes=(-1, -2)) # ij_plane
|
592 |
+
assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1))
|
593 |
+
assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1))
|
594 |
+
assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1))
|
595 |
+
|
596 |
+
y = fftn(x, axes=(-1, -3)) # ik_plane
|
597 |
+
assert_array_almost_equal(fftn(ik_plane1),
|
598 |
+
swapaxes(y[:, 0, :], -1, -2))
|
599 |
+
assert_array_almost_equal(fftn(ik_plane2),
|
600 |
+
swapaxes(y[:, 1, :], -1, -2))
|
601 |
+
assert_array_almost_equal(fftn(ik_plane3),
|
602 |
+
swapaxes(y[:, 2, :], -1, -2))
|
603 |
+
|
604 |
+
y = fftn(x, axes=(-2, -3)) # jk_plane
|
605 |
+
assert_array_almost_equal(fftn(jk_plane1),
|
606 |
+
swapaxes(y[:, :, 0], -1, -2))
|
607 |
+
assert_array_almost_equal(fftn(jk_plane2),
|
608 |
+
swapaxes(y[:, :, 1], -1, -2))
|
609 |
+
assert_array_almost_equal(fftn(jk_plane3),
|
610 |
+
swapaxes(y[:, :, 2], -1, -2))
|
611 |
+
|
612 |
+
y = fftn(x, axes=(-1,)) # i_line
|
613 |
+
for i in range(3):
|
614 |
+
for j in range(3):
|
615 |
+
assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :])
|
616 |
+
y = fftn(x, axes=(-2,)) # j_line
|
617 |
+
for i in range(3):
|
618 |
+
for j in range(3):
|
619 |
+
assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j])
|
620 |
+
y = fftn(x, axes=(0,)) # k_line
|
621 |
+
for i in range(3):
|
622 |
+
for j in range(3):
|
623 |
+
assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j])
|
624 |
+
|
625 |
+
y = fftn(x, axes=()) # point
|
626 |
+
assert_array_almost_equal(y, x)
|
627 |
+
|
628 |
+
def test_shape_argument(self):
|
629 |
+
small_x = [[1, 2, 3],
|
630 |
+
[4, 5, 6]]
|
631 |
+
large_x1 = [[1, 2, 3, 0],
|
632 |
+
[4, 5, 6, 0],
|
633 |
+
[0, 0, 0, 0],
|
634 |
+
[0, 0, 0, 0]]
|
635 |
+
|
636 |
+
y = fftn(small_x, shape=(4, 4))
|
637 |
+
assert_array_almost_equal(y, fftn(large_x1))
|
638 |
+
|
639 |
+
y = fftn(small_x, shape=(3, 4))
|
640 |
+
assert_array_almost_equal(y, fftn(large_x1[:-1]))
|
641 |
+
|
642 |
+
def test_shape_axes_argument(self):
|
643 |
+
small_x = [[1, 2, 3],
|
644 |
+
[4, 5, 6],
|
645 |
+
[7, 8, 9]]
|
646 |
+
large_x1 = array([[1, 2, 3, 0],
|
647 |
+
[4, 5, 6, 0],
|
648 |
+
[7, 8, 9, 0],
|
649 |
+
[0, 0, 0, 0]])
|
650 |
+
y = fftn(small_x, shape=(4, 4), axes=(-2, -1))
|
651 |
+
assert_array_almost_equal(y, fftn(large_x1))
|
652 |
+
y = fftn(small_x, shape=(4, 4), axes=(-1, -2))
|
653 |
+
|
654 |
+
assert_array_almost_equal(y, swapaxes(
|
655 |
+
fftn(swapaxes(large_x1, -1, -2)), -1, -2))
|
656 |
+
|
657 |
+
def test_shape_axes_argument2(self):
|
658 |
+
# Change shape of the last axis
|
659 |
+
x = numpy.random.random((10, 5, 3, 7))
|
660 |
+
y = fftn(x, axes=(-1,), shape=(8,))
|
661 |
+
assert_array_almost_equal(y, fft(x, axis=-1, n=8))
|
662 |
+
|
663 |
+
# Change shape of an arbitrary axis which is not the last one
|
664 |
+
x = numpy.random.random((10, 5, 3, 7))
|
665 |
+
y = fftn(x, axes=(-2,), shape=(8,))
|
666 |
+
assert_array_almost_equal(y, fft(x, axis=-2, n=8))
|
667 |
+
|
668 |
+
# Change shape of axes: cf #244, where shape and axes were mixed up
|
669 |
+
x = numpy.random.random((4, 4, 2))
|
670 |
+
y = fftn(x, axes=(-3, -2), shape=(8, 8))
|
671 |
+
assert_array_almost_equal(y,
|
672 |
+
numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8)))
|
673 |
+
|
674 |
+
def test_shape_argument_more(self):
|
675 |
+
x = zeros((4, 4, 2))
|
676 |
+
with assert_raises(ValueError,
|
677 |
+
match="when given, axes and shape arguments"
|
678 |
+
" have to be of the same length"):
|
679 |
+
fftn(x, shape=(8, 8, 2, 1))
|
680 |
+
|
681 |
+
def test_invalid_sizes(self):
|
682 |
+
with assert_raises(ValueError,
|
683 |
+
match="invalid number of data points"
|
684 |
+
r" \(\[1, 0\]\) specified"):
|
685 |
+
fftn([[]])
|
686 |
+
|
687 |
+
with assert_raises(ValueError,
|
688 |
+
match="invalid number of data points"
|
689 |
+
r" \(\[4, -3\]\) specified"):
|
690 |
+
fftn([[1, 1], [2, 2]], (4, -3))
|
691 |
+
|
692 |
+
|
693 |
+
class TestIfftn:
|
694 |
+
dtype = None
|
695 |
+
cdtype = None
|
696 |
+
|
697 |
+
def setup_method(self):
|
698 |
+
np.random.seed(1234)
|
699 |
+
|
700 |
+
@pytest.mark.parametrize('dtype,cdtype,maxnlp',
|
701 |
+
[(np.float64, np.complex128, 2000),
|
702 |
+
(np.float32, np.complex64, 3500)])
|
703 |
+
def test_definition(self, dtype, cdtype, maxnlp):
|
704 |
+
x = np.array([[1, 2, 3],
|
705 |
+
[4, 5, 6],
|
706 |
+
[7, 8, 9]], dtype=dtype)
|
707 |
+
y = ifftn(x)
|
708 |
+
assert_equal(y.dtype, cdtype)
|
709 |
+
assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp)
|
710 |
+
|
711 |
+
x = random((20, 26))
|
712 |
+
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
|
713 |
+
|
714 |
+
x = random((5, 4, 3, 20))
|
715 |
+
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
|
716 |
+
|
717 |
+
@pytest.mark.parametrize('maxnlp', [2000, 3500])
|
718 |
+
@pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92])
|
719 |
+
def test_random_complex(self, maxnlp, size):
|
720 |
+
x = random([size, size]) + 1j*random([size, size])
|
721 |
+
assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp)
|
722 |
+
assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp)
|
723 |
+
|
724 |
+
def test_invalid_sizes(self):
|
725 |
+
with assert_raises(ValueError,
|
726 |
+
match="invalid number of data points"
|
727 |
+
r" \(\[1, 0\]\) specified"):
|
728 |
+
ifftn([[]])
|
729 |
+
|
730 |
+
with assert_raises(ValueError,
|
731 |
+
match="invalid number of data points"
|
732 |
+
r" \(\[4, -3\]\) specified"):
|
733 |
+
ifftn([[1, 1], [2, 2]], (4, -3))
|
734 |
+
|
735 |
+
|
736 |
+
class FakeArray:
|
737 |
+
def __init__(self, data):
|
738 |
+
self._data = data
|
739 |
+
self.__array_interface__ = data.__array_interface__
|
740 |
+
|
741 |
+
|
742 |
+
class FakeArray2:
|
743 |
+
def __init__(self, data):
|
744 |
+
self._data = data
|
745 |
+
|
746 |
+
def __array__(self, dtype=None, copy=None):
|
747 |
+
return self._data
|
748 |
+
|
749 |
+
|
750 |
+
class TestOverwrite:
|
751 |
+
"""Check input overwrite behavior of the FFT functions."""
|
752 |
+
|
753 |
+
real_dtypes = (np.float32, np.float64)
|
754 |
+
dtypes = real_dtypes + (np.complex64, np.complex128)
|
755 |
+
fftsizes = [8, 16, 32]
|
756 |
+
|
757 |
+
def _check(self, x, routine, fftsize, axis, overwrite_x):
|
758 |
+
x2 = x.copy()
|
759 |
+
for fake in [lambda x: x, FakeArray, FakeArray2]:
|
760 |
+
routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x)
|
761 |
+
|
762 |
+
sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
|
763 |
+
routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
|
764 |
+
if not overwrite_x:
|
765 |
+
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
|
766 |
+
|
767 |
+
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes,
|
768 |
+
fftsize, overwrite_x):
|
769 |
+
np.random.seed(1234)
|
770 |
+
if np.issubdtype(dtype, np.complexfloating):
|
771 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
772 |
+
else:
|
773 |
+
data = np.random.randn(*shape)
|
774 |
+
data = data.astype(dtype)
|
775 |
+
|
776 |
+
self._check(data, routine, fftsize, axis,
|
777 |
+
overwrite_x=overwrite_x)
|
778 |
+
|
779 |
+
@pytest.mark.parametrize('dtype', dtypes)
|
780 |
+
@pytest.mark.parametrize('fftsize', fftsizes)
|
781 |
+
@pytest.mark.parametrize('overwrite_x', [True, False])
|
782 |
+
@pytest.mark.parametrize('shape,axes', [((16,), -1),
|
783 |
+
((16, 2), 0),
|
784 |
+
((2, 16), 1)])
|
785 |
+
def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes):
|
786 |
+
overwritable = (np.complex128, np.complex64)
|
787 |
+
self._check_1d(fft, dtype, shape, axes, overwritable,
|
788 |
+
fftsize, overwrite_x)
|
789 |
+
self._check_1d(ifft, dtype, shape, axes, overwritable,
|
790 |
+
fftsize, overwrite_x)
|
791 |
+
|
792 |
+
@pytest.mark.parametrize('dtype', real_dtypes)
|
793 |
+
@pytest.mark.parametrize('fftsize', fftsizes)
|
794 |
+
@pytest.mark.parametrize('overwrite_x', [True, False])
|
795 |
+
@pytest.mark.parametrize('shape,axes', [((16,), -1),
|
796 |
+
((16, 2), 0),
|
797 |
+
((2, 16), 1)])
|
798 |
+
def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes):
|
799 |
+
overwritable = self.real_dtypes
|
800 |
+
self._check_1d(irfft, dtype, shape, axes, overwritable,
|
801 |
+
fftsize, overwrite_x)
|
802 |
+
self._check_1d(rfft, dtype, shape, axes, overwritable,
|
803 |
+
fftsize, overwrite_x)
|
804 |
+
|
805 |
+
def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes,
|
806 |
+
overwrite_x):
|
807 |
+
np.random.seed(1234)
|
808 |
+
if np.issubdtype(dtype, np.complexfloating):
|
809 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
810 |
+
else:
|
811 |
+
data = np.random.randn(*shape)
|
812 |
+
data = data.astype(dtype)
|
813 |
+
|
814 |
+
def fftshape_iter(shp):
|
815 |
+
if len(shp) <= 0:
|
816 |
+
yield ()
|
817 |
+
else:
|
818 |
+
for j in (shp[0]//2, shp[0], shp[0]*2):
|
819 |
+
for rest in fftshape_iter(shp[1:]):
|
820 |
+
yield (j,) + rest
|
821 |
+
|
822 |
+
if axes is None:
|
823 |
+
part_shape = shape
|
824 |
+
else:
|
825 |
+
part_shape = tuple(np.take(shape, axes))
|
826 |
+
|
827 |
+
for fftshape in fftshape_iter(part_shape):
|
828 |
+
self._check(data, routine, fftshape, axes,
|
829 |
+
overwrite_x=overwrite_x)
|
830 |
+
if data.ndim > 1:
|
831 |
+
self._check(data.T, routine, fftshape, axes,
|
832 |
+
overwrite_x=overwrite_x)
|
833 |
+
|
834 |
+
@pytest.mark.parametrize('dtype', dtypes)
|
835 |
+
@pytest.mark.parametrize('overwrite_x', [True, False])
|
836 |
+
@pytest.mark.parametrize('shape,axes', [((16,), None),
|
837 |
+
((16,), (0,)),
|
838 |
+
((16, 2), (0,)),
|
839 |
+
((2, 16), (1,)),
|
840 |
+
((8, 16), None),
|
841 |
+
((8, 16), (0, 1)),
|
842 |
+
((8, 16, 2), (0, 1)),
|
843 |
+
((8, 16, 2), (1, 2)),
|
844 |
+
((8, 16, 2), (0,)),
|
845 |
+
((8, 16, 2), (1,)),
|
846 |
+
((8, 16, 2), (2,)),
|
847 |
+
((8, 16, 2), None),
|
848 |
+
((8, 16, 2), (0, 1, 2))])
|
849 |
+
def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes):
|
850 |
+
overwritable = (np.complex128, np.complex64)
|
851 |
+
self._check_nd_one(fftn, dtype, shape, axes, overwritable,
|
852 |
+
overwrite_x)
|
853 |
+
self._check_nd_one(ifftn, dtype, shape, axes, overwritable,
|
854 |
+
overwrite_x)
|
855 |
+
|
856 |
+
|
857 |
+
@pytest.mark.parametrize('func', [fftn, ifftn, fft2])
|
858 |
+
def test_shape_axes_ndarray(func):
|
859 |
+
# Test fftn and ifftn work with NumPy arrays for shape and axes arguments
|
860 |
+
# Regression test for gh-13342
|
861 |
+
a = np.random.rand(10, 10)
|
862 |
+
|
863 |
+
expect = func(a, shape=(5, 5))
|
864 |
+
actual = func(a, shape=np.array([5, 5]))
|
865 |
+
assert_equal(expect, actual)
|
866 |
+
|
867 |
+
expect = func(a, axes=(-1,))
|
868 |
+
actual = func(a, axes=np.array([-1,]))
|
869 |
+
assert_equal(expect, actual)
|
870 |
+
|
871 |
+
expect = func(a, shape=(4, 7), axes=(1, 0))
|
872 |
+
actual = func(a, shape=np.array([4, 7]), axes=np.array([1, 0]))
|
873 |
+
assert_equal(expect, actual)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_helper.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by Pearu Peterson, September 2002
|
2 |
+
|
3 |
+
__usage__ = """
|
4 |
+
Build fftpack:
|
5 |
+
python setup_fftpack.py build
|
6 |
+
Run tests if scipy is installed:
|
7 |
+
python -c 'import scipy;scipy.fftpack.test(<level>)'
|
8 |
+
Run tests if fftpack is not installed:
|
9 |
+
python tests/test_helper.py [<level>]
|
10 |
+
"""
|
11 |
+
|
12 |
+
from numpy.testing import assert_array_almost_equal
|
13 |
+
from scipy.fftpack import fftshift, ifftshift, fftfreq, rfftfreq
|
14 |
+
|
15 |
+
from numpy import pi, random
|
16 |
+
|
17 |
+
class TestFFTShift:
|
18 |
+
|
19 |
+
def test_definition(self):
|
20 |
+
x = [0,1,2,3,4,-4,-3,-2,-1]
|
21 |
+
y = [-4,-3,-2,-1,0,1,2,3,4]
|
22 |
+
assert_array_almost_equal(fftshift(x),y)
|
23 |
+
assert_array_almost_equal(ifftshift(y),x)
|
24 |
+
x = [0,1,2,3,4,-5,-4,-3,-2,-1]
|
25 |
+
y = [-5,-4,-3,-2,-1,0,1,2,3,4]
|
26 |
+
assert_array_almost_equal(fftshift(x),y)
|
27 |
+
assert_array_almost_equal(ifftshift(y),x)
|
28 |
+
|
29 |
+
def test_inverse(self):
|
30 |
+
for n in [1,4,9,100,211]:
|
31 |
+
x = random.random((n,))
|
32 |
+
assert_array_almost_equal(ifftshift(fftshift(x)),x)
|
33 |
+
|
34 |
+
|
35 |
+
class TestFFTFreq:
|
36 |
+
|
37 |
+
def test_definition(self):
|
38 |
+
x = [0,1,2,3,4,-4,-3,-2,-1]
|
39 |
+
assert_array_almost_equal(9*fftfreq(9),x)
|
40 |
+
assert_array_almost_equal(9*pi*fftfreq(9,pi),x)
|
41 |
+
x = [0,1,2,3,4,-5,-4,-3,-2,-1]
|
42 |
+
assert_array_almost_equal(10*fftfreq(10),x)
|
43 |
+
assert_array_almost_equal(10*pi*fftfreq(10,pi),x)
|
44 |
+
|
45 |
+
|
46 |
+
class TestRFFTFreq:
|
47 |
+
|
48 |
+
def test_definition(self):
|
49 |
+
x = [0,1,1,2,2,3,3,4,4]
|
50 |
+
assert_array_almost_equal(9*rfftfreq(9),x)
|
51 |
+
assert_array_almost_equal(9*pi*rfftfreq(9,pi),x)
|
52 |
+
x = [0,1,1,2,2,3,3,4,4,5]
|
53 |
+
assert_array_almost_equal(10*rfftfreq(10),x)
|
54 |
+
assert_array_almost_equal(10*pi*rfftfreq(10,pi),x)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_import.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test possibility of patching fftpack with pyfftw.
|
2 |
+
|
3 |
+
No module source outside of scipy.fftpack should contain an import of
|
4 |
+
the form `from scipy.fftpack import ...`, so that a simple replacement
|
5 |
+
of scipy.fftpack by the corresponding fftw interface completely swaps
|
6 |
+
the two FFT implementations.
|
7 |
+
|
8 |
+
Because this simply inspects source files, we only need to run the test
|
9 |
+
on one version of Python.
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
from pathlib import Path
|
14 |
+
import re
|
15 |
+
import tokenize
|
16 |
+
from numpy.testing import assert_
|
17 |
+
import scipy
|
18 |
+
|
19 |
+
class TestFFTPackImport:
|
20 |
+
def test_fftpack_import(self):
|
21 |
+
base = Path(scipy.__file__).parent
|
22 |
+
regexp = r"\s*from.+\.fftpack import .*\n"
|
23 |
+
for path in base.rglob("*.py"):
|
24 |
+
if base / "fftpack" in path.parents:
|
25 |
+
continue
|
26 |
+
# use tokenize to auto-detect encoding on systems where no
|
27 |
+
# default encoding is defined (e.g., LANG='C')
|
28 |
+
with tokenize.open(str(path)) as file:
|
29 |
+
assert_(all(not re.fullmatch(regexp, line)
|
30 |
+
for line in file),
|
31 |
+
f"{path} contains an import from fftpack")
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_pseudo_diffs.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by Pearu Peterson, September 2002
|
2 |
+
|
3 |
+
__usage__ = """
|
4 |
+
Build fftpack:
|
5 |
+
python setup_fftpack.py build
|
6 |
+
Run tests if scipy is installed:
|
7 |
+
python -c 'import scipy;scipy.fftpack.test(<level>)'
|
8 |
+
Run tests if fftpack is not installed:
|
9 |
+
python tests/test_pseudo_diffs.py [<level>]
|
10 |
+
"""
|
11 |
+
|
12 |
+
from numpy.testing import (assert_equal, assert_almost_equal,
|
13 |
+
assert_array_almost_equal)
|
14 |
+
from scipy.fftpack import (diff, fft, ifft, tilbert, itilbert, hilbert,
|
15 |
+
ihilbert, shift, fftfreq, cs_diff, sc_diff,
|
16 |
+
ss_diff, cc_diff)
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
from numpy import arange, sin, cos, pi, exp, tanh, sum, sign
|
20 |
+
from numpy.random import random
|
21 |
+
|
22 |
+
|
23 |
+
def direct_diff(x,k=1,period=None):
|
24 |
+
fx = fft(x)
|
25 |
+
n = len(fx)
|
26 |
+
if period is None:
|
27 |
+
period = 2*pi
|
28 |
+
w = fftfreq(n)*2j*pi/period*n
|
29 |
+
if k < 0:
|
30 |
+
w = 1 / w**k
|
31 |
+
w[0] = 0.0
|
32 |
+
else:
|
33 |
+
w = w**k
|
34 |
+
if n > 2000:
|
35 |
+
w[250:n-250] = 0.0
|
36 |
+
return ifft(w*fx).real
|
37 |
+
|
38 |
+
|
39 |
+
def direct_tilbert(x,h=1,period=None):
|
40 |
+
fx = fft(x)
|
41 |
+
n = len(fx)
|
42 |
+
if period is None:
|
43 |
+
period = 2*pi
|
44 |
+
w = fftfreq(n)*h*2*pi/period*n
|
45 |
+
w[0] = 1
|
46 |
+
w = 1j/tanh(w)
|
47 |
+
w[0] = 0j
|
48 |
+
return ifft(w*fx)
|
49 |
+
|
50 |
+
|
51 |
+
def direct_itilbert(x,h=1,period=None):
|
52 |
+
fx = fft(x)
|
53 |
+
n = len(fx)
|
54 |
+
if period is None:
|
55 |
+
period = 2*pi
|
56 |
+
w = fftfreq(n)*h*2*pi/period*n
|
57 |
+
w = -1j*tanh(w)
|
58 |
+
return ifft(w*fx)
|
59 |
+
|
60 |
+
|
61 |
+
def direct_hilbert(x):
|
62 |
+
fx = fft(x)
|
63 |
+
n = len(fx)
|
64 |
+
w = fftfreq(n)*n
|
65 |
+
w = 1j*sign(w)
|
66 |
+
return ifft(w*fx)
|
67 |
+
|
68 |
+
|
69 |
+
def direct_ihilbert(x):
|
70 |
+
return -direct_hilbert(x)
|
71 |
+
|
72 |
+
|
73 |
+
def direct_shift(x,a,period=None):
|
74 |
+
n = len(x)
|
75 |
+
if period is None:
|
76 |
+
k = fftfreq(n)*1j*n
|
77 |
+
else:
|
78 |
+
k = fftfreq(n)*2j*pi/period*n
|
79 |
+
return ifft(fft(x)*exp(k*a)).real
|
80 |
+
|
81 |
+
|
82 |
+
class TestDiff:
|
83 |
+
|
84 |
+
def test_definition(self):
|
85 |
+
for n in [16,17,64,127,32]:
|
86 |
+
x = arange(n)*2*pi/n
|
87 |
+
assert_array_almost_equal(diff(sin(x)),direct_diff(sin(x)))
|
88 |
+
assert_array_almost_equal(diff(sin(x),2),direct_diff(sin(x),2))
|
89 |
+
assert_array_almost_equal(diff(sin(x),3),direct_diff(sin(x),3))
|
90 |
+
assert_array_almost_equal(diff(sin(x),4),direct_diff(sin(x),4))
|
91 |
+
assert_array_almost_equal(diff(sin(x),5),direct_diff(sin(x),5))
|
92 |
+
assert_array_almost_equal(diff(sin(2*x),3),direct_diff(sin(2*x),3))
|
93 |
+
assert_array_almost_equal(diff(sin(2*x),4),direct_diff(sin(2*x),4))
|
94 |
+
assert_array_almost_equal(diff(cos(x)),direct_diff(cos(x)))
|
95 |
+
assert_array_almost_equal(diff(cos(x),2),direct_diff(cos(x),2))
|
96 |
+
assert_array_almost_equal(diff(cos(x),3),direct_diff(cos(x),3))
|
97 |
+
assert_array_almost_equal(diff(cos(x),4),direct_diff(cos(x),4))
|
98 |
+
assert_array_almost_equal(diff(cos(2*x)),direct_diff(cos(2*x)))
|
99 |
+
assert_array_almost_equal(diff(sin(x*n/8)),direct_diff(sin(x*n/8)))
|
100 |
+
assert_array_almost_equal(diff(cos(x*n/8)),direct_diff(cos(x*n/8)))
|
101 |
+
for k in range(5):
|
102 |
+
assert_array_almost_equal(diff(sin(4*x),k),direct_diff(sin(4*x),k))
|
103 |
+
assert_array_almost_equal(diff(cos(4*x),k),direct_diff(cos(4*x),k))
|
104 |
+
|
105 |
+
def test_period(self):
|
106 |
+
for n in [17,64]:
|
107 |
+
x = arange(n)/float(n)
|
108 |
+
assert_array_almost_equal(diff(sin(2*pi*x),period=1),
|
109 |
+
2*pi*cos(2*pi*x))
|
110 |
+
assert_array_almost_equal(diff(sin(2*pi*x),3,period=1),
|
111 |
+
-(2*pi)**3*cos(2*pi*x))
|
112 |
+
|
113 |
+
def test_sin(self):
|
114 |
+
for n in [32,64,77]:
|
115 |
+
x = arange(n)*2*pi/n
|
116 |
+
assert_array_almost_equal(diff(sin(x)),cos(x))
|
117 |
+
assert_array_almost_equal(diff(cos(x)),-sin(x))
|
118 |
+
assert_array_almost_equal(diff(sin(x),2),-sin(x))
|
119 |
+
assert_array_almost_equal(diff(sin(x),4),sin(x))
|
120 |
+
assert_array_almost_equal(diff(sin(4*x)),4*cos(4*x))
|
121 |
+
assert_array_almost_equal(diff(sin(sin(x))),cos(x)*cos(sin(x)))
|
122 |
+
|
123 |
+
def test_expr(self):
|
124 |
+
for n in [64,77,100,128,256,512,1024,2048,4096,8192][:5]:
|
125 |
+
x = arange(n)*2*pi/n
|
126 |
+
f = sin(x)*cos(4*x)+exp(sin(3*x))
|
127 |
+
df = cos(x)*cos(4*x)-4*sin(x)*sin(4*x)+3*cos(3*x)*exp(sin(3*x))
|
128 |
+
ddf = -17*sin(x)*cos(4*x)-8*cos(x)*sin(4*x)\
|
129 |
+
- 9*sin(3*x)*exp(sin(3*x))+9*cos(3*x)**2*exp(sin(3*x))
|
130 |
+
d1 = diff(f)
|
131 |
+
assert_array_almost_equal(d1,df)
|
132 |
+
assert_array_almost_equal(diff(df),ddf)
|
133 |
+
assert_array_almost_equal(diff(f,2),ddf)
|
134 |
+
assert_array_almost_equal(diff(ddf,-1),df)
|
135 |
+
|
136 |
+
def test_expr_large(self):
|
137 |
+
for n in [2048,4096]:
|
138 |
+
x = arange(n)*2*pi/n
|
139 |
+
f = sin(x)*cos(4*x)+exp(sin(3*x))
|
140 |
+
df = cos(x)*cos(4*x)-4*sin(x)*sin(4*x)+3*cos(3*x)*exp(sin(3*x))
|
141 |
+
ddf = -17*sin(x)*cos(4*x)-8*cos(x)*sin(4*x)\
|
142 |
+
- 9*sin(3*x)*exp(sin(3*x))+9*cos(3*x)**2*exp(sin(3*x))
|
143 |
+
assert_array_almost_equal(diff(f),df)
|
144 |
+
assert_array_almost_equal(diff(df),ddf)
|
145 |
+
assert_array_almost_equal(diff(ddf,-1),df)
|
146 |
+
assert_array_almost_equal(diff(f,2),ddf)
|
147 |
+
|
148 |
+
def test_int(self):
|
149 |
+
n = 64
|
150 |
+
x = arange(n)*2*pi/n
|
151 |
+
assert_array_almost_equal(diff(sin(x),-1),-cos(x))
|
152 |
+
assert_array_almost_equal(diff(sin(x),-2),-sin(x))
|
153 |
+
assert_array_almost_equal(diff(sin(x),-4),sin(x))
|
154 |
+
assert_array_almost_equal(diff(2*cos(2*x),-1),sin(2*x))
|
155 |
+
|
156 |
+
def test_random_even(self):
|
157 |
+
for k in [0,2,4,6]:
|
158 |
+
for n in [60,32,64,56,55]:
|
159 |
+
f = random((n,))
|
160 |
+
af = sum(f,axis=0)/n
|
161 |
+
f = f-af
|
162 |
+
# zeroing Nyquist mode:
|
163 |
+
f = diff(diff(f,1),-1)
|
164 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
165 |
+
assert_array_almost_equal(diff(diff(f,k),-k),f)
|
166 |
+
assert_array_almost_equal(diff(diff(f,-k),k),f)
|
167 |
+
|
168 |
+
def test_random_odd(self):
|
169 |
+
for k in [0,1,2,3,4,5,6]:
|
170 |
+
for n in [33,65,55]:
|
171 |
+
f = random((n,))
|
172 |
+
af = sum(f,axis=0)/n
|
173 |
+
f = f-af
|
174 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
175 |
+
assert_array_almost_equal(diff(diff(f,k),-k),f)
|
176 |
+
assert_array_almost_equal(diff(diff(f,-k),k),f)
|
177 |
+
|
178 |
+
def test_zero_nyquist(self):
|
179 |
+
for k in [0,1,2,3,4,5,6]:
|
180 |
+
for n in [32,33,64,56,55]:
|
181 |
+
f = random((n,))
|
182 |
+
af = sum(f,axis=0)/n
|
183 |
+
f = f-af
|
184 |
+
# zeroing Nyquist mode:
|
185 |
+
f = diff(diff(f,1),-1)
|
186 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
187 |
+
assert_array_almost_equal(diff(diff(f,k),-k),f)
|
188 |
+
assert_array_almost_equal(diff(diff(f,-k),k),f)
|
189 |
+
|
190 |
+
|
191 |
+
class TestTilbert:
|
192 |
+
|
193 |
+
def test_definition(self):
|
194 |
+
for h in [0.1,0.5,1,5.5,10]:
|
195 |
+
for n in [16,17,64,127]:
|
196 |
+
x = arange(n)*2*pi/n
|
197 |
+
y = tilbert(sin(x),h)
|
198 |
+
y1 = direct_tilbert(sin(x),h)
|
199 |
+
assert_array_almost_equal(y,y1)
|
200 |
+
assert_array_almost_equal(tilbert(sin(x),h),
|
201 |
+
direct_tilbert(sin(x),h))
|
202 |
+
assert_array_almost_equal(tilbert(sin(2*x),h),
|
203 |
+
direct_tilbert(sin(2*x),h))
|
204 |
+
|
205 |
+
def test_random_even(self):
|
206 |
+
for h in [0.1,0.5,1,5.5,10]:
|
207 |
+
for n in [32,64,56]:
|
208 |
+
f = random((n,))
|
209 |
+
af = sum(f,axis=0)/n
|
210 |
+
f = f-af
|
211 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
212 |
+
assert_array_almost_equal(direct_tilbert(direct_itilbert(f,h),h),f)
|
213 |
+
|
214 |
+
def test_random_odd(self):
|
215 |
+
for h in [0.1,0.5,1,5.5,10]:
|
216 |
+
for n in [33,65,55]:
|
217 |
+
f = random((n,))
|
218 |
+
af = sum(f,axis=0)/n
|
219 |
+
f = f-af
|
220 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
221 |
+
assert_array_almost_equal(itilbert(tilbert(f,h),h),f)
|
222 |
+
assert_array_almost_equal(tilbert(itilbert(f,h),h),f)
|
223 |
+
|
224 |
+
|
225 |
+
class TestITilbert:
|
226 |
+
|
227 |
+
def test_definition(self):
|
228 |
+
for h in [0.1,0.5,1,5.5,10]:
|
229 |
+
for n in [16,17,64,127]:
|
230 |
+
x = arange(n)*2*pi/n
|
231 |
+
y = itilbert(sin(x),h)
|
232 |
+
y1 = direct_itilbert(sin(x),h)
|
233 |
+
assert_array_almost_equal(y,y1)
|
234 |
+
assert_array_almost_equal(itilbert(sin(x),h),
|
235 |
+
direct_itilbert(sin(x),h))
|
236 |
+
assert_array_almost_equal(itilbert(sin(2*x),h),
|
237 |
+
direct_itilbert(sin(2*x),h))
|
238 |
+
|
239 |
+
|
240 |
+
class TestHilbert:
|
241 |
+
|
242 |
+
def test_definition(self):
|
243 |
+
for n in [16,17,64,127]:
|
244 |
+
x = arange(n)*2*pi/n
|
245 |
+
y = hilbert(sin(x))
|
246 |
+
y1 = direct_hilbert(sin(x))
|
247 |
+
assert_array_almost_equal(y,y1)
|
248 |
+
assert_array_almost_equal(hilbert(sin(2*x)),
|
249 |
+
direct_hilbert(sin(2*x)))
|
250 |
+
|
251 |
+
def test_tilbert_relation(self):
|
252 |
+
for n in [16,17,64,127]:
|
253 |
+
x = arange(n)*2*pi/n
|
254 |
+
f = sin(x)+cos(2*x)*sin(x)
|
255 |
+
y = hilbert(f)
|
256 |
+
y1 = direct_hilbert(f)
|
257 |
+
assert_array_almost_equal(y,y1)
|
258 |
+
y2 = tilbert(f,h=10)
|
259 |
+
assert_array_almost_equal(y,y2)
|
260 |
+
|
261 |
+
def test_random_odd(self):
|
262 |
+
for n in [33,65,55]:
|
263 |
+
f = random((n,))
|
264 |
+
af = sum(f,axis=0)/n
|
265 |
+
f = f-af
|
266 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
267 |
+
assert_array_almost_equal(ihilbert(hilbert(f)),f)
|
268 |
+
assert_array_almost_equal(hilbert(ihilbert(f)),f)
|
269 |
+
|
270 |
+
def test_random_even(self):
|
271 |
+
for n in [32,64,56]:
|
272 |
+
f = random((n,))
|
273 |
+
af = sum(f,axis=0)/n
|
274 |
+
f = f-af
|
275 |
+
# zeroing Nyquist mode:
|
276 |
+
f = diff(diff(f,1),-1)
|
277 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
278 |
+
assert_array_almost_equal(direct_hilbert(direct_ihilbert(f)),f)
|
279 |
+
assert_array_almost_equal(hilbert(ihilbert(f)),f)
|
280 |
+
|
281 |
+
|
282 |
+
class TestIHilbert:
|
283 |
+
|
284 |
+
def test_definition(self):
|
285 |
+
for n in [16,17,64,127]:
|
286 |
+
x = arange(n)*2*pi/n
|
287 |
+
y = ihilbert(sin(x))
|
288 |
+
y1 = direct_ihilbert(sin(x))
|
289 |
+
assert_array_almost_equal(y,y1)
|
290 |
+
assert_array_almost_equal(ihilbert(sin(2*x)),
|
291 |
+
direct_ihilbert(sin(2*x)))
|
292 |
+
|
293 |
+
def test_itilbert_relation(self):
|
294 |
+
for n in [16,17,64,127]:
|
295 |
+
x = arange(n)*2*pi/n
|
296 |
+
f = sin(x)+cos(2*x)*sin(x)
|
297 |
+
y = ihilbert(f)
|
298 |
+
y1 = direct_ihilbert(f)
|
299 |
+
assert_array_almost_equal(y,y1)
|
300 |
+
y2 = itilbert(f,h=10)
|
301 |
+
assert_array_almost_equal(y,y2)
|
302 |
+
|
303 |
+
|
304 |
+
class TestShift:
|
305 |
+
|
306 |
+
def test_definition(self):
|
307 |
+
for n in [18,17,64,127,32,2048,256]:
|
308 |
+
x = arange(n)*2*pi/n
|
309 |
+
for a in [0.1,3]:
|
310 |
+
assert_array_almost_equal(shift(sin(x),a),direct_shift(sin(x),a))
|
311 |
+
assert_array_almost_equal(shift(sin(x),a),sin(x+a))
|
312 |
+
assert_array_almost_equal(shift(cos(x),a),cos(x+a))
|
313 |
+
assert_array_almost_equal(shift(cos(2*x)+sin(x),a),
|
314 |
+
cos(2*(x+a))+sin(x+a))
|
315 |
+
assert_array_almost_equal(shift(exp(sin(x)),a),exp(sin(x+a)))
|
316 |
+
assert_array_almost_equal(shift(sin(x),2*pi),sin(x))
|
317 |
+
assert_array_almost_equal(shift(sin(x),pi),-sin(x))
|
318 |
+
assert_array_almost_equal(shift(sin(x),pi/2),cos(x))
|
319 |
+
|
320 |
+
|
321 |
+
class TestOverwrite:
|
322 |
+
"""Check input overwrite behavior """
|
323 |
+
|
324 |
+
real_dtypes = (np.float32, np.float64)
|
325 |
+
dtypes = real_dtypes + (np.complex64, np.complex128)
|
326 |
+
|
327 |
+
def _check(self, x, routine, *args, **kwargs):
|
328 |
+
x2 = x.copy()
|
329 |
+
routine(x2, *args, **kwargs)
|
330 |
+
sig = routine.__name__
|
331 |
+
if args:
|
332 |
+
sig += repr(args)
|
333 |
+
if kwargs:
|
334 |
+
sig += repr(kwargs)
|
335 |
+
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
|
336 |
+
|
337 |
+
def _check_1d(self, routine, dtype, shape, *args, **kwargs):
|
338 |
+
np.random.seed(1234)
|
339 |
+
if np.issubdtype(dtype, np.complexfloating):
|
340 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
341 |
+
else:
|
342 |
+
data = np.random.randn(*shape)
|
343 |
+
data = data.astype(dtype)
|
344 |
+
self._check(data, routine, *args, **kwargs)
|
345 |
+
|
346 |
+
def test_diff(self):
|
347 |
+
for dtype in self.dtypes:
|
348 |
+
self._check_1d(diff, dtype, (16,))
|
349 |
+
|
350 |
+
def test_tilbert(self):
|
351 |
+
for dtype in self.dtypes:
|
352 |
+
self._check_1d(tilbert, dtype, (16,), 1.6)
|
353 |
+
|
354 |
+
def test_itilbert(self):
|
355 |
+
for dtype in self.dtypes:
|
356 |
+
self._check_1d(itilbert, dtype, (16,), 1.6)
|
357 |
+
|
358 |
+
def test_hilbert(self):
|
359 |
+
for dtype in self.dtypes:
|
360 |
+
self._check_1d(hilbert, dtype, (16,))
|
361 |
+
|
362 |
+
def test_cs_diff(self):
|
363 |
+
for dtype in self.dtypes:
|
364 |
+
self._check_1d(cs_diff, dtype, (16,), 1.0, 4.0)
|
365 |
+
|
366 |
+
def test_sc_diff(self):
|
367 |
+
for dtype in self.dtypes:
|
368 |
+
self._check_1d(sc_diff, dtype, (16,), 1.0, 4.0)
|
369 |
+
|
370 |
+
def test_ss_diff(self):
|
371 |
+
for dtype in self.dtypes:
|
372 |
+
self._check_1d(ss_diff, dtype, (16,), 1.0, 4.0)
|
373 |
+
|
374 |
+
def test_cc_diff(self):
|
375 |
+
for dtype in self.dtypes:
|
376 |
+
self._check_1d(cc_diff, dtype, (16,), 1.0, 4.0)
|
377 |
+
|
378 |
+
def test_shift(self):
|
379 |
+
for dtype in self.dtypes:
|
380 |
+
self._check_1d(shift, dtype, (16,), 1.0)
|
llmeval-env/lib/python3.10/site-packages/scipy/fftpack/tests/test_real_transforms.py
ADDED
@@ -0,0 +1,815 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import join, dirname
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy.testing import assert_array_almost_equal, assert_equal
|
5 |
+
import pytest
|
6 |
+
from pytest import raises as assert_raises
|
7 |
+
|
8 |
+
from scipy.fftpack._realtransforms import (
|
9 |
+
dct, idct, dst, idst, dctn, idctn, dstn, idstn)
|
10 |
+
|
11 |
+
# Matlab reference data
|
12 |
+
MDATA = np.load(join(dirname(__file__), 'test.npz'))
|
13 |
+
X = [MDATA['x%d' % i] for i in range(8)]
|
14 |
+
Y = [MDATA['y%d' % i] for i in range(8)]
|
15 |
+
|
16 |
+
# FFTW reference data: the data are organized as follows:
|
17 |
+
# * SIZES is an array containing all available sizes
|
18 |
+
# * for every type (1, 2, 3, 4) and every size, the array dct_type_size
|
19 |
+
# contains the output of the DCT applied to the input np.linspace(0, size-1,
|
20 |
+
# size)
|
21 |
+
FFTWDATA_DOUBLE = np.load(join(dirname(__file__), 'fftw_double_ref.npz'))
|
22 |
+
FFTWDATA_SINGLE = np.load(join(dirname(__file__), 'fftw_single_ref.npz'))
|
23 |
+
FFTWDATA_SIZES = FFTWDATA_DOUBLE['sizes']
|
24 |
+
|
25 |
+
|
26 |
+
def fftw_dct_ref(type, size, dt):
|
27 |
+
x = np.linspace(0, size-1, size).astype(dt)
|
28 |
+
dt = np.result_type(np.float32, dt)
|
29 |
+
if dt == np.float64:
|
30 |
+
data = FFTWDATA_DOUBLE
|
31 |
+
elif dt == np.float32:
|
32 |
+
data = FFTWDATA_SINGLE
|
33 |
+
else:
|
34 |
+
raise ValueError()
|
35 |
+
y = (data['dct_%d_%d' % (type, size)]).astype(dt)
|
36 |
+
return x, y, dt
|
37 |
+
|
38 |
+
|
39 |
+
def fftw_dst_ref(type, size, dt):
|
40 |
+
x = np.linspace(0, size-1, size).astype(dt)
|
41 |
+
dt = np.result_type(np.float32, dt)
|
42 |
+
if dt == np.float64:
|
43 |
+
data = FFTWDATA_DOUBLE
|
44 |
+
elif dt == np.float32:
|
45 |
+
data = FFTWDATA_SINGLE
|
46 |
+
else:
|
47 |
+
raise ValueError()
|
48 |
+
y = (data['dst_%d_%d' % (type, size)]).astype(dt)
|
49 |
+
return x, y, dt
|
50 |
+
|
51 |
+
|
52 |
+
def dct_2d_ref(x, **kwargs):
|
53 |
+
"""Calculate reference values for testing dct2."""
|
54 |
+
x = np.array(x, copy=True)
|
55 |
+
for row in range(x.shape[0]):
|
56 |
+
x[row, :] = dct(x[row, :], **kwargs)
|
57 |
+
for col in range(x.shape[1]):
|
58 |
+
x[:, col] = dct(x[:, col], **kwargs)
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
def idct_2d_ref(x, **kwargs):
|
63 |
+
"""Calculate reference values for testing idct2."""
|
64 |
+
x = np.array(x, copy=True)
|
65 |
+
for row in range(x.shape[0]):
|
66 |
+
x[row, :] = idct(x[row, :], **kwargs)
|
67 |
+
for col in range(x.shape[1]):
|
68 |
+
x[:, col] = idct(x[:, col], **kwargs)
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
def dst_2d_ref(x, **kwargs):
|
73 |
+
"""Calculate reference values for testing dst2."""
|
74 |
+
x = np.array(x, copy=True)
|
75 |
+
for row in range(x.shape[0]):
|
76 |
+
x[row, :] = dst(x[row, :], **kwargs)
|
77 |
+
for col in range(x.shape[1]):
|
78 |
+
x[:, col] = dst(x[:, col], **kwargs)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
def idst_2d_ref(x, **kwargs):
|
83 |
+
"""Calculate reference values for testing idst2."""
|
84 |
+
x = np.array(x, copy=True)
|
85 |
+
for row in range(x.shape[0]):
|
86 |
+
x[row, :] = idst(x[row, :], **kwargs)
|
87 |
+
for col in range(x.shape[1]):
|
88 |
+
x[:, col] = idst(x[:, col], **kwargs)
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
def naive_dct1(x, norm=None):
|
93 |
+
"""Calculate textbook definition version of DCT-I."""
|
94 |
+
x = np.array(x, copy=True)
|
95 |
+
N = len(x)
|
96 |
+
M = N-1
|
97 |
+
y = np.zeros(N)
|
98 |
+
m0, m = 1, 2
|
99 |
+
if norm == 'ortho':
|
100 |
+
m0 = np.sqrt(1.0/M)
|
101 |
+
m = np.sqrt(2.0/M)
|
102 |
+
for k in range(N):
|
103 |
+
for n in range(1, N-1):
|
104 |
+
y[k] += m*x[n]*np.cos(np.pi*n*k/M)
|
105 |
+
y[k] += m0 * x[0]
|
106 |
+
y[k] += m0 * x[N-1] * (1 if k % 2 == 0 else -1)
|
107 |
+
if norm == 'ortho':
|
108 |
+
y[0] *= 1/np.sqrt(2)
|
109 |
+
y[N-1] *= 1/np.sqrt(2)
|
110 |
+
return y
|
111 |
+
|
112 |
+
|
113 |
+
def naive_dst1(x, norm=None):
|
114 |
+
"""Calculate textbook definition version of DST-I."""
|
115 |
+
x = np.array(x, copy=True)
|
116 |
+
N = len(x)
|
117 |
+
M = N+1
|
118 |
+
y = np.zeros(N)
|
119 |
+
for k in range(N):
|
120 |
+
for n in range(N):
|
121 |
+
y[k] += 2*x[n]*np.sin(np.pi*(n+1.0)*(k+1.0)/M)
|
122 |
+
if norm == 'ortho':
|
123 |
+
y *= np.sqrt(0.5/M)
|
124 |
+
return y
|
125 |
+
|
126 |
+
|
127 |
+
def naive_dct4(x, norm=None):
|
128 |
+
"""Calculate textbook definition version of DCT-IV."""
|
129 |
+
x = np.array(x, copy=True)
|
130 |
+
N = len(x)
|
131 |
+
y = np.zeros(N)
|
132 |
+
for k in range(N):
|
133 |
+
for n in range(N):
|
134 |
+
y[k] += x[n]*np.cos(np.pi*(n+0.5)*(k+0.5)/(N))
|
135 |
+
if norm == 'ortho':
|
136 |
+
y *= np.sqrt(2.0/N)
|
137 |
+
else:
|
138 |
+
y *= 2
|
139 |
+
return y
|
140 |
+
|
141 |
+
|
142 |
+
def naive_dst4(x, norm=None):
|
143 |
+
"""Calculate textbook definition version of DST-IV."""
|
144 |
+
x = np.array(x, copy=True)
|
145 |
+
N = len(x)
|
146 |
+
y = np.zeros(N)
|
147 |
+
for k in range(N):
|
148 |
+
for n in range(N):
|
149 |
+
y[k] += x[n]*np.sin(np.pi*(n+0.5)*(k+0.5)/(N))
|
150 |
+
if norm == 'ortho':
|
151 |
+
y *= np.sqrt(2.0/N)
|
152 |
+
else:
|
153 |
+
y *= 2
|
154 |
+
return y
|
155 |
+
|
156 |
+
|
157 |
+
class TestComplex:
|
158 |
+
def test_dct_complex64(self):
|
159 |
+
y = dct(1j*np.arange(5, dtype=np.complex64))
|
160 |
+
x = 1j*dct(np.arange(5))
|
161 |
+
assert_array_almost_equal(x, y)
|
162 |
+
|
163 |
+
def test_dct_complex(self):
|
164 |
+
y = dct(np.arange(5)*1j)
|
165 |
+
x = 1j*dct(np.arange(5))
|
166 |
+
assert_array_almost_equal(x, y)
|
167 |
+
|
168 |
+
def test_idct_complex(self):
|
169 |
+
y = idct(np.arange(5)*1j)
|
170 |
+
x = 1j*idct(np.arange(5))
|
171 |
+
assert_array_almost_equal(x, y)
|
172 |
+
|
173 |
+
def test_dst_complex64(self):
|
174 |
+
y = dst(np.arange(5, dtype=np.complex64)*1j)
|
175 |
+
x = 1j*dst(np.arange(5))
|
176 |
+
assert_array_almost_equal(x, y)
|
177 |
+
|
178 |
+
def test_dst_complex(self):
|
179 |
+
y = dst(np.arange(5)*1j)
|
180 |
+
x = 1j*dst(np.arange(5))
|
181 |
+
assert_array_almost_equal(x, y)
|
182 |
+
|
183 |
+
def test_idst_complex(self):
|
184 |
+
y = idst(np.arange(5)*1j)
|
185 |
+
x = 1j*idst(np.arange(5))
|
186 |
+
assert_array_almost_equal(x, y)
|
187 |
+
|
188 |
+
|
189 |
+
class _TestDCTBase:
|
190 |
+
def setup_method(self):
|
191 |
+
self.rdt = None
|
192 |
+
self.dec = 14
|
193 |
+
self.type = None
|
194 |
+
|
195 |
+
def test_definition(self):
|
196 |
+
for i in FFTWDATA_SIZES:
|
197 |
+
x, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
|
198 |
+
y = dct(x, type=self.type)
|
199 |
+
assert_equal(y.dtype, dt)
|
200 |
+
# XXX: we divide by np.max(y) because the tests fail otherwise. We
|
201 |
+
# should really use something like assert_array_approx_equal. The
|
202 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
203 |
+
# propagation compared to the ones from fftpack.
|
204 |
+
assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
|
205 |
+
err_msg="Size %d failed" % i)
|
206 |
+
|
207 |
+
def test_axis(self):
|
208 |
+
nt = 2
|
209 |
+
for i in [7, 8, 9, 16, 32, 64]:
|
210 |
+
x = np.random.randn(nt, i)
|
211 |
+
y = dct(x, type=self.type)
|
212 |
+
for j in range(nt):
|
213 |
+
assert_array_almost_equal(y[j], dct(x[j], type=self.type),
|
214 |
+
decimal=self.dec)
|
215 |
+
|
216 |
+
x = x.T
|
217 |
+
y = dct(x, axis=0, type=self.type)
|
218 |
+
for j in range(nt):
|
219 |
+
assert_array_almost_equal(y[:,j], dct(x[:,j], type=self.type),
|
220 |
+
decimal=self.dec)
|
221 |
+
|
222 |
+
|
223 |
+
class _TestDCTIBase(_TestDCTBase):
|
224 |
+
def test_definition_ortho(self):
|
225 |
+
# Test orthornomal mode.
|
226 |
+
dt = np.result_type(np.float32, self.rdt)
|
227 |
+
for xr in X:
|
228 |
+
x = np.array(xr, dtype=self.rdt)
|
229 |
+
y = dct(x, norm='ortho', type=1)
|
230 |
+
y2 = naive_dct1(x, norm='ortho')
|
231 |
+
assert_equal(y.dtype, dt)
|
232 |
+
assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
|
233 |
+
|
234 |
+
class _TestDCTIIBase(_TestDCTBase):
|
235 |
+
def test_definition_matlab(self):
|
236 |
+
# Test correspondence with MATLAB (orthornomal mode).
|
237 |
+
dt = np.result_type(np.float32, self.rdt)
|
238 |
+
for xr, yr in zip(X, Y):
|
239 |
+
x = np.array(xr, dtype=dt)
|
240 |
+
y = dct(x, norm="ortho", type=2)
|
241 |
+
assert_equal(y.dtype, dt)
|
242 |
+
assert_array_almost_equal(y, yr, decimal=self.dec)
|
243 |
+
|
244 |
+
|
245 |
+
class _TestDCTIIIBase(_TestDCTBase):
|
246 |
+
def test_definition_ortho(self):
|
247 |
+
# Test orthornomal mode.
|
248 |
+
dt = np.result_type(np.float32, self.rdt)
|
249 |
+
for xr in X:
|
250 |
+
x = np.array(xr, dtype=self.rdt)
|
251 |
+
y = dct(x, norm='ortho', type=2)
|
252 |
+
xi = dct(y, norm="ortho", type=3)
|
253 |
+
assert_equal(xi.dtype, dt)
|
254 |
+
assert_array_almost_equal(xi, x, decimal=self.dec)
|
255 |
+
|
256 |
+
class _TestDCTIVBase(_TestDCTBase):
|
257 |
+
def test_definition_ortho(self):
|
258 |
+
# Test orthornomal mode.
|
259 |
+
dt = np.result_type(np.float32, self.rdt)
|
260 |
+
for xr in X:
|
261 |
+
x = np.array(xr, dtype=self.rdt)
|
262 |
+
y = dct(x, norm='ortho', type=4)
|
263 |
+
y2 = naive_dct4(x, norm='ortho')
|
264 |
+
assert_equal(y.dtype, dt)
|
265 |
+
assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
|
266 |
+
|
267 |
+
|
268 |
+
class TestDCTIDouble(_TestDCTIBase):
|
269 |
+
def setup_method(self):
|
270 |
+
self.rdt = np.float64
|
271 |
+
self.dec = 10
|
272 |
+
self.type = 1
|
273 |
+
|
274 |
+
|
275 |
+
class TestDCTIFloat(_TestDCTIBase):
|
276 |
+
def setup_method(self):
|
277 |
+
self.rdt = np.float32
|
278 |
+
self.dec = 4
|
279 |
+
self.type = 1
|
280 |
+
|
281 |
+
|
282 |
+
class TestDCTIInt(_TestDCTIBase):
|
283 |
+
def setup_method(self):
|
284 |
+
self.rdt = int
|
285 |
+
self.dec = 5
|
286 |
+
self.type = 1
|
287 |
+
|
288 |
+
|
289 |
+
class TestDCTIIDouble(_TestDCTIIBase):
|
290 |
+
def setup_method(self):
|
291 |
+
self.rdt = np.float64
|
292 |
+
self.dec = 10
|
293 |
+
self.type = 2
|
294 |
+
|
295 |
+
|
296 |
+
class TestDCTIIFloat(_TestDCTIIBase):
|
297 |
+
def setup_method(self):
|
298 |
+
self.rdt = np.float32
|
299 |
+
self.dec = 5
|
300 |
+
self.type = 2
|
301 |
+
|
302 |
+
|
303 |
+
class TestDCTIIInt(_TestDCTIIBase):
|
304 |
+
def setup_method(self):
|
305 |
+
self.rdt = int
|
306 |
+
self.dec = 5
|
307 |
+
self.type = 2
|
308 |
+
|
309 |
+
|
310 |
+
class TestDCTIIIDouble(_TestDCTIIIBase):
|
311 |
+
def setup_method(self):
|
312 |
+
self.rdt = np.float64
|
313 |
+
self.dec = 14
|
314 |
+
self.type = 3
|
315 |
+
|
316 |
+
|
317 |
+
class TestDCTIIIFloat(_TestDCTIIIBase):
|
318 |
+
def setup_method(self):
|
319 |
+
self.rdt = np.float32
|
320 |
+
self.dec = 5
|
321 |
+
self.type = 3
|
322 |
+
|
323 |
+
|
324 |
+
class TestDCTIIIInt(_TestDCTIIIBase):
|
325 |
+
def setup_method(self):
|
326 |
+
self.rdt = int
|
327 |
+
self.dec = 5
|
328 |
+
self.type = 3
|
329 |
+
|
330 |
+
|
331 |
+
class TestDCTIVDouble(_TestDCTIVBase):
|
332 |
+
def setup_method(self):
|
333 |
+
self.rdt = np.float64
|
334 |
+
self.dec = 12
|
335 |
+
self.type = 3
|
336 |
+
|
337 |
+
|
338 |
+
class TestDCTIVFloat(_TestDCTIVBase):
|
339 |
+
def setup_method(self):
|
340 |
+
self.rdt = np.float32
|
341 |
+
self.dec = 5
|
342 |
+
self.type = 3
|
343 |
+
|
344 |
+
|
345 |
+
class TestDCTIVInt(_TestDCTIVBase):
|
346 |
+
def setup_method(self):
|
347 |
+
self.rdt = int
|
348 |
+
self.dec = 5
|
349 |
+
self.type = 3
|
350 |
+
|
351 |
+
|
352 |
+
class _TestIDCTBase:
|
353 |
+
def setup_method(self):
|
354 |
+
self.rdt = None
|
355 |
+
self.dec = 14
|
356 |
+
self.type = None
|
357 |
+
|
358 |
+
def test_definition(self):
|
359 |
+
for i in FFTWDATA_SIZES:
|
360 |
+
xr, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
|
361 |
+
x = idct(yr, type=self.type)
|
362 |
+
if self.type == 1:
|
363 |
+
x /= 2 * (i-1)
|
364 |
+
else:
|
365 |
+
x /= 2 * i
|
366 |
+
assert_equal(x.dtype, dt)
|
367 |
+
# XXX: we divide by np.max(y) because the tests fail otherwise. We
|
368 |
+
# should really use something like assert_array_approx_equal. The
|
369 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
370 |
+
# propagation compared to the ones from fftpack.
|
371 |
+
assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
|
372 |
+
err_msg="Size %d failed" % i)
|
373 |
+
|
374 |
+
|
375 |
+
class TestIDCTIDouble(_TestIDCTBase):
|
376 |
+
def setup_method(self):
|
377 |
+
self.rdt = np.float64
|
378 |
+
self.dec = 10
|
379 |
+
self.type = 1
|
380 |
+
|
381 |
+
|
382 |
+
class TestIDCTIFloat(_TestIDCTBase):
|
383 |
+
def setup_method(self):
|
384 |
+
self.rdt = np.float32
|
385 |
+
self.dec = 4
|
386 |
+
self.type = 1
|
387 |
+
|
388 |
+
|
389 |
+
class TestIDCTIInt(_TestIDCTBase):
|
390 |
+
def setup_method(self):
|
391 |
+
self.rdt = int
|
392 |
+
self.dec = 4
|
393 |
+
self.type = 1
|
394 |
+
|
395 |
+
|
396 |
+
class TestIDCTIIDouble(_TestIDCTBase):
|
397 |
+
def setup_method(self):
|
398 |
+
self.rdt = np.float64
|
399 |
+
self.dec = 10
|
400 |
+
self.type = 2
|
401 |
+
|
402 |
+
|
403 |
+
class TestIDCTIIFloat(_TestIDCTBase):
|
404 |
+
def setup_method(self):
|
405 |
+
self.rdt = np.float32
|
406 |
+
self.dec = 5
|
407 |
+
self.type = 2
|
408 |
+
|
409 |
+
|
410 |
+
class TestIDCTIIInt(_TestIDCTBase):
|
411 |
+
def setup_method(self):
|
412 |
+
self.rdt = int
|
413 |
+
self.dec = 5
|
414 |
+
self.type = 2
|
415 |
+
|
416 |
+
|
417 |
+
class TestIDCTIIIDouble(_TestIDCTBase):
|
418 |
+
def setup_method(self):
|
419 |
+
self.rdt = np.float64
|
420 |
+
self.dec = 14
|
421 |
+
self.type = 3
|
422 |
+
|
423 |
+
|
424 |
+
class TestIDCTIIIFloat(_TestIDCTBase):
|
425 |
+
def setup_method(self):
|
426 |
+
self.rdt = np.float32
|
427 |
+
self.dec = 5
|
428 |
+
self.type = 3
|
429 |
+
|
430 |
+
|
431 |
+
class TestIDCTIIIInt(_TestIDCTBase):
|
432 |
+
def setup_method(self):
|
433 |
+
self.rdt = int
|
434 |
+
self.dec = 5
|
435 |
+
self.type = 3
|
436 |
+
|
437 |
+
class TestIDCTIVDouble(_TestIDCTBase):
|
438 |
+
def setup_method(self):
|
439 |
+
self.rdt = np.float64
|
440 |
+
self.dec = 12
|
441 |
+
self.type = 4
|
442 |
+
|
443 |
+
|
444 |
+
class TestIDCTIVFloat(_TestIDCTBase):
|
445 |
+
def setup_method(self):
|
446 |
+
self.rdt = np.float32
|
447 |
+
self.dec = 5
|
448 |
+
self.type = 4
|
449 |
+
|
450 |
+
|
451 |
+
class TestIDCTIVInt(_TestIDCTBase):
|
452 |
+
def setup_method(self):
|
453 |
+
self.rdt = int
|
454 |
+
self.dec = 5
|
455 |
+
self.type = 4
|
456 |
+
|
457 |
+
class _TestDSTBase:
|
458 |
+
def setup_method(self):
|
459 |
+
self.rdt = None # dtype
|
460 |
+
self.dec = None # number of decimals to match
|
461 |
+
self.type = None # dst type
|
462 |
+
|
463 |
+
def test_definition(self):
|
464 |
+
for i in FFTWDATA_SIZES:
|
465 |
+
xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
|
466 |
+
y = dst(xr, type=self.type)
|
467 |
+
assert_equal(y.dtype, dt)
|
468 |
+
# XXX: we divide by np.max(y) because the tests fail otherwise. We
|
469 |
+
# should really use something like assert_array_approx_equal. The
|
470 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
471 |
+
# propagation compared to the ones from fftpack.
|
472 |
+
assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
|
473 |
+
err_msg="Size %d failed" % i)
|
474 |
+
|
475 |
+
|
476 |
+
class _TestDSTIBase(_TestDSTBase):
|
477 |
+
def test_definition_ortho(self):
|
478 |
+
# Test orthornomal mode.
|
479 |
+
dt = np.result_type(np.float32, self.rdt)
|
480 |
+
for xr in X:
|
481 |
+
x = np.array(xr, dtype=self.rdt)
|
482 |
+
y = dst(x, norm='ortho', type=1)
|
483 |
+
y2 = naive_dst1(x, norm='ortho')
|
484 |
+
assert_equal(y.dtype, dt)
|
485 |
+
assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
|
486 |
+
|
487 |
+
class _TestDSTIVBase(_TestDSTBase):
|
488 |
+
def test_definition_ortho(self):
|
489 |
+
# Test orthornomal mode.
|
490 |
+
dt = np.result_type(np.float32, self.rdt)
|
491 |
+
for xr in X:
|
492 |
+
x = np.array(xr, dtype=self.rdt)
|
493 |
+
y = dst(x, norm='ortho', type=4)
|
494 |
+
y2 = naive_dst4(x, norm='ortho')
|
495 |
+
assert_equal(y.dtype, dt)
|
496 |
+
assert_array_almost_equal(y, y2, decimal=self.dec)
|
497 |
+
|
498 |
+
class TestDSTIDouble(_TestDSTIBase):
|
499 |
+
def setup_method(self):
|
500 |
+
self.rdt = np.float64
|
501 |
+
self.dec = 12
|
502 |
+
self.type = 1
|
503 |
+
|
504 |
+
|
505 |
+
class TestDSTIFloat(_TestDSTIBase):
|
506 |
+
def setup_method(self):
|
507 |
+
self.rdt = np.float32
|
508 |
+
self.dec = 4
|
509 |
+
self.type = 1
|
510 |
+
|
511 |
+
|
512 |
+
class TestDSTIInt(_TestDSTIBase):
|
513 |
+
def setup_method(self):
|
514 |
+
self.rdt = int
|
515 |
+
self.dec = 5
|
516 |
+
self.type = 1
|
517 |
+
|
518 |
+
|
519 |
+
class TestDSTIIDouble(_TestDSTBase):
|
520 |
+
def setup_method(self):
|
521 |
+
self.rdt = np.float64
|
522 |
+
self.dec = 14
|
523 |
+
self.type = 2
|
524 |
+
|
525 |
+
|
526 |
+
class TestDSTIIFloat(_TestDSTBase):
|
527 |
+
def setup_method(self):
|
528 |
+
self.rdt = np.float32
|
529 |
+
self.dec = 6
|
530 |
+
self.type = 2
|
531 |
+
|
532 |
+
|
533 |
+
class TestDSTIIInt(_TestDSTBase):
|
534 |
+
def setup_method(self):
|
535 |
+
self.rdt = int
|
536 |
+
self.dec = 6
|
537 |
+
self.type = 2
|
538 |
+
|
539 |
+
|
540 |
+
class TestDSTIIIDouble(_TestDSTBase):
|
541 |
+
def setup_method(self):
|
542 |
+
self.rdt = np.float64
|
543 |
+
self.dec = 14
|
544 |
+
self.type = 3
|
545 |
+
|
546 |
+
|
547 |
+
class TestDSTIIIFloat(_TestDSTBase):
|
548 |
+
def setup_method(self):
|
549 |
+
self.rdt = np.float32
|
550 |
+
self.dec = 7
|
551 |
+
self.type = 3
|
552 |
+
|
553 |
+
|
554 |
+
class TestDSTIIIInt(_TestDSTBase):
|
555 |
+
def setup_method(self):
|
556 |
+
self.rdt = int
|
557 |
+
self.dec = 7
|
558 |
+
self.type = 3
|
559 |
+
|
560 |
+
|
561 |
+
class TestDSTIVDouble(_TestDSTIVBase):
|
562 |
+
def setup_method(self):
|
563 |
+
self.rdt = np.float64
|
564 |
+
self.dec = 12
|
565 |
+
self.type = 4
|
566 |
+
|
567 |
+
|
568 |
+
class TestDSTIVFloat(_TestDSTIVBase):
|
569 |
+
def setup_method(self):
|
570 |
+
self.rdt = np.float32
|
571 |
+
self.dec = 4
|
572 |
+
self.type = 4
|
573 |
+
|
574 |
+
|
575 |
+
class TestDSTIVInt(_TestDSTIVBase):
|
576 |
+
def setup_method(self):
|
577 |
+
self.rdt = int
|
578 |
+
self.dec = 5
|
579 |
+
self.type = 4
|
580 |
+
|
581 |
+
|
582 |
+
class _TestIDSTBase:
|
583 |
+
def setup_method(self):
|
584 |
+
self.rdt = None
|
585 |
+
self.dec = None
|
586 |
+
self.type = None
|
587 |
+
|
588 |
+
def test_definition(self):
|
589 |
+
for i in FFTWDATA_SIZES:
|
590 |
+
xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
|
591 |
+
x = idst(yr, type=self.type)
|
592 |
+
if self.type == 1:
|
593 |
+
x /= 2 * (i+1)
|
594 |
+
else:
|
595 |
+
x /= 2 * i
|
596 |
+
assert_equal(x.dtype, dt)
|
597 |
+
# XXX: we divide by np.max(x) because the tests fail otherwise. We
|
598 |
+
# should really use something like assert_array_approx_equal. The
|
599 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
600 |
+
# propagation compared to the ones from fftpack.
|
601 |
+
assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
|
602 |
+
err_msg="Size %d failed" % i)
|
603 |
+
|
604 |
+
|
605 |
+
class TestIDSTIDouble(_TestIDSTBase):
|
606 |
+
def setup_method(self):
|
607 |
+
self.rdt = np.float64
|
608 |
+
self.dec = 12
|
609 |
+
self.type = 1
|
610 |
+
|
611 |
+
|
612 |
+
class TestIDSTIFloat(_TestIDSTBase):
|
613 |
+
def setup_method(self):
|
614 |
+
self.rdt = np.float32
|
615 |
+
self.dec = 4
|
616 |
+
self.type = 1
|
617 |
+
|
618 |
+
|
619 |
+
class TestIDSTIInt(_TestIDSTBase):
|
620 |
+
def setup_method(self):
|
621 |
+
self.rdt = int
|
622 |
+
self.dec = 4
|
623 |
+
self.type = 1
|
624 |
+
|
625 |
+
|
626 |
+
class TestIDSTIIDouble(_TestIDSTBase):
|
627 |
+
def setup_method(self):
|
628 |
+
self.rdt = np.float64
|
629 |
+
self.dec = 14
|
630 |
+
self.type = 2
|
631 |
+
|
632 |
+
|
633 |
+
class TestIDSTIIFloat(_TestIDSTBase):
|
634 |
+
def setup_method(self):
|
635 |
+
self.rdt = np.float32
|
636 |
+
self.dec = 6
|
637 |
+
self.type = 2
|
638 |
+
|
639 |
+
|
640 |
+
class TestIDSTIIInt(_TestIDSTBase):
|
641 |
+
def setup_method(self):
|
642 |
+
self.rdt = int
|
643 |
+
self.dec = 6
|
644 |
+
self.type = 2
|
645 |
+
|
646 |
+
|
647 |
+
class TestIDSTIIIDouble(_TestIDSTBase):
|
648 |
+
def setup_method(self):
|
649 |
+
self.rdt = np.float64
|
650 |
+
self.dec = 14
|
651 |
+
self.type = 3
|
652 |
+
|
653 |
+
|
654 |
+
class TestIDSTIIIFloat(_TestIDSTBase):
|
655 |
+
def setup_method(self):
|
656 |
+
self.rdt = np.float32
|
657 |
+
self.dec = 6
|
658 |
+
self.type = 3
|
659 |
+
|
660 |
+
|
661 |
+
class TestIDSTIIIInt(_TestIDSTBase):
|
662 |
+
def setup_method(self):
|
663 |
+
self.rdt = int
|
664 |
+
self.dec = 6
|
665 |
+
self.type = 3
|
666 |
+
|
667 |
+
|
668 |
+
class TestIDSTIVDouble(_TestIDSTBase):
|
669 |
+
def setup_method(self):
|
670 |
+
self.rdt = np.float64
|
671 |
+
self.dec = 12
|
672 |
+
self.type = 4
|
673 |
+
|
674 |
+
|
675 |
+
class TestIDSTIVFloat(_TestIDSTBase):
|
676 |
+
def setup_method(self):
|
677 |
+
self.rdt = np.float32
|
678 |
+
self.dec = 6
|
679 |
+
self.type = 4
|
680 |
+
|
681 |
+
|
682 |
+
class TestIDSTIVnt(_TestIDSTBase):
|
683 |
+
def setup_method(self):
|
684 |
+
self.rdt = int
|
685 |
+
self.dec = 6
|
686 |
+
self.type = 4
|
687 |
+
|
688 |
+
|
689 |
+
class TestOverwrite:
|
690 |
+
"""Check input overwrite behavior."""
|
691 |
+
|
692 |
+
real_dtypes = [np.float32, np.float64]
|
693 |
+
|
694 |
+
def _check(self, x, routine, type, fftsize, axis, norm, overwrite_x, **kw):
|
695 |
+
x2 = x.copy()
|
696 |
+
routine(x2, type, fftsize, axis, norm, overwrite_x=overwrite_x)
|
697 |
+
|
698 |
+
sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
|
699 |
+
routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
|
700 |
+
if not overwrite_x:
|
701 |
+
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
|
702 |
+
|
703 |
+
def _check_1d(self, routine, dtype, shape, axis):
|
704 |
+
np.random.seed(1234)
|
705 |
+
if np.issubdtype(dtype, np.complexfloating):
|
706 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
707 |
+
else:
|
708 |
+
data = np.random.randn(*shape)
|
709 |
+
data = data.astype(dtype)
|
710 |
+
|
711 |
+
for type in [1, 2, 3, 4]:
|
712 |
+
for overwrite_x in [True, False]:
|
713 |
+
for norm in [None, 'ortho']:
|
714 |
+
self._check(data, routine, type, None, axis, norm,
|
715 |
+
overwrite_x)
|
716 |
+
|
717 |
+
def test_dct(self):
|
718 |
+
for dtype in self.real_dtypes:
|
719 |
+
self._check_1d(dct, dtype, (16,), -1)
|
720 |
+
self._check_1d(dct, dtype, (16, 2), 0)
|
721 |
+
self._check_1d(dct, dtype, (2, 16), 1)
|
722 |
+
|
723 |
+
def test_idct(self):
|
724 |
+
for dtype in self.real_dtypes:
|
725 |
+
self._check_1d(idct, dtype, (16,), -1)
|
726 |
+
self._check_1d(idct, dtype, (16, 2), 0)
|
727 |
+
self._check_1d(idct, dtype, (2, 16), 1)
|
728 |
+
|
729 |
+
def test_dst(self):
|
730 |
+
for dtype in self.real_dtypes:
|
731 |
+
self._check_1d(dst, dtype, (16,), -1)
|
732 |
+
self._check_1d(dst, dtype, (16, 2), 0)
|
733 |
+
self._check_1d(dst, dtype, (2, 16), 1)
|
734 |
+
|
735 |
+
def test_idst(self):
|
736 |
+
for dtype in self.real_dtypes:
|
737 |
+
self._check_1d(idst, dtype, (16,), -1)
|
738 |
+
self._check_1d(idst, dtype, (16, 2), 0)
|
739 |
+
self._check_1d(idst, dtype, (2, 16), 1)
|
740 |
+
|
741 |
+
|
742 |
+
class Test_DCTN_IDCTN:
|
743 |
+
dec = 14
|
744 |
+
dct_type = [1, 2, 3, 4]
|
745 |
+
norms = [None, 'ortho']
|
746 |
+
rstate = np.random.RandomState(1234)
|
747 |
+
shape = (32, 16)
|
748 |
+
data = rstate.randn(*shape)
|
749 |
+
|
750 |
+
@pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
|
751 |
+
(dstn, idstn)])
|
752 |
+
@pytest.mark.parametrize('axes', [None,
|
753 |
+
1, (1,), [1],
|
754 |
+
0, (0,), [0],
|
755 |
+
(0, 1), [0, 1],
|
756 |
+
(-2, -1), [-2, -1]])
|
757 |
+
@pytest.mark.parametrize('dct_type', dct_type)
|
758 |
+
@pytest.mark.parametrize('norm', ['ortho'])
|
759 |
+
def test_axes_round_trip(self, fforward, finverse, axes, dct_type, norm):
|
760 |
+
tmp = fforward(self.data, type=dct_type, axes=axes, norm=norm)
|
761 |
+
tmp = finverse(tmp, type=dct_type, axes=axes, norm=norm)
|
762 |
+
assert_array_almost_equal(self.data, tmp, decimal=12)
|
763 |
+
|
764 |
+
@pytest.mark.parametrize('fforward,fforward_ref', [(dctn, dct_2d_ref),
|
765 |
+
(dstn, dst_2d_ref)])
|
766 |
+
@pytest.mark.parametrize('dct_type', dct_type)
|
767 |
+
@pytest.mark.parametrize('norm', norms)
|
768 |
+
def test_dctn_vs_2d_reference(self, fforward, fforward_ref,
|
769 |
+
dct_type, norm):
|
770 |
+
y1 = fforward(self.data, type=dct_type, axes=None, norm=norm)
|
771 |
+
y2 = fforward_ref(self.data, type=dct_type, norm=norm)
|
772 |
+
assert_array_almost_equal(y1, y2, decimal=11)
|
773 |
+
|
774 |
+
@pytest.mark.parametrize('finverse,finverse_ref', [(idctn, idct_2d_ref),
|
775 |
+
(idstn, idst_2d_ref)])
|
776 |
+
@pytest.mark.parametrize('dct_type', dct_type)
|
777 |
+
@pytest.mark.parametrize('norm', [None, 'ortho'])
|
778 |
+
def test_idctn_vs_2d_reference(self, finverse, finverse_ref,
|
779 |
+
dct_type, norm):
|
780 |
+
fdata = dctn(self.data, type=dct_type, norm=norm)
|
781 |
+
y1 = finverse(fdata, type=dct_type, norm=norm)
|
782 |
+
y2 = finverse_ref(fdata, type=dct_type, norm=norm)
|
783 |
+
assert_array_almost_equal(y1, y2, decimal=11)
|
784 |
+
|
785 |
+
@pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
|
786 |
+
(dstn, idstn)])
|
787 |
+
def test_axes_and_shape(self, fforward, finverse):
|
788 |
+
with assert_raises(ValueError,
|
789 |
+
match="when given, axes and shape arguments"
|
790 |
+
" have to be of the same length"):
|
791 |
+
fforward(self.data, shape=self.data.shape[0], axes=(0, 1))
|
792 |
+
|
793 |
+
with assert_raises(ValueError,
|
794 |
+
match="when given, axes and shape arguments"
|
795 |
+
" have to be of the same length"):
|
796 |
+
fforward(self.data, shape=self.data.shape[0], axes=None)
|
797 |
+
|
798 |
+
with assert_raises(ValueError,
|
799 |
+
match="when given, axes and shape arguments"
|
800 |
+
" have to be of the same length"):
|
801 |
+
fforward(self.data, shape=self.data.shape, axes=0)
|
802 |
+
|
803 |
+
@pytest.mark.parametrize('fforward', [dctn, dstn])
|
804 |
+
def test_shape(self, fforward):
|
805 |
+
tmp = fforward(self.data, shape=(128, 128), axes=None)
|
806 |
+
assert_equal(tmp.shape, (128, 128))
|
807 |
+
|
808 |
+
@pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
|
809 |
+
(dstn, idstn)])
|
810 |
+
@pytest.mark.parametrize('axes', [1, (1,), [1],
|
811 |
+
0, (0,), [0]])
|
812 |
+
def test_shape_is_none_with_axes(self, fforward, finverse, axes):
|
813 |
+
tmp = fforward(self.data, shape=None, axes=axes, norm='ortho')
|
814 |
+
tmp = finverse(tmp, shape=None, axes=axes, norm='ortho')
|
815 |
+
assert_array_almost_equal(self.data, tmp, decimal=self.dec)
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_quadrature.cpython-310.pyc
ADDED
Binary file (54.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/dop.cpython-310.pyc
ADDED
Binary file (612 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/README
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
From the website for the L-BFGS-B code (from at
|
2 |
+
http://www.ece.northwestern.edu/~nocedal/lbfgsb.html):
|
3 |
+
|
4 |
+
"""
|
5 |
+
L-BFGS-B is a limited-memory quasi-Newton code for bound-constrained
|
6 |
+
optimization, i.e. for problems where the only constraints are of the
|
7 |
+
form l<= x <= u.
|
8 |
+
"""
|
9 |
+
|
10 |
+
This is a Python wrapper (using F2PY) written by David M. Cooke
|
11 |
+
<[email protected]> and released as version 0.9 on April 9, 2004.
|
12 |
+
The wrapper was slightly modified by Joonas Paalasmaa for the 3.0 version
|
13 |
+
in March 2012.
|
14 |
+
|
15 |
+
License of L-BFGS-B (Fortran code)
|
16 |
+
==================================
|
17 |
+
|
18 |
+
The version included here (in lbfgsb.f) is 3.0 (released April 25, 2011). It was
|
19 |
+
written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <[email protected]>. It
|
20 |
+
carries the following condition for use:
|
21 |
+
|
22 |
+
"""
|
23 |
+
This software is freely available, but we expect that all publications
|
24 |
+
describing work using this software, or all commercial products using it,
|
25 |
+
quote at least one of the references given below. This software is released
|
26 |
+
under the BSD License.
|
27 |
+
|
28 |
+
References
|
29 |
+
* R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
|
30 |
+
Constrained Optimization, (1995), SIAM Journal on Scientific and
|
31 |
+
Statistical Computing, 16, 5, pp. 1190-1208.
|
32 |
+
* C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
|
33 |
+
FORTRAN routines for large scale bound constrained optimization (1997),
|
34 |
+
ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
|
35 |
+
* J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
|
36 |
+
FORTRAN routines for large scale bound constrained optimization (2011),
|
37 |
+
ACM Transactions on Mathematical Software, 38, 1.
|
38 |
+
"""
|
39 |
+
|
40 |
+
The Python wrapper
|
41 |
+
==================
|
42 |
+
|
43 |
+
This code uses F2PY (http://cens.ioc.ee/projects/f2py2e/) to generate
|
44 |
+
the wrapper around the Fortran code.
|
45 |
+
|
46 |
+
The Python code and wrapper are copyrighted 2004 by David M. Cooke
|
47 |
+
<[email protected]>.
|
48 |
+
|
49 |
+
Example usage
|
50 |
+
=============
|
51 |
+
|
52 |
+
An example of the usage is given at the bottom of the lbfgsb.py file.
|
53 |
+
Run it with 'python lbfgsb.py'.
|
54 |
+
|
55 |
+
License for the Python wrapper
|
56 |
+
==============================
|
57 |
+
|
58 |
+
Copyright (c) 2004 David M. Cooke <[email protected]>
|
59 |
+
|
60 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
61 |
+
this software and associated documentation files (the "Software"), to deal in
|
62 |
+
the Software without restriction, including without limitation the rights to
|
63 |
+
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
64 |
+
of the Software, and to permit persons to whom the Software is furnished to do
|
65 |
+
so, subject to the following conditions:
|
66 |
+
|
67 |
+
The above copyright notice and this permission notice shall be included in all
|
68 |
+
copies or substantial portions of the Software.
|
69 |
+
|
70 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
71 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
72 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
73 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
74 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
75 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
76 |
+
SOFTWARE.
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__init__.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=====================================================
|
3 |
+
Optimization and root finding (:mod:`scipy.optimize`)
|
4 |
+
=====================================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.optimize
|
7 |
+
|
8 |
+
.. toctree::
|
9 |
+
:hidden:
|
10 |
+
|
11 |
+
optimize.cython_optimize
|
12 |
+
|
13 |
+
SciPy ``optimize`` provides functions for minimizing (or maximizing)
|
14 |
+
objective functions, possibly subject to constraints. It includes
|
15 |
+
solvers for nonlinear problems (with support for both local and global
|
16 |
+
optimization algorithms), linear programming, constrained
|
17 |
+
and nonlinear least-squares, root finding, and curve fitting.
|
18 |
+
|
19 |
+
Common functions and objects, shared across different solvers, are:
|
20 |
+
|
21 |
+
.. autosummary::
|
22 |
+
:toctree: generated/
|
23 |
+
|
24 |
+
show_options - Show specific options optimization solvers.
|
25 |
+
OptimizeResult - The optimization result returned by some optimizers.
|
26 |
+
OptimizeWarning - The optimization encountered problems.
|
27 |
+
|
28 |
+
|
29 |
+
Optimization
|
30 |
+
============
|
31 |
+
|
32 |
+
Scalar functions optimization
|
33 |
+
-----------------------------
|
34 |
+
|
35 |
+
.. autosummary::
|
36 |
+
:toctree: generated/
|
37 |
+
|
38 |
+
minimize_scalar - Interface for minimizers of univariate functions
|
39 |
+
|
40 |
+
The `minimize_scalar` function supports the following methods:
|
41 |
+
|
42 |
+
.. toctree::
|
43 |
+
|
44 |
+
optimize.minimize_scalar-brent
|
45 |
+
optimize.minimize_scalar-bounded
|
46 |
+
optimize.minimize_scalar-golden
|
47 |
+
|
48 |
+
Local (multivariate) optimization
|
49 |
+
---------------------------------
|
50 |
+
|
51 |
+
.. autosummary::
|
52 |
+
:toctree: generated/
|
53 |
+
|
54 |
+
minimize - Interface for minimizers of multivariate functions.
|
55 |
+
|
56 |
+
The `minimize` function supports the following methods:
|
57 |
+
|
58 |
+
.. toctree::
|
59 |
+
|
60 |
+
optimize.minimize-neldermead
|
61 |
+
optimize.minimize-powell
|
62 |
+
optimize.minimize-cg
|
63 |
+
optimize.minimize-bfgs
|
64 |
+
optimize.minimize-newtoncg
|
65 |
+
optimize.minimize-lbfgsb
|
66 |
+
optimize.minimize-tnc
|
67 |
+
optimize.minimize-cobyla
|
68 |
+
optimize.minimize-slsqp
|
69 |
+
optimize.minimize-trustconstr
|
70 |
+
optimize.minimize-dogleg
|
71 |
+
optimize.minimize-trustncg
|
72 |
+
optimize.minimize-trustkrylov
|
73 |
+
optimize.minimize-trustexact
|
74 |
+
|
75 |
+
Constraints are passed to `minimize` function as a single object or
|
76 |
+
as a list of objects from the following classes:
|
77 |
+
|
78 |
+
.. autosummary::
|
79 |
+
:toctree: generated/
|
80 |
+
|
81 |
+
NonlinearConstraint - Class defining general nonlinear constraints.
|
82 |
+
LinearConstraint - Class defining general linear constraints.
|
83 |
+
|
84 |
+
Simple bound constraints are handled separately and there is a special class
|
85 |
+
for them:
|
86 |
+
|
87 |
+
.. autosummary::
|
88 |
+
:toctree: generated/
|
89 |
+
|
90 |
+
Bounds - Bound constraints.
|
91 |
+
|
92 |
+
Quasi-Newton strategies implementing `HessianUpdateStrategy`
|
93 |
+
interface can be used to approximate the Hessian in `minimize`
|
94 |
+
function (available only for the 'trust-constr' method). Available
|
95 |
+
quasi-Newton methods implementing this interface are:
|
96 |
+
|
97 |
+
.. autosummary::
|
98 |
+
:toctree: generated/
|
99 |
+
|
100 |
+
BFGS - Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.
|
101 |
+
SR1 - Symmetric-rank-1 Hessian update strategy.
|
102 |
+
|
103 |
+
.. _global_optimization:
|
104 |
+
|
105 |
+
Global optimization
|
106 |
+
-------------------
|
107 |
+
|
108 |
+
.. autosummary::
|
109 |
+
:toctree: generated/
|
110 |
+
|
111 |
+
basinhopping - Basinhopping stochastic optimizer.
|
112 |
+
brute - Brute force searching optimizer.
|
113 |
+
differential_evolution - Stochastic optimizer using differential evolution.
|
114 |
+
|
115 |
+
shgo - Simplicial homology global optimizer.
|
116 |
+
dual_annealing - Dual annealing stochastic optimizer.
|
117 |
+
direct - DIRECT (Dividing Rectangles) optimizer.
|
118 |
+
|
119 |
+
Least-squares and curve fitting
|
120 |
+
===============================
|
121 |
+
|
122 |
+
Nonlinear least-squares
|
123 |
+
-----------------------
|
124 |
+
|
125 |
+
.. autosummary::
|
126 |
+
:toctree: generated/
|
127 |
+
|
128 |
+
least_squares - Solve a nonlinear least-squares problem with bounds on the variables.
|
129 |
+
|
130 |
+
Linear least-squares
|
131 |
+
--------------------
|
132 |
+
|
133 |
+
.. autosummary::
|
134 |
+
:toctree: generated/
|
135 |
+
|
136 |
+
nnls - Linear least-squares problem with non-negativity constraint.
|
137 |
+
lsq_linear - Linear least-squares problem with bound constraints.
|
138 |
+
isotonic_regression - Least squares problem of isotonic regression via PAVA.
|
139 |
+
|
140 |
+
Curve fitting
|
141 |
+
-------------
|
142 |
+
|
143 |
+
.. autosummary::
|
144 |
+
:toctree: generated/
|
145 |
+
|
146 |
+
curve_fit -- Fit curve to a set of points.
|
147 |
+
|
148 |
+
Root finding
|
149 |
+
============
|
150 |
+
|
151 |
+
Scalar functions
|
152 |
+
----------------
|
153 |
+
.. autosummary::
|
154 |
+
:toctree: generated/
|
155 |
+
|
156 |
+
root_scalar - Unified interface for nonlinear solvers of scalar functions.
|
157 |
+
brentq - quadratic interpolation Brent method.
|
158 |
+
brenth - Brent method, modified by Harris with hyperbolic extrapolation.
|
159 |
+
ridder - Ridder's method.
|
160 |
+
bisect - Bisection method.
|
161 |
+
newton - Newton's method (also Secant and Halley's methods).
|
162 |
+
toms748 - Alefeld, Potra & Shi Algorithm 748.
|
163 |
+
RootResults - The root finding result returned by some root finders.
|
164 |
+
|
165 |
+
The `root_scalar` function supports the following methods:
|
166 |
+
|
167 |
+
.. toctree::
|
168 |
+
|
169 |
+
optimize.root_scalar-brentq
|
170 |
+
optimize.root_scalar-brenth
|
171 |
+
optimize.root_scalar-bisect
|
172 |
+
optimize.root_scalar-ridder
|
173 |
+
optimize.root_scalar-newton
|
174 |
+
optimize.root_scalar-toms748
|
175 |
+
optimize.root_scalar-secant
|
176 |
+
optimize.root_scalar-halley
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
The table below lists situations and appropriate methods, along with
|
181 |
+
*asymptotic* convergence rates per iteration (and per function evaluation)
|
182 |
+
for successful convergence to a simple root(*).
|
183 |
+
Bisection is the slowest of them all, adding one bit of accuracy for each
|
184 |
+
function evaluation, but is guaranteed to converge.
|
185 |
+
The other bracketing methods all (eventually) increase the number of accurate
|
186 |
+
bits by about 50% for every function evaluation.
|
187 |
+
The derivative-based methods, all built on `newton`, can converge quite quickly
|
188 |
+
if the initial value is close to the root. They can also be applied to
|
189 |
+
functions defined on (a subset of) the complex plane.
|
190 |
+
|
191 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
192 |
+
| Domain of f | Bracket? | Derivatives? | Solvers | Convergence |
|
193 |
+
+ + +----------+-----------+ +-------------+----------------+
|
194 |
+
| | | `fprime` | `fprime2` | | Guaranteed? | Rate(s)(*) |
|
195 |
+
+=============+==========+==========+===========+=============+=============+================+
|
196 |
+
| `R` | Yes | N/A | N/A | - bisection | - Yes | - 1 "Linear" |
|
197 |
+
| | | | | - brentq | - Yes | - >=1, <= 1.62 |
|
198 |
+
| | | | | - brenth | - Yes | - >=1, <= 1.62 |
|
199 |
+
| | | | | - ridder | - Yes | - 2.0 (1.41) |
|
200 |
+
| | | | | - toms748 | - Yes | - 2.7 (1.65) |
|
201 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
202 |
+
| `R` or `C` | No | No | No | secant | No | 1.62 (1.62) |
|
203 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
204 |
+
| `R` or `C` | No | Yes | No | newton | No | 2.00 (1.41) |
|
205 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
206 |
+
| `R` or `C` | No | Yes | Yes | halley | No | 3.00 (1.44) |
|
207 |
+
+-------------+----------+----------+-----------+-------------+-------------+----------------+
|
208 |
+
|
209 |
+
.. seealso::
|
210 |
+
|
211 |
+
`scipy.optimize.cython_optimize` -- Typed Cython versions of root finding functions
|
212 |
+
|
213 |
+
Fixed point finding:
|
214 |
+
|
215 |
+
.. autosummary::
|
216 |
+
:toctree: generated/
|
217 |
+
|
218 |
+
fixed_point - Single-variable fixed-point solver.
|
219 |
+
|
220 |
+
Multidimensional
|
221 |
+
----------------
|
222 |
+
|
223 |
+
.. autosummary::
|
224 |
+
:toctree: generated/
|
225 |
+
|
226 |
+
root - Unified interface for nonlinear solvers of multivariate functions.
|
227 |
+
|
228 |
+
The `root` function supports the following methods:
|
229 |
+
|
230 |
+
.. toctree::
|
231 |
+
|
232 |
+
optimize.root-hybr
|
233 |
+
optimize.root-lm
|
234 |
+
optimize.root-broyden1
|
235 |
+
optimize.root-broyden2
|
236 |
+
optimize.root-anderson
|
237 |
+
optimize.root-linearmixing
|
238 |
+
optimize.root-diagbroyden
|
239 |
+
optimize.root-excitingmixing
|
240 |
+
optimize.root-krylov
|
241 |
+
optimize.root-dfsane
|
242 |
+
|
243 |
+
Linear programming / MILP
|
244 |
+
=========================
|
245 |
+
|
246 |
+
.. autosummary::
|
247 |
+
:toctree: generated/
|
248 |
+
|
249 |
+
milp -- Mixed integer linear programming.
|
250 |
+
linprog -- Unified interface for minimizers of linear programming problems.
|
251 |
+
|
252 |
+
The `linprog` function supports the following methods:
|
253 |
+
|
254 |
+
.. toctree::
|
255 |
+
|
256 |
+
optimize.linprog-simplex
|
257 |
+
optimize.linprog-interior-point
|
258 |
+
optimize.linprog-revised_simplex
|
259 |
+
optimize.linprog-highs-ipm
|
260 |
+
optimize.linprog-highs-ds
|
261 |
+
optimize.linprog-highs
|
262 |
+
|
263 |
+
The simplex, interior-point, and revised simplex methods support callback
|
264 |
+
functions, such as:
|
265 |
+
|
266 |
+
.. autosummary::
|
267 |
+
:toctree: generated/
|
268 |
+
|
269 |
+
linprog_verbose_callback -- Sample callback function for linprog (simplex).
|
270 |
+
|
271 |
+
Assignment problems
|
272 |
+
===================
|
273 |
+
|
274 |
+
.. autosummary::
|
275 |
+
:toctree: generated/
|
276 |
+
|
277 |
+
linear_sum_assignment -- Solves the linear-sum assignment problem.
|
278 |
+
quadratic_assignment -- Solves the quadratic assignment problem.
|
279 |
+
|
280 |
+
The `quadratic_assignment` function supports the following methods:
|
281 |
+
|
282 |
+
.. toctree::
|
283 |
+
|
284 |
+
optimize.qap-faq
|
285 |
+
optimize.qap-2opt
|
286 |
+
|
287 |
+
Utilities
|
288 |
+
=========
|
289 |
+
|
290 |
+
Finite-difference approximation
|
291 |
+
-------------------------------
|
292 |
+
|
293 |
+
.. autosummary::
|
294 |
+
:toctree: generated/
|
295 |
+
|
296 |
+
approx_fprime - Approximate the gradient of a scalar function.
|
297 |
+
check_grad - Check the supplied derivative using finite differences.
|
298 |
+
|
299 |
+
|
300 |
+
Line search
|
301 |
+
-----------
|
302 |
+
|
303 |
+
.. autosummary::
|
304 |
+
:toctree: generated/
|
305 |
+
|
306 |
+
bracket - Bracket a minimum, given two starting points.
|
307 |
+
line_search - Return a step that satisfies the strong Wolfe conditions.
|
308 |
+
|
309 |
+
Hessian approximation
|
310 |
+
---------------------
|
311 |
+
|
312 |
+
.. autosummary::
|
313 |
+
:toctree: generated/
|
314 |
+
|
315 |
+
LbfgsInvHessProduct - Linear operator for L-BFGS approximate inverse Hessian.
|
316 |
+
HessianUpdateStrategy - Interface for implementing Hessian update strategies
|
317 |
+
|
318 |
+
Benchmark problems
|
319 |
+
------------------
|
320 |
+
|
321 |
+
.. autosummary::
|
322 |
+
:toctree: generated/
|
323 |
+
|
324 |
+
rosen - The Rosenbrock function.
|
325 |
+
rosen_der - The derivative of the Rosenbrock function.
|
326 |
+
rosen_hess - The Hessian matrix of the Rosenbrock function.
|
327 |
+
rosen_hess_prod - Product of the Rosenbrock Hessian with a vector.
|
328 |
+
|
329 |
+
Legacy functions
|
330 |
+
================
|
331 |
+
|
332 |
+
The functions below are not recommended for use in new scripts;
|
333 |
+
all of these methods are accessible via a newer, more consistent
|
334 |
+
interfaces, provided by the interfaces above.
|
335 |
+
|
336 |
+
Optimization
|
337 |
+
------------
|
338 |
+
|
339 |
+
General-purpose multivariate methods:
|
340 |
+
|
341 |
+
.. autosummary::
|
342 |
+
:toctree: generated/
|
343 |
+
|
344 |
+
fmin - Nelder-Mead Simplex algorithm.
|
345 |
+
fmin_powell - Powell's (modified) conjugate direction method.
|
346 |
+
fmin_cg - Non-linear (Polak-Ribiere) conjugate gradient algorithm.
|
347 |
+
fmin_bfgs - Quasi-Newton method (Broydon-Fletcher-Goldfarb-Shanno).
|
348 |
+
fmin_ncg - Line-search Newton Conjugate Gradient.
|
349 |
+
|
350 |
+
Constrained multivariate methods:
|
351 |
+
|
352 |
+
.. autosummary::
|
353 |
+
:toctree: generated/
|
354 |
+
|
355 |
+
fmin_l_bfgs_b - Zhu, Byrd, and Nocedal's constrained optimizer.
|
356 |
+
fmin_tnc - Truncated Newton code.
|
357 |
+
fmin_cobyla - Constrained optimization by linear approximation.
|
358 |
+
fmin_slsqp - Minimization using sequential least-squares programming.
|
359 |
+
|
360 |
+
Univariate (scalar) minimization methods:
|
361 |
+
|
362 |
+
.. autosummary::
|
363 |
+
:toctree: generated/
|
364 |
+
|
365 |
+
fminbound - Bounded minimization of a scalar function.
|
366 |
+
brent - 1-D function minimization using Brent method.
|
367 |
+
golden - 1-D function minimization using Golden Section method.
|
368 |
+
|
369 |
+
Least-squares
|
370 |
+
-------------
|
371 |
+
|
372 |
+
.. autosummary::
|
373 |
+
:toctree: generated/
|
374 |
+
|
375 |
+
leastsq - Minimize the sum of squares of M equations in N unknowns.
|
376 |
+
|
377 |
+
Root finding
|
378 |
+
------------
|
379 |
+
|
380 |
+
General nonlinear solvers:
|
381 |
+
|
382 |
+
.. autosummary::
|
383 |
+
:toctree: generated/
|
384 |
+
|
385 |
+
fsolve - Non-linear multivariable equation solver.
|
386 |
+
broyden1 - Broyden's first method.
|
387 |
+
broyden2 - Broyden's second method.
|
388 |
+
NoConvergence - Exception raised when nonlinear solver does not converge.
|
389 |
+
|
390 |
+
Large-scale nonlinear solvers:
|
391 |
+
|
392 |
+
.. autosummary::
|
393 |
+
:toctree: generated/
|
394 |
+
|
395 |
+
newton_krylov
|
396 |
+
anderson
|
397 |
+
|
398 |
+
BroydenFirst
|
399 |
+
InverseJacobian
|
400 |
+
KrylovJacobian
|
401 |
+
|
402 |
+
Simple iteration solvers:
|
403 |
+
|
404 |
+
.. autosummary::
|
405 |
+
:toctree: generated/
|
406 |
+
|
407 |
+
excitingmixing
|
408 |
+
linearmixing
|
409 |
+
diagbroyden
|
410 |
+
|
411 |
+
""" # noqa: E501
|
412 |
+
|
413 |
+
from ._optimize import *
|
414 |
+
from ._minimize import *
|
415 |
+
from ._root import *
|
416 |
+
from ._root_scalar import *
|
417 |
+
from ._minpack_py import *
|
418 |
+
from ._zeros_py import *
|
419 |
+
from ._lbfgsb_py import fmin_l_bfgs_b, LbfgsInvHessProduct
|
420 |
+
from ._tnc import fmin_tnc
|
421 |
+
from ._cobyla_py import fmin_cobyla
|
422 |
+
from ._nonlin import *
|
423 |
+
from ._slsqp_py import fmin_slsqp
|
424 |
+
from ._nnls import nnls
|
425 |
+
from ._basinhopping import basinhopping
|
426 |
+
from ._linprog import linprog, linprog_verbose_callback
|
427 |
+
from ._lsap import linear_sum_assignment
|
428 |
+
from ._differentialevolution import differential_evolution
|
429 |
+
from ._lsq import least_squares, lsq_linear
|
430 |
+
from ._isotonic import isotonic_regression
|
431 |
+
from ._constraints import (NonlinearConstraint,
|
432 |
+
LinearConstraint,
|
433 |
+
Bounds)
|
434 |
+
from ._hessian_update_strategy import HessianUpdateStrategy, BFGS, SR1
|
435 |
+
from ._shgo import shgo
|
436 |
+
from ._dual_annealing import dual_annealing
|
437 |
+
from ._qap import quadratic_assignment
|
438 |
+
from ._direct_py import direct
|
439 |
+
from ._milp import milp
|
440 |
+
|
441 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
442 |
+
from . import (
|
443 |
+
cobyla, lbfgsb, linesearch, minpack, minpack2, moduleTNC, nonlin, optimize,
|
444 |
+
slsqp, tnc, zeros
|
445 |
+
)
|
446 |
+
|
447 |
+
__all__ = [s for s in dir() if not s.startswith('_')]
|
448 |
+
|
449 |
+
from scipy._lib._testutils import PytestTester
|
450 |
+
test = PytestTester(__name__)
|
451 |
+
del PytestTester
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/_basinhopping.py
ADDED
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
basinhopping: The basinhopping global optimization algorithm
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
import math
|
6 |
+
import inspect
|
7 |
+
import scipy.optimize
|
8 |
+
from scipy._lib._util import check_random_state
|
9 |
+
|
10 |
+
__all__ = ['basinhopping']
|
11 |
+
|
12 |
+
|
13 |
+
_params = (inspect.Parameter('res_new', kind=inspect.Parameter.KEYWORD_ONLY),
|
14 |
+
inspect.Parameter('res_old', kind=inspect.Parameter.KEYWORD_ONLY))
|
15 |
+
_new_accept_test_signature = inspect.Signature(parameters=_params)
|
16 |
+
|
17 |
+
|
18 |
+
class Storage:
|
19 |
+
"""
|
20 |
+
Class used to store the lowest energy structure
|
21 |
+
"""
|
22 |
+
def __init__(self, minres):
|
23 |
+
self._add(minres)
|
24 |
+
|
25 |
+
def _add(self, minres):
|
26 |
+
self.minres = minres
|
27 |
+
self.minres.x = np.copy(minres.x)
|
28 |
+
|
29 |
+
def update(self, minres):
|
30 |
+
if minres.success and (minres.fun < self.minres.fun
|
31 |
+
or not self.minres.success):
|
32 |
+
self._add(minres)
|
33 |
+
return True
|
34 |
+
else:
|
35 |
+
return False
|
36 |
+
|
37 |
+
def get_lowest(self):
|
38 |
+
return self.minres
|
39 |
+
|
40 |
+
|
41 |
+
class BasinHoppingRunner:
|
42 |
+
"""This class implements the core of the basinhopping algorithm.
|
43 |
+
|
44 |
+
x0 : ndarray
|
45 |
+
The starting coordinates.
|
46 |
+
minimizer : callable
|
47 |
+
The local minimizer, with signature ``result = minimizer(x)``.
|
48 |
+
The return value is an `optimize.OptimizeResult` object.
|
49 |
+
step_taking : callable
|
50 |
+
This function displaces the coordinates randomly. Signature should
|
51 |
+
be ``x_new = step_taking(x)``. Note that `x` may be modified in-place.
|
52 |
+
accept_tests : list of callables
|
53 |
+
Each test is passed the kwargs `f_new`, `x_new`, `f_old` and
|
54 |
+
`x_old`. These tests will be used to judge whether or not to accept
|
55 |
+
the step. The acceptable return values are True, False, or ``"force
|
56 |
+
accept"``. If any of the tests return False then the step is rejected.
|
57 |
+
If ``"force accept"``, then this will override any other tests in
|
58 |
+
order to accept the step. This can be used, for example, to forcefully
|
59 |
+
escape from a local minimum that ``basinhopping`` is trapped in.
|
60 |
+
disp : bool, optional
|
61 |
+
Display status messages.
|
62 |
+
|
63 |
+
"""
|
64 |
+
def __init__(self, x0, minimizer, step_taking, accept_tests, disp=False):
|
65 |
+
self.x = np.copy(x0)
|
66 |
+
self.minimizer = minimizer
|
67 |
+
self.step_taking = step_taking
|
68 |
+
self.accept_tests = accept_tests
|
69 |
+
self.disp = disp
|
70 |
+
|
71 |
+
self.nstep = 0
|
72 |
+
|
73 |
+
# initialize return object
|
74 |
+
self.res = scipy.optimize.OptimizeResult()
|
75 |
+
self.res.minimization_failures = 0
|
76 |
+
|
77 |
+
# do initial minimization
|
78 |
+
minres = minimizer(self.x)
|
79 |
+
if not minres.success:
|
80 |
+
self.res.minimization_failures += 1
|
81 |
+
if self.disp:
|
82 |
+
print("warning: basinhopping: local minimization failure")
|
83 |
+
self.x = np.copy(minres.x)
|
84 |
+
self.energy = minres.fun
|
85 |
+
self.incumbent_minres = minres # best minimize result found so far
|
86 |
+
if self.disp:
|
87 |
+
print("basinhopping step %d: f %g" % (self.nstep, self.energy))
|
88 |
+
|
89 |
+
# initialize storage class
|
90 |
+
self.storage = Storage(minres)
|
91 |
+
|
92 |
+
if hasattr(minres, "nfev"):
|
93 |
+
self.res.nfev = minres.nfev
|
94 |
+
if hasattr(minres, "njev"):
|
95 |
+
self.res.njev = minres.njev
|
96 |
+
if hasattr(minres, "nhev"):
|
97 |
+
self.res.nhev = minres.nhev
|
98 |
+
|
99 |
+
def _monte_carlo_step(self):
|
100 |
+
"""Do one Monte Carlo iteration
|
101 |
+
|
102 |
+
Randomly displace the coordinates, minimize, and decide whether
|
103 |
+
or not to accept the new coordinates.
|
104 |
+
"""
|
105 |
+
# Take a random step. Make a copy of x because the step_taking
|
106 |
+
# algorithm might change x in place
|
107 |
+
x_after_step = np.copy(self.x)
|
108 |
+
x_after_step = self.step_taking(x_after_step)
|
109 |
+
|
110 |
+
# do a local minimization
|
111 |
+
minres = self.minimizer(x_after_step)
|
112 |
+
x_after_quench = minres.x
|
113 |
+
energy_after_quench = minres.fun
|
114 |
+
if not minres.success:
|
115 |
+
self.res.minimization_failures += 1
|
116 |
+
if self.disp:
|
117 |
+
print("warning: basinhopping: local minimization failure")
|
118 |
+
if hasattr(minres, "nfev"):
|
119 |
+
self.res.nfev += minres.nfev
|
120 |
+
if hasattr(minres, "njev"):
|
121 |
+
self.res.njev += minres.njev
|
122 |
+
if hasattr(minres, "nhev"):
|
123 |
+
self.res.nhev += minres.nhev
|
124 |
+
|
125 |
+
# accept the move based on self.accept_tests. If any test is False,
|
126 |
+
# then reject the step. If any test returns the special string
|
127 |
+
# 'force accept', then accept the step regardless. This can be used
|
128 |
+
# to forcefully escape from a local minimum if normal basin hopping
|
129 |
+
# steps are not sufficient.
|
130 |
+
accept = True
|
131 |
+
for test in self.accept_tests:
|
132 |
+
if inspect.signature(test) == _new_accept_test_signature:
|
133 |
+
testres = test(res_new=minres, res_old=self.incumbent_minres)
|
134 |
+
else:
|
135 |
+
testres = test(f_new=energy_after_quench, x_new=x_after_quench,
|
136 |
+
f_old=self.energy, x_old=self.x)
|
137 |
+
|
138 |
+
if testres == 'force accept':
|
139 |
+
accept = True
|
140 |
+
break
|
141 |
+
elif testres is None:
|
142 |
+
raise ValueError("accept_tests must return True, False, or "
|
143 |
+
"'force accept'")
|
144 |
+
elif not testres:
|
145 |
+
accept = False
|
146 |
+
|
147 |
+
# Report the result of the acceptance test to the take step class.
|
148 |
+
# This is for adaptive step taking
|
149 |
+
if hasattr(self.step_taking, "report"):
|
150 |
+
self.step_taking.report(accept, f_new=energy_after_quench,
|
151 |
+
x_new=x_after_quench, f_old=self.energy,
|
152 |
+
x_old=self.x)
|
153 |
+
|
154 |
+
return accept, minres
|
155 |
+
|
156 |
+
def one_cycle(self):
|
157 |
+
"""Do one cycle of the basinhopping algorithm
|
158 |
+
"""
|
159 |
+
self.nstep += 1
|
160 |
+
new_global_min = False
|
161 |
+
|
162 |
+
accept, minres = self._monte_carlo_step()
|
163 |
+
|
164 |
+
if accept:
|
165 |
+
self.energy = minres.fun
|
166 |
+
self.x = np.copy(minres.x)
|
167 |
+
self.incumbent_minres = minres # best minimize result found so far
|
168 |
+
new_global_min = self.storage.update(minres)
|
169 |
+
|
170 |
+
# print some information
|
171 |
+
if self.disp:
|
172 |
+
self.print_report(minres.fun, accept)
|
173 |
+
if new_global_min:
|
174 |
+
print("found new global minimum on step %d with function"
|
175 |
+
" value %g" % (self.nstep, self.energy))
|
176 |
+
|
177 |
+
# save some variables as BasinHoppingRunner attributes
|
178 |
+
self.xtrial = minres.x
|
179 |
+
self.energy_trial = minres.fun
|
180 |
+
self.accept = accept
|
181 |
+
|
182 |
+
return new_global_min
|
183 |
+
|
184 |
+
def print_report(self, energy_trial, accept):
|
185 |
+
"""print a status update"""
|
186 |
+
minres = self.storage.get_lowest()
|
187 |
+
print("basinhopping step %d: f %g trial_f %g accepted %d "
|
188 |
+
" lowest_f %g" % (self.nstep, self.energy, energy_trial,
|
189 |
+
accept, minres.fun))
|
190 |
+
|
191 |
+
|
192 |
+
class AdaptiveStepsize:
|
193 |
+
"""
|
194 |
+
Class to implement adaptive stepsize.
|
195 |
+
|
196 |
+
This class wraps the step taking class and modifies the stepsize to
|
197 |
+
ensure the true acceptance rate is as close as possible to the target.
|
198 |
+
|
199 |
+
Parameters
|
200 |
+
----------
|
201 |
+
takestep : callable
|
202 |
+
The step taking routine. Must contain modifiable attribute
|
203 |
+
takestep.stepsize
|
204 |
+
accept_rate : float, optional
|
205 |
+
The target step acceptance rate
|
206 |
+
interval : int, optional
|
207 |
+
Interval for how often to update the stepsize
|
208 |
+
factor : float, optional
|
209 |
+
The step size is multiplied or divided by this factor upon each
|
210 |
+
update.
|
211 |
+
verbose : bool, optional
|
212 |
+
Print information about each update
|
213 |
+
|
214 |
+
"""
|
215 |
+
def __init__(self, takestep, accept_rate=0.5, interval=50, factor=0.9,
|
216 |
+
verbose=True):
|
217 |
+
self.takestep = takestep
|
218 |
+
self.target_accept_rate = accept_rate
|
219 |
+
self.interval = interval
|
220 |
+
self.factor = factor
|
221 |
+
self.verbose = verbose
|
222 |
+
|
223 |
+
self.nstep = 0
|
224 |
+
self.nstep_tot = 0
|
225 |
+
self.naccept = 0
|
226 |
+
|
227 |
+
def __call__(self, x):
|
228 |
+
return self.take_step(x)
|
229 |
+
|
230 |
+
def _adjust_step_size(self):
|
231 |
+
old_stepsize = self.takestep.stepsize
|
232 |
+
accept_rate = float(self.naccept) / self.nstep
|
233 |
+
if accept_rate > self.target_accept_rate:
|
234 |
+
# We're accepting too many steps. This generally means we're
|
235 |
+
# trapped in a basin. Take bigger steps.
|
236 |
+
self.takestep.stepsize /= self.factor
|
237 |
+
else:
|
238 |
+
# We're not accepting enough steps. Take smaller steps.
|
239 |
+
self.takestep.stepsize *= self.factor
|
240 |
+
if self.verbose:
|
241 |
+
print("adaptive stepsize: acceptance rate {:f} target {:f} new "
|
242 |
+
"stepsize {:g} old stepsize {:g}".format(accept_rate,
|
243 |
+
self.target_accept_rate, self.takestep.stepsize,
|
244 |
+
old_stepsize))
|
245 |
+
|
246 |
+
def take_step(self, x):
|
247 |
+
self.nstep += 1
|
248 |
+
self.nstep_tot += 1
|
249 |
+
if self.nstep % self.interval == 0:
|
250 |
+
self._adjust_step_size()
|
251 |
+
return self.takestep(x)
|
252 |
+
|
253 |
+
def report(self, accept, **kwargs):
|
254 |
+
"called by basinhopping to report the result of the step"
|
255 |
+
if accept:
|
256 |
+
self.naccept += 1
|
257 |
+
|
258 |
+
|
259 |
+
class RandomDisplacement:
|
260 |
+
"""Add a random displacement of maximum size `stepsize` to each coordinate.
|
261 |
+
|
262 |
+
Calling this updates `x` in-place.
|
263 |
+
|
264 |
+
Parameters
|
265 |
+
----------
|
266 |
+
stepsize : float, optional
|
267 |
+
Maximum stepsize in any dimension
|
268 |
+
random_gen : {None, int, `numpy.random.Generator`,
|
269 |
+
`numpy.random.RandomState`}, optional
|
270 |
+
|
271 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
272 |
+
singleton is used.
|
273 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
274 |
+
seeded with `seed`.
|
275 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
276 |
+
that instance is used.
|
277 |
+
|
278 |
+
"""
|
279 |
+
|
280 |
+
def __init__(self, stepsize=0.5, random_gen=None):
|
281 |
+
self.stepsize = stepsize
|
282 |
+
self.random_gen = check_random_state(random_gen)
|
283 |
+
|
284 |
+
def __call__(self, x):
|
285 |
+
x += self.random_gen.uniform(-self.stepsize, self.stepsize,
|
286 |
+
np.shape(x))
|
287 |
+
return x
|
288 |
+
|
289 |
+
|
290 |
+
class MinimizerWrapper:
|
291 |
+
"""
|
292 |
+
wrap a minimizer function as a minimizer class
|
293 |
+
"""
|
294 |
+
def __init__(self, minimizer, func=None, **kwargs):
|
295 |
+
self.minimizer = minimizer
|
296 |
+
self.func = func
|
297 |
+
self.kwargs = kwargs
|
298 |
+
|
299 |
+
def __call__(self, x0):
|
300 |
+
if self.func is None:
|
301 |
+
return self.minimizer(x0, **self.kwargs)
|
302 |
+
else:
|
303 |
+
return self.minimizer(self.func, x0, **self.kwargs)
|
304 |
+
|
305 |
+
|
306 |
+
class Metropolis:
|
307 |
+
"""Metropolis acceptance criterion.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
----------
|
311 |
+
T : float
|
312 |
+
The "temperature" parameter for the accept or reject criterion.
|
313 |
+
random_gen : {None, int, `numpy.random.Generator`,
|
314 |
+
`numpy.random.RandomState`}, optional
|
315 |
+
|
316 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
317 |
+
singleton is used.
|
318 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
319 |
+
seeded with `seed`.
|
320 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
321 |
+
that instance is used.
|
322 |
+
Random number generator used for acceptance test.
|
323 |
+
|
324 |
+
"""
|
325 |
+
|
326 |
+
def __init__(self, T, random_gen=None):
|
327 |
+
# Avoid ZeroDivisionError since "MBH can be regarded as a special case
|
328 |
+
# of the BH framework with the Metropolis criterion, where temperature
|
329 |
+
# T = 0." (Reject all steps that increase energy.)
|
330 |
+
self.beta = 1.0 / T if T != 0 else float('inf')
|
331 |
+
self.random_gen = check_random_state(random_gen)
|
332 |
+
|
333 |
+
def accept_reject(self, res_new, res_old):
|
334 |
+
"""
|
335 |
+
Assuming the local search underlying res_new was successful:
|
336 |
+
If new energy is lower than old, it will always be accepted.
|
337 |
+
If new is higher than old, there is a chance it will be accepted,
|
338 |
+
less likely for larger differences.
|
339 |
+
"""
|
340 |
+
with np.errstate(invalid='ignore'):
|
341 |
+
# The energy values being fed to Metropolis are 1-length arrays, and if
|
342 |
+
# they are equal, their difference is 0, which gets multiplied by beta,
|
343 |
+
# which is inf, and array([0]) * float('inf') causes
|
344 |
+
#
|
345 |
+
# RuntimeWarning: invalid value encountered in multiply
|
346 |
+
#
|
347 |
+
# Ignore this warning so when the algorithm is on a flat plane, it always
|
348 |
+
# accepts the step, to try to move off the plane.
|
349 |
+
prod = -(res_new.fun - res_old.fun) * self.beta
|
350 |
+
w = math.exp(min(0, prod))
|
351 |
+
|
352 |
+
rand = self.random_gen.uniform()
|
353 |
+
return w >= rand and (res_new.success or not res_old.success)
|
354 |
+
|
355 |
+
def __call__(self, *, res_new, res_old):
|
356 |
+
"""
|
357 |
+
f_new and f_old are mandatory in kwargs
|
358 |
+
"""
|
359 |
+
return bool(self.accept_reject(res_new, res_old))
|
360 |
+
|
361 |
+
|
362 |
+
def basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5,
|
363 |
+
minimizer_kwargs=None, take_step=None, accept_test=None,
|
364 |
+
callback=None, interval=50, disp=False, niter_success=None,
|
365 |
+
seed=None, *, target_accept_rate=0.5, stepwise_factor=0.9):
|
366 |
+
"""Find the global minimum of a function using the basin-hopping algorithm.
|
367 |
+
|
368 |
+
Basin-hopping is a two-phase method that combines a global stepping
|
369 |
+
algorithm with local minimization at each step. Designed to mimic
|
370 |
+
the natural process of energy minimization of clusters of atoms, it works
|
371 |
+
well for similar problems with "funnel-like, but rugged" energy landscapes
|
372 |
+
[5]_.
|
373 |
+
|
374 |
+
As the step-taking, step acceptance, and minimization methods are all
|
375 |
+
customizable, this function can also be used to implement other two-phase
|
376 |
+
methods.
|
377 |
+
|
378 |
+
Parameters
|
379 |
+
----------
|
380 |
+
func : callable ``f(x, *args)``
|
381 |
+
Function to be optimized. ``args`` can be passed as an optional item
|
382 |
+
in the dict `minimizer_kwargs`
|
383 |
+
x0 : array_like
|
384 |
+
Initial guess.
|
385 |
+
niter : integer, optional
|
386 |
+
The number of basin-hopping iterations. There will be a total of
|
387 |
+
``niter + 1`` runs of the local minimizer.
|
388 |
+
T : float, optional
|
389 |
+
The "temperature" parameter for the acceptance or rejection criterion.
|
390 |
+
Higher "temperatures" mean that larger jumps in function value will be
|
391 |
+
accepted. For best results `T` should be comparable to the
|
392 |
+
separation (in function value) between local minima.
|
393 |
+
stepsize : float, optional
|
394 |
+
Maximum step size for use in the random displacement.
|
395 |
+
minimizer_kwargs : dict, optional
|
396 |
+
Extra keyword arguments to be passed to the local minimizer
|
397 |
+
`scipy.optimize.minimize` Some important options could be:
|
398 |
+
|
399 |
+
method : str
|
400 |
+
The minimization method (e.g. ``"L-BFGS-B"``)
|
401 |
+
args : tuple
|
402 |
+
Extra arguments passed to the objective function (`func`) and
|
403 |
+
its derivatives (Jacobian, Hessian).
|
404 |
+
|
405 |
+
take_step : callable ``take_step(x)``, optional
|
406 |
+
Replace the default step-taking routine with this routine. The default
|
407 |
+
step-taking routine is a random displacement of the coordinates, but
|
408 |
+
other step-taking algorithms may be better for some systems.
|
409 |
+
`take_step` can optionally have the attribute ``take_step.stepsize``.
|
410 |
+
If this attribute exists, then `basinhopping` will adjust
|
411 |
+
``take_step.stepsize`` in order to try to optimize the global minimum
|
412 |
+
search.
|
413 |
+
accept_test : callable, ``accept_test(f_new=f_new, x_new=x_new, f_old=fold, x_old=x_old)``, optional
|
414 |
+
Define a test which will be used to judge whether to accept the
|
415 |
+
step. This will be used in addition to the Metropolis test based on
|
416 |
+
"temperature" `T`. The acceptable return values are True,
|
417 |
+
False, or ``"force accept"``. If any of the tests return False
|
418 |
+
then the step is rejected. If the latter, then this will override any
|
419 |
+
other tests in order to accept the step. This can be used, for example,
|
420 |
+
to forcefully escape from a local minimum that `basinhopping` is
|
421 |
+
trapped in.
|
422 |
+
callback : callable, ``callback(x, f, accept)``, optional
|
423 |
+
A callback function which will be called for all minima found. ``x``
|
424 |
+
and ``f`` are the coordinates and function value of the trial minimum,
|
425 |
+
and ``accept`` is whether that minimum was accepted. This can
|
426 |
+
be used, for example, to save the lowest N minima found. Also,
|
427 |
+
`callback` can be used to specify a user defined stop criterion by
|
428 |
+
optionally returning True to stop the `basinhopping` routine.
|
429 |
+
interval : integer, optional
|
430 |
+
interval for how often to update the `stepsize`
|
431 |
+
disp : bool, optional
|
432 |
+
Set to True to print status messages
|
433 |
+
niter_success : integer, optional
|
434 |
+
Stop the run if the global minimum candidate remains the same for this
|
435 |
+
number of iterations.
|
436 |
+
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
437 |
+
|
438 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
439 |
+
singleton is used.
|
440 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
441 |
+
seeded with `seed`.
|
442 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
443 |
+
that instance is used.
|
444 |
+
Specify `seed` for repeatable minimizations. The random numbers
|
445 |
+
generated with this seed only affect the default Metropolis
|
446 |
+
`accept_test` and the default `take_step`. If you supply your own
|
447 |
+
`take_step` and `accept_test`, and these functions use random
|
448 |
+
number generation, then those functions are responsible for the state
|
449 |
+
of their random number generator.
|
450 |
+
target_accept_rate : float, optional
|
451 |
+
The target acceptance rate that is used to adjust the `stepsize`.
|
452 |
+
If the current acceptance rate is greater than the target,
|
453 |
+
then the `stepsize` is increased. Otherwise, it is decreased.
|
454 |
+
Range is (0, 1). Default is 0.5.
|
455 |
+
|
456 |
+
.. versionadded:: 1.8.0
|
457 |
+
|
458 |
+
stepwise_factor : float, optional
|
459 |
+
The `stepsize` is multiplied or divided by this stepwise factor upon
|
460 |
+
each update. Range is (0, 1). Default is 0.9.
|
461 |
+
|
462 |
+
.. versionadded:: 1.8.0
|
463 |
+
|
464 |
+
Returns
|
465 |
+
-------
|
466 |
+
res : OptimizeResult
|
467 |
+
The optimization result represented as a `OptimizeResult` object.
|
468 |
+
Important attributes are: ``x`` the solution array, ``fun`` the value
|
469 |
+
of the function at the solution, and ``message`` which describes the
|
470 |
+
cause of the termination. The ``OptimizeResult`` object returned by the
|
471 |
+
selected minimizer at the lowest minimum is also contained within this
|
472 |
+
object and can be accessed through the ``lowest_optimization_result``
|
473 |
+
attribute. See `OptimizeResult` for a description of other attributes.
|
474 |
+
|
475 |
+
See Also
|
476 |
+
--------
|
477 |
+
minimize :
|
478 |
+
The local minimization function called once for each basinhopping step.
|
479 |
+
`minimizer_kwargs` is passed to this routine.
|
480 |
+
|
481 |
+
Notes
|
482 |
+
-----
|
483 |
+
Basin-hopping is a stochastic algorithm which attempts to find the global
|
484 |
+
minimum of a smooth scalar function of one or more variables [1]_ [2]_ [3]_
|
485 |
+
[4]_. The algorithm in its current form was described by David Wales and
|
486 |
+
Jonathan Doye [2]_ http://www-wales.ch.cam.ac.uk/.
|
487 |
+
|
488 |
+
The algorithm is iterative with each cycle composed of the following
|
489 |
+
features
|
490 |
+
|
491 |
+
1) random perturbation of the coordinates
|
492 |
+
|
493 |
+
2) local minimization
|
494 |
+
|
495 |
+
3) accept or reject the new coordinates based on the minimized function
|
496 |
+
value
|
497 |
+
|
498 |
+
The acceptance test used here is the Metropolis criterion of standard Monte
|
499 |
+
Carlo algorithms, although there are many other possibilities [3]_.
|
500 |
+
|
501 |
+
This global minimization method has been shown to be extremely efficient
|
502 |
+
for a wide variety of problems in physics and chemistry. It is
|
503 |
+
particularly useful when the function has many minima separated by large
|
504 |
+
barriers. See the `Cambridge Cluster Database
|
505 |
+
<https://www-wales.ch.cam.ac.uk/CCD.html>`_ for databases of molecular
|
506 |
+
systems that have been optimized primarily using basin-hopping. This
|
507 |
+
database includes minimization problems exceeding 300 degrees of freedom.
|
508 |
+
|
509 |
+
See the free software program `GMIN <https://www-wales.ch.cam.ac.uk/GMIN>`_
|
510 |
+
for a Fortran implementation of basin-hopping. This implementation has many
|
511 |
+
variations of the procedure described above, including more
|
512 |
+
advanced step taking algorithms and alternate acceptance criterion.
|
513 |
+
|
514 |
+
For stochastic global optimization there is no way to determine if the true
|
515 |
+
global minimum has actually been found. Instead, as a consistency check,
|
516 |
+
the algorithm can be run from a number of different random starting points
|
517 |
+
to ensure the lowest minimum found in each example has converged to the
|
518 |
+
global minimum. For this reason, `basinhopping` will by default simply
|
519 |
+
run for the number of iterations `niter` and return the lowest minimum
|
520 |
+
found. It is left to the user to ensure that this is in fact the global
|
521 |
+
minimum.
|
522 |
+
|
523 |
+
Choosing `stepsize`: This is a crucial parameter in `basinhopping` and
|
524 |
+
depends on the problem being solved. The step is chosen uniformly in the
|
525 |
+
region from x0-stepsize to x0+stepsize, in each dimension. Ideally, it
|
526 |
+
should be comparable to the typical separation (in argument values) between
|
527 |
+
local minima of the function being optimized. `basinhopping` will, by
|
528 |
+
default, adjust `stepsize` to find an optimal value, but this may take
|
529 |
+
many iterations. You will get quicker results if you set a sensible
|
530 |
+
initial value for ``stepsize``.
|
531 |
+
|
532 |
+
Choosing `T`: The parameter `T` is the "temperature" used in the
|
533 |
+
Metropolis criterion. Basinhopping steps are always accepted if
|
534 |
+
``func(xnew) < func(xold)``. Otherwise, they are accepted with
|
535 |
+
probability::
|
536 |
+
|
537 |
+
exp( -(func(xnew) - func(xold)) / T )
|
538 |
+
|
539 |
+
So, for best results, `T` should to be comparable to the typical
|
540 |
+
difference (in function values) between local minima. (The height of
|
541 |
+
"walls" between local minima is irrelevant.)
|
542 |
+
|
543 |
+
If `T` is 0, the algorithm becomes Monotonic Basin-Hopping, in which all
|
544 |
+
steps that increase energy are rejected.
|
545 |
+
|
546 |
+
.. versionadded:: 0.12.0
|
547 |
+
|
548 |
+
References
|
549 |
+
----------
|
550 |
+
.. [1] Wales, David J. 2003, Energy Landscapes, Cambridge University Press,
|
551 |
+
Cambridge, UK.
|
552 |
+
.. [2] Wales, D J, and Doye J P K, Global Optimization by Basin-Hopping and
|
553 |
+
the Lowest Energy Structures of Lennard-Jones Clusters Containing up to
|
554 |
+
110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111.
|
555 |
+
.. [3] Li, Z. and Scheraga, H. A., Monte Carlo-minimization approach to the
|
556 |
+
multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. USA,
|
557 |
+
1987, 84, 6611.
|
558 |
+
.. [4] Wales, D. J. and Scheraga, H. A., Global optimization of clusters,
|
559 |
+
crystals, and biomolecules, Science, 1999, 285, 1368.
|
560 |
+
.. [5] Olson, B., Hashmi, I., Molloy, K., and Shehu1, A., Basin Hopping as
|
561 |
+
a General and Versatile Optimization Framework for the Characterization
|
562 |
+
of Biological Macromolecules, Advances in Artificial Intelligence,
|
563 |
+
Volume 2012 (2012), Article ID 674832, :doi:`10.1155/2012/674832`
|
564 |
+
|
565 |
+
Examples
|
566 |
+
--------
|
567 |
+
The following example is a 1-D minimization problem, with many
|
568 |
+
local minima superimposed on a parabola.
|
569 |
+
|
570 |
+
>>> import numpy as np
|
571 |
+
>>> from scipy.optimize import basinhopping
|
572 |
+
>>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x
|
573 |
+
>>> x0 = [1.]
|
574 |
+
|
575 |
+
Basinhopping, internally, uses a local minimization algorithm. We will use
|
576 |
+
the parameter `minimizer_kwargs` to tell basinhopping which algorithm to
|
577 |
+
use and how to set up that minimizer. This parameter will be passed to
|
578 |
+
`scipy.optimize.minimize`.
|
579 |
+
|
580 |
+
>>> minimizer_kwargs = {"method": "BFGS"}
|
581 |
+
>>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs,
|
582 |
+
... niter=200)
|
583 |
+
>>> print("global minimum: x = %.4f, f(x) = %.4f" % (ret.x, ret.fun))
|
584 |
+
global minimum: x = -0.1951, f(x) = -1.0009
|
585 |
+
|
586 |
+
Next consider a 2-D minimization problem. Also, this time, we
|
587 |
+
will use gradient information to significantly speed up the search.
|
588 |
+
|
589 |
+
>>> def func2d(x):
|
590 |
+
... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] +
|
591 |
+
... 0.2) * x[0]
|
592 |
+
... df = np.zeros(2)
|
593 |
+
... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
|
594 |
+
... df[1] = 2. * x[1] + 0.2
|
595 |
+
... return f, df
|
596 |
+
|
597 |
+
We'll also use a different local minimization algorithm. Also, we must tell
|
598 |
+
the minimizer that our function returns both energy and gradient (Jacobian).
|
599 |
+
|
600 |
+
>>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
|
601 |
+
>>> x0 = [1.0, 1.0]
|
602 |
+
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
|
603 |
+
... niter=200)
|
604 |
+
>>> print("global minimum: x = [%.4f, %.4f], f(x) = %.4f" % (ret.x[0],
|
605 |
+
... ret.x[1],
|
606 |
+
... ret.fun))
|
607 |
+
global minimum: x = [-0.1951, -0.1000], f(x) = -1.0109
|
608 |
+
|
609 |
+
Here is an example using a custom step-taking routine. Imagine you want
|
610 |
+
the first coordinate to take larger steps than the rest of the coordinates.
|
611 |
+
This can be implemented like so:
|
612 |
+
|
613 |
+
>>> class MyTakeStep:
|
614 |
+
... def __init__(self, stepsize=0.5):
|
615 |
+
... self.stepsize = stepsize
|
616 |
+
... self.rng = np.random.default_rng()
|
617 |
+
... def __call__(self, x):
|
618 |
+
... s = self.stepsize
|
619 |
+
... x[0] += self.rng.uniform(-2.*s, 2.*s)
|
620 |
+
... x[1:] += self.rng.uniform(-s, s, x[1:].shape)
|
621 |
+
... return x
|
622 |
+
|
623 |
+
Since ``MyTakeStep.stepsize`` exists basinhopping will adjust the magnitude
|
624 |
+
of `stepsize` to optimize the search. We'll use the same 2-D function as
|
625 |
+
before
|
626 |
+
|
627 |
+
>>> mytakestep = MyTakeStep()
|
628 |
+
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
|
629 |
+
... niter=200, take_step=mytakestep)
|
630 |
+
>>> print("global minimum: x = [%.4f, %.4f], f(x) = %.4f" % (ret.x[0],
|
631 |
+
... ret.x[1],
|
632 |
+
... ret.fun))
|
633 |
+
global minimum: x = [-0.1951, -0.1000], f(x) = -1.0109
|
634 |
+
|
635 |
+
Now, let's do an example using a custom callback function which prints the
|
636 |
+
value of every minimum found
|
637 |
+
|
638 |
+
>>> def print_fun(x, f, accepted):
|
639 |
+
... print("at minimum %.4f accepted %d" % (f, int(accepted)))
|
640 |
+
|
641 |
+
We'll run it for only 10 basinhopping steps this time.
|
642 |
+
|
643 |
+
>>> rng = np.random.default_rng()
|
644 |
+
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
|
645 |
+
... niter=10, callback=print_fun, seed=rng)
|
646 |
+
at minimum 0.4159 accepted 1
|
647 |
+
at minimum -0.4317 accepted 1
|
648 |
+
at minimum -1.0109 accepted 1
|
649 |
+
at minimum -0.9073 accepted 1
|
650 |
+
at minimum -0.4317 accepted 0
|
651 |
+
at minimum -0.1021 accepted 1
|
652 |
+
at minimum -0.7425 accepted 1
|
653 |
+
at minimum -0.9073 accepted 1
|
654 |
+
at minimum -0.4317 accepted 0
|
655 |
+
at minimum -0.7425 accepted 1
|
656 |
+
at minimum -0.9073 accepted 1
|
657 |
+
|
658 |
+
The minimum at -1.0109 is actually the global minimum, found already on the
|
659 |
+
8th iteration.
|
660 |
+
|
661 |
+
""" # numpy/numpydoc#87 # noqa: E501
|
662 |
+
if target_accept_rate <= 0. or target_accept_rate >= 1.:
|
663 |
+
raise ValueError('target_accept_rate has to be in range (0, 1)')
|
664 |
+
if stepwise_factor <= 0. or stepwise_factor >= 1.:
|
665 |
+
raise ValueError('stepwise_factor has to be in range (0, 1)')
|
666 |
+
|
667 |
+
x0 = np.array(x0)
|
668 |
+
|
669 |
+
# set up the np.random generator
|
670 |
+
rng = check_random_state(seed)
|
671 |
+
|
672 |
+
# set up minimizer
|
673 |
+
if minimizer_kwargs is None:
|
674 |
+
minimizer_kwargs = dict()
|
675 |
+
wrapped_minimizer = MinimizerWrapper(scipy.optimize.minimize, func,
|
676 |
+
**minimizer_kwargs)
|
677 |
+
|
678 |
+
# set up step-taking algorithm
|
679 |
+
if take_step is not None:
|
680 |
+
if not callable(take_step):
|
681 |
+
raise TypeError("take_step must be callable")
|
682 |
+
# if take_step.stepsize exists then use AdaptiveStepsize to control
|
683 |
+
# take_step.stepsize
|
684 |
+
if hasattr(take_step, "stepsize"):
|
685 |
+
take_step_wrapped = AdaptiveStepsize(
|
686 |
+
take_step, interval=interval,
|
687 |
+
accept_rate=target_accept_rate,
|
688 |
+
factor=stepwise_factor,
|
689 |
+
verbose=disp)
|
690 |
+
else:
|
691 |
+
take_step_wrapped = take_step
|
692 |
+
else:
|
693 |
+
# use default
|
694 |
+
displace = RandomDisplacement(stepsize=stepsize, random_gen=rng)
|
695 |
+
take_step_wrapped = AdaptiveStepsize(displace, interval=interval,
|
696 |
+
accept_rate=target_accept_rate,
|
697 |
+
factor=stepwise_factor,
|
698 |
+
verbose=disp)
|
699 |
+
|
700 |
+
# set up accept tests
|
701 |
+
accept_tests = []
|
702 |
+
if accept_test is not None:
|
703 |
+
if not callable(accept_test):
|
704 |
+
raise TypeError("accept_test must be callable")
|
705 |
+
accept_tests = [accept_test]
|
706 |
+
|
707 |
+
# use default
|
708 |
+
metropolis = Metropolis(T, random_gen=rng)
|
709 |
+
accept_tests.append(metropolis)
|
710 |
+
|
711 |
+
if niter_success is None:
|
712 |
+
niter_success = niter + 2
|
713 |
+
|
714 |
+
bh = BasinHoppingRunner(x0, wrapped_minimizer, take_step_wrapped,
|
715 |
+
accept_tests, disp=disp)
|
716 |
+
|
717 |
+
# The wrapped minimizer is called once during construction of
|
718 |
+
# BasinHoppingRunner, so run the callback
|
719 |
+
if callable(callback):
|
720 |
+
callback(bh.storage.minres.x, bh.storage.minres.fun, True)
|
721 |
+
|
722 |
+
# start main iteration loop
|
723 |
+
count, i = 0, 0
|
724 |
+
message = ["requested number of basinhopping iterations completed"
|
725 |
+
" successfully"]
|
726 |
+
for i in range(niter):
|
727 |
+
new_global_min = bh.one_cycle()
|
728 |
+
|
729 |
+
if callable(callback):
|
730 |
+
# should we pass a copy of x?
|
731 |
+
val = callback(bh.xtrial, bh.energy_trial, bh.accept)
|
732 |
+
if val is not None:
|
733 |
+
if val:
|
734 |
+
message = ["callback function requested stop early by"
|
735 |
+
"returning True"]
|
736 |
+
break
|
737 |
+
|
738 |
+
count += 1
|
739 |
+
if new_global_min:
|
740 |
+
count = 0
|
741 |
+
elif count > niter_success:
|
742 |
+
message = ["success condition satisfied"]
|
743 |
+
break
|
744 |
+
|
745 |
+
# prepare return object
|
746 |
+
res = bh.res
|
747 |
+
res.lowest_optimization_result = bh.storage.get_lowest()
|
748 |
+
res.x = np.copy(res.lowest_optimization_result.x)
|
749 |
+
res.fun = res.lowest_optimization_result.fun
|
750 |
+
res.message = message
|
751 |
+
res.nit = i + 1
|
752 |
+
res.success = res.lowest_optimization_result.success
|
753 |
+
return res
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/_dcsrch.py
ADDED
@@ -0,0 +1,728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
"""
|
4 |
+
# 2023 - ported from minpack2.dcsrch, dcstep (Fortran) to Python
|
5 |
+
c MINPACK-1 Project. June 1983.
|
6 |
+
c Argonne National Laboratory.
|
7 |
+
c Jorge J. More' and David J. Thuente.
|
8 |
+
c
|
9 |
+
c MINPACK-2 Project. November 1993.
|
10 |
+
c Argonne National Laboratory and University of Minnesota.
|
11 |
+
c Brett M. Averick, Richard G. Carter, and Jorge J. More'.
|
12 |
+
"""
|
13 |
+
|
14 |
+
# NOTE this file was linted by black on first commit, and can be kept that way.
|
15 |
+
|
16 |
+
|
17 |
+
class DCSRCH:
|
18 |
+
"""
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
phi : callable phi(alpha)
|
22 |
+
Function at point `alpha`
|
23 |
+
derphi : callable phi'(alpha)
|
24 |
+
Objective function derivative. Returns a scalar.
|
25 |
+
ftol : float
|
26 |
+
A nonnegative tolerance for the sufficient decrease condition.
|
27 |
+
gtol : float
|
28 |
+
A nonnegative tolerance for the curvature condition.
|
29 |
+
xtol : float
|
30 |
+
A nonnegative relative tolerance for an acceptable step. The
|
31 |
+
subroutine exits with a warning if the relative difference between
|
32 |
+
sty and stx is less than xtol.
|
33 |
+
stpmin : float
|
34 |
+
A nonnegative lower bound for the step.
|
35 |
+
stpmax :
|
36 |
+
A nonnegative upper bound for the step.
|
37 |
+
|
38 |
+
Notes
|
39 |
+
-----
|
40 |
+
|
41 |
+
This subroutine finds a step that satisfies a sufficient
|
42 |
+
decrease condition and a curvature condition.
|
43 |
+
|
44 |
+
Each call of the subroutine updates an interval with
|
45 |
+
endpoints stx and sty. The interval is initially chosen
|
46 |
+
so that it contains a minimizer of the modified function
|
47 |
+
|
48 |
+
psi(stp) = f(stp) - f(0) - ftol*stp*f'(0).
|
49 |
+
|
50 |
+
If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
|
51 |
+
interval is chosen so that it contains a minimizer of f.
|
52 |
+
|
53 |
+
The algorithm is designed to find a step that satisfies
|
54 |
+
the sufficient decrease condition
|
55 |
+
|
56 |
+
f(stp) <= f(0) + ftol*stp*f'(0),
|
57 |
+
|
58 |
+
and the curvature condition
|
59 |
+
|
60 |
+
abs(f'(stp)) <= gtol*abs(f'(0)).
|
61 |
+
|
62 |
+
If ftol is less than gtol and if, for example, the function
|
63 |
+
is bounded below, then there is always a step which satisfies
|
64 |
+
both conditions.
|
65 |
+
|
66 |
+
If no step can be found that satisfies both conditions, then
|
67 |
+
the algorithm stops with a warning. In this case stp only
|
68 |
+
satisfies the sufficient decrease condition.
|
69 |
+
|
70 |
+
A typical invocation of dcsrch has the following outline:
|
71 |
+
|
72 |
+
Evaluate the function at stp = 0.0d0; store in f.
|
73 |
+
Evaluate the gradient at stp = 0.0d0; store in g.
|
74 |
+
Choose a starting step stp.
|
75 |
+
|
76 |
+
task = 'START'
|
77 |
+
10 continue
|
78 |
+
call dcsrch(stp,f,g,ftol,gtol,xtol,task,stpmin,stpmax,
|
79 |
+
isave,dsave)
|
80 |
+
if (task .eq. 'FG') then
|
81 |
+
Evaluate the function and the gradient at stp
|
82 |
+
go to 10
|
83 |
+
end if
|
84 |
+
|
85 |
+
NOTE: The user must not alter work arrays between calls.
|
86 |
+
|
87 |
+
The subroutine statement is
|
88 |
+
|
89 |
+
subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
|
90 |
+
task,isave,dsave)
|
91 |
+
where
|
92 |
+
|
93 |
+
stp is a double precision variable.
|
94 |
+
On entry stp is the current estimate of a satisfactory
|
95 |
+
step. On initial entry, a positive initial estimate
|
96 |
+
must be provided.
|
97 |
+
On exit stp is the current estimate of a satisfactory step
|
98 |
+
if task = 'FG'. If task = 'CONV' then stp satisfies
|
99 |
+
the sufficient decrease and curvature condition.
|
100 |
+
|
101 |
+
f is a double precision variable.
|
102 |
+
On initial entry f is the value of the function at 0.
|
103 |
+
On subsequent entries f is the value of the
|
104 |
+
function at stp.
|
105 |
+
On exit f is the value of the function at stp.
|
106 |
+
|
107 |
+
g is a double precision variable.
|
108 |
+
On initial entry g is the derivative of the function at 0.
|
109 |
+
On subsequent entries g is the derivative of the
|
110 |
+
function at stp.
|
111 |
+
On exit g is the derivative of the function at stp.
|
112 |
+
|
113 |
+
ftol is a double precision variable.
|
114 |
+
On entry ftol specifies a nonnegative tolerance for the
|
115 |
+
sufficient decrease condition.
|
116 |
+
On exit ftol is unchanged.
|
117 |
+
|
118 |
+
gtol is a double precision variable.
|
119 |
+
On entry gtol specifies a nonnegative tolerance for the
|
120 |
+
curvature condition.
|
121 |
+
On exit gtol is unchanged.
|
122 |
+
|
123 |
+
xtol is a double precision variable.
|
124 |
+
On entry xtol specifies a nonnegative relative tolerance
|
125 |
+
for an acceptable step. The subroutine exits with a
|
126 |
+
warning if the relative difference between sty and stx
|
127 |
+
is less than xtol.
|
128 |
+
|
129 |
+
On exit xtol is unchanged.
|
130 |
+
|
131 |
+
task is a character variable of length at least 60.
|
132 |
+
On initial entry task must be set to 'START'.
|
133 |
+
On exit task indicates the required action:
|
134 |
+
|
135 |
+
If task(1:2) = 'FG' then evaluate the function and
|
136 |
+
derivative at stp and call dcsrch again.
|
137 |
+
|
138 |
+
If task(1:4) = 'CONV' then the search is successful.
|
139 |
+
|
140 |
+
If task(1:4) = 'WARN' then the subroutine is not able
|
141 |
+
to satisfy the convergence conditions. The exit value of
|
142 |
+
stp contains the best point found during the search.
|
143 |
+
|
144 |
+
If task(1:5) = 'ERROR' then there is an error in the
|
145 |
+
input arguments.
|
146 |
+
|
147 |
+
On exit with convergence, a warning or an error, the
|
148 |
+
variable task contains additional information.
|
149 |
+
|
150 |
+
stpmin is a double precision variable.
|
151 |
+
On entry stpmin is a nonnegative lower bound for the step.
|
152 |
+
On exit stpmin is unchanged.
|
153 |
+
|
154 |
+
stpmax is a double precision variable.
|
155 |
+
On entry stpmax is a nonnegative upper bound for the step.
|
156 |
+
On exit stpmax is unchanged.
|
157 |
+
|
158 |
+
isave is an integer work array of dimension 2.
|
159 |
+
|
160 |
+
dsave is a double precision work array of dimension 13.
|
161 |
+
|
162 |
+
Subprograms called
|
163 |
+
|
164 |
+
MINPACK-2 ... dcstep
|
165 |
+
MINPACK-1 Project. June 1983.
|
166 |
+
Argonne National Laboratory.
|
167 |
+
Jorge J. More' and David J. Thuente.
|
168 |
+
|
169 |
+
MINPACK-2 Project. November 1993.
|
170 |
+
Argonne National Laboratory and University of Minnesota.
|
171 |
+
Brett M. Averick, Richard G. Carter, and Jorge J. More'.
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(self, phi, derphi, ftol, gtol, xtol, stpmin, stpmax):
|
175 |
+
self.stage = None
|
176 |
+
self.ginit = None
|
177 |
+
self.gtest = None
|
178 |
+
self.gx = None
|
179 |
+
self.gy = None
|
180 |
+
self.finit = None
|
181 |
+
self.fx = None
|
182 |
+
self.fy = None
|
183 |
+
self.stx = None
|
184 |
+
self.sty = None
|
185 |
+
self.stmin = None
|
186 |
+
self.stmax = None
|
187 |
+
self.width = None
|
188 |
+
self.width1 = None
|
189 |
+
|
190 |
+
# leave all assessment of tolerances/limits to the first call of
|
191 |
+
# this object
|
192 |
+
self.ftol = ftol
|
193 |
+
self.gtol = gtol
|
194 |
+
self.xtol = xtol
|
195 |
+
self.stpmin = stpmin
|
196 |
+
self.stpmax = stpmax
|
197 |
+
|
198 |
+
self.phi = phi
|
199 |
+
self.derphi = derphi
|
200 |
+
|
201 |
+
def __call__(self, alpha1, phi0=None, derphi0=None, maxiter=100):
|
202 |
+
"""
|
203 |
+
Parameters
|
204 |
+
----------
|
205 |
+
alpha1 : float
|
206 |
+
alpha1 is the current estimate of a satisfactory
|
207 |
+
step. A positive initial estimate must be provided.
|
208 |
+
phi0 : float
|
209 |
+
the value of `phi` at 0 (if known).
|
210 |
+
derphi0 : float
|
211 |
+
the derivative of `derphi` at 0 (if known).
|
212 |
+
maxiter : int
|
213 |
+
|
214 |
+
Returns
|
215 |
+
-------
|
216 |
+
alpha : float
|
217 |
+
Step size, or None if no suitable step was found.
|
218 |
+
phi : float
|
219 |
+
Value of `phi` at the new point `alpha`.
|
220 |
+
phi0 : float
|
221 |
+
Value of `phi` at `alpha=0`.
|
222 |
+
task : bytes
|
223 |
+
On exit task indicates status information.
|
224 |
+
|
225 |
+
If task[:4] == b'CONV' then the search is successful.
|
226 |
+
|
227 |
+
If task[:4] == b'WARN' then the subroutine is not able
|
228 |
+
to satisfy the convergence conditions. The exit value of
|
229 |
+
stp contains the best point found during the search.
|
230 |
+
|
231 |
+
If task[:5] == b'ERROR' then there is an error in the
|
232 |
+
input arguments.
|
233 |
+
"""
|
234 |
+
if phi0 is None:
|
235 |
+
phi0 = self.phi(0.0)
|
236 |
+
if derphi0 is None:
|
237 |
+
derphi0 = self.derphi(0.0)
|
238 |
+
|
239 |
+
phi1 = phi0
|
240 |
+
derphi1 = derphi0
|
241 |
+
|
242 |
+
task = b"START"
|
243 |
+
for i in range(maxiter):
|
244 |
+
stp, phi1, derphi1, task = self._iterate(
|
245 |
+
alpha1, phi1, derphi1, task
|
246 |
+
)
|
247 |
+
|
248 |
+
if not np.isfinite(stp):
|
249 |
+
task = b"WARN"
|
250 |
+
stp = None
|
251 |
+
break
|
252 |
+
|
253 |
+
if task[:2] == b"FG":
|
254 |
+
alpha1 = stp
|
255 |
+
phi1 = self.phi(stp)
|
256 |
+
derphi1 = self.derphi(stp)
|
257 |
+
else:
|
258 |
+
break
|
259 |
+
else:
|
260 |
+
# maxiter reached, the line search did not converge
|
261 |
+
stp = None
|
262 |
+
task = b"WARNING: dcsrch did not converge within max iterations"
|
263 |
+
|
264 |
+
if task[:5] == b"ERROR" or task[:4] == b"WARN":
|
265 |
+
stp = None # failed
|
266 |
+
|
267 |
+
return stp, phi1, phi0, task
|
268 |
+
|
269 |
+
def _iterate(self, stp, f, g, task):
|
270 |
+
"""
|
271 |
+
Parameters
|
272 |
+
----------
|
273 |
+
stp : float
|
274 |
+
The current estimate of a satisfactory step. On initial entry, a
|
275 |
+
positive initial estimate must be provided.
|
276 |
+
f : float
|
277 |
+
On first call f is the value of the function at 0. On subsequent
|
278 |
+
entries f should be the value of the function at stp.
|
279 |
+
g : float
|
280 |
+
On initial entry g is the derivative of the function at 0. On
|
281 |
+
subsequent entries g is the derivative of the function at stp.
|
282 |
+
task : bytes
|
283 |
+
On initial entry task must be set to 'START'.
|
284 |
+
|
285 |
+
On exit with convergence, a warning or an error, the
|
286 |
+
variable task contains additional information.
|
287 |
+
|
288 |
+
|
289 |
+
Returns
|
290 |
+
-------
|
291 |
+
stp, f, g, task: tuple
|
292 |
+
|
293 |
+
stp : float
|
294 |
+
the current estimate of a satisfactory step if task = 'FG'. If
|
295 |
+
task = 'CONV' then stp satisfies the sufficient decrease and
|
296 |
+
curvature condition.
|
297 |
+
f : float
|
298 |
+
the value of the function at stp.
|
299 |
+
g : float
|
300 |
+
the derivative of the function at stp.
|
301 |
+
task : bytes
|
302 |
+
On exit task indicates the required action:
|
303 |
+
|
304 |
+
If task(1:2) == b'FG' then evaluate the function and
|
305 |
+
derivative at stp and call dcsrch again.
|
306 |
+
|
307 |
+
If task(1:4) == b'CONV' then the search is successful.
|
308 |
+
|
309 |
+
If task(1:4) == b'WARN' then the subroutine is not able
|
310 |
+
to satisfy the convergence conditions. The exit value of
|
311 |
+
stp contains the best point found during the search.
|
312 |
+
|
313 |
+
If task(1:5) == b'ERROR' then there is an error in the
|
314 |
+
input arguments.
|
315 |
+
"""
|
316 |
+
p5 = 0.5
|
317 |
+
p66 = 0.66
|
318 |
+
xtrapl = 1.1
|
319 |
+
xtrapu = 4.0
|
320 |
+
|
321 |
+
if task[:5] == b"START":
|
322 |
+
if stp < self.stpmin:
|
323 |
+
task = b"ERROR: STP .LT. STPMIN"
|
324 |
+
if stp > self.stpmax:
|
325 |
+
task = b"ERROR: STP .GT. STPMAX"
|
326 |
+
if g >= 0:
|
327 |
+
task = b"ERROR: INITIAL G .GE. ZERO"
|
328 |
+
if self.ftol < 0:
|
329 |
+
task = b"ERROR: FTOL .LT. ZERO"
|
330 |
+
if self.gtol < 0:
|
331 |
+
task = b"ERROR: GTOL .LT. ZERO"
|
332 |
+
if self.xtol < 0:
|
333 |
+
task = b"ERROR: XTOL .LT. ZERO"
|
334 |
+
if self.stpmin < 0:
|
335 |
+
task = b"ERROR: STPMIN .LT. ZERO"
|
336 |
+
if self.stpmax < self.stpmin:
|
337 |
+
task = b"ERROR: STPMAX .LT. STPMIN"
|
338 |
+
|
339 |
+
if task[:5] == b"ERROR":
|
340 |
+
return stp, f, g, task
|
341 |
+
|
342 |
+
# Initialize local variables.
|
343 |
+
|
344 |
+
self.brackt = False
|
345 |
+
self.stage = 1
|
346 |
+
self.finit = f
|
347 |
+
self.ginit = g
|
348 |
+
self.gtest = self.ftol * self.ginit
|
349 |
+
self.width = self.stpmax - self.stpmin
|
350 |
+
self.width1 = self.width / p5
|
351 |
+
|
352 |
+
# The variables stx, fx, gx contain the values of the step,
|
353 |
+
# function, and derivative at the best step.
|
354 |
+
# The variables sty, fy, gy contain the value of the step,
|
355 |
+
# function, and derivative at sty.
|
356 |
+
# The variables stp, f, g contain the values of the step,
|
357 |
+
# function, and derivative at stp.
|
358 |
+
|
359 |
+
self.stx = 0.0
|
360 |
+
self.fx = self.finit
|
361 |
+
self.gx = self.ginit
|
362 |
+
self.sty = 0.0
|
363 |
+
self.fy = self.finit
|
364 |
+
self.gy = self.ginit
|
365 |
+
self.stmin = 0
|
366 |
+
self.stmax = stp + xtrapu * stp
|
367 |
+
task = b"FG"
|
368 |
+
return stp, f, g, task
|
369 |
+
|
370 |
+
# in the original Fortran this was a location to restore variables
|
371 |
+
# we don't need to do that because they're attributes.
|
372 |
+
|
373 |
+
# If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
|
374 |
+
# algorithm enters the second stage.
|
375 |
+
ftest = self.finit + stp * self.gtest
|
376 |
+
|
377 |
+
if self.stage == 1 and f <= ftest and g >= 0:
|
378 |
+
self.stage = 2
|
379 |
+
|
380 |
+
# test for warnings
|
381 |
+
if self.brackt and (stp <= self.stmin or stp >= self.stmax):
|
382 |
+
task = b"WARNING: ROUNDING ERRORS PREVENT PROGRESS"
|
383 |
+
if self.brackt and self.stmax - self.stmin <= self.xtol * self.stmax:
|
384 |
+
task = b"WARNING: XTOL TEST SATISFIED"
|
385 |
+
if stp == self.stpmax and f <= ftest and g <= self.gtest:
|
386 |
+
task = b"WARNING: STP = STPMAX"
|
387 |
+
if stp == self.stpmin and (f > ftest or g >= self.gtest):
|
388 |
+
task = b"WARNING: STP = STPMIN"
|
389 |
+
|
390 |
+
# test for convergence
|
391 |
+
if f <= ftest and abs(g) <= self.gtol * -self.ginit:
|
392 |
+
task = b"CONVERGENCE"
|
393 |
+
|
394 |
+
# test for termination
|
395 |
+
if task[:4] == b"WARN" or task[:4] == b"CONV":
|
396 |
+
return stp, f, g, task
|
397 |
+
|
398 |
+
# A modified function is used to predict the step during the
|
399 |
+
# first stage if a lower function value has been obtained but
|
400 |
+
# the decrease is not sufficient.
|
401 |
+
if self.stage == 1 and f <= self.fx and f > ftest:
|
402 |
+
# Define the modified function and derivative values.
|
403 |
+
fm = f - stp * self.gtest
|
404 |
+
fxm = self.fx - self.stx * self.gtest
|
405 |
+
fym = self.fy - self.sty * self.gtest
|
406 |
+
gm = g - self.gtest
|
407 |
+
gxm = self.gx - self.gtest
|
408 |
+
gym = self.gy - self.gtest
|
409 |
+
|
410 |
+
# Call dcstep to update stx, sty, and to compute the new step.
|
411 |
+
# dcstep can have several operations which can produce NaN
|
412 |
+
# e.g. inf/inf. Filter these out.
|
413 |
+
with np.errstate(invalid="ignore", over="ignore"):
|
414 |
+
tup = dcstep(
|
415 |
+
self.stx,
|
416 |
+
fxm,
|
417 |
+
gxm,
|
418 |
+
self.sty,
|
419 |
+
fym,
|
420 |
+
gym,
|
421 |
+
stp,
|
422 |
+
fm,
|
423 |
+
gm,
|
424 |
+
self.brackt,
|
425 |
+
self.stmin,
|
426 |
+
self.stmax,
|
427 |
+
)
|
428 |
+
self.stx, fxm, gxm, self.sty, fym, gym, stp, self.brackt = tup
|
429 |
+
|
430 |
+
# Reset the function and derivative values for f
|
431 |
+
self.fx = fxm + self.stx * self.gtest
|
432 |
+
self.fy = fym + self.sty * self.gtest
|
433 |
+
self.gx = gxm + self.gtest
|
434 |
+
self.gy = gym + self.gtest
|
435 |
+
|
436 |
+
else:
|
437 |
+
# Call dcstep to update stx, sty, and to compute the new step.
|
438 |
+
# dcstep can have several operations which can produce NaN
|
439 |
+
# e.g. inf/inf. Filter these out.
|
440 |
+
|
441 |
+
with np.errstate(invalid="ignore", over="ignore"):
|
442 |
+
tup = dcstep(
|
443 |
+
self.stx,
|
444 |
+
self.fx,
|
445 |
+
self.gx,
|
446 |
+
self.sty,
|
447 |
+
self.fy,
|
448 |
+
self.gy,
|
449 |
+
stp,
|
450 |
+
f,
|
451 |
+
g,
|
452 |
+
self.brackt,
|
453 |
+
self.stmin,
|
454 |
+
self.stmax,
|
455 |
+
)
|
456 |
+
(
|
457 |
+
self.stx,
|
458 |
+
self.fx,
|
459 |
+
self.gx,
|
460 |
+
self.sty,
|
461 |
+
self.fy,
|
462 |
+
self.gy,
|
463 |
+
stp,
|
464 |
+
self.brackt,
|
465 |
+
) = tup
|
466 |
+
|
467 |
+
# Decide if a bisection step is needed
|
468 |
+
if self.brackt:
|
469 |
+
if abs(self.sty - self.stx) >= p66 * self.width1:
|
470 |
+
stp = self.stx + p5 * (self.sty - self.stx)
|
471 |
+
self.width1 = self.width
|
472 |
+
self.width = abs(self.sty - self.stx)
|
473 |
+
|
474 |
+
# Set the minimum and maximum steps allowed for stp.
|
475 |
+
if self.brackt:
|
476 |
+
self.stmin = min(self.stx, self.sty)
|
477 |
+
self.stmax = max(self.stx, self.sty)
|
478 |
+
else:
|
479 |
+
self.stmin = stp + xtrapl * (stp - self.stx)
|
480 |
+
self.stmax = stp + xtrapu * (stp - self.stx)
|
481 |
+
|
482 |
+
# Force the step to be within the bounds stpmax and stpmin.
|
483 |
+
stp = np.clip(stp, self.stpmin, self.stpmax)
|
484 |
+
|
485 |
+
# If further progress is not possible, let stp be the best
|
486 |
+
# point obtained during the search.
|
487 |
+
if (
|
488 |
+
self.brackt
|
489 |
+
and (stp <= self.stmin or stp >= self.stmax)
|
490 |
+
or (
|
491 |
+
self.brackt
|
492 |
+
and self.stmax - self.stmin <= self.xtol * self.stmax
|
493 |
+
)
|
494 |
+
):
|
495 |
+
stp = self.stx
|
496 |
+
|
497 |
+
# Obtain another function and derivative
|
498 |
+
task = b"FG"
|
499 |
+
return stp, f, g, task
|
500 |
+
|
501 |
+
|
502 |
+
def dcstep(stx, fx, dx, sty, fy, dy, stp, fp, dp, brackt, stpmin, stpmax):
|
503 |
+
"""
|
504 |
+
Subroutine dcstep
|
505 |
+
|
506 |
+
This subroutine computes a safeguarded step for a search
|
507 |
+
procedure and updates an interval that contains a step that
|
508 |
+
satisfies a sufficient decrease and a curvature condition.
|
509 |
+
|
510 |
+
The parameter stx contains the step with the least function
|
511 |
+
value. If brackt is set to .true. then a minimizer has
|
512 |
+
been bracketed in an interval with endpoints stx and sty.
|
513 |
+
The parameter stp contains the current step.
|
514 |
+
The subroutine assumes that if brackt is set to .true. then
|
515 |
+
|
516 |
+
min(stx,sty) < stp < max(stx,sty),
|
517 |
+
|
518 |
+
and that the derivative at stx is negative in the direction
|
519 |
+
of the step.
|
520 |
+
|
521 |
+
The subroutine statement is
|
522 |
+
|
523 |
+
subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
|
524 |
+
stpmin,stpmax)
|
525 |
+
|
526 |
+
where
|
527 |
+
|
528 |
+
stx is a double precision variable.
|
529 |
+
On entry stx is the best step obtained so far and is an
|
530 |
+
endpoint of the interval that contains the minimizer.
|
531 |
+
On exit stx is the updated best step.
|
532 |
+
|
533 |
+
fx is a double precision variable.
|
534 |
+
On entry fx is the function at stx.
|
535 |
+
On exit fx is the function at stx.
|
536 |
+
|
537 |
+
dx is a double precision variable.
|
538 |
+
On entry dx is the derivative of the function at
|
539 |
+
stx. The derivative must be negative in the direction of
|
540 |
+
the step, that is, dx and stp - stx must have opposite
|
541 |
+
signs.
|
542 |
+
On exit dx is the derivative of the function at stx.
|
543 |
+
|
544 |
+
sty is a double precision variable.
|
545 |
+
On entry sty is the second endpoint of the interval that
|
546 |
+
contains the minimizer.
|
547 |
+
On exit sty is the updated endpoint of the interval that
|
548 |
+
contains the minimizer.
|
549 |
+
|
550 |
+
fy is a double precision variable.
|
551 |
+
On entry fy is the function at sty.
|
552 |
+
On exit fy is the function at sty.
|
553 |
+
|
554 |
+
dy is a double precision variable.
|
555 |
+
On entry dy is the derivative of the function at sty.
|
556 |
+
On exit dy is the derivative of the function at the exit sty.
|
557 |
+
|
558 |
+
stp is a double precision variable.
|
559 |
+
On entry stp is the current step. If brackt is set to .true.
|
560 |
+
then on input stp must be between stx and sty.
|
561 |
+
On exit stp is a new trial step.
|
562 |
+
|
563 |
+
fp is a double precision variable.
|
564 |
+
On entry fp is the function at stp
|
565 |
+
On exit fp is unchanged.
|
566 |
+
|
567 |
+
dp is a double precision variable.
|
568 |
+
On entry dp is the derivative of the function at stp.
|
569 |
+
On exit dp is unchanged.
|
570 |
+
|
571 |
+
brackt is an logical variable.
|
572 |
+
On entry brackt specifies if a minimizer has been bracketed.
|
573 |
+
Initially brackt must be set to .false.
|
574 |
+
On exit brackt specifies if a minimizer has been bracketed.
|
575 |
+
When a minimizer is bracketed brackt is set to .true.
|
576 |
+
|
577 |
+
stpmin is a double precision variable.
|
578 |
+
On entry stpmin is a lower bound for the step.
|
579 |
+
On exit stpmin is unchanged.
|
580 |
+
|
581 |
+
stpmax is a double precision variable.
|
582 |
+
On entry stpmax is an upper bound for the step.
|
583 |
+
On exit stpmax is unchanged.
|
584 |
+
|
585 |
+
MINPACK-1 Project. June 1983
|
586 |
+
Argonne National Laboratory.
|
587 |
+
Jorge J. More' and David J. Thuente.
|
588 |
+
|
589 |
+
MINPACK-2 Project. November 1993.
|
590 |
+
Argonne National Laboratory and University of Minnesota.
|
591 |
+
Brett M. Averick and Jorge J. More'.
|
592 |
+
|
593 |
+
"""
|
594 |
+
sgn_dp = np.sign(dp)
|
595 |
+
sgn_dx = np.sign(dx)
|
596 |
+
|
597 |
+
# sgnd = dp * (dx / abs(dx))
|
598 |
+
sgnd = sgn_dp * sgn_dx
|
599 |
+
|
600 |
+
# First case: A higher function value. The minimum is bracketed.
|
601 |
+
# If the cubic step is closer to stx than the quadratic step, the
|
602 |
+
# cubic step is taken, otherwise the average of the cubic and
|
603 |
+
# quadratic steps is taken.
|
604 |
+
if fp > fx:
|
605 |
+
theta = 3.0 * (fx - fp) / (stp - stx) + dx + dp
|
606 |
+
s = max(abs(theta), abs(dx), abs(dp))
|
607 |
+
gamma = s * np.sqrt((theta / s) ** 2 - (dx / s) * (dp / s))
|
608 |
+
if stp < stx:
|
609 |
+
gamma *= -1
|
610 |
+
p = (gamma - dx) + theta
|
611 |
+
q = ((gamma - dx) + gamma) + dp
|
612 |
+
r = p / q
|
613 |
+
stpc = stx + r * (stp - stx)
|
614 |
+
stpq = stx + ((dx / ((fx - fp) / (stp - stx) + dx)) / 2.0) * (stp - stx)
|
615 |
+
if abs(stpc - stx) <= abs(stpq - stx):
|
616 |
+
stpf = stpc
|
617 |
+
else:
|
618 |
+
stpf = stpc + (stpq - stpc) / 2.0
|
619 |
+
brackt = True
|
620 |
+
elif sgnd < 0.0:
|
621 |
+
# Second case: A lower function value and derivatives of opposite
|
622 |
+
# sign. The minimum is bracketed. If the cubic step is farther from
|
623 |
+
# stp than the secant step, the cubic step is taken, otherwise the
|
624 |
+
# secant step is taken.
|
625 |
+
theta = 3 * (fx - fp) / (stp - stx) + dx + dp
|
626 |
+
s = max(abs(theta), abs(dx), abs(dp))
|
627 |
+
gamma = s * np.sqrt((theta / s) ** 2 - (dx / s) * (dp / s))
|
628 |
+
if stp > stx:
|
629 |
+
gamma *= -1
|
630 |
+
p = (gamma - dp) + theta
|
631 |
+
q = ((gamma - dp) + gamma) + dx
|
632 |
+
r = p / q
|
633 |
+
stpc = stp + r * (stx - stp)
|
634 |
+
stpq = stp + (dp / (dp - dx)) * (stx - stp)
|
635 |
+
if abs(stpc - stp) > abs(stpq - stp):
|
636 |
+
stpf = stpc
|
637 |
+
else:
|
638 |
+
stpf = stpq
|
639 |
+
brackt = True
|
640 |
+
elif abs(dp) < abs(dx):
|
641 |
+
# Third case: A lower function value, derivatives of the same sign,
|
642 |
+
# and the magnitude of the derivative decreases.
|
643 |
+
|
644 |
+
# The cubic step is computed only if the cubic tends to infinity
|
645 |
+
# in the direction of the step or if the minimum of the cubic
|
646 |
+
# is beyond stp. Otherwise the cubic step is defined to be the
|
647 |
+
# secant step.
|
648 |
+
theta = 3 * (fx - fp) / (stp - stx) + dx + dp
|
649 |
+
s = max(abs(theta), abs(dx), abs(dp))
|
650 |
+
|
651 |
+
# The case gamma = 0 only arises if the cubic does not tend
|
652 |
+
# to infinity in the direction of the step.
|
653 |
+
gamma = s * np.sqrt(max(0, (theta / s) ** 2 - (dx / s) * (dp / s)))
|
654 |
+
if stp > stx:
|
655 |
+
gamma = -gamma
|
656 |
+
p = (gamma - dp) + theta
|
657 |
+
q = (gamma + (dx - dp)) + gamma
|
658 |
+
r = p / q
|
659 |
+
if r < 0 and gamma != 0:
|
660 |
+
stpc = stp + r * (stx - stp)
|
661 |
+
elif stp > stx:
|
662 |
+
stpc = stpmax
|
663 |
+
else:
|
664 |
+
stpc = stpmin
|
665 |
+
stpq = stp + (dp / (dp - dx)) * (stx - stp)
|
666 |
+
|
667 |
+
if brackt:
|
668 |
+
# A minimizer has been bracketed. If the cubic step is
|
669 |
+
# closer to stp than the secant step, the cubic step is
|
670 |
+
# taken, otherwise the secant step is taken.
|
671 |
+
if abs(stpc - stp) < abs(stpq - stp):
|
672 |
+
stpf = stpc
|
673 |
+
else:
|
674 |
+
stpf = stpq
|
675 |
+
|
676 |
+
if stp > stx:
|
677 |
+
stpf = min(stp + 0.66 * (sty - stp), stpf)
|
678 |
+
else:
|
679 |
+
stpf = max(stp + 0.66 * (sty - stp), stpf)
|
680 |
+
else:
|
681 |
+
# A minimizer has not been bracketed. If the cubic step is
|
682 |
+
# farther from stp than the secant step, the cubic step is
|
683 |
+
# taken, otherwise the secant step is taken.
|
684 |
+
if abs(stpc - stp) > abs(stpq - stp):
|
685 |
+
stpf = stpc
|
686 |
+
else:
|
687 |
+
stpf = stpq
|
688 |
+
stpf = np.clip(stpf, stpmin, stpmax)
|
689 |
+
|
690 |
+
else:
|
691 |
+
# Fourth case: A lower function value, derivatives of the same sign,
|
692 |
+
# and the magnitude of the derivative does not decrease. If the
|
693 |
+
# minimum is not bracketed, the step is either stpmin or stpmax,
|
694 |
+
# otherwise the cubic step is taken.
|
695 |
+
if brackt:
|
696 |
+
theta = 3.0 * (fp - fy) / (sty - stp) + dy + dp
|
697 |
+
s = max(abs(theta), abs(dy), abs(dp))
|
698 |
+
gamma = s * np.sqrt((theta / s) ** 2 - (dy / s) * (dp / s))
|
699 |
+
if stp > sty:
|
700 |
+
gamma = -gamma
|
701 |
+
p = (gamma - dp) + theta
|
702 |
+
q = ((gamma - dp) + gamma) + dy
|
703 |
+
r = p / q
|
704 |
+
stpc = stp + r * (sty - stp)
|
705 |
+
stpf = stpc
|
706 |
+
elif stp > stx:
|
707 |
+
stpf = stpmax
|
708 |
+
else:
|
709 |
+
stpf = stpmin
|
710 |
+
|
711 |
+
# Update the interval which contains a minimizer.
|
712 |
+
if fp > fx:
|
713 |
+
sty = stp
|
714 |
+
fy = fp
|
715 |
+
dy = dp
|
716 |
+
else:
|
717 |
+
if sgnd < 0:
|
718 |
+
sty = stx
|
719 |
+
fy = fx
|
720 |
+
dy = dx
|
721 |
+
stx = stp
|
722 |
+
fx = fp
|
723 |
+
dx = dp
|
724 |
+
|
725 |
+
# Compute the new step.
|
726 |
+
stp = stpf
|
727 |
+
|
728 |
+
return stx, fx, dx, sty, fy, dy, stp, brackt
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/_differentiable_functions.py
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import scipy.sparse as sps
|
3 |
+
from ._numdiff import approx_derivative, group_columns
|
4 |
+
from ._hessian_update_strategy import HessianUpdateStrategy
|
5 |
+
from scipy.sparse.linalg import LinearOperator
|
6 |
+
from scipy._lib._array_api import atleast_nd, array_namespace
|
7 |
+
|
8 |
+
|
9 |
+
FD_METHODS = ('2-point', '3-point', 'cs')
|
10 |
+
|
11 |
+
|
12 |
+
class ScalarFunction:
|
13 |
+
"""Scalar function and its derivatives.
|
14 |
+
|
15 |
+
This class defines a scalar function F: R^n->R and methods for
|
16 |
+
computing or approximating its first and second derivatives.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
----------
|
20 |
+
fun : callable
|
21 |
+
evaluates the scalar function. Must be of the form ``fun(x, *args)``,
|
22 |
+
where ``x`` is the argument in the form of a 1-D array and ``args`` is
|
23 |
+
a tuple of any additional fixed parameters needed to completely specify
|
24 |
+
the function. Should return a scalar.
|
25 |
+
x0 : array-like
|
26 |
+
Provides an initial set of variables for evaluating fun. Array of real
|
27 |
+
elements of size (n,), where 'n' is the number of independent
|
28 |
+
variables.
|
29 |
+
args : tuple, optional
|
30 |
+
Any additional fixed parameters needed to completely specify the scalar
|
31 |
+
function.
|
32 |
+
grad : {callable, '2-point', '3-point', 'cs'}
|
33 |
+
Method for computing the gradient vector.
|
34 |
+
If it is a callable, it should be a function that returns the gradient
|
35 |
+
vector:
|
36 |
+
|
37 |
+
``grad(x, *args) -> array_like, shape (n,)``
|
38 |
+
|
39 |
+
where ``x`` is an array with shape (n,) and ``args`` is a tuple with
|
40 |
+
the fixed parameters.
|
41 |
+
Alternatively, the keywords {'2-point', '3-point', 'cs'} can be used
|
42 |
+
to select a finite difference scheme for numerical estimation of the
|
43 |
+
gradient with a relative step size. These finite difference schemes
|
44 |
+
obey any specified `bounds`.
|
45 |
+
hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}
|
46 |
+
Method for computing the Hessian matrix. If it is callable, it should
|
47 |
+
return the Hessian matrix:
|
48 |
+
|
49 |
+
``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``
|
50 |
+
|
51 |
+
where x is a (n,) ndarray and `args` is a tuple with the fixed
|
52 |
+
parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'}
|
53 |
+
select a finite difference scheme for numerical estimation. Or, objects
|
54 |
+
implementing `HessianUpdateStrategy` interface can be used to
|
55 |
+
approximate the Hessian.
|
56 |
+
Whenever the gradient is estimated via finite-differences, the Hessian
|
57 |
+
cannot be estimated with options {'2-point', '3-point', 'cs'} and needs
|
58 |
+
to be estimated using one of the quasi-Newton strategies.
|
59 |
+
finite_diff_rel_step : None or array_like
|
60 |
+
Relative step size to use. The absolute step size is computed as
|
61 |
+
``h = finite_diff_rel_step * sign(x0) * max(1, abs(x0))``, possibly
|
62 |
+
adjusted to fit into the bounds. For ``method='3-point'`` the sign
|
63 |
+
of `h` is ignored. If None then finite_diff_rel_step is selected
|
64 |
+
automatically,
|
65 |
+
finite_diff_bounds : tuple of array_like
|
66 |
+
Lower and upper bounds on independent variables. Defaults to no bounds,
|
67 |
+
(-np.inf, np.inf). Each bound must match the size of `x0` or be a
|
68 |
+
scalar, in the latter case the bound will be the same for all
|
69 |
+
variables. Use it to limit the range of function evaluation.
|
70 |
+
epsilon : None or array_like, optional
|
71 |
+
Absolute step size to use, possibly adjusted to fit into the bounds.
|
72 |
+
For ``method='3-point'`` the sign of `epsilon` is ignored. By default
|
73 |
+
relative steps are used, only if ``epsilon is not None`` are absolute
|
74 |
+
steps used.
|
75 |
+
|
76 |
+
Notes
|
77 |
+
-----
|
78 |
+
This class implements a memoization logic. There are methods `fun`,
|
79 |
+
`grad`, hess` and corresponding attributes `f`, `g` and `H`. The following
|
80 |
+
things should be considered:
|
81 |
+
|
82 |
+
1. Use only public methods `fun`, `grad` and `hess`.
|
83 |
+
2. After one of the methods is called, the corresponding attribute
|
84 |
+
will be set. However, a subsequent call with a different argument
|
85 |
+
of *any* of the methods may overwrite the attribute.
|
86 |
+
"""
|
87 |
+
def __init__(self, fun, x0, args, grad, hess, finite_diff_rel_step,
|
88 |
+
finite_diff_bounds, epsilon=None):
|
89 |
+
if not callable(grad) and grad not in FD_METHODS:
|
90 |
+
raise ValueError(
|
91 |
+
f"`grad` must be either callable or one of {FD_METHODS}."
|
92 |
+
)
|
93 |
+
|
94 |
+
if not (callable(hess) or hess in FD_METHODS
|
95 |
+
or isinstance(hess, HessianUpdateStrategy)):
|
96 |
+
raise ValueError(
|
97 |
+
f"`hess` must be either callable, HessianUpdateStrategy"
|
98 |
+
f" or one of {FD_METHODS}."
|
99 |
+
)
|
100 |
+
|
101 |
+
if grad in FD_METHODS and hess in FD_METHODS:
|
102 |
+
raise ValueError("Whenever the gradient is estimated via "
|
103 |
+
"finite-differences, we require the Hessian "
|
104 |
+
"to be estimated using one of the "
|
105 |
+
"quasi-Newton strategies.")
|
106 |
+
|
107 |
+
self.xp = xp = array_namespace(x0)
|
108 |
+
_x = atleast_nd(x0, ndim=1, xp=xp)
|
109 |
+
_dtype = xp.float64
|
110 |
+
if xp.isdtype(_x.dtype, "real floating"):
|
111 |
+
_dtype = _x.dtype
|
112 |
+
|
113 |
+
# promotes to floating
|
114 |
+
self.x = xp.astype(_x, _dtype)
|
115 |
+
self.x_dtype = _dtype
|
116 |
+
self.n = self.x.size
|
117 |
+
self.nfev = 0
|
118 |
+
self.ngev = 0
|
119 |
+
self.nhev = 0
|
120 |
+
self.f_updated = False
|
121 |
+
self.g_updated = False
|
122 |
+
self.H_updated = False
|
123 |
+
|
124 |
+
self._lowest_x = None
|
125 |
+
self._lowest_f = np.inf
|
126 |
+
|
127 |
+
finite_diff_options = {}
|
128 |
+
if grad in FD_METHODS:
|
129 |
+
finite_diff_options["method"] = grad
|
130 |
+
finite_diff_options["rel_step"] = finite_diff_rel_step
|
131 |
+
finite_diff_options["abs_step"] = epsilon
|
132 |
+
finite_diff_options["bounds"] = finite_diff_bounds
|
133 |
+
if hess in FD_METHODS:
|
134 |
+
finite_diff_options["method"] = hess
|
135 |
+
finite_diff_options["rel_step"] = finite_diff_rel_step
|
136 |
+
finite_diff_options["abs_step"] = epsilon
|
137 |
+
finite_diff_options["as_linear_operator"] = True
|
138 |
+
|
139 |
+
# Function evaluation
|
140 |
+
def fun_wrapped(x):
|
141 |
+
self.nfev += 1
|
142 |
+
# Send a copy because the user may overwrite it.
|
143 |
+
# Overwriting results in undefined behaviour because
|
144 |
+
# fun(self.x) will change self.x, with the two no longer linked.
|
145 |
+
fx = fun(np.copy(x), *args)
|
146 |
+
# Make sure the function returns a true scalar
|
147 |
+
if not np.isscalar(fx):
|
148 |
+
try:
|
149 |
+
fx = np.asarray(fx).item()
|
150 |
+
except (TypeError, ValueError) as e:
|
151 |
+
raise ValueError(
|
152 |
+
"The user-provided objective function "
|
153 |
+
"must return a scalar value."
|
154 |
+
) from e
|
155 |
+
|
156 |
+
if fx < self._lowest_f:
|
157 |
+
self._lowest_x = x
|
158 |
+
self._lowest_f = fx
|
159 |
+
|
160 |
+
return fx
|
161 |
+
|
162 |
+
def update_fun():
|
163 |
+
self.f = fun_wrapped(self.x)
|
164 |
+
|
165 |
+
self._update_fun_impl = update_fun
|
166 |
+
self._update_fun()
|
167 |
+
|
168 |
+
# Gradient evaluation
|
169 |
+
if callable(grad):
|
170 |
+
def grad_wrapped(x):
|
171 |
+
self.ngev += 1
|
172 |
+
return np.atleast_1d(grad(np.copy(x), *args))
|
173 |
+
|
174 |
+
def update_grad():
|
175 |
+
self.g = grad_wrapped(self.x)
|
176 |
+
|
177 |
+
elif grad in FD_METHODS:
|
178 |
+
def update_grad():
|
179 |
+
self._update_fun()
|
180 |
+
self.ngev += 1
|
181 |
+
self.g = approx_derivative(fun_wrapped, self.x, f0=self.f,
|
182 |
+
**finite_diff_options)
|
183 |
+
|
184 |
+
self._update_grad_impl = update_grad
|
185 |
+
self._update_grad()
|
186 |
+
|
187 |
+
# Hessian Evaluation
|
188 |
+
if callable(hess):
|
189 |
+
self.H = hess(np.copy(x0), *args)
|
190 |
+
self.H_updated = True
|
191 |
+
self.nhev += 1
|
192 |
+
|
193 |
+
if sps.issparse(self.H):
|
194 |
+
def hess_wrapped(x):
|
195 |
+
self.nhev += 1
|
196 |
+
return sps.csr_matrix(hess(np.copy(x), *args))
|
197 |
+
self.H = sps.csr_matrix(self.H)
|
198 |
+
|
199 |
+
elif isinstance(self.H, LinearOperator):
|
200 |
+
def hess_wrapped(x):
|
201 |
+
self.nhev += 1
|
202 |
+
return hess(np.copy(x), *args)
|
203 |
+
|
204 |
+
else:
|
205 |
+
def hess_wrapped(x):
|
206 |
+
self.nhev += 1
|
207 |
+
return np.atleast_2d(np.asarray(hess(np.copy(x), *args)))
|
208 |
+
self.H = np.atleast_2d(np.asarray(self.H))
|
209 |
+
|
210 |
+
def update_hess():
|
211 |
+
self.H = hess_wrapped(self.x)
|
212 |
+
|
213 |
+
elif hess in FD_METHODS:
|
214 |
+
def update_hess():
|
215 |
+
self._update_grad()
|
216 |
+
self.H = approx_derivative(grad_wrapped, self.x, f0=self.g,
|
217 |
+
**finite_diff_options)
|
218 |
+
return self.H
|
219 |
+
|
220 |
+
update_hess()
|
221 |
+
self.H_updated = True
|
222 |
+
elif isinstance(hess, HessianUpdateStrategy):
|
223 |
+
self.H = hess
|
224 |
+
self.H.initialize(self.n, 'hess')
|
225 |
+
self.H_updated = True
|
226 |
+
self.x_prev = None
|
227 |
+
self.g_prev = None
|
228 |
+
|
229 |
+
def update_hess():
|
230 |
+
self._update_grad()
|
231 |
+
self.H.update(self.x - self.x_prev, self.g - self.g_prev)
|
232 |
+
|
233 |
+
self._update_hess_impl = update_hess
|
234 |
+
|
235 |
+
if isinstance(hess, HessianUpdateStrategy):
|
236 |
+
def update_x(x):
|
237 |
+
self._update_grad()
|
238 |
+
self.x_prev = self.x
|
239 |
+
self.g_prev = self.g
|
240 |
+
# ensure that self.x is a copy of x. Don't store a reference
|
241 |
+
# otherwise the memoization doesn't work properly.
|
242 |
+
|
243 |
+
_x = atleast_nd(x, ndim=1, xp=self.xp)
|
244 |
+
self.x = self.xp.astype(_x, self.x_dtype)
|
245 |
+
self.f_updated = False
|
246 |
+
self.g_updated = False
|
247 |
+
self.H_updated = False
|
248 |
+
self._update_hess()
|
249 |
+
else:
|
250 |
+
def update_x(x):
|
251 |
+
# ensure that self.x is a copy of x. Don't store a reference
|
252 |
+
# otherwise the memoization doesn't work properly.
|
253 |
+
_x = atleast_nd(x, ndim=1, xp=self.xp)
|
254 |
+
self.x = self.xp.astype(_x, self.x_dtype)
|
255 |
+
self.f_updated = False
|
256 |
+
self.g_updated = False
|
257 |
+
self.H_updated = False
|
258 |
+
self._update_x_impl = update_x
|
259 |
+
|
260 |
+
def _update_fun(self):
|
261 |
+
if not self.f_updated:
|
262 |
+
self._update_fun_impl()
|
263 |
+
self.f_updated = True
|
264 |
+
|
265 |
+
def _update_grad(self):
|
266 |
+
if not self.g_updated:
|
267 |
+
self._update_grad_impl()
|
268 |
+
self.g_updated = True
|
269 |
+
|
270 |
+
def _update_hess(self):
|
271 |
+
if not self.H_updated:
|
272 |
+
self._update_hess_impl()
|
273 |
+
self.H_updated = True
|
274 |
+
|
275 |
+
def fun(self, x):
|
276 |
+
if not np.array_equal(x, self.x):
|
277 |
+
self._update_x_impl(x)
|
278 |
+
self._update_fun()
|
279 |
+
return self.f
|
280 |
+
|
281 |
+
def grad(self, x):
|
282 |
+
if not np.array_equal(x, self.x):
|
283 |
+
self._update_x_impl(x)
|
284 |
+
self._update_grad()
|
285 |
+
return self.g
|
286 |
+
|
287 |
+
def hess(self, x):
|
288 |
+
if not np.array_equal(x, self.x):
|
289 |
+
self._update_x_impl(x)
|
290 |
+
self._update_hess()
|
291 |
+
return self.H
|
292 |
+
|
293 |
+
def fun_and_grad(self, x):
|
294 |
+
if not np.array_equal(x, self.x):
|
295 |
+
self._update_x_impl(x)
|
296 |
+
self._update_fun()
|
297 |
+
self._update_grad()
|
298 |
+
return self.f, self.g
|
299 |
+
|
300 |
+
|
301 |
+
class VectorFunction:
|
302 |
+
"""Vector function and its derivatives.
|
303 |
+
|
304 |
+
This class defines a vector function F: R^n->R^m and methods for
|
305 |
+
computing or approximating its first and second derivatives.
|
306 |
+
|
307 |
+
Notes
|
308 |
+
-----
|
309 |
+
This class implements a memoization logic. There are methods `fun`,
|
310 |
+
`jac`, hess` and corresponding attributes `f`, `J` and `H`. The following
|
311 |
+
things should be considered:
|
312 |
+
|
313 |
+
1. Use only public methods `fun`, `jac` and `hess`.
|
314 |
+
2. After one of the methods is called, the corresponding attribute
|
315 |
+
will be set. However, a subsequent call with a different argument
|
316 |
+
of *any* of the methods may overwrite the attribute.
|
317 |
+
"""
|
318 |
+
def __init__(self, fun, x0, jac, hess,
|
319 |
+
finite_diff_rel_step, finite_diff_jac_sparsity,
|
320 |
+
finite_diff_bounds, sparse_jacobian):
|
321 |
+
if not callable(jac) and jac not in FD_METHODS:
|
322 |
+
raise ValueError(f"`jac` must be either callable or one of {FD_METHODS}.")
|
323 |
+
|
324 |
+
if not (callable(hess) or hess in FD_METHODS
|
325 |
+
or isinstance(hess, HessianUpdateStrategy)):
|
326 |
+
raise ValueError("`hess` must be either callable,"
|
327 |
+
f"HessianUpdateStrategy or one of {FD_METHODS}.")
|
328 |
+
|
329 |
+
if jac in FD_METHODS and hess in FD_METHODS:
|
330 |
+
raise ValueError("Whenever the Jacobian is estimated via "
|
331 |
+
"finite-differences, we require the Hessian to "
|
332 |
+
"be estimated using one of the quasi-Newton "
|
333 |
+
"strategies.")
|
334 |
+
|
335 |
+
self.xp = xp = array_namespace(x0)
|
336 |
+
_x = atleast_nd(x0, ndim=1, xp=xp)
|
337 |
+
_dtype = xp.float64
|
338 |
+
if xp.isdtype(_x.dtype, "real floating"):
|
339 |
+
_dtype = _x.dtype
|
340 |
+
|
341 |
+
# promotes to floating
|
342 |
+
self.x = xp.astype(_x, _dtype)
|
343 |
+
self.x_dtype = _dtype
|
344 |
+
|
345 |
+
self.n = self.x.size
|
346 |
+
self.nfev = 0
|
347 |
+
self.njev = 0
|
348 |
+
self.nhev = 0
|
349 |
+
self.f_updated = False
|
350 |
+
self.J_updated = False
|
351 |
+
self.H_updated = False
|
352 |
+
|
353 |
+
finite_diff_options = {}
|
354 |
+
if jac in FD_METHODS:
|
355 |
+
finite_diff_options["method"] = jac
|
356 |
+
finite_diff_options["rel_step"] = finite_diff_rel_step
|
357 |
+
if finite_diff_jac_sparsity is not None:
|
358 |
+
sparsity_groups = group_columns(finite_diff_jac_sparsity)
|
359 |
+
finite_diff_options["sparsity"] = (finite_diff_jac_sparsity,
|
360 |
+
sparsity_groups)
|
361 |
+
finite_diff_options["bounds"] = finite_diff_bounds
|
362 |
+
self.x_diff = np.copy(self.x)
|
363 |
+
if hess in FD_METHODS:
|
364 |
+
finite_diff_options["method"] = hess
|
365 |
+
finite_diff_options["rel_step"] = finite_diff_rel_step
|
366 |
+
finite_diff_options["as_linear_operator"] = True
|
367 |
+
self.x_diff = np.copy(self.x)
|
368 |
+
if jac in FD_METHODS and hess in FD_METHODS:
|
369 |
+
raise ValueError("Whenever the Jacobian is estimated via "
|
370 |
+
"finite-differences, we require the Hessian to "
|
371 |
+
"be estimated using one of the quasi-Newton "
|
372 |
+
"strategies.")
|
373 |
+
|
374 |
+
# Function evaluation
|
375 |
+
def fun_wrapped(x):
|
376 |
+
self.nfev += 1
|
377 |
+
return np.atleast_1d(fun(x))
|
378 |
+
|
379 |
+
def update_fun():
|
380 |
+
self.f = fun_wrapped(self.x)
|
381 |
+
|
382 |
+
self._update_fun_impl = update_fun
|
383 |
+
update_fun()
|
384 |
+
|
385 |
+
self.v = np.zeros_like(self.f)
|
386 |
+
self.m = self.v.size
|
387 |
+
|
388 |
+
# Jacobian Evaluation
|
389 |
+
if callable(jac):
|
390 |
+
self.J = jac(self.x)
|
391 |
+
self.J_updated = True
|
392 |
+
self.njev += 1
|
393 |
+
|
394 |
+
if (sparse_jacobian or
|
395 |
+
sparse_jacobian is None and sps.issparse(self.J)):
|
396 |
+
def jac_wrapped(x):
|
397 |
+
self.njev += 1
|
398 |
+
return sps.csr_matrix(jac(x))
|
399 |
+
self.J = sps.csr_matrix(self.J)
|
400 |
+
self.sparse_jacobian = True
|
401 |
+
|
402 |
+
elif sps.issparse(self.J):
|
403 |
+
def jac_wrapped(x):
|
404 |
+
self.njev += 1
|
405 |
+
return jac(x).toarray()
|
406 |
+
self.J = self.J.toarray()
|
407 |
+
self.sparse_jacobian = False
|
408 |
+
|
409 |
+
else:
|
410 |
+
def jac_wrapped(x):
|
411 |
+
self.njev += 1
|
412 |
+
return np.atleast_2d(jac(x))
|
413 |
+
self.J = np.atleast_2d(self.J)
|
414 |
+
self.sparse_jacobian = False
|
415 |
+
|
416 |
+
def update_jac():
|
417 |
+
self.J = jac_wrapped(self.x)
|
418 |
+
|
419 |
+
elif jac in FD_METHODS:
|
420 |
+
self.J = approx_derivative(fun_wrapped, self.x, f0=self.f,
|
421 |
+
**finite_diff_options)
|
422 |
+
self.J_updated = True
|
423 |
+
|
424 |
+
if (sparse_jacobian or
|
425 |
+
sparse_jacobian is None and sps.issparse(self.J)):
|
426 |
+
def update_jac():
|
427 |
+
self._update_fun()
|
428 |
+
self.J = sps.csr_matrix(
|
429 |
+
approx_derivative(fun_wrapped, self.x, f0=self.f,
|
430 |
+
**finite_diff_options))
|
431 |
+
self.J = sps.csr_matrix(self.J)
|
432 |
+
self.sparse_jacobian = True
|
433 |
+
|
434 |
+
elif sps.issparse(self.J):
|
435 |
+
def update_jac():
|
436 |
+
self._update_fun()
|
437 |
+
self.J = approx_derivative(fun_wrapped, self.x, f0=self.f,
|
438 |
+
**finite_diff_options).toarray()
|
439 |
+
self.J = self.J.toarray()
|
440 |
+
self.sparse_jacobian = False
|
441 |
+
|
442 |
+
else:
|
443 |
+
def update_jac():
|
444 |
+
self._update_fun()
|
445 |
+
self.J = np.atleast_2d(
|
446 |
+
approx_derivative(fun_wrapped, self.x, f0=self.f,
|
447 |
+
**finite_diff_options))
|
448 |
+
self.J = np.atleast_2d(self.J)
|
449 |
+
self.sparse_jacobian = False
|
450 |
+
|
451 |
+
self._update_jac_impl = update_jac
|
452 |
+
|
453 |
+
# Define Hessian
|
454 |
+
if callable(hess):
|
455 |
+
self.H = hess(self.x, self.v)
|
456 |
+
self.H_updated = True
|
457 |
+
self.nhev += 1
|
458 |
+
|
459 |
+
if sps.issparse(self.H):
|
460 |
+
def hess_wrapped(x, v):
|
461 |
+
self.nhev += 1
|
462 |
+
return sps.csr_matrix(hess(x, v))
|
463 |
+
self.H = sps.csr_matrix(self.H)
|
464 |
+
|
465 |
+
elif isinstance(self.H, LinearOperator):
|
466 |
+
def hess_wrapped(x, v):
|
467 |
+
self.nhev += 1
|
468 |
+
return hess(x, v)
|
469 |
+
|
470 |
+
else:
|
471 |
+
def hess_wrapped(x, v):
|
472 |
+
self.nhev += 1
|
473 |
+
return np.atleast_2d(np.asarray(hess(x, v)))
|
474 |
+
self.H = np.atleast_2d(np.asarray(self.H))
|
475 |
+
|
476 |
+
def update_hess():
|
477 |
+
self.H = hess_wrapped(self.x, self.v)
|
478 |
+
elif hess in FD_METHODS:
|
479 |
+
def jac_dot_v(x, v):
|
480 |
+
return jac_wrapped(x).T.dot(v)
|
481 |
+
|
482 |
+
def update_hess():
|
483 |
+
self._update_jac()
|
484 |
+
self.H = approx_derivative(jac_dot_v, self.x,
|
485 |
+
f0=self.J.T.dot(self.v),
|
486 |
+
args=(self.v,),
|
487 |
+
**finite_diff_options)
|
488 |
+
update_hess()
|
489 |
+
self.H_updated = True
|
490 |
+
elif isinstance(hess, HessianUpdateStrategy):
|
491 |
+
self.H = hess
|
492 |
+
self.H.initialize(self.n, 'hess')
|
493 |
+
self.H_updated = True
|
494 |
+
self.x_prev = None
|
495 |
+
self.J_prev = None
|
496 |
+
|
497 |
+
def update_hess():
|
498 |
+
self._update_jac()
|
499 |
+
# When v is updated before x was updated, then x_prev and
|
500 |
+
# J_prev are None and we need this check.
|
501 |
+
if self.x_prev is not None and self.J_prev is not None:
|
502 |
+
delta_x = self.x - self.x_prev
|
503 |
+
delta_g = self.J.T.dot(self.v) - self.J_prev.T.dot(self.v)
|
504 |
+
self.H.update(delta_x, delta_g)
|
505 |
+
|
506 |
+
self._update_hess_impl = update_hess
|
507 |
+
|
508 |
+
if isinstance(hess, HessianUpdateStrategy):
|
509 |
+
def update_x(x):
|
510 |
+
self._update_jac()
|
511 |
+
self.x_prev = self.x
|
512 |
+
self.J_prev = self.J
|
513 |
+
_x = atleast_nd(x, ndim=1, xp=self.xp)
|
514 |
+
self.x = self.xp.astype(_x, self.x_dtype)
|
515 |
+
self.f_updated = False
|
516 |
+
self.J_updated = False
|
517 |
+
self.H_updated = False
|
518 |
+
self._update_hess()
|
519 |
+
else:
|
520 |
+
def update_x(x):
|
521 |
+
_x = atleast_nd(x, ndim=1, xp=self.xp)
|
522 |
+
self.x = self.xp.astype(_x, self.x_dtype)
|
523 |
+
self.f_updated = False
|
524 |
+
self.J_updated = False
|
525 |
+
self.H_updated = False
|
526 |
+
|
527 |
+
self._update_x_impl = update_x
|
528 |
+
|
529 |
+
def _update_v(self, v):
|
530 |
+
if not np.array_equal(v, self.v):
|
531 |
+
self.v = v
|
532 |
+
self.H_updated = False
|
533 |
+
|
534 |
+
def _update_x(self, x):
|
535 |
+
if not np.array_equal(x, self.x):
|
536 |
+
self._update_x_impl(x)
|
537 |
+
|
538 |
+
def _update_fun(self):
|
539 |
+
if not self.f_updated:
|
540 |
+
self._update_fun_impl()
|
541 |
+
self.f_updated = True
|
542 |
+
|
543 |
+
def _update_jac(self):
|
544 |
+
if not self.J_updated:
|
545 |
+
self._update_jac_impl()
|
546 |
+
self.J_updated = True
|
547 |
+
|
548 |
+
def _update_hess(self):
|
549 |
+
if not self.H_updated:
|
550 |
+
self._update_hess_impl()
|
551 |
+
self.H_updated = True
|
552 |
+
|
553 |
+
def fun(self, x):
|
554 |
+
self._update_x(x)
|
555 |
+
self._update_fun()
|
556 |
+
return self.f
|
557 |
+
|
558 |
+
def jac(self, x):
|
559 |
+
self._update_x(x)
|
560 |
+
self._update_jac()
|
561 |
+
return self.J
|
562 |
+
|
563 |
+
def hess(self, x, v):
|
564 |
+
# v should be updated before x.
|
565 |
+
self._update_v(v)
|
566 |
+
self._update_x(x)
|
567 |
+
self._update_hess()
|
568 |
+
return self.H
|
569 |
+
|
570 |
+
|
571 |
+
class LinearVectorFunction:
|
572 |
+
"""Linear vector function and its derivatives.
|
573 |
+
|
574 |
+
Defines a linear function F = A x, where x is N-D vector and
|
575 |
+
A is m-by-n matrix. The Jacobian is constant and equals to A. The Hessian
|
576 |
+
is identically zero and it is returned as a csr matrix.
|
577 |
+
"""
|
578 |
+
def __init__(self, A, x0, sparse_jacobian):
|
579 |
+
if sparse_jacobian or sparse_jacobian is None and sps.issparse(A):
|
580 |
+
self.J = sps.csr_matrix(A)
|
581 |
+
self.sparse_jacobian = True
|
582 |
+
elif sps.issparse(A):
|
583 |
+
self.J = A.toarray()
|
584 |
+
self.sparse_jacobian = False
|
585 |
+
else:
|
586 |
+
# np.asarray makes sure A is ndarray and not matrix
|
587 |
+
self.J = np.atleast_2d(np.asarray(A))
|
588 |
+
self.sparse_jacobian = False
|
589 |
+
|
590 |
+
self.m, self.n = self.J.shape
|
591 |
+
|
592 |
+
self.xp = xp = array_namespace(x0)
|
593 |
+
_x = atleast_nd(x0, ndim=1, xp=xp)
|
594 |
+
_dtype = xp.float64
|
595 |
+
if xp.isdtype(_x.dtype, "real floating"):
|
596 |
+
_dtype = _x.dtype
|
597 |
+
|
598 |
+
# promotes to floating
|
599 |
+
self.x = xp.astype(_x, _dtype)
|
600 |
+
self.x_dtype = _dtype
|
601 |
+
|
602 |
+
self.f = self.J.dot(self.x)
|
603 |
+
self.f_updated = True
|
604 |
+
|
605 |
+
self.v = np.zeros(self.m, dtype=float)
|
606 |
+
self.H = sps.csr_matrix((self.n, self.n))
|
607 |
+
|
608 |
+
def _update_x(self, x):
|
609 |
+
if not np.array_equal(x, self.x):
|
610 |
+
_x = atleast_nd(x, ndim=1, xp=self.xp)
|
611 |
+
self.x = self.xp.astype(_x, self.x_dtype)
|
612 |
+
self.f_updated = False
|
613 |
+
|
614 |
+
def fun(self, x):
|
615 |
+
self._update_x(x)
|
616 |
+
if not self.f_updated:
|
617 |
+
self.f = self.J.dot(x)
|
618 |
+
self.f_updated = True
|
619 |
+
return self.f
|
620 |
+
|
621 |
+
def jac(self, x):
|
622 |
+
self._update_x(x)
|
623 |
+
return self.J
|
624 |
+
|
625 |
+
def hess(self, x, v):
|
626 |
+
self._update_x(x)
|
627 |
+
self.v = v
|
628 |
+
return self.H
|
629 |
+
|
630 |
+
|
631 |
+
class IdentityVectorFunction(LinearVectorFunction):
|
632 |
+
"""Identity vector function and its derivatives.
|
633 |
+
|
634 |
+
The Jacobian is the identity matrix, returned as a dense array when
|
635 |
+
`sparse_jacobian=False` and as a csr matrix otherwise. The Hessian is
|
636 |
+
identically zero and it is returned as a csr matrix.
|
637 |
+
"""
|
638 |
+
def __init__(self, x0, sparse_jacobian):
|
639 |
+
n = len(x0)
|
640 |
+
if sparse_jacobian or sparse_jacobian is None:
|
641 |
+
A = sps.eye(n, format='csr')
|
642 |
+
sparse_jacobian = True
|
643 |
+
else:
|
644 |
+
A = np.eye(n)
|
645 |
+
sparse_jacobian = False
|
646 |
+
super().__init__(A, x0, sparse_jacobian)
|