applied-ai-018 commited on
Commit
eaa5691
·
verified ·
1 Parent(s): fc07321

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/_codata.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/_constants.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/codata.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/constants.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__init__.py +0 -0
  8. llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__pycache__/test_codata.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__pycache__/test_constants.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/test_codata.py +57 -0
  11. llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/test_constants.py +35 -0
  12. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__init__.py +110 -0
  13. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_bvp.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_ode.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_odepack_py.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_quad_vec.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_quadpack_py.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_tanhsinh.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/lsoda.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/odepack.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/quadpack.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/vode.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_dop.cpython-310-x86_64-linux-gnu.so +0 -0
  24. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__init__.py +8 -0
  25. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/__init__.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/base.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/bdf.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/common.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/dop853_coefficients.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/ivp.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/lsoda.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/radau.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/rk.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/base.py +290 -0
  35. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/bdf.py +479 -0
  36. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/common.py +440 -0
  37. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  38. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/ivp.py +748 -0
  39. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/lsoda.py +224 -0
  40. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/radau.py +574 -0
  41. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/rk.py +601 -0
  42. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__init__.py +0 -0
  43. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_ivp.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_rk.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_ivp.py +1135 -0
  47. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_rk.py +37 -0
  48. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ode.py +1376 -0
  49. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_odepack.cpython-310-x86_64-linux-gnu.so +0 -0
  50. llmeval-env/lib/python3.10/site-packages/scipy/integrate/_odepack_py.py +262 -0
.gitattributes CHANGED
@@ -185,3 +185,4 @@ env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_acero.so.1500 filter=l
185
  env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1500 filter=lfs diff=lfs merge=lfs -text
186
  env-llmeval/lib/python3.10/site-packages/pyarrow/lib.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
187
  env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1500 filter=lfs diff=lfs merge=lfs -text
 
 
185
  env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1500 filter=lfs diff=lfs merge=lfs -text
186
  env-llmeval/lib/python3.10/site-packages/pyarrow/lib.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
187
  env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1500 filter=lfs diff=lfs merge=lfs -text
188
+ llmeval-env/lib/python3.10/site-packages/scipy/stats/_unuran/unuran_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/_codata.cpython-310.pyc ADDED
Binary file (154 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/_constants.cpython-310.pyc ADDED
Binary file (8.71 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/codata.cpython-310.pyc ADDED
Binary file (819 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/constants/__pycache__/constants.cpython-310.pyc ADDED
Binary file (1.89 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__pycache__/test_codata.cpython-310.pyc ADDED
Binary file (2.27 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/__pycache__/test_constants.cpython-310.pyc ADDED
Binary file (1.37 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/test_codata.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.constants import find, value, ConstantWarning, c, speed_of_light
2
+ from numpy.testing import (assert_equal, assert_, assert_almost_equal,
3
+ suppress_warnings)
4
+ import scipy.constants._codata as _cd
5
+
6
+
7
+ def test_find():
8
+ keys = find('weak mixing', disp=False)
9
+ assert_equal(keys, ['weak mixing angle'])
10
+
11
+ keys = find('qwertyuiop', disp=False)
12
+ assert_equal(keys, [])
13
+
14
+ keys = find('natural unit', disp=False)
15
+ assert_equal(keys, sorted(['natural unit of velocity',
16
+ 'natural unit of action',
17
+ 'natural unit of action in eV s',
18
+ 'natural unit of mass',
19
+ 'natural unit of energy',
20
+ 'natural unit of energy in MeV',
21
+ 'natural unit of momentum',
22
+ 'natural unit of momentum in MeV/c',
23
+ 'natural unit of length',
24
+ 'natural unit of time']))
25
+
26
+
27
+ def test_basic_table_parse():
28
+ c_s = 'speed of light in vacuum'
29
+ assert_equal(value(c_s), c)
30
+ assert_equal(value(c_s), speed_of_light)
31
+
32
+
33
+ def test_basic_lookup():
34
+ assert_equal('%d %s' % (_cd.c, _cd.unit('speed of light in vacuum')),
35
+ '299792458 m s^-1')
36
+
37
+
38
+ def test_find_all():
39
+ assert_(len(find(disp=False)) > 300)
40
+
41
+
42
+ def test_find_single():
43
+ assert_equal(find('Wien freq', disp=False)[0],
44
+ 'Wien frequency displacement law constant')
45
+
46
+
47
+ def test_2002_vs_2006():
48
+ assert_almost_equal(value('magn. flux quantum'),
49
+ value('mag. flux quantum'))
50
+
51
+
52
+ def test_exact_values():
53
+ # Check that updating stored values with exact ones worked.
54
+ with suppress_warnings() as sup:
55
+ sup.filter(ConstantWarning)
56
+ for key in _cd.exact_values:
57
+ assert_((_cd.exact_values[key][0] - value(key)) / value(key) == 0)
llmeval-env/lib/python3.10/site-packages/scipy/constants/tests/test_constants.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy.testing import assert_equal, assert_allclose
2
+ import scipy.constants as sc
3
+
4
+
5
+ def test_convert_temperature():
6
+ assert_equal(sc.convert_temperature(32, 'f', 'Celsius'), 0)
7
+ assert_equal(sc.convert_temperature([0, 0], 'celsius', 'Kelvin'),
8
+ [273.15, 273.15])
9
+ assert_equal(sc.convert_temperature([0, 0], 'kelvin', 'c'),
10
+ [-273.15, -273.15])
11
+ assert_equal(sc.convert_temperature([32, 32], 'f', 'k'), [273.15, 273.15])
12
+ assert_equal(sc.convert_temperature([273.15, 273.15], 'kelvin', 'F'),
13
+ [32, 32])
14
+ assert_equal(sc.convert_temperature([0, 0], 'C', 'fahrenheit'), [32, 32])
15
+ assert_allclose(sc.convert_temperature([0, 0], 'c', 'r'), [491.67, 491.67],
16
+ rtol=0., atol=1e-13)
17
+ assert_allclose(sc.convert_temperature([491.67, 491.67], 'Rankine', 'C'),
18
+ [0., 0.], rtol=0., atol=1e-13)
19
+ assert_allclose(sc.convert_temperature([491.67, 491.67], 'r', 'F'),
20
+ [32., 32.], rtol=0., atol=1e-13)
21
+ assert_allclose(sc.convert_temperature([32, 32], 'fahrenheit', 'R'),
22
+ [491.67, 491.67], rtol=0., atol=1e-13)
23
+ assert_allclose(sc.convert_temperature([273.15, 273.15], 'K', 'R'),
24
+ [491.67, 491.67], rtol=0., atol=1e-13)
25
+ assert_allclose(sc.convert_temperature([491.67, 0.], 'rankine', 'kelvin'),
26
+ [273.15, 0.], rtol=0., atol=1e-13)
27
+
28
+
29
+ def test_lambda_to_nu():
30
+ assert_equal(sc.lambda2nu([sc.speed_of_light, 1]), [1, sc.speed_of_light])
31
+
32
+
33
+ def test_nu_to_lambda():
34
+ assert_equal(sc.nu2lambda([sc.speed_of_light, 1]), [1, sc.speed_of_light])
35
+
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__init__.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ =============================================
3
+ Integration and ODEs (:mod:`scipy.integrate`)
4
+ =============================================
5
+
6
+ .. currentmodule:: scipy.integrate
7
+
8
+ Integrating functions, given function object
9
+ ============================================
10
+
11
+ .. autosummary::
12
+ :toctree: generated/
13
+
14
+ quad -- General purpose integration
15
+ quad_vec -- General purpose integration of vector-valued functions
16
+ dblquad -- General purpose double integration
17
+ tplquad -- General purpose triple integration
18
+ nquad -- General purpose N-D integration
19
+ fixed_quad -- Integrate func(x) using Gaussian quadrature of order n
20
+ quadrature -- Integrate with given tolerance using Gaussian quadrature
21
+ romberg -- Integrate func using Romberg integration
22
+ newton_cotes -- Weights and error coefficient for Newton-Cotes integration
23
+ qmc_quad -- N-D integration using Quasi-Monte Carlo quadrature
24
+ IntegrationWarning -- Warning on issues during integration
25
+ AccuracyWarning -- Warning on issues during quadrature integration
26
+
27
+ Integrating functions, given fixed samples
28
+ ==========================================
29
+
30
+ .. autosummary::
31
+ :toctree: generated/
32
+
33
+ trapezoid -- Use trapezoidal rule to compute integral.
34
+ cumulative_trapezoid -- Use trapezoidal rule to cumulatively compute integral.
35
+ simpson -- Use Simpson's rule to compute integral from samples.
36
+ cumulative_simpson -- Use Simpson's rule to cumulatively compute integral from samples.
37
+ romb -- Use Romberg Integration to compute integral from
38
+ -- (2**k + 1) evenly-spaced samples.
39
+
40
+ .. seealso::
41
+
42
+ :mod:`scipy.special` for orthogonal polynomials (special) for Gaussian
43
+ quadrature roots and weights for other weighting factors and regions.
44
+
45
+ Solving initial value problems for ODE systems
46
+ ==============================================
47
+
48
+ The solvers are implemented as individual classes, which can be used directly
49
+ (low-level usage) or through a convenience function.
50
+
51
+ .. autosummary::
52
+ :toctree: generated/
53
+
54
+ solve_ivp -- Convenient function for ODE integration.
55
+ RK23 -- Explicit Runge-Kutta solver of order 3(2).
56
+ RK45 -- Explicit Runge-Kutta solver of order 5(4).
57
+ DOP853 -- Explicit Runge-Kutta solver of order 8.
58
+ Radau -- Implicit Runge-Kutta solver of order 5.
59
+ BDF -- Implicit multi-step variable order (1 to 5) solver.
60
+ LSODA -- LSODA solver from ODEPACK Fortran package.
61
+ OdeSolver -- Base class for ODE solvers.
62
+ DenseOutput -- Local interpolant for computing a dense output.
63
+ OdeSolution -- Class which represents a continuous ODE solution.
64
+
65
+
66
+ Old API
67
+ -------
68
+
69
+ These are the routines developed earlier for SciPy. They wrap older solvers
70
+ implemented in Fortran (mostly ODEPACK). While the interface to them is not
71
+ particularly convenient and certain features are missing compared to the new
72
+ API, the solvers themselves are of good quality and work fast as compiled
73
+ Fortran code. In some cases, it might be worth using this old API.
74
+
75
+ .. autosummary::
76
+ :toctree: generated/
77
+
78
+ odeint -- General integration of ordinary differential equations.
79
+ ode -- Integrate ODE using VODE and ZVODE routines.
80
+ complex_ode -- Convert a complex-valued ODE to real-valued and integrate.
81
+ ODEintWarning -- Warning raised during the execution of `odeint`.
82
+
83
+
84
+ Solving boundary value problems for ODE systems
85
+ ===============================================
86
+
87
+ .. autosummary::
88
+ :toctree: generated/
89
+
90
+ solve_bvp -- Solve a boundary value problem for a system of ODEs.
91
+ """ # noqa: E501
92
+
93
+
94
+ from ._quadrature import *
95
+ from ._odepack_py import *
96
+ from ._quadpack_py import *
97
+ from ._ode import *
98
+ from ._bvp import solve_bvp
99
+ from ._ivp import (solve_ivp, OdeSolution, DenseOutput,
100
+ OdeSolver, RK23, RK45, DOP853, Radau, BDF, LSODA)
101
+ from ._quad_vec import quad_vec
102
+
103
+ # Deprecated namespaces, to be removed in v2.0.0
104
+ from . import dop, lsoda, vode, odepack, quadpack
105
+
106
+ __all__ = [s for s in dir() if not s.startswith('_')]
107
+
108
+ from scipy._lib._testutils import PytestTester
109
+ test = PytestTester(__name__)
110
+ del PytestTester
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_bvp.cpython-310.pyc ADDED
Binary file (35.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_ode.cpython-310.pyc ADDED
Binary file (38.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_odepack_py.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_quad_vec.cpython-310.pyc ADDED
Binary file (15.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_quadpack_py.cpython-310.pyc ADDED
Binary file (49.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/_tanhsinh.cpython-310.pyc ADDED
Binary file (35.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/lsoda.cpython-310.pyc ADDED
Binary file (601 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/odepack.cpython-310.pyc ADDED
Binary file (630 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/quadpack.cpython-310.pyc ADDED
Binary file (670 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/__pycache__/vode.cpython-310.pyc ADDED
Binary file (613 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_dop.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (117 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ """Suite of ODE solvers implemented in Python."""
2
+ from .ivp import solve_ivp
3
+ from .rk import RK23, RK45, DOP853
4
+ from .radau import Radau
5
+ from .bdf import BDF
6
+ from .lsoda import LSODA
7
+ from .common import OdeSolution
8
+ from .base import DenseOutput, OdeSolver
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (556 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/base.cpython-310.pyc ADDED
Binary file (10.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/bdf.cpython-310.pyc ADDED
Binary file (14.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/common.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/dop853_coefficients.cpython-310.pyc ADDED
Binary file (4.93 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/ivp.cpython-310.pyc ADDED
Binary file (29.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/lsoda.cpython-310.pyc ADDED
Binary file (8.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/radau.cpython-310.pyc ADDED
Binary file (16.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/rk.cpython-310.pyc ADDED
Binary file (22 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/base.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def check_arguments(fun, y0, support_complex):
5
+ """Helper function for checking arguments common to all solvers."""
6
+ y0 = np.asarray(y0)
7
+ if np.issubdtype(y0.dtype, np.complexfloating):
8
+ if not support_complex:
9
+ raise ValueError("`y0` is complex, but the chosen solver does "
10
+ "not support integration in a complex domain.")
11
+ dtype = complex
12
+ else:
13
+ dtype = float
14
+ y0 = y0.astype(dtype, copy=False)
15
+
16
+ if y0.ndim != 1:
17
+ raise ValueError("`y0` must be 1-dimensional.")
18
+
19
+ if not np.isfinite(y0).all():
20
+ raise ValueError("All components of the initial state `y0` must be finite.")
21
+
22
+ def fun_wrapped(t, y):
23
+ return np.asarray(fun(t, y), dtype=dtype)
24
+
25
+ return fun_wrapped, y0
26
+
27
+
28
+ class OdeSolver:
29
+ """Base class for ODE solvers.
30
+
31
+ In order to implement a new solver you need to follow the guidelines:
32
+
33
+ 1. A constructor must accept parameters presented in the base class
34
+ (listed below) along with any other parameters specific to a solver.
35
+ 2. A constructor must accept arbitrary extraneous arguments
36
+ ``**extraneous``, but warn that these arguments are irrelevant
37
+ using `common.warn_extraneous` function. Do not pass these
38
+ arguments to the base class.
39
+ 3. A solver must implement a private method `_step_impl(self)` which
40
+ propagates a solver one step further. It must return tuple
41
+ ``(success, message)``, where ``success`` is a boolean indicating
42
+ whether a step was successful, and ``message`` is a string
43
+ containing description of a failure if a step failed or None
44
+ otherwise.
45
+ 4. A solver must implement a private method `_dense_output_impl(self)`,
46
+ which returns a `DenseOutput` object covering the last successful
47
+ step.
48
+ 5. A solver must have attributes listed below in Attributes section.
49
+ Note that ``t_old`` and ``step_size`` are updated automatically.
50
+ 6. Use `fun(self, t, y)` method for the system rhs evaluation, this
51
+ way the number of function evaluations (`nfev`) will be tracked
52
+ automatically.
53
+ 7. For convenience, a base class provides `fun_single(self, t, y)` and
54
+ `fun_vectorized(self, t, y)` for evaluating the rhs in
55
+ non-vectorized and vectorized fashions respectively (regardless of
56
+ how `fun` from the constructor is implemented). These calls don't
57
+ increment `nfev`.
58
+ 8. If a solver uses a Jacobian matrix and LU decompositions, it should
59
+ track the number of Jacobian evaluations (`njev`) and the number of
60
+ LU decompositions (`nlu`).
61
+ 9. By convention, the function evaluations used to compute a finite
62
+ difference approximation of the Jacobian should not be counted in
63
+ `nfev`, thus use `fun_single(self, t, y)` or
64
+ `fun_vectorized(self, t, y)` when computing a finite difference
65
+ approximation of the Jacobian.
66
+
67
+ Parameters
68
+ ----------
69
+ fun : callable
70
+ Right-hand side of the system: the time derivative of the state ``y``
71
+ at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
72
+ scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
73
+ return an array of the same shape as ``y``. See `vectorized` for more
74
+ information.
75
+ t0 : float
76
+ Initial time.
77
+ y0 : array_like, shape (n,)
78
+ Initial state.
79
+ t_bound : float
80
+ Boundary time --- the integration won't continue beyond it. It also
81
+ determines the direction of the integration.
82
+ vectorized : bool
83
+ Whether `fun` can be called in a vectorized fashion. Default is False.
84
+
85
+ If ``vectorized`` is False, `fun` will always be called with ``y`` of
86
+ shape ``(n,)``, where ``n = len(y0)``.
87
+
88
+ If ``vectorized`` is True, `fun` may be called with ``y`` of shape
89
+ ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
90
+ such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
91
+ the returned array is the time derivative of the state corresponding
92
+ with a column of ``y``).
93
+
94
+ Setting ``vectorized=True`` allows for faster finite difference
95
+ approximation of the Jacobian by methods 'Radau' and 'BDF', but
96
+ will result in slower execution for other methods. It can also
97
+ result in slower overall execution for 'Radau' and 'BDF' in some
98
+ circumstances (e.g. small ``len(y0)``).
99
+ support_complex : bool, optional
100
+ Whether integration in a complex domain should be supported.
101
+ Generally determined by a derived solver class capabilities.
102
+ Default is False.
103
+
104
+ Attributes
105
+ ----------
106
+ n : int
107
+ Number of equations.
108
+ status : string
109
+ Current status of the solver: 'running', 'finished' or 'failed'.
110
+ t_bound : float
111
+ Boundary time.
112
+ direction : float
113
+ Integration direction: +1 or -1.
114
+ t : float
115
+ Current time.
116
+ y : ndarray
117
+ Current state.
118
+ t_old : float
119
+ Previous time. None if no steps were made yet.
120
+ step_size : float
121
+ Size of the last successful step. None if no steps were made yet.
122
+ nfev : int
123
+ Number of the system's rhs evaluations.
124
+ njev : int
125
+ Number of the Jacobian evaluations.
126
+ nlu : int
127
+ Number of LU decompositions.
128
+ """
129
+ TOO_SMALL_STEP = "Required step size is less than spacing between numbers."
130
+
131
+ def __init__(self, fun, t0, y0, t_bound, vectorized,
132
+ support_complex=False):
133
+ self.t_old = None
134
+ self.t = t0
135
+ self._fun, self.y = check_arguments(fun, y0, support_complex)
136
+ self.t_bound = t_bound
137
+ self.vectorized = vectorized
138
+
139
+ if vectorized:
140
+ def fun_single(t, y):
141
+ return self._fun(t, y[:, None]).ravel()
142
+ fun_vectorized = self._fun
143
+ else:
144
+ fun_single = self._fun
145
+
146
+ def fun_vectorized(t, y):
147
+ f = np.empty_like(y)
148
+ for i, yi in enumerate(y.T):
149
+ f[:, i] = self._fun(t, yi)
150
+ return f
151
+
152
+ def fun(t, y):
153
+ self.nfev += 1
154
+ return self.fun_single(t, y)
155
+
156
+ self.fun = fun
157
+ self.fun_single = fun_single
158
+ self.fun_vectorized = fun_vectorized
159
+
160
+ self.direction = np.sign(t_bound - t0) if t_bound != t0 else 1
161
+ self.n = self.y.size
162
+ self.status = 'running'
163
+
164
+ self.nfev = 0
165
+ self.njev = 0
166
+ self.nlu = 0
167
+
168
+ @property
169
+ def step_size(self):
170
+ if self.t_old is None:
171
+ return None
172
+ else:
173
+ return np.abs(self.t - self.t_old)
174
+
175
+ def step(self):
176
+ """Perform one integration step.
177
+
178
+ Returns
179
+ -------
180
+ message : string or None
181
+ Report from the solver. Typically a reason for a failure if
182
+ `self.status` is 'failed' after the step was taken or None
183
+ otherwise.
184
+ """
185
+ if self.status != 'running':
186
+ raise RuntimeError("Attempt to step on a failed or finished "
187
+ "solver.")
188
+
189
+ if self.n == 0 or self.t == self.t_bound:
190
+ # Handle corner cases of empty solver or no integration.
191
+ self.t_old = self.t
192
+ self.t = self.t_bound
193
+ message = None
194
+ self.status = 'finished'
195
+ else:
196
+ t = self.t
197
+ success, message = self._step_impl()
198
+
199
+ if not success:
200
+ self.status = 'failed'
201
+ else:
202
+ self.t_old = t
203
+ if self.direction * (self.t - self.t_bound) >= 0:
204
+ self.status = 'finished'
205
+
206
+ return message
207
+
208
+ def dense_output(self):
209
+ """Compute a local interpolant over the last successful step.
210
+
211
+ Returns
212
+ -------
213
+ sol : `DenseOutput`
214
+ Local interpolant over the last successful step.
215
+ """
216
+ if self.t_old is None:
217
+ raise RuntimeError("Dense output is available after a successful "
218
+ "step was made.")
219
+
220
+ if self.n == 0 or self.t == self.t_old:
221
+ # Handle corner cases of empty solver and no integration.
222
+ return ConstantDenseOutput(self.t_old, self.t, self.y)
223
+ else:
224
+ return self._dense_output_impl()
225
+
226
+ def _step_impl(self):
227
+ raise NotImplementedError
228
+
229
+ def _dense_output_impl(self):
230
+ raise NotImplementedError
231
+
232
+
233
+ class DenseOutput:
234
+ """Base class for local interpolant over step made by an ODE solver.
235
+
236
+ It interpolates between `t_min` and `t_max` (see Attributes below).
237
+ Evaluation outside this interval is not forbidden, but the accuracy is not
238
+ guaranteed.
239
+
240
+ Attributes
241
+ ----------
242
+ t_min, t_max : float
243
+ Time range of the interpolation.
244
+ """
245
+ def __init__(self, t_old, t):
246
+ self.t_old = t_old
247
+ self.t = t
248
+ self.t_min = min(t, t_old)
249
+ self.t_max = max(t, t_old)
250
+
251
+ def __call__(self, t):
252
+ """Evaluate the interpolant.
253
+
254
+ Parameters
255
+ ----------
256
+ t : float or array_like with shape (n_points,)
257
+ Points to evaluate the solution at.
258
+
259
+ Returns
260
+ -------
261
+ y : ndarray, shape (n,) or (n, n_points)
262
+ Computed values. Shape depends on whether `t` was a scalar or a
263
+ 1-D array.
264
+ """
265
+ t = np.asarray(t)
266
+ if t.ndim > 1:
267
+ raise ValueError("`t` must be a float or a 1-D array.")
268
+ return self._call_impl(t)
269
+
270
+ def _call_impl(self, t):
271
+ raise NotImplementedError
272
+
273
+
274
+ class ConstantDenseOutput(DenseOutput):
275
+ """Constant value interpolator.
276
+
277
+ This class used for degenerate integration cases: equal integration limits
278
+ or a system with 0 equations.
279
+ """
280
+ def __init__(self, t_old, t, value):
281
+ super().__init__(t_old, t)
282
+ self.value = value
283
+
284
+ def _call_impl(self, t):
285
+ if t.ndim == 0:
286
+ return self.value
287
+ else:
288
+ ret = np.empty((self.value.shape[0], t.shape[0]))
289
+ ret[:] = self.value[:, None]
290
+ return ret
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/bdf.py ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.linalg import lu_factor, lu_solve
3
+ from scipy.sparse import issparse, csc_matrix, eye
4
+ from scipy.sparse.linalg import splu
5
+ from scipy.optimize._numdiff import group_columns
6
+ from .common import (validate_max_step, validate_tol, select_initial_step,
7
+ norm, EPS, num_jac, validate_first_step,
8
+ warn_extraneous)
9
+ from .base import OdeSolver, DenseOutput
10
+
11
+
12
+ MAX_ORDER = 5
13
+ NEWTON_MAXITER = 4
14
+ MIN_FACTOR = 0.2
15
+ MAX_FACTOR = 10
16
+
17
+
18
+ def compute_R(order, factor):
19
+ """Compute the matrix for changing the differences array."""
20
+ I = np.arange(1, order + 1)[:, None]
21
+ J = np.arange(1, order + 1)
22
+ M = np.zeros((order + 1, order + 1))
23
+ M[1:, 1:] = (I - 1 - factor * J) / I
24
+ M[0] = 1
25
+ return np.cumprod(M, axis=0)
26
+
27
+
28
+ def change_D(D, order, factor):
29
+ """Change differences array in-place when step size is changed."""
30
+ R = compute_R(order, factor)
31
+ U = compute_R(order, 1)
32
+ RU = R.dot(U)
33
+ D[:order + 1] = np.dot(RU.T, D[:order + 1])
34
+
35
+
36
+ def solve_bdf_system(fun, t_new, y_predict, c, psi, LU, solve_lu, scale, tol):
37
+ """Solve the algebraic system resulting from BDF method."""
38
+ d = 0
39
+ y = y_predict.copy()
40
+ dy_norm_old = None
41
+ converged = False
42
+ for k in range(NEWTON_MAXITER):
43
+ f = fun(t_new, y)
44
+ if not np.all(np.isfinite(f)):
45
+ break
46
+
47
+ dy = solve_lu(LU, c * f - psi - d)
48
+ dy_norm = norm(dy / scale)
49
+
50
+ if dy_norm_old is None:
51
+ rate = None
52
+ else:
53
+ rate = dy_norm / dy_norm_old
54
+
55
+ if (rate is not None and (rate >= 1 or
56
+ rate ** (NEWTON_MAXITER - k) / (1 - rate) * dy_norm > tol)):
57
+ break
58
+
59
+ y += dy
60
+ d += dy
61
+
62
+ if (dy_norm == 0 or
63
+ rate is not None and rate / (1 - rate) * dy_norm < tol):
64
+ converged = True
65
+ break
66
+
67
+ dy_norm_old = dy_norm
68
+
69
+ return converged, k + 1, y, d
70
+
71
+
72
+ class BDF(OdeSolver):
73
+ """Implicit method based on backward-differentiation formulas.
74
+
75
+ This is a variable order method with the order varying automatically from
76
+ 1 to 5. The general framework of the BDF algorithm is described in [1]_.
77
+ This class implements a quasi-constant step size as explained in [2]_.
78
+ The error estimation strategy for the constant-step BDF is derived in [3]_.
79
+ An accuracy enhancement using modified formulas (NDF) [2]_ is also implemented.
80
+
81
+ Can be applied in the complex domain.
82
+
83
+ Parameters
84
+ ----------
85
+ fun : callable
86
+ Right-hand side of the system: the time derivative of the state ``y``
87
+ at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
88
+ scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
89
+ return an array of the same shape as ``y``. See `vectorized` for more
90
+ information.
91
+ t0 : float
92
+ Initial time.
93
+ y0 : array_like, shape (n,)
94
+ Initial state.
95
+ t_bound : float
96
+ Boundary time - the integration won't continue beyond it. It also
97
+ determines the direction of the integration.
98
+ first_step : float or None, optional
99
+ Initial step size. Default is ``None`` which means that the algorithm
100
+ should choose.
101
+ max_step : float, optional
102
+ Maximum allowed step size. Default is np.inf, i.e., the step size is not
103
+ bounded and determined solely by the solver.
104
+ rtol, atol : float and array_like, optional
105
+ Relative and absolute tolerances. The solver keeps the local error
106
+ estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
107
+ relative accuracy (number of correct digits), while `atol` controls
108
+ absolute accuracy (number of correct decimal places). To achieve the
109
+ desired `rtol`, set `atol` to be smaller than the smallest value that
110
+ can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
111
+ allowable error. If `atol` is larger than ``rtol * abs(y)`` the
112
+ number of correct digits is not guaranteed. Conversely, to achieve the
113
+ desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
114
+ than `atol`. If components of y have different scales, it might be
115
+ beneficial to set different `atol` values for different components by
116
+ passing array_like with shape (n,) for `atol`. Default values are
117
+ 1e-3 for `rtol` and 1e-6 for `atol`.
118
+ jac : {None, array_like, sparse_matrix, callable}, optional
119
+ Jacobian matrix of the right-hand side of the system with respect to y,
120
+ required by this method. The Jacobian matrix has shape (n, n) and its
121
+ element (i, j) is equal to ``d f_i / d y_j``.
122
+ There are three ways to define the Jacobian:
123
+
124
+ * If array_like or sparse_matrix, the Jacobian is assumed to
125
+ be constant.
126
+ * If callable, the Jacobian is assumed to depend on both
127
+ t and y; it will be called as ``jac(t, y)`` as necessary.
128
+ For the 'Radau' and 'BDF' methods, the return value might be a
129
+ sparse matrix.
130
+ * If None (default), the Jacobian will be approximated by
131
+ finite differences.
132
+
133
+ It is generally recommended to provide the Jacobian rather than
134
+ relying on a finite-difference approximation.
135
+ jac_sparsity : {None, array_like, sparse matrix}, optional
136
+ Defines a sparsity structure of the Jacobian matrix for a
137
+ finite-difference approximation. Its shape must be (n, n). This argument
138
+ is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
139
+ elements in *each* row, providing the sparsity structure will greatly
140
+ speed up the computations [4]_. A zero entry means that a corresponding
141
+ element in the Jacobian is always zero. If None (default), the Jacobian
142
+ is assumed to be dense.
143
+ vectorized : bool, optional
144
+ Whether `fun` can be called in a vectorized fashion. Default is False.
145
+
146
+ If ``vectorized`` is False, `fun` will always be called with ``y`` of
147
+ shape ``(n,)``, where ``n = len(y0)``.
148
+
149
+ If ``vectorized`` is True, `fun` may be called with ``y`` of shape
150
+ ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
151
+ such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
152
+ the returned array is the time derivative of the state corresponding
153
+ with a column of ``y``).
154
+
155
+ Setting ``vectorized=True`` allows for faster finite difference
156
+ approximation of the Jacobian by this method, but may result in slower
157
+ execution overall in some circumstances (e.g. small ``len(y0)``).
158
+
159
+ Attributes
160
+ ----------
161
+ n : int
162
+ Number of equations.
163
+ status : string
164
+ Current status of the solver: 'running', 'finished' or 'failed'.
165
+ t_bound : float
166
+ Boundary time.
167
+ direction : float
168
+ Integration direction: +1 or -1.
169
+ t : float
170
+ Current time.
171
+ y : ndarray
172
+ Current state.
173
+ t_old : float
174
+ Previous time. None if no steps were made yet.
175
+ step_size : float
176
+ Size of the last successful step. None if no steps were made yet.
177
+ nfev : int
178
+ Number of evaluations of the right-hand side.
179
+ njev : int
180
+ Number of evaluations of the Jacobian.
181
+ nlu : int
182
+ Number of LU decompositions.
183
+
184
+ References
185
+ ----------
186
+ .. [1] G. D. Byrne, A. C. Hindmarsh, "A Polyalgorithm for the Numerical
187
+ Solution of Ordinary Differential Equations", ACM Transactions on
188
+ Mathematical Software, Vol. 1, No. 1, pp. 71-96, March 1975.
189
+ .. [2] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI.
190
+ COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
191
+ .. [3] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations I:
192
+ Nonstiff Problems", Sec. III.2.
193
+ .. [4] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
194
+ sparse Jacobian matrices", Journal of the Institute of Mathematics
195
+ and its Applications, 13, pp. 117-120, 1974.
196
+ """
197
+ def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
198
+ rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
199
+ vectorized=False, first_step=None, **extraneous):
200
+ warn_extraneous(extraneous)
201
+ super().__init__(fun, t0, y0, t_bound, vectorized,
202
+ support_complex=True)
203
+ self.max_step = validate_max_step(max_step)
204
+ self.rtol, self.atol = validate_tol(rtol, atol, self.n)
205
+ f = self.fun(self.t, self.y)
206
+ if first_step is None:
207
+ self.h_abs = select_initial_step(self.fun, self.t, self.y, f,
208
+ self.direction, 1,
209
+ self.rtol, self.atol)
210
+ else:
211
+ self.h_abs = validate_first_step(first_step, t0, t_bound)
212
+ self.h_abs_old = None
213
+ self.error_norm_old = None
214
+
215
+ self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
216
+
217
+ self.jac_factor = None
218
+ self.jac, self.J = self._validate_jac(jac, jac_sparsity)
219
+ if issparse(self.J):
220
+ def lu(A):
221
+ self.nlu += 1
222
+ return splu(A)
223
+
224
+ def solve_lu(LU, b):
225
+ return LU.solve(b)
226
+
227
+ I = eye(self.n, format='csc', dtype=self.y.dtype)
228
+ else:
229
+ def lu(A):
230
+ self.nlu += 1
231
+ return lu_factor(A, overwrite_a=True)
232
+
233
+ def solve_lu(LU, b):
234
+ return lu_solve(LU, b, overwrite_b=True)
235
+
236
+ I = np.identity(self.n, dtype=self.y.dtype)
237
+
238
+ self.lu = lu
239
+ self.solve_lu = solve_lu
240
+ self.I = I
241
+
242
+ kappa = np.array([0, -0.1850, -1/9, -0.0823, -0.0415, 0])
243
+ self.gamma = np.hstack((0, np.cumsum(1 / np.arange(1, MAX_ORDER + 1))))
244
+ self.alpha = (1 - kappa) * self.gamma
245
+ self.error_const = kappa * self.gamma + 1 / np.arange(1, MAX_ORDER + 2)
246
+
247
+ D = np.empty((MAX_ORDER + 3, self.n), dtype=self.y.dtype)
248
+ D[0] = self.y
249
+ D[1] = f * self.h_abs * self.direction
250
+ self.D = D
251
+
252
+ self.order = 1
253
+ self.n_equal_steps = 0
254
+ self.LU = None
255
+
256
+ def _validate_jac(self, jac, sparsity):
257
+ t0 = self.t
258
+ y0 = self.y
259
+
260
+ if jac is None:
261
+ if sparsity is not None:
262
+ if issparse(sparsity):
263
+ sparsity = csc_matrix(sparsity)
264
+ groups = group_columns(sparsity)
265
+ sparsity = (sparsity, groups)
266
+
267
+ def jac_wrapped(t, y):
268
+ self.njev += 1
269
+ f = self.fun_single(t, y)
270
+ J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
271
+ self.atol, self.jac_factor,
272
+ sparsity)
273
+ return J
274
+ J = jac_wrapped(t0, y0)
275
+ elif callable(jac):
276
+ J = jac(t0, y0)
277
+ self.njev += 1
278
+ if issparse(J):
279
+ J = csc_matrix(J, dtype=y0.dtype)
280
+
281
+ def jac_wrapped(t, y):
282
+ self.njev += 1
283
+ return csc_matrix(jac(t, y), dtype=y0.dtype)
284
+ else:
285
+ J = np.asarray(J, dtype=y0.dtype)
286
+
287
+ def jac_wrapped(t, y):
288
+ self.njev += 1
289
+ return np.asarray(jac(t, y), dtype=y0.dtype)
290
+
291
+ if J.shape != (self.n, self.n):
292
+ raise ValueError("`jac` is expected to have shape {}, but "
293
+ "actually has {}."
294
+ .format((self.n, self.n), J.shape))
295
+ else:
296
+ if issparse(jac):
297
+ J = csc_matrix(jac, dtype=y0.dtype)
298
+ else:
299
+ J = np.asarray(jac, dtype=y0.dtype)
300
+
301
+ if J.shape != (self.n, self.n):
302
+ raise ValueError("`jac` is expected to have shape {}, but "
303
+ "actually has {}."
304
+ .format((self.n, self.n), J.shape))
305
+ jac_wrapped = None
306
+
307
+ return jac_wrapped, J
308
+
309
+ def _step_impl(self):
310
+ t = self.t
311
+ D = self.D
312
+
313
+ max_step = self.max_step
314
+ min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
315
+ if self.h_abs > max_step:
316
+ h_abs = max_step
317
+ change_D(D, self.order, max_step / self.h_abs)
318
+ self.n_equal_steps = 0
319
+ elif self.h_abs < min_step:
320
+ h_abs = min_step
321
+ change_D(D, self.order, min_step / self.h_abs)
322
+ self.n_equal_steps = 0
323
+ else:
324
+ h_abs = self.h_abs
325
+
326
+ atol = self.atol
327
+ rtol = self.rtol
328
+ order = self.order
329
+
330
+ alpha = self.alpha
331
+ gamma = self.gamma
332
+ error_const = self.error_const
333
+
334
+ J = self.J
335
+ LU = self.LU
336
+ current_jac = self.jac is None
337
+
338
+ step_accepted = False
339
+ while not step_accepted:
340
+ if h_abs < min_step:
341
+ return False, self.TOO_SMALL_STEP
342
+
343
+ h = h_abs * self.direction
344
+ t_new = t + h
345
+
346
+ if self.direction * (t_new - self.t_bound) > 0:
347
+ t_new = self.t_bound
348
+ change_D(D, order, np.abs(t_new - t) / h_abs)
349
+ self.n_equal_steps = 0
350
+ LU = None
351
+
352
+ h = t_new - t
353
+ h_abs = np.abs(h)
354
+
355
+ y_predict = np.sum(D[:order + 1], axis=0)
356
+
357
+ scale = atol + rtol * np.abs(y_predict)
358
+ psi = np.dot(D[1: order + 1].T, gamma[1: order + 1]) / alpha[order]
359
+
360
+ converged = False
361
+ c = h / alpha[order]
362
+ while not converged:
363
+ if LU is None:
364
+ LU = self.lu(self.I - c * J)
365
+
366
+ converged, n_iter, y_new, d = solve_bdf_system(
367
+ self.fun, t_new, y_predict, c, psi, LU, self.solve_lu,
368
+ scale, self.newton_tol)
369
+
370
+ if not converged:
371
+ if current_jac:
372
+ break
373
+ J = self.jac(t_new, y_predict)
374
+ LU = None
375
+ current_jac = True
376
+
377
+ if not converged:
378
+ factor = 0.5
379
+ h_abs *= factor
380
+ change_D(D, order, factor)
381
+ self.n_equal_steps = 0
382
+ LU = None
383
+ continue
384
+
385
+ safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
386
+ + n_iter)
387
+
388
+ scale = atol + rtol * np.abs(y_new)
389
+ error = error_const[order] * d
390
+ error_norm = norm(error / scale)
391
+
392
+ if error_norm > 1:
393
+ factor = max(MIN_FACTOR,
394
+ safety * error_norm ** (-1 / (order + 1)))
395
+ h_abs *= factor
396
+ change_D(D, order, factor)
397
+ self.n_equal_steps = 0
398
+ # As we didn't have problems with convergence, we don't
399
+ # reset LU here.
400
+ else:
401
+ step_accepted = True
402
+
403
+ self.n_equal_steps += 1
404
+
405
+ self.t = t_new
406
+ self.y = y_new
407
+
408
+ self.h_abs = h_abs
409
+ self.J = J
410
+ self.LU = LU
411
+
412
+ # Update differences. The principal relation here is
413
+ # D^{j + 1} y_n = D^{j} y_n - D^{j} y_{n - 1}. Keep in mind that D
414
+ # contained difference for previous interpolating polynomial and
415
+ # d = D^{k + 1} y_n. Thus this elegant code follows.
416
+ D[order + 2] = d - D[order + 1]
417
+ D[order + 1] = d
418
+ for i in reversed(range(order + 1)):
419
+ D[i] += D[i + 1]
420
+
421
+ if self.n_equal_steps < order + 1:
422
+ return True, None
423
+
424
+ if order > 1:
425
+ error_m = error_const[order - 1] * D[order]
426
+ error_m_norm = norm(error_m / scale)
427
+ else:
428
+ error_m_norm = np.inf
429
+
430
+ if order < MAX_ORDER:
431
+ error_p = error_const[order + 1] * D[order + 2]
432
+ error_p_norm = norm(error_p / scale)
433
+ else:
434
+ error_p_norm = np.inf
435
+
436
+ error_norms = np.array([error_m_norm, error_norm, error_p_norm])
437
+ with np.errstate(divide='ignore'):
438
+ factors = error_norms ** (-1 / np.arange(order, order + 3))
439
+
440
+ delta_order = np.argmax(factors) - 1
441
+ order += delta_order
442
+ self.order = order
443
+
444
+ factor = min(MAX_FACTOR, safety * np.max(factors))
445
+ self.h_abs *= factor
446
+ change_D(D, order, factor)
447
+ self.n_equal_steps = 0
448
+ self.LU = None
449
+
450
+ return True, None
451
+
452
+ def _dense_output_impl(self):
453
+ return BdfDenseOutput(self.t_old, self.t, self.h_abs * self.direction,
454
+ self.order, self.D[:self.order + 1].copy())
455
+
456
+
457
+ class BdfDenseOutput(DenseOutput):
458
+ def __init__(self, t_old, t, h, order, D):
459
+ super().__init__(t_old, t)
460
+ self.order = order
461
+ self.t_shift = self.t - h * np.arange(self.order)
462
+ self.denom = h * (1 + np.arange(self.order))
463
+ self.D = D
464
+
465
+ def _call_impl(self, t):
466
+ if t.ndim == 0:
467
+ x = (t - self.t_shift) / self.denom
468
+ p = np.cumprod(x)
469
+ else:
470
+ x = (t - self.t_shift[:, None]) / self.denom[:, None]
471
+ p = np.cumprod(x, axis=0)
472
+
473
+ y = np.dot(self.D[1:].T, p)
474
+ if y.ndim == 1:
475
+ y += self.D[0]
476
+ else:
477
+ y += self.D[0, :, None]
478
+
479
+ return y
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/common.py ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import groupby
2
+ from warnings import warn
3
+ import numpy as np
4
+ from scipy.sparse import find, coo_matrix
5
+
6
+
7
+ EPS = np.finfo(float).eps
8
+
9
+
10
+ def validate_first_step(first_step, t0, t_bound):
11
+ """Assert that first_step is valid and return it."""
12
+ if first_step <= 0:
13
+ raise ValueError("`first_step` must be positive.")
14
+ if first_step > np.abs(t_bound - t0):
15
+ raise ValueError("`first_step` exceeds bounds.")
16
+ return first_step
17
+
18
+
19
+ def validate_max_step(max_step):
20
+ """Assert that max_Step is valid and return it."""
21
+ if max_step <= 0:
22
+ raise ValueError("`max_step` must be positive.")
23
+ return max_step
24
+
25
+
26
+ def warn_extraneous(extraneous):
27
+ """Display a warning for extraneous keyword arguments.
28
+
29
+ The initializer of each solver class is expected to collect keyword
30
+ arguments that it doesn't understand and warn about them. This function
31
+ prints a warning for each key in the supplied dictionary.
32
+
33
+ Parameters
34
+ ----------
35
+ extraneous : dict
36
+ Extraneous keyword arguments
37
+ """
38
+ if extraneous:
39
+ warn("The following arguments have no effect for a chosen solver: {}."
40
+ .format(", ".join(f"`{x}`" for x in extraneous)),
41
+ stacklevel=3)
42
+
43
+
44
+ def validate_tol(rtol, atol, n):
45
+ """Validate tolerance values."""
46
+
47
+ if np.any(rtol < 100 * EPS):
48
+ warn("At least one element of `rtol` is too small. "
49
+ f"Setting `rtol = np.maximum(rtol, {100 * EPS})`.",
50
+ stacklevel=3)
51
+ rtol = np.maximum(rtol, 100 * EPS)
52
+
53
+ atol = np.asarray(atol)
54
+ if atol.ndim > 0 and atol.shape != (n,):
55
+ raise ValueError("`atol` has wrong shape.")
56
+
57
+ if np.any(atol < 0):
58
+ raise ValueError("`atol` must be positive.")
59
+
60
+ return rtol, atol
61
+
62
+
63
+ def norm(x):
64
+ """Compute RMS norm."""
65
+ return np.linalg.norm(x) / x.size ** 0.5
66
+
67
+
68
+ def select_initial_step(fun, t0, y0, f0, direction, order, rtol, atol):
69
+ """Empirically select a good initial step.
70
+
71
+ The algorithm is described in [1]_.
72
+
73
+ Parameters
74
+ ----------
75
+ fun : callable
76
+ Right-hand side of the system.
77
+ t0 : float
78
+ Initial value of the independent variable.
79
+ y0 : ndarray, shape (n,)
80
+ Initial value of the dependent variable.
81
+ f0 : ndarray, shape (n,)
82
+ Initial value of the derivative, i.e., ``fun(t0, y0)``.
83
+ direction : float
84
+ Integration direction.
85
+ order : float
86
+ Error estimator order. It means that the error controlled by the
87
+ algorithm is proportional to ``step_size ** (order + 1)`.
88
+ rtol : float
89
+ Desired relative tolerance.
90
+ atol : float
91
+ Desired absolute tolerance.
92
+
93
+ Returns
94
+ -------
95
+ h_abs : float
96
+ Absolute value of the suggested initial step.
97
+
98
+ References
99
+ ----------
100
+ .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
101
+ Equations I: Nonstiff Problems", Sec. II.4.
102
+ """
103
+ if y0.size == 0:
104
+ return np.inf
105
+
106
+ scale = atol + np.abs(y0) * rtol
107
+ d0 = norm(y0 / scale)
108
+ d1 = norm(f0 / scale)
109
+ if d0 < 1e-5 or d1 < 1e-5:
110
+ h0 = 1e-6
111
+ else:
112
+ h0 = 0.01 * d0 / d1
113
+
114
+ y1 = y0 + h0 * direction * f0
115
+ f1 = fun(t0 + h0 * direction, y1)
116
+ d2 = norm((f1 - f0) / scale) / h0
117
+
118
+ if d1 <= 1e-15 and d2 <= 1e-15:
119
+ h1 = max(1e-6, h0 * 1e-3)
120
+ else:
121
+ h1 = (0.01 / max(d1, d2)) ** (1 / (order + 1))
122
+
123
+ return min(100 * h0, h1)
124
+
125
+
126
+ class OdeSolution:
127
+ """Continuous ODE solution.
128
+
129
+ It is organized as a collection of `DenseOutput` objects which represent
130
+ local interpolants. It provides an algorithm to select a right interpolant
131
+ for each given point.
132
+
133
+ The interpolants cover the range between `t_min` and `t_max` (see
134
+ Attributes below). Evaluation outside this interval is not forbidden, but
135
+ the accuracy is not guaranteed.
136
+
137
+ When evaluating at a breakpoint (one of the values in `ts`) a segment with
138
+ the lower index is selected.
139
+
140
+ Parameters
141
+ ----------
142
+ ts : array_like, shape (n_segments + 1,)
143
+ Time instants between which local interpolants are defined. Must
144
+ be strictly increasing or decreasing (zero segment with two points is
145
+ also allowed).
146
+ interpolants : list of DenseOutput with n_segments elements
147
+ Local interpolants. An i-th interpolant is assumed to be defined
148
+ between ``ts[i]`` and ``ts[i + 1]``.
149
+ alt_segment : boolean
150
+ Requests the alternative interpolant segment selection scheme. At each
151
+ solver integration point, two interpolant segments are available. The
152
+ default (False) and alternative (True) behaviours select the segment
153
+ for which the requested time corresponded to ``t`` and ``t_old``,
154
+ respectively. This functionality is only relevant for testing the
155
+ interpolants' accuracy: different integrators use different
156
+ construction strategies.
157
+
158
+ Attributes
159
+ ----------
160
+ t_min, t_max : float
161
+ Time range of the interpolation.
162
+ """
163
+ def __init__(self, ts, interpolants, alt_segment=False):
164
+ ts = np.asarray(ts)
165
+ d = np.diff(ts)
166
+ # The first case covers integration on zero segment.
167
+ if not ((ts.size == 2 and ts[0] == ts[-1])
168
+ or np.all(d > 0) or np.all(d < 0)):
169
+ raise ValueError("`ts` must be strictly increasing or decreasing.")
170
+
171
+ self.n_segments = len(interpolants)
172
+ if ts.shape != (self.n_segments + 1,):
173
+ raise ValueError("Numbers of time stamps and interpolants "
174
+ "don't match.")
175
+
176
+ self.ts = ts
177
+ self.interpolants = interpolants
178
+ if ts[-1] >= ts[0]:
179
+ self.t_min = ts[0]
180
+ self.t_max = ts[-1]
181
+ self.ascending = True
182
+ self.side = "right" if alt_segment else "left"
183
+ self.ts_sorted = ts
184
+ else:
185
+ self.t_min = ts[-1]
186
+ self.t_max = ts[0]
187
+ self.ascending = False
188
+ self.side = "left" if alt_segment else "right"
189
+ self.ts_sorted = ts[::-1]
190
+
191
+ def _call_single(self, t):
192
+ # Here we preserve a certain symmetry that when t is in self.ts,
193
+ # if alt_segment=False, then we prioritize a segment with a lower
194
+ # index.
195
+ ind = np.searchsorted(self.ts_sorted, t, side=self.side)
196
+
197
+ segment = min(max(ind - 1, 0), self.n_segments - 1)
198
+ if not self.ascending:
199
+ segment = self.n_segments - 1 - segment
200
+
201
+ return self.interpolants[segment](t)
202
+
203
+ def __call__(self, t):
204
+ """Evaluate the solution.
205
+
206
+ Parameters
207
+ ----------
208
+ t : float or array_like with shape (n_points,)
209
+ Points to evaluate at.
210
+
211
+ Returns
212
+ -------
213
+ y : ndarray, shape (n_states,) or (n_states, n_points)
214
+ Computed values. Shape depends on whether `t` is a scalar or a
215
+ 1-D array.
216
+ """
217
+ t = np.asarray(t)
218
+
219
+ if t.ndim == 0:
220
+ return self._call_single(t)
221
+
222
+ order = np.argsort(t)
223
+ reverse = np.empty_like(order)
224
+ reverse[order] = np.arange(order.shape[0])
225
+ t_sorted = t[order]
226
+
227
+ # See comment in self._call_single.
228
+ segments = np.searchsorted(self.ts_sorted, t_sorted, side=self.side)
229
+ segments -= 1
230
+ segments[segments < 0] = 0
231
+ segments[segments > self.n_segments - 1] = self.n_segments - 1
232
+ if not self.ascending:
233
+ segments = self.n_segments - 1 - segments
234
+
235
+ ys = []
236
+ group_start = 0
237
+ for segment, group in groupby(segments):
238
+ group_end = group_start + len(list(group))
239
+ y = self.interpolants[segment](t_sorted[group_start:group_end])
240
+ ys.append(y)
241
+ group_start = group_end
242
+
243
+ ys = np.hstack(ys)
244
+ ys = ys[:, reverse]
245
+
246
+ return ys
247
+
248
+
249
+ NUM_JAC_DIFF_REJECT = EPS ** 0.875
250
+ NUM_JAC_DIFF_SMALL = EPS ** 0.75
251
+ NUM_JAC_DIFF_BIG = EPS ** 0.25
252
+ NUM_JAC_MIN_FACTOR = 1e3 * EPS
253
+ NUM_JAC_FACTOR_INCREASE = 10
254
+ NUM_JAC_FACTOR_DECREASE = 0.1
255
+
256
+
257
+ def num_jac(fun, t, y, f, threshold, factor, sparsity=None):
258
+ """Finite differences Jacobian approximation tailored for ODE solvers.
259
+
260
+ This function computes finite difference approximation to the Jacobian
261
+ matrix of `fun` with respect to `y` using forward differences.
262
+ The Jacobian matrix has shape (n, n) and its element (i, j) is equal to
263
+ ``d f_i / d y_j``.
264
+
265
+ A special feature of this function is the ability to correct the step
266
+ size from iteration to iteration. The main idea is to keep the finite
267
+ difference significantly separated from its round-off error which
268
+ approximately equals ``EPS * np.abs(f)``. It reduces a possibility of a
269
+ huge error and assures that the estimated derivative are reasonably close
270
+ to the true values (i.e., the finite difference approximation is at least
271
+ qualitatively reflects the structure of the true Jacobian).
272
+
273
+ Parameters
274
+ ----------
275
+ fun : callable
276
+ Right-hand side of the system implemented in a vectorized fashion.
277
+ t : float
278
+ Current time.
279
+ y : ndarray, shape (n,)
280
+ Current state.
281
+ f : ndarray, shape (n,)
282
+ Value of the right hand side at (t, y).
283
+ threshold : float
284
+ Threshold for `y` value used for computing the step size as
285
+ ``factor * np.maximum(np.abs(y), threshold)``. Typically, the value of
286
+ absolute tolerance (atol) for a solver should be passed as `threshold`.
287
+ factor : ndarray with shape (n,) or None
288
+ Factor to use for computing the step size. Pass None for the very
289
+ evaluation, then use the value returned from this function.
290
+ sparsity : tuple (structure, groups) or None
291
+ Sparsity structure of the Jacobian, `structure` must be csc_matrix.
292
+
293
+ Returns
294
+ -------
295
+ J : ndarray or csc_matrix, shape (n, n)
296
+ Jacobian matrix.
297
+ factor : ndarray, shape (n,)
298
+ Suggested `factor` for the next evaluation.
299
+ """
300
+ y = np.asarray(y)
301
+ n = y.shape[0]
302
+ if n == 0:
303
+ return np.empty((0, 0)), factor
304
+
305
+ if factor is None:
306
+ factor = np.full(n, EPS ** 0.5)
307
+ else:
308
+ factor = factor.copy()
309
+
310
+ # Direct the step as ODE dictates, hoping that such a step won't lead to
311
+ # a problematic region. For complex ODEs it makes sense to use the real
312
+ # part of f as we use steps along real axis.
313
+ f_sign = 2 * (np.real(f) >= 0).astype(float) - 1
314
+ y_scale = f_sign * np.maximum(threshold, np.abs(y))
315
+ h = (y + factor * y_scale) - y
316
+
317
+ # Make sure that the step is not 0 to start with. Not likely it will be
318
+ # executed often.
319
+ for i in np.nonzero(h == 0)[0]:
320
+ while h[i] == 0:
321
+ factor[i] *= 10
322
+ h[i] = (y[i] + factor[i] * y_scale[i]) - y[i]
323
+
324
+ if sparsity is None:
325
+ return _dense_num_jac(fun, t, y, f, h, factor, y_scale)
326
+ else:
327
+ structure, groups = sparsity
328
+ return _sparse_num_jac(fun, t, y, f, h, factor, y_scale,
329
+ structure, groups)
330
+
331
+
332
+ def _dense_num_jac(fun, t, y, f, h, factor, y_scale):
333
+ n = y.shape[0]
334
+ h_vecs = np.diag(h)
335
+ f_new = fun(t, y[:, None] + h_vecs)
336
+ diff = f_new - f[:, None]
337
+ max_ind = np.argmax(np.abs(diff), axis=0)
338
+ r = np.arange(n)
339
+ max_diff = np.abs(diff[max_ind, r])
340
+ scale = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r]))
341
+
342
+ diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale
343
+ if np.any(diff_too_small):
344
+ ind, = np.nonzero(diff_too_small)
345
+ new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind]
346
+ h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind]
347
+ h_vecs[ind, ind] = h_new
348
+ f_new = fun(t, y[:, None] + h_vecs[:, ind])
349
+ diff_new = f_new - f[:, None]
350
+ max_ind = np.argmax(np.abs(diff_new), axis=0)
351
+ r = np.arange(ind.shape[0])
352
+ max_diff_new = np.abs(diff_new[max_ind, r])
353
+ scale_new = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r]))
354
+
355
+ update = max_diff[ind] * scale_new < max_diff_new * scale[ind]
356
+ if np.any(update):
357
+ update, = np.nonzero(update)
358
+ update_ind = ind[update]
359
+ factor[update_ind] = new_factor[update]
360
+ h[update_ind] = h_new[update]
361
+ diff[:, update_ind] = diff_new[:, update]
362
+ scale[update_ind] = scale_new[update]
363
+ max_diff[update_ind] = max_diff_new[update]
364
+
365
+ diff /= h
366
+
367
+ factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE
368
+ factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE
369
+ factor = np.maximum(factor, NUM_JAC_MIN_FACTOR)
370
+
371
+ return diff, factor
372
+
373
+
374
+ def _sparse_num_jac(fun, t, y, f, h, factor, y_scale, structure, groups):
375
+ n = y.shape[0]
376
+ n_groups = np.max(groups) + 1
377
+ h_vecs = np.empty((n_groups, n))
378
+ for group in range(n_groups):
379
+ e = np.equal(group, groups)
380
+ h_vecs[group] = h * e
381
+ h_vecs = h_vecs.T
382
+
383
+ f_new = fun(t, y[:, None] + h_vecs)
384
+ df = f_new - f[:, None]
385
+
386
+ i, j, _ = find(structure)
387
+ diff = coo_matrix((df[i, groups[j]], (i, j)), shape=(n, n)).tocsc()
388
+ max_ind = np.array(abs(diff).argmax(axis=0)).ravel()
389
+ r = np.arange(n)
390
+ max_diff = np.asarray(np.abs(diff[max_ind, r])).ravel()
391
+ scale = np.maximum(np.abs(f[max_ind]),
392
+ np.abs(f_new[max_ind, groups[r]]))
393
+
394
+ diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale
395
+ if np.any(diff_too_small):
396
+ ind, = np.nonzero(diff_too_small)
397
+ new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind]
398
+ h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind]
399
+ h_new_all = np.zeros(n)
400
+ h_new_all[ind] = h_new
401
+
402
+ groups_unique = np.unique(groups[ind])
403
+ groups_map = np.empty(n_groups, dtype=int)
404
+ h_vecs = np.empty((groups_unique.shape[0], n))
405
+ for k, group in enumerate(groups_unique):
406
+ e = np.equal(group, groups)
407
+ h_vecs[k] = h_new_all * e
408
+ groups_map[group] = k
409
+ h_vecs = h_vecs.T
410
+
411
+ f_new = fun(t, y[:, None] + h_vecs)
412
+ df = f_new - f[:, None]
413
+ i, j, _ = find(structure[:, ind])
414
+ diff_new = coo_matrix((df[i, groups_map[groups[ind[j]]]],
415
+ (i, j)), shape=(n, ind.shape[0])).tocsc()
416
+
417
+ max_ind_new = np.array(abs(diff_new).argmax(axis=0)).ravel()
418
+ r = np.arange(ind.shape[0])
419
+ max_diff_new = np.asarray(np.abs(diff_new[max_ind_new, r])).ravel()
420
+ scale_new = np.maximum(
421
+ np.abs(f[max_ind_new]),
422
+ np.abs(f_new[max_ind_new, groups_map[groups[ind]]]))
423
+
424
+ update = max_diff[ind] * scale_new < max_diff_new * scale[ind]
425
+ if np.any(update):
426
+ update, = np.nonzero(update)
427
+ update_ind = ind[update]
428
+ factor[update_ind] = new_factor[update]
429
+ h[update_ind] = h_new[update]
430
+ diff[:, update_ind] = diff_new[:, update]
431
+ scale[update_ind] = scale_new[update]
432
+ max_diff[update_ind] = max_diff_new[update]
433
+
434
+ diff.data /= np.repeat(h, np.diff(diff.indptr))
435
+
436
+ factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE
437
+ factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE
438
+ factor = np.maximum(factor, NUM_JAC_MIN_FACTOR)
439
+
440
+ return diff, factor
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/dop853_coefficients.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ N_STAGES = 12
4
+ N_STAGES_EXTENDED = 16
5
+ INTERPOLATOR_POWER = 7
6
+
7
+ C = np.array([0.0,
8
+ 0.526001519587677318785587544488e-01,
9
+ 0.789002279381515978178381316732e-01,
10
+ 0.118350341907227396726757197510,
11
+ 0.281649658092772603273242802490,
12
+ 0.333333333333333333333333333333,
13
+ 0.25,
14
+ 0.307692307692307692307692307692,
15
+ 0.651282051282051282051282051282,
16
+ 0.6,
17
+ 0.857142857142857142857142857142,
18
+ 1.0,
19
+ 1.0,
20
+ 0.1,
21
+ 0.2,
22
+ 0.777777777777777777777777777778])
23
+
24
+ A = np.zeros((N_STAGES_EXTENDED, N_STAGES_EXTENDED))
25
+ A[1, 0] = 5.26001519587677318785587544488e-2
26
+
27
+ A[2, 0] = 1.97250569845378994544595329183e-2
28
+ A[2, 1] = 5.91751709536136983633785987549e-2
29
+
30
+ A[3, 0] = 2.95875854768068491816892993775e-2
31
+ A[3, 2] = 8.87627564304205475450678981324e-2
32
+
33
+ A[4, 0] = 2.41365134159266685502369798665e-1
34
+ A[4, 2] = -8.84549479328286085344864962717e-1
35
+ A[4, 3] = 9.24834003261792003115737966543e-1
36
+
37
+ A[5, 0] = 3.7037037037037037037037037037e-2
38
+ A[5, 3] = 1.70828608729473871279604482173e-1
39
+ A[5, 4] = 1.25467687566822425016691814123e-1
40
+
41
+ A[6, 0] = 3.7109375e-2
42
+ A[6, 3] = 1.70252211019544039314978060272e-1
43
+ A[6, 4] = 6.02165389804559606850219397283e-2
44
+ A[6, 5] = -1.7578125e-2
45
+
46
+ A[7, 0] = 3.70920001185047927108779319836e-2
47
+ A[7, 3] = 1.70383925712239993810214054705e-1
48
+ A[7, 4] = 1.07262030446373284651809199168e-1
49
+ A[7, 5] = -1.53194377486244017527936158236e-2
50
+ A[7, 6] = 8.27378916381402288758473766002e-3
51
+
52
+ A[8, 0] = 6.24110958716075717114429577812e-1
53
+ A[8, 3] = -3.36089262944694129406857109825
54
+ A[8, 4] = -8.68219346841726006818189891453e-1
55
+ A[8, 5] = 2.75920996994467083049415600797e1
56
+ A[8, 6] = 2.01540675504778934086186788979e1
57
+ A[8, 7] = -4.34898841810699588477366255144e1
58
+
59
+ A[9, 0] = 4.77662536438264365890433908527e-1
60
+ A[9, 3] = -2.48811461997166764192642586468
61
+ A[9, 4] = -5.90290826836842996371446475743e-1
62
+ A[9, 5] = 2.12300514481811942347288949897e1
63
+ A[9, 6] = 1.52792336328824235832596922938e1
64
+ A[9, 7] = -3.32882109689848629194453265587e1
65
+ A[9, 8] = -2.03312017085086261358222928593e-2
66
+
67
+ A[10, 0] = -9.3714243008598732571704021658e-1
68
+ A[10, 3] = 5.18637242884406370830023853209
69
+ A[10, 4] = 1.09143734899672957818500254654
70
+ A[10, 5] = -8.14978701074692612513997267357
71
+ A[10, 6] = -1.85200656599969598641566180701e1
72
+ A[10, 7] = 2.27394870993505042818970056734e1
73
+ A[10, 8] = 2.49360555267965238987089396762
74
+ A[10, 9] = -3.0467644718982195003823669022
75
+
76
+ A[11, 0] = 2.27331014751653820792359768449
77
+ A[11, 3] = -1.05344954667372501984066689879e1
78
+ A[11, 4] = -2.00087205822486249909675718444
79
+ A[11, 5] = -1.79589318631187989172765950534e1
80
+ A[11, 6] = 2.79488845294199600508499808837e1
81
+ A[11, 7] = -2.85899827713502369474065508674
82
+ A[11, 8] = -8.87285693353062954433549289258
83
+ A[11, 9] = 1.23605671757943030647266201528e1
84
+ A[11, 10] = 6.43392746015763530355970484046e-1
85
+
86
+ A[12, 0] = 5.42937341165687622380535766363e-2
87
+ A[12, 5] = 4.45031289275240888144113950566
88
+ A[12, 6] = 1.89151789931450038304281599044
89
+ A[12, 7] = -5.8012039600105847814672114227
90
+ A[12, 8] = 3.1116436695781989440891606237e-1
91
+ A[12, 9] = -1.52160949662516078556178806805e-1
92
+ A[12, 10] = 2.01365400804030348374776537501e-1
93
+ A[12, 11] = 4.47106157277725905176885569043e-2
94
+
95
+ A[13, 0] = 5.61675022830479523392909219681e-2
96
+ A[13, 6] = 2.53500210216624811088794765333e-1
97
+ A[13, 7] = -2.46239037470802489917441475441e-1
98
+ A[13, 8] = -1.24191423263816360469010140626e-1
99
+ A[13, 9] = 1.5329179827876569731206322685e-1
100
+ A[13, 10] = 8.20105229563468988491666602057e-3
101
+ A[13, 11] = 7.56789766054569976138603589584e-3
102
+ A[13, 12] = -8.298e-3
103
+
104
+ A[14, 0] = 3.18346481635021405060768473261e-2
105
+ A[14, 5] = 2.83009096723667755288322961402e-2
106
+ A[14, 6] = 5.35419883074385676223797384372e-2
107
+ A[14, 7] = -5.49237485713909884646569340306e-2
108
+ A[14, 10] = -1.08347328697249322858509316994e-4
109
+ A[14, 11] = 3.82571090835658412954920192323e-4
110
+ A[14, 12] = -3.40465008687404560802977114492e-4
111
+ A[14, 13] = 1.41312443674632500278074618366e-1
112
+
113
+ A[15, 0] = -4.28896301583791923408573538692e-1
114
+ A[15, 5] = -4.69762141536116384314449447206
115
+ A[15, 6] = 7.68342119606259904184240953878
116
+ A[15, 7] = 4.06898981839711007970213554331
117
+ A[15, 8] = 3.56727187455281109270669543021e-1
118
+ A[15, 12] = -1.39902416515901462129418009734e-3
119
+ A[15, 13] = 2.9475147891527723389556272149
120
+ A[15, 14] = -9.15095847217987001081870187138
121
+
122
+
123
+ B = A[N_STAGES, :N_STAGES]
124
+
125
+ E3 = np.zeros(N_STAGES + 1)
126
+ E3[:-1] = B.copy()
127
+ E3[0] -= 0.244094488188976377952755905512
128
+ E3[8] -= 0.733846688281611857341361741547
129
+ E3[11] -= 0.220588235294117647058823529412e-1
130
+
131
+ E5 = np.zeros(N_STAGES + 1)
132
+ E5[0] = 0.1312004499419488073250102996e-1
133
+ E5[5] = -0.1225156446376204440720569753e+1
134
+ E5[6] = -0.4957589496572501915214079952
135
+ E5[7] = 0.1664377182454986536961530415e+1
136
+ E5[8] = -0.3503288487499736816886487290
137
+ E5[9] = 0.3341791187130174790297318841
138
+ E5[10] = 0.8192320648511571246570742613e-1
139
+ E5[11] = -0.2235530786388629525884427845e-1
140
+
141
+ # First 3 coefficients are computed separately.
142
+ D = np.zeros((INTERPOLATOR_POWER - 3, N_STAGES_EXTENDED))
143
+ D[0, 0] = -0.84289382761090128651353491142e+1
144
+ D[0, 5] = 0.56671495351937776962531783590
145
+ D[0, 6] = -0.30689499459498916912797304727e+1
146
+ D[0, 7] = 0.23846676565120698287728149680e+1
147
+ D[0, 8] = 0.21170345824450282767155149946e+1
148
+ D[0, 9] = -0.87139158377797299206789907490
149
+ D[0, 10] = 0.22404374302607882758541771650e+1
150
+ D[0, 11] = 0.63157877876946881815570249290
151
+ D[0, 12] = -0.88990336451333310820698117400e-1
152
+ D[0, 13] = 0.18148505520854727256656404962e+2
153
+ D[0, 14] = -0.91946323924783554000451984436e+1
154
+ D[0, 15] = -0.44360363875948939664310572000e+1
155
+
156
+ D[1, 0] = 0.10427508642579134603413151009e+2
157
+ D[1, 5] = 0.24228349177525818288430175319e+3
158
+ D[1, 6] = 0.16520045171727028198505394887e+3
159
+ D[1, 7] = -0.37454675472269020279518312152e+3
160
+ D[1, 8] = -0.22113666853125306036270938578e+2
161
+ D[1, 9] = 0.77334326684722638389603898808e+1
162
+ D[1, 10] = -0.30674084731089398182061213626e+2
163
+ D[1, 11] = -0.93321305264302278729567221706e+1
164
+ D[1, 12] = 0.15697238121770843886131091075e+2
165
+ D[1, 13] = -0.31139403219565177677282850411e+2
166
+ D[1, 14] = -0.93529243588444783865713862664e+1
167
+ D[1, 15] = 0.35816841486394083752465898540e+2
168
+
169
+ D[2, 0] = 0.19985053242002433820987653617e+2
170
+ D[2, 5] = -0.38703730874935176555105901742e+3
171
+ D[2, 6] = -0.18917813819516756882830838328e+3
172
+ D[2, 7] = 0.52780815920542364900561016686e+3
173
+ D[2, 8] = -0.11573902539959630126141871134e+2
174
+ D[2, 9] = 0.68812326946963000169666922661e+1
175
+ D[2, 10] = -0.10006050966910838403183860980e+1
176
+ D[2, 11] = 0.77771377980534432092869265740
177
+ D[2, 12] = -0.27782057523535084065932004339e+1
178
+ D[2, 13] = -0.60196695231264120758267380846e+2
179
+ D[2, 14] = 0.84320405506677161018159903784e+2
180
+ D[2, 15] = 0.11992291136182789328035130030e+2
181
+
182
+ D[3, 0] = -0.25693933462703749003312586129e+2
183
+ D[3, 5] = -0.15418974869023643374053993627e+3
184
+ D[3, 6] = -0.23152937917604549567536039109e+3
185
+ D[3, 7] = 0.35763911791061412378285349910e+3
186
+ D[3, 8] = 0.93405324183624310003907691704e+2
187
+ D[3, 9] = -0.37458323136451633156875139351e+2
188
+ D[3, 10] = 0.10409964950896230045147246184e+3
189
+ D[3, 11] = 0.29840293426660503123344363579e+2
190
+ D[3, 12] = -0.43533456590011143754432175058e+2
191
+ D[3, 13] = 0.96324553959188282948394950600e+2
192
+ D[3, 14] = -0.39177261675615439165231486172e+2
193
+ D[3, 15] = -0.14972683625798562581422125276e+3
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/ivp.py ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ import numpy as np
3
+ from .bdf import BDF
4
+ from .radau import Radau
5
+ from .rk import RK23, RK45, DOP853
6
+ from .lsoda import LSODA
7
+ from scipy.optimize import OptimizeResult
8
+ from .common import EPS, OdeSolution
9
+ from .base import OdeSolver
10
+
11
+
12
+ METHODS = {'RK23': RK23,
13
+ 'RK45': RK45,
14
+ 'DOP853': DOP853,
15
+ 'Radau': Radau,
16
+ 'BDF': BDF,
17
+ 'LSODA': LSODA}
18
+
19
+
20
+ MESSAGES = {0: "The solver successfully reached the end of the integration interval.",
21
+ 1: "A termination event occurred."}
22
+
23
+
24
+ class OdeResult(OptimizeResult):
25
+ pass
26
+
27
+
28
+ def prepare_events(events):
29
+ """Standardize event functions and extract attributes."""
30
+ if callable(events):
31
+ events = (events,)
32
+
33
+ max_events = np.empty(len(events))
34
+ direction = np.empty(len(events))
35
+ for i, event in enumerate(events):
36
+ terminal = getattr(event, 'terminal', None)
37
+ direction[i] = getattr(event, 'direction', 0)
38
+
39
+ message = ('The `terminal` attribute of each event '
40
+ 'must be a boolean or positive integer.')
41
+ if terminal is None or terminal == 0:
42
+ max_events[i] = np.inf
43
+ elif int(terminal) == terminal and terminal > 0:
44
+ max_events[i] = terminal
45
+ else:
46
+ raise ValueError(message)
47
+
48
+ return events, max_events, direction
49
+
50
+
51
+ def solve_event_equation(event, sol, t_old, t):
52
+ """Solve an equation corresponding to an ODE event.
53
+
54
+ The equation is ``event(t, y(t)) = 0``, here ``y(t)`` is known from an
55
+ ODE solver using some sort of interpolation. It is solved by
56
+ `scipy.optimize.brentq` with xtol=atol=4*EPS.
57
+
58
+ Parameters
59
+ ----------
60
+ event : callable
61
+ Function ``event(t, y)``.
62
+ sol : callable
63
+ Function ``sol(t)`` which evaluates an ODE solution between `t_old`
64
+ and `t`.
65
+ t_old, t : float
66
+ Previous and new values of time. They will be used as a bracketing
67
+ interval.
68
+
69
+ Returns
70
+ -------
71
+ root : float
72
+ Found solution.
73
+ """
74
+ from scipy.optimize import brentq
75
+ return brentq(lambda t: event(t, sol(t)), t_old, t,
76
+ xtol=4 * EPS, rtol=4 * EPS)
77
+
78
+
79
+ def handle_events(sol, events, active_events, event_count, max_events,
80
+ t_old, t):
81
+ """Helper function to handle events.
82
+
83
+ Parameters
84
+ ----------
85
+ sol : DenseOutput
86
+ Function ``sol(t)`` which evaluates an ODE solution between `t_old`
87
+ and `t`.
88
+ events : list of callables, length n_events
89
+ Event functions with signatures ``event(t, y)``.
90
+ active_events : ndarray
91
+ Indices of events which occurred.
92
+ event_count : ndarray
93
+ Current number of occurrences for each event.
94
+ max_events : ndarray, shape (n_events,)
95
+ Number of occurrences allowed for each event before integration
96
+ termination is issued.
97
+ t_old, t : float
98
+ Previous and new values of time.
99
+
100
+ Returns
101
+ -------
102
+ root_indices : ndarray
103
+ Indices of events which take zero between `t_old` and `t` and before
104
+ a possible termination.
105
+ roots : ndarray
106
+ Values of t at which events occurred.
107
+ terminate : bool
108
+ Whether a terminal event occurred.
109
+ """
110
+ roots = [solve_event_equation(events[event_index], sol, t_old, t)
111
+ for event_index in active_events]
112
+
113
+ roots = np.asarray(roots)
114
+
115
+ if np.any(event_count[active_events] >= max_events[active_events]):
116
+ if t > t_old:
117
+ order = np.argsort(roots)
118
+ else:
119
+ order = np.argsort(-roots)
120
+ active_events = active_events[order]
121
+ roots = roots[order]
122
+ t = np.nonzero(event_count[active_events]
123
+ >= max_events[active_events])[0][0]
124
+ active_events = active_events[:t + 1]
125
+ roots = roots[:t + 1]
126
+ terminate = True
127
+ else:
128
+ terminate = False
129
+
130
+ return active_events, roots, terminate
131
+
132
+
133
+ def find_active_events(g, g_new, direction):
134
+ """Find which event occurred during an integration step.
135
+
136
+ Parameters
137
+ ----------
138
+ g, g_new : array_like, shape (n_events,)
139
+ Values of event functions at a current and next points.
140
+ direction : ndarray, shape (n_events,)
141
+ Event "direction" according to the definition in `solve_ivp`.
142
+
143
+ Returns
144
+ -------
145
+ active_events : ndarray
146
+ Indices of events which occurred during the step.
147
+ """
148
+ g, g_new = np.asarray(g), np.asarray(g_new)
149
+ up = (g <= 0) & (g_new >= 0)
150
+ down = (g >= 0) & (g_new <= 0)
151
+ either = up | down
152
+ mask = (up & (direction > 0) |
153
+ down & (direction < 0) |
154
+ either & (direction == 0))
155
+
156
+ return np.nonzero(mask)[0]
157
+
158
+
159
+ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False,
160
+ events=None, vectorized=False, args=None, **options):
161
+ """Solve an initial value problem for a system of ODEs.
162
+
163
+ This function numerically integrates a system of ordinary differential
164
+ equations given an initial value::
165
+
166
+ dy / dt = f(t, y)
167
+ y(t0) = y0
168
+
169
+ Here t is a 1-D independent variable (time), y(t) is an
170
+ N-D vector-valued function (state), and an N-D
171
+ vector-valued function f(t, y) determines the differential equations.
172
+ The goal is to find y(t) approximately satisfying the differential
173
+ equations, given an initial value y(t0)=y0.
174
+
175
+ Some of the solvers support integration in the complex domain, but note
176
+ that for stiff ODE solvers, the right-hand side must be
177
+ complex-differentiable (satisfy Cauchy-Riemann equations [11]_).
178
+ To solve a problem in the complex domain, pass y0 with a complex data type.
179
+ Another option always available is to rewrite your problem for real and
180
+ imaginary parts separately.
181
+
182
+ Parameters
183
+ ----------
184
+ fun : callable
185
+ Right-hand side of the system: the time derivative of the state ``y``
186
+ at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
187
+ scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. Additional
188
+ arguments need to be passed if ``args`` is used (see documentation of
189
+ ``args`` argument). ``fun`` must return an array of the same shape as
190
+ ``y``. See `vectorized` for more information.
191
+ t_span : 2-member sequence
192
+ Interval of integration (t0, tf). The solver starts with t=t0 and
193
+ integrates until it reaches t=tf. Both t0 and tf must be floats
194
+ or values interpretable by the float conversion function.
195
+ y0 : array_like, shape (n,)
196
+ Initial state. For problems in the complex domain, pass `y0` with a
197
+ complex data type (even if the initial value is purely real).
198
+ method : string or `OdeSolver`, optional
199
+ Integration method to use:
200
+
201
+ * 'RK45' (default): Explicit Runge-Kutta method of order 5(4) [1]_.
202
+ The error is controlled assuming accuracy of the fourth-order
203
+ method, but steps are taken using the fifth-order accurate
204
+ formula (local extrapolation is done). A quartic interpolation
205
+ polynomial is used for the dense output [2]_. Can be applied in
206
+ the complex domain.
207
+ * 'RK23': Explicit Runge-Kutta method of order 3(2) [3]_. The error
208
+ is controlled assuming accuracy of the second-order method, but
209
+ steps are taken using the third-order accurate formula (local
210
+ extrapolation is done). A cubic Hermite polynomial is used for the
211
+ dense output. Can be applied in the complex domain.
212
+ * 'DOP853': Explicit Runge-Kutta method of order 8 [13]_.
213
+ Python implementation of the "DOP853" algorithm originally
214
+ written in Fortran [14]_. A 7-th order interpolation polynomial
215
+ accurate to 7-th order is used for the dense output.
216
+ Can be applied in the complex domain.
217
+ * 'Radau': Implicit Runge-Kutta method of the Radau IIA family of
218
+ order 5 [4]_. The error is controlled with a third-order accurate
219
+ embedded formula. A cubic polynomial which satisfies the
220
+ collocation conditions is used for the dense output.
221
+ * 'BDF': Implicit multi-step variable-order (1 to 5) method based
222
+ on a backward differentiation formula for the derivative
223
+ approximation [5]_. The implementation follows the one described
224
+ in [6]_. A quasi-constant step scheme is used and accuracy is
225
+ enhanced using the NDF modification. Can be applied in the
226
+ complex domain.
227
+ * 'LSODA': Adams/BDF method with automatic stiffness detection and
228
+ switching [7]_, [8]_. This is a wrapper of the Fortran solver
229
+ from ODEPACK.
230
+
231
+ Explicit Runge-Kutta methods ('RK23', 'RK45', 'DOP853') should be used
232
+ for non-stiff problems and implicit methods ('Radau', 'BDF') for
233
+ stiff problems [9]_. Among Runge-Kutta methods, 'DOP853' is recommended
234
+ for solving with high precision (low values of `rtol` and `atol`).
235
+
236
+ If not sure, first try to run 'RK45'. If it makes unusually many
237
+ iterations, diverges, or fails, your problem is likely to be stiff and
238
+ you should use 'Radau' or 'BDF'. 'LSODA' can also be a good universal
239
+ choice, but it might be somewhat less convenient to work with as it
240
+ wraps old Fortran code.
241
+
242
+ You can also pass an arbitrary class derived from `OdeSolver` which
243
+ implements the solver.
244
+ t_eval : array_like or None, optional
245
+ Times at which to store the computed solution, must be sorted and lie
246
+ within `t_span`. If None (default), use points selected by the solver.
247
+ dense_output : bool, optional
248
+ Whether to compute a continuous solution. Default is False.
249
+ events : callable, or list of callables, optional
250
+ Events to track. If None (default), no events will be tracked.
251
+ Each event occurs at the zeros of a continuous function of time and
252
+ state. Each function must have the signature ``event(t, y)`` where
253
+ additional argument have to be passed if ``args`` is used (see
254
+ documentation of ``args`` argument). Each function must return a
255
+ float. The solver will find an accurate value of `t` at which
256
+ ``event(t, y(t)) = 0`` using a root-finding algorithm. By default,
257
+ all zeros will be found. The solver looks for a sign change over
258
+ each step, so if multiple zero crossings occur within one step,
259
+ events may be missed. Additionally each `event` function might
260
+ have the following attributes:
261
+
262
+ terminal: bool or int, optional
263
+ When boolean, whether to terminate integration if this event occurs.
264
+ When integral, termination occurs after the specified the number of
265
+ occurences of this event.
266
+ Implicitly False if not assigned.
267
+ direction: float, optional
268
+ Direction of a zero crossing. If `direction` is positive,
269
+ `event` will only trigger when going from negative to positive,
270
+ and vice versa if `direction` is negative. If 0, then either
271
+ direction will trigger event. Implicitly 0 if not assigned.
272
+
273
+ You can assign attributes like ``event.terminal = True`` to any
274
+ function in Python.
275
+ vectorized : bool, optional
276
+ Whether `fun` can be called in a vectorized fashion. Default is False.
277
+
278
+ If ``vectorized`` is False, `fun` will always be called with ``y`` of
279
+ shape ``(n,)``, where ``n = len(y0)``.
280
+
281
+ If ``vectorized`` is True, `fun` may be called with ``y`` of shape
282
+ ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
283
+ such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
284
+ the returned array is the time derivative of the state corresponding
285
+ with a column of ``y``).
286
+
287
+ Setting ``vectorized=True`` allows for faster finite difference
288
+ approximation of the Jacobian by methods 'Radau' and 'BDF', but
289
+ will result in slower execution for other methods and for 'Radau' and
290
+ 'BDF' in some circumstances (e.g. small ``len(y0)``).
291
+ args : tuple, optional
292
+ Additional arguments to pass to the user-defined functions. If given,
293
+ the additional arguments are passed to all user-defined functions.
294
+ So if, for example, `fun` has the signature ``fun(t, y, a, b, c)``,
295
+ then `jac` (if given) and any event functions must have the same
296
+ signature, and `args` must be a tuple of length 3.
297
+ **options
298
+ Options passed to a chosen solver. All options available for already
299
+ implemented solvers are listed below.
300
+ first_step : float or None, optional
301
+ Initial step size. Default is `None` which means that the algorithm
302
+ should choose.
303
+ max_step : float, optional
304
+ Maximum allowed step size. Default is np.inf, i.e., the step size is not
305
+ bounded and determined solely by the solver.
306
+ rtol, atol : float or array_like, optional
307
+ Relative and absolute tolerances. The solver keeps the local error
308
+ estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
309
+ relative accuracy (number of correct digits), while `atol` controls
310
+ absolute accuracy (number of correct decimal places). To achieve the
311
+ desired `rtol`, set `atol` to be smaller than the smallest value that
312
+ can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
313
+ allowable error. If `atol` is larger than ``rtol * abs(y)`` the
314
+ number of correct digits is not guaranteed. Conversely, to achieve the
315
+ desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
316
+ than `atol`. If components of y have different scales, it might be
317
+ beneficial to set different `atol` values for different components by
318
+ passing array_like with shape (n,) for `atol`. Default values are
319
+ 1e-3 for `rtol` and 1e-6 for `atol`.
320
+ jac : array_like, sparse_matrix, callable or None, optional
321
+ Jacobian matrix of the right-hand side of the system with respect
322
+ to y, required by the 'Radau', 'BDF' and 'LSODA' method. The
323
+ Jacobian matrix has shape (n, n) and its element (i, j) is equal to
324
+ ``d f_i / d y_j``. There are three ways to define the Jacobian:
325
+
326
+ * If array_like or sparse_matrix, the Jacobian is assumed to
327
+ be constant. Not supported by 'LSODA'.
328
+ * If callable, the Jacobian is assumed to depend on both
329
+ t and y; it will be called as ``jac(t, y)``, as necessary.
330
+ Additional arguments have to be passed if ``args`` is
331
+ used (see documentation of ``args`` argument).
332
+ For 'Radau' and 'BDF' methods, the return value might be a
333
+ sparse matrix.
334
+ * If None (default), the Jacobian will be approximated by
335
+ finite differences.
336
+
337
+ It is generally recommended to provide the Jacobian rather than
338
+ relying on a finite-difference approximation.
339
+ jac_sparsity : array_like, sparse matrix or None, optional
340
+ Defines a sparsity structure of the Jacobian matrix for a finite-
341
+ difference approximation. Its shape must be (n, n). This argument
342
+ is ignored if `jac` is not `None`. If the Jacobian has only few
343
+ non-zero elements in *each* row, providing the sparsity structure
344
+ will greatly speed up the computations [10]_. A zero entry means that
345
+ a corresponding element in the Jacobian is always zero. If None
346
+ (default), the Jacobian is assumed to be dense.
347
+ Not supported by 'LSODA', see `lband` and `uband` instead.
348
+ lband, uband : int or None, optional
349
+ Parameters defining the bandwidth of the Jacobian for the 'LSODA'
350
+ method, i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``.
351
+ Default is None. Setting these requires your jac routine to return the
352
+ Jacobian in the packed format: the returned array must have ``n``
353
+ columns and ``uband + lband + 1`` rows in which Jacobian diagonals are
354
+ written. Specifically ``jac_packed[uband + i - j , j] = jac[i, j]``.
355
+ The same format is used in `scipy.linalg.solve_banded` (check for an
356
+ illustration). These parameters can be also used with ``jac=None`` to
357
+ reduce the number of Jacobian elements estimated by finite differences.
358
+ min_step : float, optional
359
+ The minimum allowed step size for 'LSODA' method.
360
+ By default `min_step` is zero.
361
+
362
+ Returns
363
+ -------
364
+ Bunch object with the following fields defined:
365
+ t : ndarray, shape (n_points,)
366
+ Time points.
367
+ y : ndarray, shape (n, n_points)
368
+ Values of the solution at `t`.
369
+ sol : `OdeSolution` or None
370
+ Found solution as `OdeSolution` instance; None if `dense_output` was
371
+ set to False.
372
+ t_events : list of ndarray or None
373
+ Contains for each event type a list of arrays at which an event of
374
+ that type event was detected. None if `events` was None.
375
+ y_events : list of ndarray or None
376
+ For each value of `t_events`, the corresponding value of the solution.
377
+ None if `events` was None.
378
+ nfev : int
379
+ Number of evaluations of the right-hand side.
380
+ njev : int
381
+ Number of evaluations of the Jacobian.
382
+ nlu : int
383
+ Number of LU decompositions.
384
+ status : int
385
+ Reason for algorithm termination:
386
+
387
+ * -1: Integration step failed.
388
+ * 0: The solver successfully reached the end of `tspan`.
389
+ * 1: A termination event occurred.
390
+
391
+ message : string
392
+ Human-readable description of the termination reason.
393
+ success : bool
394
+ True if the solver reached the interval end or a termination event
395
+ occurred (``status >= 0``).
396
+
397
+ References
398
+ ----------
399
+ .. [1] J. R. Dormand, P. J. Prince, "A family of embedded Runge-Kutta
400
+ formulae", Journal of Computational and Applied Mathematics, Vol. 6,
401
+ No. 1, pp. 19-26, 1980.
402
+ .. [2] L. W. Shampine, "Some Practical Runge-Kutta Formulas", Mathematics
403
+ of Computation,, Vol. 46, No. 173, pp. 135-150, 1986.
404
+ .. [3] P. Bogacki, L.F. Shampine, "A 3(2) Pair of Runge-Kutta Formulas",
405
+ Appl. Math. Lett. Vol. 2, No. 4. pp. 321-325, 1989.
406
+ .. [4] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
407
+ Stiff and Differential-Algebraic Problems", Sec. IV.8.
408
+ .. [5] `Backward Differentiation Formula
409
+ <https://en.wikipedia.org/wiki/Backward_differentiation_formula>`_
410
+ on Wikipedia.
411
+ .. [6] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI.
412
+ COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
413
+ .. [7] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
414
+ Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
415
+ pp. 55-64, 1983.
416
+ .. [8] L. Petzold, "Automatic selection of methods for solving stiff and
417
+ nonstiff systems of ordinary differential equations", SIAM Journal
418
+ on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
419
+ 1983.
420
+ .. [9] `Stiff equation <https://en.wikipedia.org/wiki/Stiff_equation>`_ on
421
+ Wikipedia.
422
+ .. [10] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
423
+ sparse Jacobian matrices", Journal of the Institute of Mathematics
424
+ and its Applications, 13, pp. 117-120, 1974.
425
+ .. [11] `Cauchy-Riemann equations
426
+ <https://en.wikipedia.org/wiki/Cauchy-Riemann_equations>`_ on
427
+ Wikipedia.
428
+ .. [12] `Lotka-Volterra equations
429
+ <https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations>`_
430
+ on Wikipedia.
431
+ .. [13] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
432
+ Equations I: Nonstiff Problems", Sec. II.
433
+ .. [14] `Page with original Fortran code of DOP853
434
+ <http://www.unige.ch/~hairer/software.html>`_.
435
+
436
+ Examples
437
+ --------
438
+ Basic exponential decay showing automatically chosen time points.
439
+
440
+ >>> import numpy as np
441
+ >>> from scipy.integrate import solve_ivp
442
+ >>> def exponential_decay(t, y): return -0.5 * y
443
+ >>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8])
444
+ >>> print(sol.t)
445
+ [ 0. 0.11487653 1.26364188 3.06061781 4.81611105 6.57445806
446
+ 8.33328988 10. ]
447
+ >>> print(sol.y)
448
+ [[2. 1.88836035 1.06327177 0.43319312 0.18017253 0.07483045
449
+ 0.03107158 0.01350781]
450
+ [4. 3.7767207 2.12654355 0.86638624 0.36034507 0.14966091
451
+ 0.06214316 0.02701561]
452
+ [8. 7.5534414 4.25308709 1.73277247 0.72069014 0.29932181
453
+ 0.12428631 0.05403123]]
454
+
455
+ Specifying points where the solution is desired.
456
+
457
+ >>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8],
458
+ ... t_eval=[0, 1, 2, 4, 10])
459
+ >>> print(sol.t)
460
+ [ 0 1 2 4 10]
461
+ >>> print(sol.y)
462
+ [[2. 1.21305369 0.73534021 0.27066736 0.01350938]
463
+ [4. 2.42610739 1.47068043 0.54133472 0.02701876]
464
+ [8. 4.85221478 2.94136085 1.08266944 0.05403753]]
465
+
466
+ Cannon fired upward with terminal event upon impact. The ``terminal`` and
467
+ ``direction`` fields of an event are applied by monkey patching a function.
468
+ Here ``y[0]`` is position and ``y[1]`` is velocity. The projectile starts
469
+ at position 0 with velocity +10. Note that the integration never reaches
470
+ t=100 because the event is terminal.
471
+
472
+ >>> def upward_cannon(t, y): return [y[1], -0.5]
473
+ >>> def hit_ground(t, y): return y[0]
474
+ >>> hit_ground.terminal = True
475
+ >>> hit_ground.direction = -1
476
+ >>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10], events=hit_ground)
477
+ >>> print(sol.t_events)
478
+ [array([40.])]
479
+ >>> print(sol.t)
480
+ [0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
481
+ 1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]
482
+
483
+ Use `dense_output` and `events` to find position, which is 100, at the apex
484
+ of the cannonball's trajectory. Apex is not defined as terminal, so both
485
+ apex and hit_ground are found. There is no information at t=20, so the sol
486
+ attribute is used to evaluate the solution. The sol attribute is returned
487
+ by setting ``dense_output=True``. Alternatively, the `y_events` attribute
488
+ can be used to access the solution at the time of the event.
489
+
490
+ >>> def apex(t, y): return y[1]
491
+ >>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10],
492
+ ... events=(hit_ground, apex), dense_output=True)
493
+ >>> print(sol.t_events)
494
+ [array([40.]), array([20.])]
495
+ >>> print(sol.t)
496
+ [0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
497
+ 1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]
498
+ >>> print(sol.sol(sol.t_events[1][0]))
499
+ [100. 0.]
500
+ >>> print(sol.y_events)
501
+ [array([[-5.68434189e-14, -1.00000000e+01]]),
502
+ array([[1.00000000e+02, 1.77635684e-15]])]
503
+
504
+ As an example of a system with additional parameters, we'll implement
505
+ the Lotka-Volterra equations [12]_.
506
+
507
+ >>> def lotkavolterra(t, z, a, b, c, d):
508
+ ... x, y = z
509
+ ... return [a*x - b*x*y, -c*y + d*x*y]
510
+ ...
511
+
512
+ We pass in the parameter values a=1.5, b=1, c=3 and d=1 with the `args`
513
+ argument.
514
+
515
+ >>> sol = solve_ivp(lotkavolterra, [0, 15], [10, 5], args=(1.5, 1, 3, 1),
516
+ ... dense_output=True)
517
+
518
+ Compute a dense solution and plot it.
519
+
520
+ >>> t = np.linspace(0, 15, 300)
521
+ >>> z = sol.sol(t)
522
+ >>> import matplotlib.pyplot as plt
523
+ >>> plt.plot(t, z.T)
524
+ >>> plt.xlabel('t')
525
+ >>> plt.legend(['x', 'y'], shadow=True)
526
+ >>> plt.title('Lotka-Volterra System')
527
+ >>> plt.show()
528
+
529
+ A couple examples of using solve_ivp to solve the differential
530
+ equation ``y' = Ay`` with complex matrix ``A``.
531
+
532
+ >>> A = np.array([[-0.25 + 0.14j, 0, 0.33 + 0.44j],
533
+ ... [0.25 + 0.58j, -0.2 + 0.14j, 0],
534
+ ... [0, 0.2 + 0.4j, -0.1 + 0.97j]])
535
+
536
+ Solving an IVP with ``A`` from above and ``y`` as 3x1 vector:
537
+
538
+ >>> def deriv_vec(t, y):
539
+ ... return A @ y
540
+ >>> result = solve_ivp(deriv_vec, [0, 25],
541
+ ... np.array([10 + 0j, 20 + 0j, 30 + 0j]),
542
+ ... t_eval=np.linspace(0, 25, 101))
543
+ >>> print(result.y[:, 0])
544
+ [10.+0.j 20.+0.j 30.+0.j]
545
+ >>> print(result.y[:, -1])
546
+ [18.46291039+45.25653651j 10.01569306+36.23293216j
547
+ -4.98662741+80.07360388j]
548
+
549
+ Solving an IVP with ``A`` from above with ``y`` as 3x3 matrix :
550
+
551
+ >>> def deriv_mat(t, y):
552
+ ... return (A @ y.reshape(3, 3)).flatten()
553
+ >>> y0 = np.array([[2 + 0j, 3 + 0j, 4 + 0j],
554
+ ... [5 + 0j, 6 + 0j, 7 + 0j],
555
+ ... [9 + 0j, 34 + 0j, 78 + 0j]])
556
+
557
+ >>> result = solve_ivp(deriv_mat, [0, 25], y0.flatten(),
558
+ ... t_eval=np.linspace(0, 25, 101))
559
+ >>> print(result.y[:, 0].reshape(3, 3))
560
+ [[ 2.+0.j 3.+0.j 4.+0.j]
561
+ [ 5.+0.j 6.+0.j 7.+0.j]
562
+ [ 9.+0.j 34.+0.j 78.+0.j]]
563
+ >>> print(result.y[:, -1].reshape(3, 3))
564
+ [[ 5.67451179 +12.07938445j 17.2888073 +31.03278837j
565
+ 37.83405768 +63.25138759j]
566
+ [ 3.39949503 +11.82123994j 21.32530996 +44.88668871j
567
+ 53.17531184+103.80400411j]
568
+ [ -2.26105874 +22.19277664j -15.1255713 +70.19616341j
569
+ -38.34616845+153.29039931j]]
570
+
571
+
572
+ """
573
+ if method not in METHODS and not (
574
+ inspect.isclass(method) and issubclass(method, OdeSolver)):
575
+ raise ValueError(f"`method` must be one of {METHODS} or OdeSolver class.")
576
+
577
+ t0, tf = map(float, t_span)
578
+
579
+ if args is not None:
580
+ # Wrap the user's fun (and jac, if given) in lambdas to hide the
581
+ # additional parameters. Pass in the original fun as a keyword
582
+ # argument to keep it in the scope of the lambda.
583
+ try:
584
+ _ = [*(args)]
585
+ except TypeError as exp:
586
+ suggestion_tuple = (
587
+ "Supplied 'args' cannot be unpacked. Please supply `args`"
588
+ f" as a tuple (e.g. `args=({args},)`)"
589
+ )
590
+ raise TypeError(suggestion_tuple) from exp
591
+
592
+ def fun(t, x, fun=fun):
593
+ return fun(t, x, *args)
594
+ jac = options.get('jac')
595
+ if callable(jac):
596
+ options['jac'] = lambda t, x: jac(t, x, *args)
597
+
598
+ if t_eval is not None:
599
+ t_eval = np.asarray(t_eval)
600
+ if t_eval.ndim != 1:
601
+ raise ValueError("`t_eval` must be 1-dimensional.")
602
+
603
+ if np.any(t_eval < min(t0, tf)) or np.any(t_eval > max(t0, tf)):
604
+ raise ValueError("Values in `t_eval` are not within `t_span`.")
605
+
606
+ d = np.diff(t_eval)
607
+ if tf > t0 and np.any(d <= 0) or tf < t0 and np.any(d >= 0):
608
+ raise ValueError("Values in `t_eval` are not properly sorted.")
609
+
610
+ if tf > t0:
611
+ t_eval_i = 0
612
+ else:
613
+ # Make order of t_eval decreasing to use np.searchsorted.
614
+ t_eval = t_eval[::-1]
615
+ # This will be an upper bound for slices.
616
+ t_eval_i = t_eval.shape[0]
617
+
618
+ if method in METHODS:
619
+ method = METHODS[method]
620
+
621
+ solver = method(fun, t0, y0, tf, vectorized=vectorized, **options)
622
+
623
+ if t_eval is None:
624
+ ts = [t0]
625
+ ys = [y0]
626
+ elif t_eval is not None and dense_output:
627
+ ts = []
628
+ ti = [t0]
629
+ ys = []
630
+ else:
631
+ ts = []
632
+ ys = []
633
+
634
+ interpolants = []
635
+
636
+ if events is not None:
637
+ events, max_events, event_dir = prepare_events(events)
638
+ event_count = np.zeros(len(events))
639
+ if args is not None:
640
+ # Wrap user functions in lambdas to hide the additional parameters.
641
+ # The original event function is passed as a keyword argument to the
642
+ # lambda to keep the original function in scope (i.e., avoid the
643
+ # late binding closure "gotcha").
644
+ events = [lambda t, x, event=event: event(t, x, *args)
645
+ for event in events]
646
+ g = [event(t0, y0) for event in events]
647
+ t_events = [[] for _ in range(len(events))]
648
+ y_events = [[] for _ in range(len(events))]
649
+ else:
650
+ t_events = None
651
+ y_events = None
652
+
653
+ status = None
654
+ while status is None:
655
+ message = solver.step()
656
+
657
+ if solver.status == 'finished':
658
+ status = 0
659
+ elif solver.status == 'failed':
660
+ status = -1
661
+ break
662
+
663
+ t_old = solver.t_old
664
+ t = solver.t
665
+ y = solver.y
666
+
667
+ if dense_output:
668
+ sol = solver.dense_output()
669
+ interpolants.append(sol)
670
+ else:
671
+ sol = None
672
+
673
+ if events is not None:
674
+ g_new = [event(t, y) for event in events]
675
+ active_events = find_active_events(g, g_new, event_dir)
676
+ if active_events.size > 0:
677
+ if sol is None:
678
+ sol = solver.dense_output()
679
+
680
+ event_count[active_events] += 1
681
+ root_indices, roots, terminate = handle_events(
682
+ sol, events, active_events, event_count, max_events,
683
+ t_old, t)
684
+
685
+ for e, te in zip(root_indices, roots):
686
+ t_events[e].append(te)
687
+ y_events[e].append(sol(te))
688
+
689
+ if terminate:
690
+ status = 1
691
+ t = roots[-1]
692
+ y = sol(t)
693
+
694
+ g = g_new
695
+
696
+ if t_eval is None:
697
+ ts.append(t)
698
+ ys.append(y)
699
+ else:
700
+ # The value in t_eval equal to t will be included.
701
+ if solver.direction > 0:
702
+ t_eval_i_new = np.searchsorted(t_eval, t, side='right')
703
+ t_eval_step = t_eval[t_eval_i:t_eval_i_new]
704
+ else:
705
+ t_eval_i_new = np.searchsorted(t_eval, t, side='left')
706
+ # It has to be done with two slice operations, because
707
+ # you can't slice to 0th element inclusive using backward
708
+ # slicing.
709
+ t_eval_step = t_eval[t_eval_i_new:t_eval_i][::-1]
710
+
711
+ if t_eval_step.size > 0:
712
+ if sol is None:
713
+ sol = solver.dense_output()
714
+ ts.append(t_eval_step)
715
+ ys.append(sol(t_eval_step))
716
+ t_eval_i = t_eval_i_new
717
+
718
+ if t_eval is not None and dense_output:
719
+ ti.append(t)
720
+
721
+ message = MESSAGES.get(status, message)
722
+
723
+ if t_events is not None:
724
+ t_events = [np.asarray(te) for te in t_events]
725
+ y_events = [np.asarray(ye) for ye in y_events]
726
+
727
+ if t_eval is None:
728
+ ts = np.array(ts)
729
+ ys = np.vstack(ys).T
730
+ elif ts:
731
+ ts = np.hstack(ts)
732
+ ys = np.hstack(ys)
733
+
734
+ if dense_output:
735
+ if t_eval is None:
736
+ sol = OdeSolution(
737
+ ts, interpolants, alt_segment=True if method in [BDF, LSODA] else False
738
+ )
739
+ else:
740
+ sol = OdeSolution(
741
+ ti, interpolants, alt_segment=True if method in [BDF, LSODA] else False
742
+ )
743
+ else:
744
+ sol = None
745
+
746
+ return OdeResult(t=ts, y=ys, sol=sol, t_events=t_events, y_events=y_events,
747
+ nfev=solver.nfev, njev=solver.njev, nlu=solver.nlu,
748
+ status=status, message=message, success=status >= 0)
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/lsoda.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.integrate import ode
3
+ from .common import validate_tol, validate_first_step, warn_extraneous
4
+ from .base import OdeSolver, DenseOutput
5
+
6
+
7
+ class LSODA(OdeSolver):
8
+ """Adams/BDF method with automatic stiffness detection and switching.
9
+
10
+ This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches
11
+ automatically between the nonstiff Adams method and the stiff BDF method.
12
+ The method was originally detailed in [2]_.
13
+
14
+ Parameters
15
+ ----------
16
+ fun : callable
17
+ Right-hand side of the system: the time derivative of the state ``y``
18
+ at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
19
+ scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
20
+ return an array of the same shape as ``y``. See `vectorized` for more
21
+ information.
22
+ t0 : float
23
+ Initial time.
24
+ y0 : array_like, shape (n,)
25
+ Initial state.
26
+ t_bound : float
27
+ Boundary time - the integration won't continue beyond it. It also
28
+ determines the direction of the integration.
29
+ first_step : float or None, optional
30
+ Initial step size. Default is ``None`` which means that the algorithm
31
+ should choose.
32
+ min_step : float, optional
33
+ Minimum allowed step size. Default is 0.0, i.e., the step size is not
34
+ bounded and determined solely by the solver.
35
+ max_step : float, optional
36
+ Maximum allowed step size. Default is np.inf, i.e., the step size is not
37
+ bounded and determined solely by the solver.
38
+ rtol, atol : float and array_like, optional
39
+ Relative and absolute tolerances. The solver keeps the local error
40
+ estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
41
+ relative accuracy (number of correct digits), while `atol` controls
42
+ absolute accuracy (number of correct decimal places). To achieve the
43
+ desired `rtol`, set `atol` to be smaller than the smallest value that
44
+ can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
45
+ allowable error. If `atol` is larger than ``rtol * abs(y)`` the
46
+ number of correct digits is not guaranteed. Conversely, to achieve the
47
+ desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
48
+ than `atol`. If components of y have different scales, it might be
49
+ beneficial to set different `atol` values for different components by
50
+ passing array_like with shape (n,) for `atol`. Default values are
51
+ 1e-3 for `rtol` and 1e-6 for `atol`.
52
+ jac : None or callable, optional
53
+ Jacobian matrix of the right-hand side of the system with respect to
54
+ ``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is
55
+ equal to ``d f_i / d y_j``. The function will be called as
56
+ ``jac(t, y)``. If None (default), the Jacobian will be
57
+ approximated by finite differences. It is generally recommended to
58
+ provide the Jacobian rather than relying on a finite-difference
59
+ approximation.
60
+ lband, uband : int or None
61
+ Parameters defining the bandwidth of the Jacobian,
62
+ i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting
63
+ these requires your jac routine to return the Jacobian in the packed format:
64
+ the returned array must have ``n`` columns and ``uband + lband + 1``
65
+ rows in which Jacobian diagonals are written. Specifically
66
+ ``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used
67
+ in `scipy.linalg.solve_banded` (check for an illustration).
68
+ These parameters can be also used with ``jac=None`` to reduce the
69
+ number of Jacobian elements estimated by finite differences.
70
+ vectorized : bool, optional
71
+ Whether `fun` may be called in a vectorized fashion. False (default)
72
+ is recommended for this solver.
73
+
74
+ If ``vectorized`` is False, `fun` will always be called with ``y`` of
75
+ shape ``(n,)``, where ``n = len(y0)``.
76
+
77
+ If ``vectorized`` is True, `fun` may be called with ``y`` of shape
78
+ ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
79
+ such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
80
+ the returned array is the time derivative of the state corresponding
81
+ with a column of ``y``).
82
+
83
+ Setting ``vectorized=True`` allows for faster finite difference
84
+ approximation of the Jacobian by methods 'Radau' and 'BDF', but
85
+ will result in slower execution for this solver.
86
+
87
+ Attributes
88
+ ----------
89
+ n : int
90
+ Number of equations.
91
+ status : string
92
+ Current status of the solver: 'running', 'finished' or 'failed'.
93
+ t_bound : float
94
+ Boundary time.
95
+ direction : float
96
+ Integration direction: +1 or -1.
97
+ t : float
98
+ Current time.
99
+ y : ndarray
100
+ Current state.
101
+ t_old : float
102
+ Previous time. None if no steps were made yet.
103
+ nfev : int
104
+ Number of evaluations of the right-hand side.
105
+ njev : int
106
+ Number of evaluations of the Jacobian.
107
+
108
+ References
109
+ ----------
110
+ .. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
111
+ Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
112
+ pp. 55-64, 1983.
113
+ .. [2] L. Petzold, "Automatic selection of methods for solving stiff and
114
+ nonstiff systems of ordinary differential equations", SIAM Journal
115
+ on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
116
+ 1983.
117
+ """
118
+ def __init__(self, fun, t0, y0, t_bound, first_step=None, min_step=0.0,
119
+ max_step=np.inf, rtol=1e-3, atol=1e-6, jac=None, lband=None,
120
+ uband=None, vectorized=False, **extraneous):
121
+ warn_extraneous(extraneous)
122
+ super().__init__(fun, t0, y0, t_bound, vectorized)
123
+
124
+ if first_step is None:
125
+ first_step = 0 # LSODA value for automatic selection.
126
+ else:
127
+ first_step = validate_first_step(first_step, t0, t_bound)
128
+
129
+ first_step *= self.direction
130
+
131
+ if max_step == np.inf:
132
+ max_step = 0 # LSODA value for infinity.
133
+ elif max_step <= 0:
134
+ raise ValueError("`max_step` must be positive.")
135
+
136
+ if min_step < 0:
137
+ raise ValueError("`min_step` must be nonnegative.")
138
+
139
+ rtol, atol = validate_tol(rtol, atol, self.n)
140
+
141
+ solver = ode(self.fun, jac)
142
+ solver.set_integrator('lsoda', rtol=rtol, atol=atol, max_step=max_step,
143
+ min_step=min_step, first_step=first_step,
144
+ lband=lband, uband=uband)
145
+ solver.set_initial_value(y0, t0)
146
+
147
+ # Inject t_bound into rwork array as needed for itask=5.
148
+ solver._integrator.rwork[0] = self.t_bound
149
+ solver._integrator.call_args[4] = solver._integrator.rwork
150
+
151
+ self._lsoda_solver = solver
152
+
153
+ def _step_impl(self):
154
+ solver = self._lsoda_solver
155
+ integrator = solver._integrator
156
+
157
+ # From lsoda.step and lsoda.integrate itask=5 means take a single
158
+ # step and do not go past t_bound.
159
+ itask = integrator.call_args[2]
160
+ integrator.call_args[2] = 5
161
+ solver._y, solver.t = integrator.run(
162
+ solver.f, solver.jac or (lambda: None), solver._y, solver.t,
163
+ self.t_bound, solver.f_params, solver.jac_params)
164
+ integrator.call_args[2] = itask
165
+
166
+ if solver.successful():
167
+ self.t = solver.t
168
+ self.y = solver._y
169
+ # From LSODA Fortran source njev is equal to nlu.
170
+ self.njev = integrator.iwork[12]
171
+ self.nlu = integrator.iwork[12]
172
+ return True, None
173
+ else:
174
+ return False, 'Unexpected istate in LSODA.'
175
+
176
+ def _dense_output_impl(self):
177
+ iwork = self._lsoda_solver._integrator.iwork
178
+ rwork = self._lsoda_solver._integrator.rwork
179
+
180
+ # We want to produce the Nordsieck history array, yh, up to the order
181
+ # used in the last successful iteration. The step size is unimportant
182
+ # because it will be scaled out in LsodaDenseOutput. Some additional
183
+ # work may be required because ODEPACK's LSODA implementation produces
184
+ # the Nordsieck history in the state needed for the next iteration.
185
+
186
+ # iwork[13] contains order from last successful iteration, while
187
+ # iwork[14] contains order to be attempted next.
188
+ order = iwork[13]
189
+
190
+ # rwork[11] contains the step size to be attempted next, while
191
+ # rwork[10] contains step size from last successful iteration.
192
+ h = rwork[11]
193
+
194
+ # rwork[20:20 + (iwork[14] + 1) * self.n] contains entries of the
195
+ # Nordsieck array in state needed for next iteration. We want
196
+ # the entries up to order for the last successful step so use the
197
+ # following.
198
+ yh = np.reshape(rwork[20:20 + (order + 1) * self.n],
199
+ (self.n, order + 1), order='F').copy()
200
+ if iwork[14] < order:
201
+ # If the order is set to decrease then the final column of yh
202
+ # has not been updated within ODEPACK's LSODA
203
+ # implementation because this column will not be used in the
204
+ # next iteration. We must rescale this column to make the
205
+ # associated step size consistent with the other columns.
206
+ yh[:, -1] *= (h / rwork[10]) ** order
207
+
208
+ return LsodaDenseOutput(self.t_old, self.t, h, order, yh)
209
+
210
+
211
+ class LsodaDenseOutput(DenseOutput):
212
+ def __init__(self, t_old, t, h, order, yh):
213
+ super().__init__(t_old, t)
214
+ self.h = h
215
+ self.yh = yh
216
+ self.p = np.arange(order + 1)
217
+
218
+ def _call_impl(self, t):
219
+ if t.ndim == 0:
220
+ x = ((t - self.t) / self.h) ** self.p
221
+ else:
222
+ x = ((t - self.t) / self.h) ** self.p[:, None]
223
+
224
+ return np.dot(self.yh, x)
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/radau.py ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.linalg import lu_factor, lu_solve
3
+ from scipy.sparse import csc_matrix, issparse, eye
4
+ from scipy.sparse.linalg import splu
5
+ from scipy.optimize._numdiff import group_columns
6
+ from .common import (validate_max_step, validate_tol, select_initial_step,
7
+ norm, num_jac, EPS, warn_extraneous,
8
+ validate_first_step)
9
+ from .base import OdeSolver, DenseOutput
10
+
11
+ S6 = 6 ** 0.5
12
+
13
+ # Butcher tableau. A is not used directly, see below.
14
+ C = np.array([(4 - S6) / 10, (4 + S6) / 10, 1])
15
+ E = np.array([-13 - 7 * S6, -13 + 7 * S6, -1]) / 3
16
+
17
+ # Eigendecomposition of A is done: A = T L T**-1. There is 1 real eigenvalue
18
+ # and a complex conjugate pair. They are written below.
19
+ MU_REAL = 3 + 3 ** (2 / 3) - 3 ** (1 / 3)
20
+ MU_COMPLEX = (3 + 0.5 * (3 ** (1 / 3) - 3 ** (2 / 3))
21
+ - 0.5j * (3 ** (5 / 6) + 3 ** (7 / 6)))
22
+
23
+ # These are transformation matrices.
24
+ T = np.array([
25
+ [0.09443876248897524, -0.14125529502095421, 0.03002919410514742],
26
+ [0.25021312296533332, 0.20412935229379994, -0.38294211275726192],
27
+ [1, 1, 0]])
28
+ TI = np.array([
29
+ [4.17871859155190428, 0.32768282076106237, 0.52337644549944951],
30
+ [-4.17871859155190428, -0.32768282076106237, 0.47662355450055044],
31
+ [0.50287263494578682, -2.57192694985560522, 0.59603920482822492]])
32
+ # These linear combinations are used in the algorithm.
33
+ TI_REAL = TI[0]
34
+ TI_COMPLEX = TI[1] + 1j * TI[2]
35
+
36
+ # Interpolator coefficients.
37
+ P = np.array([
38
+ [13/3 + 7*S6/3, -23/3 - 22*S6/3, 10/3 + 5 * S6],
39
+ [13/3 - 7*S6/3, -23/3 + 22*S6/3, 10/3 - 5 * S6],
40
+ [1/3, -8/3, 10/3]])
41
+
42
+
43
+ NEWTON_MAXITER = 6 # Maximum number of Newton iterations.
44
+ MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size.
45
+ MAX_FACTOR = 10 # Maximum allowed increase in a step size.
46
+
47
+
48
+ def solve_collocation_system(fun, t, y, h, Z0, scale, tol,
49
+ LU_real, LU_complex, solve_lu):
50
+ """Solve the collocation system.
51
+
52
+ Parameters
53
+ ----------
54
+ fun : callable
55
+ Right-hand side of the system.
56
+ t : float
57
+ Current time.
58
+ y : ndarray, shape (n,)
59
+ Current state.
60
+ h : float
61
+ Step to try.
62
+ Z0 : ndarray, shape (3, n)
63
+ Initial guess for the solution. It determines new values of `y` at
64
+ ``t + h * C`` as ``y + Z0``, where ``C`` is the Radau method constants.
65
+ scale : ndarray, shape (n)
66
+ Problem tolerance scale, i.e. ``rtol * abs(y) + atol``.
67
+ tol : float
68
+ Tolerance to which solve the system. This value is compared with
69
+ the normalized by `scale` error.
70
+ LU_real, LU_complex
71
+ LU decompositions of the system Jacobians.
72
+ solve_lu : callable
73
+ Callable which solves a linear system given a LU decomposition. The
74
+ signature is ``solve_lu(LU, b)``.
75
+
76
+ Returns
77
+ -------
78
+ converged : bool
79
+ Whether iterations converged.
80
+ n_iter : int
81
+ Number of completed iterations.
82
+ Z : ndarray, shape (3, n)
83
+ Found solution.
84
+ rate : float
85
+ The rate of convergence.
86
+ """
87
+ n = y.shape[0]
88
+ M_real = MU_REAL / h
89
+ M_complex = MU_COMPLEX / h
90
+
91
+ W = TI.dot(Z0)
92
+ Z = Z0
93
+
94
+ F = np.empty((3, n))
95
+ ch = h * C
96
+
97
+ dW_norm_old = None
98
+ dW = np.empty_like(W)
99
+ converged = False
100
+ rate = None
101
+ for k in range(NEWTON_MAXITER):
102
+ for i in range(3):
103
+ F[i] = fun(t + ch[i], y + Z[i])
104
+
105
+ if not np.all(np.isfinite(F)):
106
+ break
107
+
108
+ f_real = F.T.dot(TI_REAL) - M_real * W[0]
109
+ f_complex = F.T.dot(TI_COMPLEX) - M_complex * (W[1] + 1j * W[2])
110
+
111
+ dW_real = solve_lu(LU_real, f_real)
112
+ dW_complex = solve_lu(LU_complex, f_complex)
113
+
114
+ dW[0] = dW_real
115
+ dW[1] = dW_complex.real
116
+ dW[2] = dW_complex.imag
117
+
118
+ dW_norm = norm(dW / scale)
119
+ if dW_norm_old is not None:
120
+ rate = dW_norm / dW_norm_old
121
+
122
+ if (rate is not None and (rate >= 1 or
123
+ rate ** (NEWTON_MAXITER - k) / (1 - rate) * dW_norm > tol)):
124
+ break
125
+
126
+ W += dW
127
+ Z = T.dot(W)
128
+
129
+ if (dW_norm == 0 or
130
+ rate is not None and rate / (1 - rate) * dW_norm < tol):
131
+ converged = True
132
+ break
133
+
134
+ dW_norm_old = dW_norm
135
+
136
+ return converged, k + 1, Z, rate
137
+
138
+
139
+ def predict_factor(h_abs, h_abs_old, error_norm, error_norm_old):
140
+ """Predict by which factor to increase/decrease the step size.
141
+
142
+ The algorithm is described in [1]_.
143
+
144
+ Parameters
145
+ ----------
146
+ h_abs, h_abs_old : float
147
+ Current and previous values of the step size, `h_abs_old` can be None
148
+ (see Notes).
149
+ error_norm, error_norm_old : float
150
+ Current and previous values of the error norm, `error_norm_old` can
151
+ be None (see Notes).
152
+
153
+ Returns
154
+ -------
155
+ factor : float
156
+ Predicted factor.
157
+
158
+ Notes
159
+ -----
160
+ If `h_abs_old` and `error_norm_old` are both not None then a two-step
161
+ algorithm is used, otherwise a one-step algorithm is used.
162
+
163
+ References
164
+ ----------
165
+ .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
166
+ Equations II: Stiff and Differential-Algebraic Problems", Sec. IV.8.
167
+ """
168
+ if error_norm_old is None or h_abs_old is None or error_norm == 0:
169
+ multiplier = 1
170
+ else:
171
+ multiplier = h_abs / h_abs_old * (error_norm_old / error_norm) ** 0.25
172
+
173
+ with np.errstate(divide='ignore'):
174
+ factor = min(1, multiplier) * error_norm ** -0.25
175
+
176
+ return factor
177
+
178
+
179
+ class Radau(OdeSolver):
180
+ """Implicit Runge-Kutta method of Radau IIA family of order 5.
181
+
182
+ The implementation follows [1]_. The error is controlled with a
183
+ third-order accurate embedded formula. A cubic polynomial which satisfies
184
+ the collocation conditions is used for the dense output.
185
+
186
+ Parameters
187
+ ----------
188
+ fun : callable
189
+ Right-hand side of the system: the time derivative of the state ``y``
190
+ at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
191
+ scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
192
+ return an array of the same shape as ``y``. See `vectorized` for more
193
+ information.
194
+ t0 : float
195
+ Initial time.
196
+ y0 : array_like, shape (n,)
197
+ Initial state.
198
+ t_bound : float
199
+ Boundary time - the integration won't continue beyond it. It also
200
+ determines the direction of the integration.
201
+ first_step : float or None, optional
202
+ Initial step size. Default is ``None`` which means that the algorithm
203
+ should choose.
204
+ max_step : float, optional
205
+ Maximum allowed step size. Default is np.inf, i.e., the step size is not
206
+ bounded and determined solely by the solver.
207
+ rtol, atol : float and array_like, optional
208
+ Relative and absolute tolerances. The solver keeps the local error
209
+ estimates less than ``atol + rtol * abs(y)``. HHere `rtol` controls a
210
+ relative accuracy (number of correct digits), while `atol` controls
211
+ absolute accuracy (number of correct decimal places). To achieve the
212
+ desired `rtol`, set `atol` to be smaller than the smallest value that
213
+ can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
214
+ allowable error. If `atol` is larger than ``rtol * abs(y)`` the
215
+ number of correct digits is not guaranteed. Conversely, to achieve the
216
+ desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
217
+ than `atol`. If components of y have different scales, it might be
218
+ beneficial to set different `atol` values for different components by
219
+ passing array_like with shape (n,) for `atol`. Default values are
220
+ 1e-3 for `rtol` and 1e-6 for `atol`.
221
+ jac : {None, array_like, sparse_matrix, callable}, optional
222
+ Jacobian matrix of the right-hand side of the system with respect to
223
+ y, required by this method. The Jacobian matrix has shape (n, n) and
224
+ its element (i, j) is equal to ``d f_i / d y_j``.
225
+ There are three ways to define the Jacobian:
226
+
227
+ * If array_like or sparse_matrix, the Jacobian is assumed to
228
+ be constant.
229
+ * If callable, the Jacobian is assumed to depend on both
230
+ t and y; it will be called as ``jac(t, y)`` as necessary.
231
+ For the 'Radau' and 'BDF' methods, the return value might be a
232
+ sparse matrix.
233
+ * If None (default), the Jacobian will be approximated by
234
+ finite differences.
235
+
236
+ It is generally recommended to provide the Jacobian rather than
237
+ relying on a finite-difference approximation.
238
+ jac_sparsity : {None, array_like, sparse matrix}, optional
239
+ Defines a sparsity structure of the Jacobian matrix for a
240
+ finite-difference approximation. Its shape must be (n, n). This argument
241
+ is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
242
+ elements in *each* row, providing the sparsity structure will greatly
243
+ speed up the computations [2]_. A zero entry means that a corresponding
244
+ element in the Jacobian is always zero. If None (default), the Jacobian
245
+ is assumed to be dense.
246
+ vectorized : bool, optional
247
+ Whether `fun` can be called in a vectorized fashion. Default is False.
248
+
249
+ If ``vectorized`` is False, `fun` will always be called with ``y`` of
250
+ shape ``(n,)``, where ``n = len(y0)``.
251
+
252
+ If ``vectorized`` is True, `fun` may be called with ``y`` of shape
253
+ ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
254
+ such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
255
+ the returned array is the time derivative of the state corresponding
256
+ with a column of ``y``).
257
+
258
+ Setting ``vectorized=True`` allows for faster finite difference
259
+ approximation of the Jacobian by this method, but may result in slower
260
+ execution overall in some circumstances (e.g. small ``len(y0)``).
261
+
262
+ Attributes
263
+ ----------
264
+ n : int
265
+ Number of equations.
266
+ status : string
267
+ Current status of the solver: 'running', 'finished' or 'failed'.
268
+ t_bound : float
269
+ Boundary time.
270
+ direction : float
271
+ Integration direction: +1 or -1.
272
+ t : float
273
+ Current time.
274
+ y : ndarray
275
+ Current state.
276
+ t_old : float
277
+ Previous time. None if no steps were made yet.
278
+ step_size : float
279
+ Size of the last successful step. None if no steps were made yet.
280
+ nfev : int
281
+ Number of evaluations of the right-hand side.
282
+ njev : int
283
+ Number of evaluations of the Jacobian.
284
+ nlu : int
285
+ Number of LU decompositions.
286
+
287
+ References
288
+ ----------
289
+ .. [1] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
290
+ Stiff and Differential-Algebraic Problems", Sec. IV.8.
291
+ .. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
292
+ sparse Jacobian matrices", Journal of the Institute of Mathematics
293
+ and its Applications, 13, pp. 117-120, 1974.
294
+ """
295
+ def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
296
+ rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
297
+ vectorized=False, first_step=None, **extraneous):
298
+ warn_extraneous(extraneous)
299
+ super().__init__(fun, t0, y0, t_bound, vectorized)
300
+ self.y_old = None
301
+ self.max_step = validate_max_step(max_step)
302
+ self.rtol, self.atol = validate_tol(rtol, atol, self.n)
303
+ self.f = self.fun(self.t, self.y)
304
+ # Select initial step assuming the same order which is used to control
305
+ # the error.
306
+ if first_step is None:
307
+ self.h_abs = select_initial_step(
308
+ self.fun, self.t, self.y, self.f, self.direction,
309
+ 3, self.rtol, self.atol)
310
+ else:
311
+ self.h_abs = validate_first_step(first_step, t0, t_bound)
312
+ self.h_abs_old = None
313
+ self.error_norm_old = None
314
+
315
+ self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
316
+ self.sol = None
317
+
318
+ self.jac_factor = None
319
+ self.jac, self.J = self._validate_jac(jac, jac_sparsity)
320
+ if issparse(self.J):
321
+ def lu(A):
322
+ self.nlu += 1
323
+ return splu(A)
324
+
325
+ def solve_lu(LU, b):
326
+ return LU.solve(b)
327
+
328
+ I = eye(self.n, format='csc')
329
+ else:
330
+ def lu(A):
331
+ self.nlu += 1
332
+ return lu_factor(A, overwrite_a=True)
333
+
334
+ def solve_lu(LU, b):
335
+ return lu_solve(LU, b, overwrite_b=True)
336
+
337
+ I = np.identity(self.n)
338
+
339
+ self.lu = lu
340
+ self.solve_lu = solve_lu
341
+ self.I = I
342
+
343
+ self.current_jac = True
344
+ self.LU_real = None
345
+ self.LU_complex = None
346
+ self.Z = None
347
+
348
+ def _validate_jac(self, jac, sparsity):
349
+ t0 = self.t
350
+ y0 = self.y
351
+
352
+ if jac is None:
353
+ if sparsity is not None:
354
+ if issparse(sparsity):
355
+ sparsity = csc_matrix(sparsity)
356
+ groups = group_columns(sparsity)
357
+ sparsity = (sparsity, groups)
358
+
359
+ def jac_wrapped(t, y, f):
360
+ self.njev += 1
361
+ J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
362
+ self.atol, self.jac_factor,
363
+ sparsity)
364
+ return J
365
+ J = jac_wrapped(t0, y0, self.f)
366
+ elif callable(jac):
367
+ J = jac(t0, y0)
368
+ self.njev = 1
369
+ if issparse(J):
370
+ J = csc_matrix(J)
371
+
372
+ def jac_wrapped(t, y, _=None):
373
+ self.njev += 1
374
+ return csc_matrix(jac(t, y), dtype=float)
375
+
376
+ else:
377
+ J = np.asarray(J, dtype=float)
378
+
379
+ def jac_wrapped(t, y, _=None):
380
+ self.njev += 1
381
+ return np.asarray(jac(t, y), dtype=float)
382
+
383
+ if J.shape != (self.n, self.n):
384
+ raise ValueError("`jac` is expected to have shape {}, but "
385
+ "actually has {}."
386
+ .format((self.n, self.n), J.shape))
387
+ else:
388
+ if issparse(jac):
389
+ J = csc_matrix(jac)
390
+ else:
391
+ J = np.asarray(jac, dtype=float)
392
+
393
+ if J.shape != (self.n, self.n):
394
+ raise ValueError("`jac` is expected to have shape {}, but "
395
+ "actually has {}."
396
+ .format((self.n, self.n), J.shape))
397
+ jac_wrapped = None
398
+
399
+ return jac_wrapped, J
400
+
401
+ def _step_impl(self):
402
+ t = self.t
403
+ y = self.y
404
+ f = self.f
405
+
406
+ max_step = self.max_step
407
+ atol = self.atol
408
+ rtol = self.rtol
409
+
410
+ min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
411
+ if self.h_abs > max_step:
412
+ h_abs = max_step
413
+ h_abs_old = None
414
+ error_norm_old = None
415
+ elif self.h_abs < min_step:
416
+ h_abs = min_step
417
+ h_abs_old = None
418
+ error_norm_old = None
419
+ else:
420
+ h_abs = self.h_abs
421
+ h_abs_old = self.h_abs_old
422
+ error_norm_old = self.error_norm_old
423
+
424
+ J = self.J
425
+ LU_real = self.LU_real
426
+ LU_complex = self.LU_complex
427
+
428
+ current_jac = self.current_jac
429
+ jac = self.jac
430
+
431
+ rejected = False
432
+ step_accepted = False
433
+ message = None
434
+ while not step_accepted:
435
+ if h_abs < min_step:
436
+ return False, self.TOO_SMALL_STEP
437
+
438
+ h = h_abs * self.direction
439
+ t_new = t + h
440
+
441
+ if self.direction * (t_new - self.t_bound) > 0:
442
+ t_new = self.t_bound
443
+
444
+ h = t_new - t
445
+ h_abs = np.abs(h)
446
+
447
+ if self.sol is None:
448
+ Z0 = np.zeros((3, y.shape[0]))
449
+ else:
450
+ Z0 = self.sol(t + h * C).T - y
451
+
452
+ scale = atol + np.abs(y) * rtol
453
+
454
+ converged = False
455
+ while not converged:
456
+ if LU_real is None or LU_complex is None:
457
+ LU_real = self.lu(MU_REAL / h * self.I - J)
458
+ LU_complex = self.lu(MU_COMPLEX / h * self.I - J)
459
+
460
+ converged, n_iter, Z, rate = solve_collocation_system(
461
+ self.fun, t, y, h, Z0, scale, self.newton_tol,
462
+ LU_real, LU_complex, self.solve_lu)
463
+
464
+ if not converged:
465
+ if current_jac:
466
+ break
467
+
468
+ J = self.jac(t, y, f)
469
+ current_jac = True
470
+ LU_real = None
471
+ LU_complex = None
472
+
473
+ if not converged:
474
+ h_abs *= 0.5
475
+ LU_real = None
476
+ LU_complex = None
477
+ continue
478
+
479
+ y_new = y + Z[-1]
480
+ ZE = Z.T.dot(E) / h
481
+ error = self.solve_lu(LU_real, f + ZE)
482
+ scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol
483
+ error_norm = norm(error / scale)
484
+ safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
485
+ + n_iter)
486
+
487
+ if rejected and error_norm > 1:
488
+ error = self.solve_lu(LU_real, self.fun(t, y + error) + ZE)
489
+ error_norm = norm(error / scale)
490
+
491
+ if error_norm > 1:
492
+ factor = predict_factor(h_abs, h_abs_old,
493
+ error_norm, error_norm_old)
494
+ h_abs *= max(MIN_FACTOR, safety * factor)
495
+
496
+ LU_real = None
497
+ LU_complex = None
498
+ rejected = True
499
+ else:
500
+ step_accepted = True
501
+
502
+ recompute_jac = jac is not None and n_iter > 2 and rate > 1e-3
503
+
504
+ factor = predict_factor(h_abs, h_abs_old, error_norm, error_norm_old)
505
+ factor = min(MAX_FACTOR, safety * factor)
506
+
507
+ if not recompute_jac and factor < 1.2:
508
+ factor = 1
509
+ else:
510
+ LU_real = None
511
+ LU_complex = None
512
+
513
+ f_new = self.fun(t_new, y_new)
514
+ if recompute_jac:
515
+ J = jac(t_new, y_new, f_new)
516
+ current_jac = True
517
+ elif jac is not None:
518
+ current_jac = False
519
+
520
+ self.h_abs_old = self.h_abs
521
+ self.error_norm_old = error_norm
522
+
523
+ self.h_abs = h_abs * factor
524
+
525
+ self.y_old = y
526
+
527
+ self.t = t_new
528
+ self.y = y_new
529
+ self.f = f_new
530
+
531
+ self.Z = Z
532
+
533
+ self.LU_real = LU_real
534
+ self.LU_complex = LU_complex
535
+ self.current_jac = current_jac
536
+ self.J = J
537
+
538
+ self.t_old = t
539
+ self.sol = self._compute_dense_output()
540
+
541
+ return step_accepted, message
542
+
543
+ def _compute_dense_output(self):
544
+ Q = np.dot(self.Z.T, P)
545
+ return RadauDenseOutput(self.t_old, self.t, self.y_old, Q)
546
+
547
+ def _dense_output_impl(self):
548
+ return self.sol
549
+
550
+
551
+ class RadauDenseOutput(DenseOutput):
552
+ def __init__(self, t_old, t, y_old, Q):
553
+ super().__init__(t_old, t)
554
+ self.h = t - t_old
555
+ self.Q = Q
556
+ self.order = Q.shape[1] - 1
557
+ self.y_old = y_old
558
+
559
+ def _call_impl(self, t):
560
+ x = (t - self.t_old) / self.h
561
+ if t.ndim == 0:
562
+ p = np.tile(x, self.order + 1)
563
+ p = np.cumprod(p)
564
+ else:
565
+ p = np.tile(x, (self.order + 1, 1))
566
+ p = np.cumprod(p, axis=0)
567
+ # Here we don't multiply by h, not a mistake.
568
+ y = np.dot(self.Q, p)
569
+ if y.ndim == 2:
570
+ y += self.y_old[:, None]
571
+ else:
572
+ y += self.y_old
573
+
574
+ return y
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/rk.py ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from .base import OdeSolver, DenseOutput
3
+ from .common import (validate_max_step, validate_tol, select_initial_step,
4
+ norm, warn_extraneous, validate_first_step)
5
+ from . import dop853_coefficients
6
+
7
+ # Multiply steps computed from asymptotic behaviour of errors by this.
8
+ SAFETY = 0.9
9
+
10
+ MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size.
11
+ MAX_FACTOR = 10 # Maximum allowed increase in a step size.
12
+
13
+
14
+ def rk_step(fun, t, y, f, h, A, B, C, K):
15
+ """Perform a single Runge-Kutta step.
16
+
17
+ This function computes a prediction of an explicit Runge-Kutta method and
18
+ also estimates the error of a less accurate method.
19
+
20
+ Notation for Butcher tableau is as in [1]_.
21
+
22
+ Parameters
23
+ ----------
24
+ fun : callable
25
+ Right-hand side of the system.
26
+ t : float
27
+ Current time.
28
+ y : ndarray, shape (n,)
29
+ Current state.
30
+ f : ndarray, shape (n,)
31
+ Current value of the derivative, i.e., ``fun(x, y)``.
32
+ h : float
33
+ Step to use.
34
+ A : ndarray, shape (n_stages, n_stages)
35
+ Coefficients for combining previous RK stages to compute the next
36
+ stage. For explicit methods the coefficients at and above the main
37
+ diagonal are zeros.
38
+ B : ndarray, shape (n_stages,)
39
+ Coefficients for combining RK stages for computing the final
40
+ prediction.
41
+ C : ndarray, shape (n_stages,)
42
+ Coefficients for incrementing time for consecutive RK stages.
43
+ The value for the first stage is always zero.
44
+ K : ndarray, shape (n_stages + 1, n)
45
+ Storage array for putting RK stages here. Stages are stored in rows.
46
+ The last row is a linear combination of the previous rows with
47
+ coefficients
48
+
49
+ Returns
50
+ -------
51
+ y_new : ndarray, shape (n,)
52
+ Solution at t + h computed with a higher accuracy.
53
+ f_new : ndarray, shape (n,)
54
+ Derivative ``fun(t + h, y_new)``.
55
+
56
+ References
57
+ ----------
58
+ .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
59
+ Equations I: Nonstiff Problems", Sec. II.4.
60
+ """
61
+ K[0] = f
62
+ for s, (a, c) in enumerate(zip(A[1:], C[1:]), start=1):
63
+ dy = np.dot(K[:s].T, a[:s]) * h
64
+ K[s] = fun(t + c * h, y + dy)
65
+
66
+ y_new = y + h * np.dot(K[:-1].T, B)
67
+ f_new = fun(t + h, y_new)
68
+
69
+ K[-1] = f_new
70
+
71
+ return y_new, f_new
72
+
73
+
74
+ class RungeKutta(OdeSolver):
75
+ """Base class for explicit Runge-Kutta methods."""
76
+ C: np.ndarray = NotImplemented
77
+ A: np.ndarray = NotImplemented
78
+ B: np.ndarray = NotImplemented
79
+ E: np.ndarray = NotImplemented
80
+ P: np.ndarray = NotImplemented
81
+ order: int = NotImplemented
82
+ error_estimator_order: int = NotImplemented
83
+ n_stages: int = NotImplemented
84
+
85
+ def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
86
+ rtol=1e-3, atol=1e-6, vectorized=False,
87
+ first_step=None, **extraneous):
88
+ warn_extraneous(extraneous)
89
+ super().__init__(fun, t0, y0, t_bound, vectorized,
90
+ support_complex=True)
91
+ self.y_old = None
92
+ self.max_step = validate_max_step(max_step)
93
+ self.rtol, self.atol = validate_tol(rtol, atol, self.n)
94
+ self.f = self.fun(self.t, self.y)
95
+ if first_step is None:
96
+ self.h_abs = select_initial_step(
97
+ self.fun, self.t, self.y, self.f, self.direction,
98
+ self.error_estimator_order, self.rtol, self.atol)
99
+ else:
100
+ self.h_abs = validate_first_step(first_step, t0, t_bound)
101
+ self.K = np.empty((self.n_stages + 1, self.n), dtype=self.y.dtype)
102
+ self.error_exponent = -1 / (self.error_estimator_order + 1)
103
+ self.h_previous = None
104
+
105
+ def _estimate_error(self, K, h):
106
+ return np.dot(K.T, self.E) * h
107
+
108
+ def _estimate_error_norm(self, K, h, scale):
109
+ return norm(self._estimate_error(K, h) / scale)
110
+
111
+ def _step_impl(self):
112
+ t = self.t
113
+ y = self.y
114
+
115
+ max_step = self.max_step
116
+ rtol = self.rtol
117
+ atol = self.atol
118
+
119
+ min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
120
+
121
+ if self.h_abs > max_step:
122
+ h_abs = max_step
123
+ elif self.h_abs < min_step:
124
+ h_abs = min_step
125
+ else:
126
+ h_abs = self.h_abs
127
+
128
+ step_accepted = False
129
+ step_rejected = False
130
+
131
+ while not step_accepted:
132
+ if h_abs < min_step:
133
+ return False, self.TOO_SMALL_STEP
134
+
135
+ h = h_abs * self.direction
136
+ t_new = t + h
137
+
138
+ if self.direction * (t_new - self.t_bound) > 0:
139
+ t_new = self.t_bound
140
+
141
+ h = t_new - t
142
+ h_abs = np.abs(h)
143
+
144
+ y_new, f_new = rk_step(self.fun, t, y, self.f, h, self.A,
145
+ self.B, self.C, self.K)
146
+ scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol
147
+ error_norm = self._estimate_error_norm(self.K, h, scale)
148
+
149
+ if error_norm < 1:
150
+ if error_norm == 0:
151
+ factor = MAX_FACTOR
152
+ else:
153
+ factor = min(MAX_FACTOR,
154
+ SAFETY * error_norm ** self.error_exponent)
155
+
156
+ if step_rejected:
157
+ factor = min(1, factor)
158
+
159
+ h_abs *= factor
160
+
161
+ step_accepted = True
162
+ else:
163
+ h_abs *= max(MIN_FACTOR,
164
+ SAFETY * error_norm ** self.error_exponent)
165
+ step_rejected = True
166
+
167
+ self.h_previous = h
168
+ self.y_old = y
169
+
170
+ self.t = t_new
171
+ self.y = y_new
172
+
173
+ self.h_abs = h_abs
174
+ self.f = f_new
175
+
176
+ return True, None
177
+
178
+ def _dense_output_impl(self):
179
+ Q = self.K.T.dot(self.P)
180
+ return RkDenseOutput(self.t_old, self.t, self.y_old, Q)
181
+
182
+
183
+ class RK23(RungeKutta):
184
+ """Explicit Runge-Kutta method of order 3(2).
185
+
186
+ This uses the Bogacki-Shampine pair of formulas [1]_. The error is controlled
187
+ assuming accuracy of the second-order method, but steps are taken using the
188
+ third-order accurate formula (local extrapolation is done). A cubic Hermite
189
+ polynomial is used for the dense output.
190
+
191
+ Can be applied in the complex domain.
192
+
193
+ Parameters
194
+ ----------
195
+ fun : callable
196
+ Right-hand side of the system: the time derivative of the state ``y``
197
+ at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
198
+ scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
199
+ return an array of the same shape as ``y``. See `vectorized` for more
200
+ information.
201
+ t0 : float
202
+ Initial time.
203
+ y0 : array_like, shape (n,)
204
+ Initial state.
205
+ t_bound : float
206
+ Boundary time - the integration won't continue beyond it. It also
207
+ determines the direction of the integration.
208
+ first_step : float or None, optional
209
+ Initial step size. Default is ``None`` which means that the algorithm
210
+ should choose.
211
+ max_step : float, optional
212
+ Maximum allowed step size. Default is np.inf, i.e., the step size is not
213
+ bounded and determined solely by the solver.
214
+ rtol, atol : float and array_like, optional
215
+ Relative and absolute tolerances. The solver keeps the local error
216
+ estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
217
+ relative accuracy (number of correct digits), while `atol` controls
218
+ absolute accuracy (number of correct decimal places). To achieve the
219
+ desired `rtol`, set `atol` to be smaller than the smallest value that
220
+ can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
221
+ allowable error. If `atol` is larger than ``rtol * abs(y)`` the
222
+ number of correct digits is not guaranteed. Conversely, to achieve the
223
+ desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
224
+ than `atol`. If components of y have different scales, it might be
225
+ beneficial to set different `atol` values for different components by
226
+ passing array_like with shape (n,) for `atol`. Default values are
227
+ 1e-3 for `rtol` and 1e-6 for `atol`.
228
+ vectorized : bool, optional
229
+ Whether `fun` may be called in a vectorized fashion. False (default)
230
+ is recommended for this solver.
231
+
232
+ If ``vectorized`` is False, `fun` will always be called with ``y`` of
233
+ shape ``(n,)``, where ``n = len(y0)``.
234
+
235
+ If ``vectorized`` is True, `fun` may be called with ``y`` of shape
236
+ ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
237
+ such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
238
+ the returned array is the time derivative of the state corresponding
239
+ with a column of ``y``).
240
+
241
+ Setting ``vectorized=True`` allows for faster finite difference
242
+ approximation of the Jacobian by methods 'Radau' and 'BDF', but
243
+ will result in slower execution for this solver.
244
+
245
+ Attributes
246
+ ----------
247
+ n : int
248
+ Number of equations.
249
+ status : string
250
+ Current status of the solver: 'running', 'finished' or 'failed'.
251
+ t_bound : float
252
+ Boundary time.
253
+ direction : float
254
+ Integration direction: +1 or -1.
255
+ t : float
256
+ Current time.
257
+ y : ndarray
258
+ Current state.
259
+ t_old : float
260
+ Previous time. None if no steps were made yet.
261
+ step_size : float
262
+ Size of the last successful step. None if no steps were made yet.
263
+ nfev : int
264
+ Number evaluations of the system's right-hand side.
265
+ njev : int
266
+ Number of evaluations of the Jacobian.
267
+ Is always 0 for this solver as it does not use the Jacobian.
268
+ nlu : int
269
+ Number of LU decompositions. Is always 0 for this solver.
270
+
271
+ References
272
+ ----------
273
+ .. [1] P. Bogacki, L.F. Shampine, "A 3(2) Pair of Runge-Kutta Formulas",
274
+ Appl. Math. Lett. Vol. 2, No. 4. pp. 321-325, 1989.
275
+ """
276
+ order = 3
277
+ error_estimator_order = 2
278
+ n_stages = 3
279
+ C = np.array([0, 1/2, 3/4])
280
+ A = np.array([
281
+ [0, 0, 0],
282
+ [1/2, 0, 0],
283
+ [0, 3/4, 0]
284
+ ])
285
+ B = np.array([2/9, 1/3, 4/9])
286
+ E = np.array([5/72, -1/12, -1/9, 1/8])
287
+ P = np.array([[1, -4 / 3, 5 / 9],
288
+ [0, 1, -2/3],
289
+ [0, 4/3, -8/9],
290
+ [0, -1, 1]])
291
+
292
+
293
+ class RK45(RungeKutta):
294
+ """Explicit Runge-Kutta method of order 5(4).
295
+
296
+ This uses the Dormand-Prince pair of formulas [1]_. The error is controlled
297
+ assuming accuracy of the fourth-order method accuracy, but steps are taken
298
+ using the fifth-order accurate formula (local extrapolation is done).
299
+ A quartic interpolation polynomial is used for the dense output [2]_.
300
+
301
+ Can be applied in the complex domain.
302
+
303
+ Parameters
304
+ ----------
305
+ fun : callable
306
+ Right-hand side of the system. The calling signature is ``fun(t, y)``.
307
+ Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
308
+ It can either have shape (n,); then ``fun`` must return array_like with
309
+ shape (n,). Alternatively it can have shape (n, k); then ``fun``
310
+ must return an array_like with shape (n, k), i.e., each column
311
+ corresponds to a single column in ``y``. The choice between the two
312
+ options is determined by `vectorized` argument (see below).
313
+ t0 : float
314
+ Initial time.
315
+ y0 : array_like, shape (n,)
316
+ Initial state.
317
+ t_bound : float
318
+ Boundary time - the integration won't continue beyond it. It also
319
+ determines the direction of the integration.
320
+ first_step : float or None, optional
321
+ Initial step size. Default is ``None`` which means that the algorithm
322
+ should choose.
323
+ max_step : float, optional
324
+ Maximum allowed step size. Default is np.inf, i.e., the step size is not
325
+ bounded and determined solely by the solver.
326
+ rtol, atol : float and array_like, optional
327
+ Relative and absolute tolerances. The solver keeps the local error
328
+ estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
329
+ relative accuracy (number of correct digits), while `atol` controls
330
+ absolute accuracy (number of correct decimal places). To achieve the
331
+ desired `rtol`, set `atol` to be smaller than the smallest value that
332
+ can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
333
+ allowable error. If `atol` is larger than ``rtol * abs(y)`` the
334
+ number of correct digits is not guaranteed. Conversely, to achieve the
335
+ desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
336
+ than `atol`. If components of y have different scales, it might be
337
+ beneficial to set different `atol` values for different components by
338
+ passing array_like with shape (n,) for `atol`. Default values are
339
+ 1e-3 for `rtol` and 1e-6 for `atol`.
340
+ vectorized : bool, optional
341
+ Whether `fun` is implemented in a vectorized fashion. Default is False.
342
+
343
+ Attributes
344
+ ----------
345
+ n : int
346
+ Number of equations.
347
+ status : string
348
+ Current status of the solver: 'running', 'finished' or 'failed'.
349
+ t_bound : float
350
+ Boundary time.
351
+ direction : float
352
+ Integration direction: +1 or -1.
353
+ t : float
354
+ Current time.
355
+ y : ndarray
356
+ Current state.
357
+ t_old : float
358
+ Previous time. None if no steps were made yet.
359
+ step_size : float
360
+ Size of the last successful step. None if no steps were made yet.
361
+ nfev : int
362
+ Number evaluations of the system's right-hand side.
363
+ njev : int
364
+ Number of evaluations of the Jacobian.
365
+ Is always 0 for this solver as it does not use the Jacobian.
366
+ nlu : int
367
+ Number of LU decompositions. Is always 0 for this solver.
368
+
369
+ References
370
+ ----------
371
+ .. [1] J. R. Dormand, P. J. Prince, "A family of embedded Runge-Kutta
372
+ formulae", Journal of Computational and Applied Mathematics, Vol. 6,
373
+ No. 1, pp. 19-26, 1980.
374
+ .. [2] L. W. Shampine, "Some Practical Runge-Kutta Formulas", Mathematics
375
+ of Computation,, Vol. 46, No. 173, pp. 135-150, 1986.
376
+ """
377
+ order = 5
378
+ error_estimator_order = 4
379
+ n_stages = 6
380
+ C = np.array([0, 1/5, 3/10, 4/5, 8/9, 1])
381
+ A = np.array([
382
+ [0, 0, 0, 0, 0],
383
+ [1/5, 0, 0, 0, 0],
384
+ [3/40, 9/40, 0, 0, 0],
385
+ [44/45, -56/15, 32/9, 0, 0],
386
+ [19372/6561, -25360/2187, 64448/6561, -212/729, 0],
387
+ [9017/3168, -355/33, 46732/5247, 49/176, -5103/18656]
388
+ ])
389
+ B = np.array([35/384, 0, 500/1113, 125/192, -2187/6784, 11/84])
390
+ E = np.array([-71/57600, 0, 71/16695, -71/1920, 17253/339200, -22/525,
391
+ 1/40])
392
+ # Corresponds to the optimum value of c_6 from [2]_.
393
+ P = np.array([
394
+ [1, -8048581381/2820520608, 8663915743/2820520608,
395
+ -12715105075/11282082432],
396
+ [0, 0, 0, 0],
397
+ [0, 131558114200/32700410799, -68118460800/10900136933,
398
+ 87487479700/32700410799],
399
+ [0, -1754552775/470086768, 14199869525/1410260304,
400
+ -10690763975/1880347072],
401
+ [0, 127303824393/49829197408, -318862633887/49829197408,
402
+ 701980252875 / 199316789632],
403
+ [0, -282668133/205662961, 2019193451/616988883, -1453857185/822651844],
404
+ [0, 40617522/29380423, -110615467/29380423, 69997945/29380423]])
405
+
406
+
407
+ class DOP853(RungeKutta):
408
+ """Explicit Runge-Kutta method of order 8.
409
+
410
+ This is a Python implementation of "DOP853" algorithm originally written
411
+ in Fortran [1]_, [2]_. Note that this is not a literal translation, but
412
+ the algorithmic core and coefficients are the same.
413
+
414
+ Can be applied in the complex domain.
415
+
416
+ Parameters
417
+ ----------
418
+ fun : callable
419
+ Right-hand side of the system. The calling signature is ``fun(t, y)``.
420
+ Here, ``t`` is a scalar, and there are two options for the ndarray ``y``:
421
+ It can either have shape (n,); then ``fun`` must return array_like with
422
+ shape (n,). Alternatively it can have shape (n, k); then ``fun``
423
+ must return an array_like with shape (n, k), i.e. each column
424
+ corresponds to a single column in ``y``. The choice between the two
425
+ options is determined by `vectorized` argument (see below).
426
+ t0 : float
427
+ Initial time.
428
+ y0 : array_like, shape (n,)
429
+ Initial state.
430
+ t_bound : float
431
+ Boundary time - the integration won't continue beyond it. It also
432
+ determines the direction of the integration.
433
+ first_step : float or None, optional
434
+ Initial step size. Default is ``None`` which means that the algorithm
435
+ should choose.
436
+ max_step : float, optional
437
+ Maximum allowed step size. Default is np.inf, i.e. the step size is not
438
+ bounded and determined solely by the solver.
439
+ rtol, atol : float and array_like, optional
440
+ Relative and absolute tolerances. The solver keeps the local error
441
+ estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
442
+ relative accuracy (number of correct digits), while `atol` controls
443
+ absolute accuracy (number of correct decimal places). To achieve the
444
+ desired `rtol`, set `atol` to be smaller than the smallest value that
445
+ can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
446
+ allowable error. If `atol` is larger than ``rtol * abs(y)`` the
447
+ number of correct digits is not guaranteed. Conversely, to achieve the
448
+ desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
449
+ than `atol`. If components of y have different scales, it might be
450
+ beneficial to set different `atol` values for different components by
451
+ passing array_like with shape (n,) for `atol`. Default values are
452
+ 1e-3 for `rtol` and 1e-6 for `atol`.
453
+ vectorized : bool, optional
454
+ Whether `fun` is implemented in a vectorized fashion. Default is False.
455
+
456
+ Attributes
457
+ ----------
458
+ n : int
459
+ Number of equations.
460
+ status : string
461
+ Current status of the solver: 'running', 'finished' or 'failed'.
462
+ t_bound : float
463
+ Boundary time.
464
+ direction : float
465
+ Integration direction: +1 or -1.
466
+ t : float
467
+ Current time.
468
+ y : ndarray
469
+ Current state.
470
+ t_old : float
471
+ Previous time. None if no steps were made yet.
472
+ step_size : float
473
+ Size of the last successful step. None if no steps were made yet.
474
+ nfev : int
475
+ Number evaluations of the system's right-hand side.
476
+ njev : int
477
+ Number of evaluations of the Jacobian. Is always 0 for this solver
478
+ as it does not use the Jacobian.
479
+ nlu : int
480
+ Number of LU decompositions. Is always 0 for this solver.
481
+
482
+ References
483
+ ----------
484
+ .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
485
+ Equations I: Nonstiff Problems", Sec. II.
486
+ .. [2] `Page with original Fortran code of DOP853
487
+ <http://www.unige.ch/~hairer/software.html>`_.
488
+ """
489
+ n_stages = dop853_coefficients.N_STAGES
490
+ order = 8
491
+ error_estimator_order = 7
492
+ A = dop853_coefficients.A[:n_stages, :n_stages]
493
+ B = dop853_coefficients.B
494
+ C = dop853_coefficients.C[:n_stages]
495
+ E3 = dop853_coefficients.E3
496
+ E5 = dop853_coefficients.E5
497
+ D = dop853_coefficients.D
498
+
499
+ A_EXTRA = dop853_coefficients.A[n_stages + 1:]
500
+ C_EXTRA = dop853_coefficients.C[n_stages + 1:]
501
+
502
+ def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
503
+ rtol=1e-3, atol=1e-6, vectorized=False,
504
+ first_step=None, **extraneous):
505
+ super().__init__(fun, t0, y0, t_bound, max_step, rtol, atol,
506
+ vectorized, first_step, **extraneous)
507
+ self.K_extended = np.empty((dop853_coefficients.N_STAGES_EXTENDED,
508
+ self.n), dtype=self.y.dtype)
509
+ self.K = self.K_extended[:self.n_stages + 1]
510
+
511
+ def _estimate_error(self, K, h): # Left for testing purposes.
512
+ err5 = np.dot(K.T, self.E5)
513
+ err3 = np.dot(K.T, self.E3)
514
+ denom = np.hypot(np.abs(err5), 0.1 * np.abs(err3))
515
+ correction_factor = np.ones_like(err5)
516
+ mask = denom > 0
517
+ correction_factor[mask] = np.abs(err5[mask]) / denom[mask]
518
+ return h * err5 * correction_factor
519
+
520
+ def _estimate_error_norm(self, K, h, scale):
521
+ err5 = np.dot(K.T, self.E5) / scale
522
+ err3 = np.dot(K.T, self.E3) / scale
523
+ err5_norm_2 = np.linalg.norm(err5)**2
524
+ err3_norm_2 = np.linalg.norm(err3)**2
525
+ if err5_norm_2 == 0 and err3_norm_2 == 0:
526
+ return 0.0
527
+ denom = err5_norm_2 + 0.01 * err3_norm_2
528
+ return np.abs(h) * err5_norm_2 / np.sqrt(denom * len(scale))
529
+
530
+ def _dense_output_impl(self):
531
+ K = self.K_extended
532
+ h = self.h_previous
533
+ for s, (a, c) in enumerate(zip(self.A_EXTRA, self.C_EXTRA),
534
+ start=self.n_stages + 1):
535
+ dy = np.dot(K[:s].T, a[:s]) * h
536
+ K[s] = self.fun(self.t_old + c * h, self.y_old + dy)
537
+
538
+ F = np.empty((dop853_coefficients.INTERPOLATOR_POWER, self.n),
539
+ dtype=self.y_old.dtype)
540
+
541
+ f_old = K[0]
542
+ delta_y = self.y - self.y_old
543
+
544
+ F[0] = delta_y
545
+ F[1] = h * f_old - delta_y
546
+ F[2] = 2 * delta_y - h * (self.f + f_old)
547
+ F[3:] = h * np.dot(self.D, K)
548
+
549
+ return Dop853DenseOutput(self.t_old, self.t, self.y_old, F)
550
+
551
+
552
+ class RkDenseOutput(DenseOutput):
553
+ def __init__(self, t_old, t, y_old, Q):
554
+ super().__init__(t_old, t)
555
+ self.h = t - t_old
556
+ self.Q = Q
557
+ self.order = Q.shape[1] - 1
558
+ self.y_old = y_old
559
+
560
+ def _call_impl(self, t):
561
+ x = (t - self.t_old) / self.h
562
+ if t.ndim == 0:
563
+ p = np.tile(x, self.order + 1)
564
+ p = np.cumprod(p)
565
+ else:
566
+ p = np.tile(x, (self.order + 1, 1))
567
+ p = np.cumprod(p, axis=0)
568
+ y = self.h * np.dot(self.Q, p)
569
+ if y.ndim == 2:
570
+ y += self.y_old[:, None]
571
+ else:
572
+ y += self.y_old
573
+
574
+ return y
575
+
576
+
577
+ class Dop853DenseOutput(DenseOutput):
578
+ def __init__(self, t_old, t, y_old, F):
579
+ super().__init__(t_old, t)
580
+ self.h = t - t_old
581
+ self.F = F
582
+ self.y_old = y_old
583
+
584
+ def _call_impl(self, t):
585
+ x = (t - self.t_old) / self.h
586
+
587
+ if t.ndim == 0:
588
+ y = np.zeros_like(self.y_old)
589
+ else:
590
+ x = x[:, None]
591
+ y = np.zeros((len(x), len(self.y_old)), dtype=self.y_old.dtype)
592
+
593
+ for i, f in enumerate(reversed(self.F)):
594
+ y += f
595
+ if i % 2 == 0:
596
+ y *= x
597
+ else:
598
+ y *= 1 - x
599
+ y += self.y_old
600
+
601
+ return y.T
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (199 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_ivp.cpython-310.pyc ADDED
Binary file (29.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_rk.cpython-310.pyc ADDED
Binary file (1.92 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_ivp.py ADDED
@@ -0,0 +1,1135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import product
2
+ from numpy.testing import (assert_, assert_allclose, assert_array_less,
3
+ assert_equal, assert_no_warnings, suppress_warnings)
4
+ import pytest
5
+ from pytest import raises as assert_raises
6
+ import numpy as np
7
+ from scipy.optimize._numdiff import group_columns
8
+ from scipy.integrate import solve_ivp, RK23, RK45, DOP853, Radau, BDF, LSODA
9
+ from scipy.integrate import OdeSolution
10
+ from scipy.integrate._ivp.common import num_jac
11
+ from scipy.integrate._ivp.base import ConstantDenseOutput
12
+ from scipy.sparse import coo_matrix, csc_matrix
13
+
14
+
15
+ def fun_zero(t, y):
16
+ return np.zeros_like(y)
17
+
18
+
19
+ def fun_linear(t, y):
20
+ return np.array([-y[0] - 5 * y[1], y[0] + y[1]])
21
+
22
+
23
+ def jac_linear():
24
+ return np.array([[-1, -5], [1, 1]])
25
+
26
+
27
+ def sol_linear(t):
28
+ return np.vstack((-5 * np.sin(2 * t),
29
+ 2 * np.cos(2 * t) + np.sin(2 * t)))
30
+
31
+
32
+ def fun_rational(t, y):
33
+ return np.array([y[1] / t,
34
+ y[1] * (y[0] + 2 * y[1] - 1) / (t * (y[0] - 1))])
35
+
36
+
37
+ def fun_rational_vectorized(t, y):
38
+ return np.vstack((y[1] / t,
39
+ y[1] * (y[0] + 2 * y[1] - 1) / (t * (y[0] - 1))))
40
+
41
+
42
+ def jac_rational(t, y):
43
+ return np.array([
44
+ [0, 1 / t],
45
+ [-2 * y[1] ** 2 / (t * (y[0] - 1) ** 2),
46
+ (y[0] + 4 * y[1] - 1) / (t * (y[0] - 1))]
47
+ ])
48
+
49
+
50
+ def jac_rational_sparse(t, y):
51
+ return csc_matrix([
52
+ [0, 1 / t],
53
+ [-2 * y[1] ** 2 / (t * (y[0] - 1) ** 2),
54
+ (y[0] + 4 * y[1] - 1) / (t * (y[0] - 1))]
55
+ ])
56
+
57
+
58
+ def sol_rational(t):
59
+ return np.asarray((t / (t + 10), 10 * t / (t + 10) ** 2))
60
+
61
+
62
+ def fun_medazko(t, y):
63
+ n = y.shape[0] // 2
64
+ k = 100
65
+ c = 4
66
+
67
+ phi = 2 if t <= 5 else 0
68
+ y = np.hstack((phi, 0, y, y[-2]))
69
+
70
+ d = 1 / n
71
+ j = np.arange(n) + 1
72
+ alpha = 2 * (j * d - 1) ** 3 / c ** 2
73
+ beta = (j * d - 1) ** 4 / c ** 2
74
+
75
+ j_2_p1 = 2 * j + 2
76
+ j_2_m3 = 2 * j - 2
77
+ j_2_m1 = 2 * j
78
+ j_2 = 2 * j + 1
79
+
80
+ f = np.empty(2 * n)
81
+ f[::2] = (alpha * (y[j_2_p1] - y[j_2_m3]) / (2 * d) +
82
+ beta * (y[j_2_m3] - 2 * y[j_2_m1] + y[j_2_p1]) / d ** 2 -
83
+ k * y[j_2_m1] * y[j_2])
84
+ f[1::2] = -k * y[j_2] * y[j_2_m1]
85
+
86
+ return f
87
+
88
+
89
+ def medazko_sparsity(n):
90
+ cols = []
91
+ rows = []
92
+
93
+ i = np.arange(n) * 2
94
+
95
+ cols.append(i[1:])
96
+ rows.append(i[1:] - 2)
97
+
98
+ cols.append(i)
99
+ rows.append(i)
100
+
101
+ cols.append(i)
102
+ rows.append(i + 1)
103
+
104
+ cols.append(i[:-1])
105
+ rows.append(i[:-1] + 2)
106
+
107
+ i = np.arange(n) * 2 + 1
108
+
109
+ cols.append(i)
110
+ rows.append(i)
111
+
112
+ cols.append(i)
113
+ rows.append(i - 1)
114
+
115
+ cols = np.hstack(cols)
116
+ rows = np.hstack(rows)
117
+
118
+ return coo_matrix((np.ones_like(cols), (cols, rows)))
119
+
120
+
121
+ def fun_complex(t, y):
122
+ return -y
123
+
124
+
125
+ def jac_complex(t, y):
126
+ return -np.eye(y.shape[0])
127
+
128
+
129
+ def jac_complex_sparse(t, y):
130
+ return csc_matrix(jac_complex(t, y))
131
+
132
+
133
+ def sol_complex(t):
134
+ y = (0.5 + 1j) * np.exp(-t)
135
+ return y.reshape((1, -1))
136
+
137
+
138
+ def fun_event_dense_output_LSODA(t, y):
139
+ return y * (t - 2)
140
+
141
+
142
+ def jac_event_dense_output_LSODA(t, y):
143
+ return t - 2
144
+
145
+
146
+ def sol_event_dense_output_LSODA(t):
147
+ return np.exp(t ** 2 / 2 - 2 * t + np.log(0.05) - 6)
148
+
149
+
150
+ def compute_error(y, y_true, rtol, atol):
151
+ e = (y - y_true) / (atol + rtol * np.abs(y_true))
152
+ return np.linalg.norm(e, axis=0) / np.sqrt(e.shape[0])
153
+
154
+
155
+ def test_integration():
156
+ rtol = 1e-3
157
+ atol = 1e-6
158
+ y0 = [1/3, 2/9]
159
+
160
+ for vectorized, method, t_span, jac in product(
161
+ [False, True],
162
+ ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA'],
163
+ [[5, 9], [5, 1]],
164
+ [None, jac_rational, jac_rational_sparse]):
165
+
166
+ if vectorized:
167
+ fun = fun_rational_vectorized
168
+ else:
169
+ fun = fun_rational
170
+
171
+ with suppress_warnings() as sup:
172
+ sup.filter(UserWarning,
173
+ "The following arguments have no effect for a chosen "
174
+ "solver: `jac`")
175
+ res = solve_ivp(fun, t_span, y0, rtol=rtol,
176
+ atol=atol, method=method, dense_output=True,
177
+ jac=jac, vectorized=vectorized)
178
+ assert_equal(res.t[0], t_span[0])
179
+ assert_(res.t_events is None)
180
+ assert_(res.y_events is None)
181
+ assert_(res.success)
182
+ assert_equal(res.status, 0)
183
+
184
+ if method == 'DOP853':
185
+ # DOP853 spends more functions evaluation because it doesn't
186
+ # have enough time to develop big enough step size.
187
+ assert_(res.nfev < 50)
188
+ else:
189
+ assert_(res.nfev < 40)
190
+
191
+ if method in ['RK23', 'RK45', 'DOP853', 'LSODA']:
192
+ assert_equal(res.njev, 0)
193
+ assert_equal(res.nlu, 0)
194
+ else:
195
+ assert_(0 < res.njev < 3)
196
+ assert_(0 < res.nlu < 10)
197
+
198
+ y_true = sol_rational(res.t)
199
+ e = compute_error(res.y, y_true, rtol, atol)
200
+ assert_(np.all(e < 5))
201
+
202
+ tc = np.linspace(*t_span)
203
+ yc_true = sol_rational(tc)
204
+ yc = res.sol(tc)
205
+
206
+ e = compute_error(yc, yc_true, rtol, atol)
207
+ assert_(np.all(e < 5))
208
+
209
+ tc = (t_span[0] + t_span[-1]) / 2
210
+ yc_true = sol_rational(tc)
211
+ yc = res.sol(tc)
212
+
213
+ e = compute_error(yc, yc_true, rtol, atol)
214
+ assert_(np.all(e < 5))
215
+
216
+ assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
217
+
218
+
219
+ def test_integration_complex():
220
+ rtol = 1e-3
221
+ atol = 1e-6
222
+ y0 = [0.5 + 1j]
223
+ t_span = [0, 1]
224
+ tc = np.linspace(t_span[0], t_span[1])
225
+ for method, jac in product(['RK23', 'RK45', 'DOP853', 'BDF'],
226
+ [None, jac_complex, jac_complex_sparse]):
227
+ with suppress_warnings() as sup:
228
+ sup.filter(UserWarning,
229
+ "The following arguments have no effect for a chosen "
230
+ "solver: `jac`")
231
+ res = solve_ivp(fun_complex, t_span, y0, method=method,
232
+ dense_output=True, rtol=rtol, atol=atol, jac=jac)
233
+
234
+ assert_equal(res.t[0], t_span[0])
235
+ assert_(res.t_events is None)
236
+ assert_(res.y_events is None)
237
+ assert_(res.success)
238
+ assert_equal(res.status, 0)
239
+
240
+ if method == 'DOP853':
241
+ assert res.nfev < 35
242
+ else:
243
+ assert res.nfev < 25
244
+
245
+ if method == 'BDF':
246
+ assert_equal(res.njev, 1)
247
+ assert res.nlu < 6
248
+ else:
249
+ assert res.njev == 0
250
+ assert res.nlu == 0
251
+
252
+ y_true = sol_complex(res.t)
253
+ e = compute_error(res.y, y_true, rtol, atol)
254
+ assert np.all(e < 5)
255
+
256
+ yc_true = sol_complex(tc)
257
+ yc = res.sol(tc)
258
+ e = compute_error(yc, yc_true, rtol, atol)
259
+
260
+ assert np.all(e < 5)
261
+
262
+
263
+ def test_integration_sparse_difference():
264
+ n = 200
265
+ t_span = [0, 20]
266
+ y0 = np.zeros(2 * n)
267
+ y0[1::2] = 1
268
+ sparsity = medazko_sparsity(n)
269
+
270
+ for method in ['BDF', 'Radau']:
271
+ res = solve_ivp(fun_medazko, t_span, y0, method=method,
272
+ jac_sparsity=sparsity)
273
+
274
+ assert_equal(res.t[0], t_span[0])
275
+ assert_(res.t_events is None)
276
+ assert_(res.y_events is None)
277
+ assert_(res.success)
278
+ assert_equal(res.status, 0)
279
+
280
+ assert_allclose(res.y[78, -1], 0.233994e-3, rtol=1e-2)
281
+ assert_allclose(res.y[79, -1], 0, atol=1e-3)
282
+ assert_allclose(res.y[148, -1], 0.359561e-3, rtol=1e-2)
283
+ assert_allclose(res.y[149, -1], 0, atol=1e-3)
284
+ assert_allclose(res.y[198, -1], 0.117374129e-3, rtol=1e-2)
285
+ assert_allclose(res.y[199, -1], 0.6190807e-5, atol=1e-3)
286
+ assert_allclose(res.y[238, -1], 0, atol=1e-3)
287
+ assert_allclose(res.y[239, -1], 0.9999997, rtol=1e-2)
288
+
289
+
290
+ def test_integration_const_jac():
291
+ rtol = 1e-3
292
+ atol = 1e-6
293
+ y0 = [0, 2]
294
+ t_span = [0, 2]
295
+ J = jac_linear()
296
+ J_sparse = csc_matrix(J)
297
+
298
+ for method, jac in product(['Radau', 'BDF'], [J, J_sparse]):
299
+ res = solve_ivp(fun_linear, t_span, y0, rtol=rtol, atol=atol,
300
+ method=method, dense_output=True, jac=jac)
301
+ assert_equal(res.t[0], t_span[0])
302
+ assert_(res.t_events is None)
303
+ assert_(res.y_events is None)
304
+ assert_(res.success)
305
+ assert_equal(res.status, 0)
306
+
307
+ assert_(res.nfev < 100)
308
+ assert_equal(res.njev, 0)
309
+ assert_(0 < res.nlu < 15)
310
+
311
+ y_true = sol_linear(res.t)
312
+ e = compute_error(res.y, y_true, rtol, atol)
313
+ assert_(np.all(e < 10))
314
+
315
+ tc = np.linspace(*t_span)
316
+ yc_true = sol_linear(tc)
317
+ yc = res.sol(tc)
318
+
319
+ e = compute_error(yc, yc_true, rtol, atol)
320
+ assert_(np.all(e < 15))
321
+
322
+ assert_allclose(res.sol(res.t), res.y, rtol=1e-14, atol=1e-14)
323
+
324
+
325
+ @pytest.mark.slow
326
+ @pytest.mark.parametrize('method', ['Radau', 'BDF', 'LSODA'])
327
+ def test_integration_stiff(method):
328
+ rtol = 1e-6
329
+ atol = 1e-6
330
+ y0 = [1e4, 0, 0]
331
+ tspan = [0, 1e8]
332
+
333
+ def fun_robertson(t, state):
334
+ x, y, z = state
335
+ return [
336
+ -0.04 * x + 1e4 * y * z,
337
+ 0.04 * x - 1e4 * y * z - 3e7 * y * y,
338
+ 3e7 * y * y,
339
+ ]
340
+
341
+ res = solve_ivp(fun_robertson, tspan, y0, rtol=rtol,
342
+ atol=atol, method=method)
343
+
344
+ # If the stiff mode is not activated correctly, these numbers will be much bigger
345
+ assert res.nfev < 5000
346
+ assert res.njev < 200
347
+
348
+
349
+ def test_events():
350
+ def event_rational_1(t, y):
351
+ return y[0] - y[1] ** 0.7
352
+
353
+ def event_rational_2(t, y):
354
+ return y[1] ** 0.6 - y[0]
355
+
356
+ def event_rational_3(t, y):
357
+ return t - 7.4
358
+
359
+ event_rational_3.terminal = True
360
+
361
+ for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
362
+ res = solve_ivp(fun_rational, [5, 8], [1/3, 2/9], method=method,
363
+ events=(event_rational_1, event_rational_2))
364
+ assert_equal(res.status, 0)
365
+ assert_equal(res.t_events[0].size, 1)
366
+ assert_equal(res.t_events[1].size, 1)
367
+ assert_(5.3 < res.t_events[0][0] < 5.7)
368
+ assert_(7.3 < res.t_events[1][0] < 7.7)
369
+
370
+ assert_equal(res.y_events[0].shape, (1, 2))
371
+ assert_equal(res.y_events[1].shape, (1, 2))
372
+ assert np.isclose(
373
+ event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
374
+ assert np.isclose(
375
+ event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
376
+
377
+ event_rational_1.direction = 1
378
+ event_rational_2.direction = 1
379
+ res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
380
+ events=(event_rational_1, event_rational_2))
381
+ assert_equal(res.status, 0)
382
+ assert_equal(res.t_events[0].size, 1)
383
+ assert_equal(res.t_events[1].size, 0)
384
+ assert_(5.3 < res.t_events[0][0] < 5.7)
385
+ assert_equal(res.y_events[0].shape, (1, 2))
386
+ assert_equal(res.y_events[1].shape, (0,))
387
+ assert np.isclose(
388
+ event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
389
+
390
+ event_rational_1.direction = -1
391
+ event_rational_2.direction = -1
392
+ res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
393
+ events=(event_rational_1, event_rational_2))
394
+ assert_equal(res.status, 0)
395
+ assert_equal(res.t_events[0].size, 0)
396
+ assert_equal(res.t_events[1].size, 1)
397
+ assert_(7.3 < res.t_events[1][0] < 7.7)
398
+ assert_equal(res.y_events[0].shape, (0,))
399
+ assert_equal(res.y_events[1].shape, (1, 2))
400
+ assert np.isclose(
401
+ event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
402
+
403
+ event_rational_1.direction = 0
404
+ event_rational_2.direction = 0
405
+
406
+ res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
407
+ events=(event_rational_1, event_rational_2,
408
+ event_rational_3), dense_output=True)
409
+ assert_equal(res.status, 1)
410
+ assert_equal(res.t_events[0].size, 1)
411
+ assert_equal(res.t_events[1].size, 0)
412
+ assert_equal(res.t_events[2].size, 1)
413
+ assert_(5.3 < res.t_events[0][0] < 5.7)
414
+ assert_(7.3 < res.t_events[2][0] < 7.5)
415
+ assert_equal(res.y_events[0].shape, (1, 2))
416
+ assert_equal(res.y_events[1].shape, (0,))
417
+ assert_equal(res.y_events[2].shape, (1, 2))
418
+ assert np.isclose(
419
+ event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
420
+ assert np.isclose(
421
+ event_rational_3(res.t_events[2][0], res.y_events[2][0]), 0)
422
+
423
+ res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
424
+ events=event_rational_1, dense_output=True)
425
+ assert_equal(res.status, 0)
426
+ assert_equal(res.t_events[0].size, 1)
427
+ assert_(5.3 < res.t_events[0][0] < 5.7)
428
+
429
+ assert_equal(res.y_events[0].shape, (1, 2))
430
+ assert np.isclose(
431
+ event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
432
+
433
+ # Also test that termination by event doesn't break interpolants.
434
+ tc = np.linspace(res.t[0], res.t[-1])
435
+ yc_true = sol_rational(tc)
436
+ yc = res.sol(tc)
437
+ e = compute_error(yc, yc_true, 1e-3, 1e-6)
438
+ assert_(np.all(e < 5))
439
+
440
+ # Test that the y_event matches solution
441
+ assert np.allclose(sol_rational(res.t_events[0][0]), res.y_events[0][0],
442
+ rtol=1e-3, atol=1e-6)
443
+
444
+ # Test in backward direction.
445
+ event_rational_1.direction = 0
446
+ event_rational_2.direction = 0
447
+ for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
448
+ res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
449
+ events=(event_rational_1, event_rational_2))
450
+ assert_equal(res.status, 0)
451
+ assert_equal(res.t_events[0].size, 1)
452
+ assert_equal(res.t_events[1].size, 1)
453
+ assert_(5.3 < res.t_events[0][0] < 5.7)
454
+ assert_(7.3 < res.t_events[1][0] < 7.7)
455
+
456
+ assert_equal(res.y_events[0].shape, (1, 2))
457
+ assert_equal(res.y_events[1].shape, (1, 2))
458
+ assert np.isclose(
459
+ event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
460
+ assert np.isclose(
461
+ event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
462
+
463
+ event_rational_1.direction = -1
464
+ event_rational_2.direction = -1
465
+ res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
466
+ events=(event_rational_1, event_rational_2))
467
+ assert_equal(res.status, 0)
468
+ assert_equal(res.t_events[0].size, 1)
469
+ assert_equal(res.t_events[1].size, 0)
470
+ assert_(5.3 < res.t_events[0][0] < 5.7)
471
+
472
+ assert_equal(res.y_events[0].shape, (1, 2))
473
+ assert_equal(res.y_events[1].shape, (0,))
474
+ assert np.isclose(
475
+ event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
476
+
477
+ event_rational_1.direction = 1
478
+ event_rational_2.direction = 1
479
+ res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
480
+ events=(event_rational_1, event_rational_2))
481
+ assert_equal(res.status, 0)
482
+ assert_equal(res.t_events[0].size, 0)
483
+ assert_equal(res.t_events[1].size, 1)
484
+ assert_(7.3 < res.t_events[1][0] < 7.7)
485
+
486
+ assert_equal(res.y_events[0].shape, (0,))
487
+ assert_equal(res.y_events[1].shape, (1, 2))
488
+ assert np.isclose(
489
+ event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
490
+
491
+ event_rational_1.direction = 0
492
+ event_rational_2.direction = 0
493
+
494
+ res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
495
+ events=(event_rational_1, event_rational_2,
496
+ event_rational_3), dense_output=True)
497
+ assert_equal(res.status, 1)
498
+ assert_equal(res.t_events[0].size, 0)
499
+ assert_equal(res.t_events[1].size, 1)
500
+ assert_equal(res.t_events[2].size, 1)
501
+ assert_(7.3 < res.t_events[1][0] < 7.7)
502
+ assert_(7.3 < res.t_events[2][0] < 7.5)
503
+
504
+ assert_equal(res.y_events[0].shape, (0,))
505
+ assert_equal(res.y_events[1].shape, (1, 2))
506
+ assert_equal(res.y_events[2].shape, (1, 2))
507
+ assert np.isclose(
508
+ event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
509
+ assert np.isclose(
510
+ event_rational_3(res.t_events[2][0], res.y_events[2][0]), 0)
511
+
512
+ # Also test that termination by event doesn't break interpolants.
513
+ tc = np.linspace(res.t[-1], res.t[0])
514
+ yc_true = sol_rational(tc)
515
+ yc = res.sol(tc)
516
+ e = compute_error(yc, yc_true, 1e-3, 1e-6)
517
+ assert_(np.all(e < 5))
518
+
519
+ assert np.allclose(sol_rational(res.t_events[1][0]), res.y_events[1][0],
520
+ rtol=1e-3, atol=1e-6)
521
+ assert np.allclose(sol_rational(res.t_events[2][0]), res.y_events[2][0],
522
+ rtol=1e-3, atol=1e-6)
523
+
524
+
525
+ def _get_harmonic_oscillator():
526
+ def f(t, y):
527
+ return [y[1], -y[0]]
528
+
529
+ def event(t, y):
530
+ return y[0]
531
+
532
+ return f, event
533
+
534
+
535
+ @pytest.mark.parametrize('n_events', [3, 4])
536
+ def test_event_terminal_integer(n_events):
537
+ f, event = _get_harmonic_oscillator()
538
+ event.terminal = n_events
539
+ res = solve_ivp(f, (0, 100), [1, 0], events=event)
540
+ assert len(res.t_events[0]) == n_events
541
+ assert len(res.y_events[0]) == n_events
542
+ assert_allclose(res.y_events[0][:, 0], 0, atol=1e-14)
543
+
544
+
545
+ def test_event_terminal_iv():
546
+ f, event = _get_harmonic_oscillator()
547
+ args = (f, (0, 100), [1, 0])
548
+
549
+ event.terminal = None
550
+ res = solve_ivp(*args, events=event)
551
+ event.terminal = 0
552
+ ref = solve_ivp(*args, events=event)
553
+ assert_allclose(res.t_events, ref.t_events)
554
+
555
+ message = "The `terminal` attribute..."
556
+ event.terminal = -1
557
+ with pytest.raises(ValueError, match=message):
558
+ solve_ivp(*args, events=event)
559
+ event.terminal = 3.5
560
+ with pytest.raises(ValueError, match=message):
561
+ solve_ivp(*args, events=event)
562
+
563
+
564
+ def test_max_step():
565
+ rtol = 1e-3
566
+ atol = 1e-6
567
+ y0 = [1/3, 2/9]
568
+ for method in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
569
+ for t_span in ([5, 9], [5, 1]):
570
+ res = solve_ivp(fun_rational, t_span, y0, rtol=rtol,
571
+ max_step=0.5, atol=atol, method=method,
572
+ dense_output=True)
573
+ assert_equal(res.t[0], t_span[0])
574
+ assert_equal(res.t[-1], t_span[-1])
575
+ assert_(np.all(np.abs(np.diff(res.t)) <= 0.5 + 1e-15))
576
+ assert_(res.t_events is None)
577
+ assert_(res.success)
578
+ assert_equal(res.status, 0)
579
+
580
+ y_true = sol_rational(res.t)
581
+ e = compute_error(res.y, y_true, rtol, atol)
582
+ assert_(np.all(e < 5))
583
+
584
+ tc = np.linspace(*t_span)
585
+ yc_true = sol_rational(tc)
586
+ yc = res.sol(tc)
587
+
588
+ e = compute_error(yc, yc_true, rtol, atol)
589
+ assert_(np.all(e < 5))
590
+
591
+ assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
592
+
593
+ assert_raises(ValueError, method, fun_rational, t_span[0], y0,
594
+ t_span[1], max_step=-1)
595
+
596
+ if method is not LSODA:
597
+ solver = method(fun_rational, t_span[0], y0, t_span[1],
598
+ rtol=rtol, atol=atol, max_step=1e-20)
599
+ message = solver.step()
600
+
601
+ assert_equal(solver.status, 'failed')
602
+ assert_("step size is less" in message)
603
+ assert_raises(RuntimeError, solver.step)
604
+
605
+
606
+ def test_first_step():
607
+ rtol = 1e-3
608
+ atol = 1e-6
609
+ y0 = [1/3, 2/9]
610
+ first_step = 0.1
611
+ for method in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
612
+ for t_span in ([5, 9], [5, 1]):
613
+ res = solve_ivp(fun_rational, t_span, y0, rtol=rtol,
614
+ max_step=0.5, atol=atol, method=method,
615
+ dense_output=True, first_step=first_step)
616
+
617
+ assert_equal(res.t[0], t_span[0])
618
+ assert_equal(res.t[-1], t_span[-1])
619
+ assert_allclose(first_step, np.abs(res.t[1] - 5))
620
+ assert_(res.t_events is None)
621
+ assert_(res.success)
622
+ assert_equal(res.status, 0)
623
+
624
+ y_true = sol_rational(res.t)
625
+ e = compute_error(res.y, y_true, rtol, atol)
626
+ assert_(np.all(e < 5))
627
+
628
+ tc = np.linspace(*t_span)
629
+ yc_true = sol_rational(tc)
630
+ yc = res.sol(tc)
631
+
632
+ e = compute_error(yc, yc_true, rtol, atol)
633
+ assert_(np.all(e < 5))
634
+
635
+ assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
636
+
637
+ assert_raises(ValueError, method, fun_rational, t_span[0], y0,
638
+ t_span[1], first_step=-1)
639
+ assert_raises(ValueError, method, fun_rational, t_span[0], y0,
640
+ t_span[1], first_step=5)
641
+
642
+
643
+ def test_t_eval():
644
+ rtol = 1e-3
645
+ atol = 1e-6
646
+ y0 = [1/3, 2/9]
647
+ for t_span in ([5, 9], [5, 1]):
648
+ t_eval = np.linspace(t_span[0], t_span[1], 10)
649
+ res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
650
+ t_eval=t_eval)
651
+ assert_equal(res.t, t_eval)
652
+ assert_(res.t_events is None)
653
+ assert_(res.success)
654
+ assert_equal(res.status, 0)
655
+
656
+ y_true = sol_rational(res.t)
657
+ e = compute_error(res.y, y_true, rtol, atol)
658
+ assert_(np.all(e < 5))
659
+
660
+ t_eval = [5, 5.01, 7, 8, 8.01, 9]
661
+ res = solve_ivp(fun_rational, [5, 9], y0, rtol=rtol, atol=atol,
662
+ t_eval=t_eval)
663
+ assert_equal(res.t, t_eval)
664
+ assert_(res.t_events is None)
665
+ assert_(res.success)
666
+ assert_equal(res.status, 0)
667
+
668
+ y_true = sol_rational(res.t)
669
+ e = compute_error(res.y, y_true, rtol, atol)
670
+ assert_(np.all(e < 5))
671
+
672
+ t_eval = [5, 4.99, 3, 1.5, 1.1, 1.01, 1]
673
+ res = solve_ivp(fun_rational, [5, 1], y0, rtol=rtol, atol=atol,
674
+ t_eval=t_eval)
675
+ assert_equal(res.t, t_eval)
676
+ assert_(res.t_events is None)
677
+ assert_(res.success)
678
+ assert_equal(res.status, 0)
679
+
680
+ t_eval = [5.01, 7, 8, 8.01]
681
+ res = solve_ivp(fun_rational, [5, 9], y0, rtol=rtol, atol=atol,
682
+ t_eval=t_eval)
683
+ assert_equal(res.t, t_eval)
684
+ assert_(res.t_events is None)
685
+ assert_(res.success)
686
+ assert_equal(res.status, 0)
687
+
688
+ y_true = sol_rational(res.t)
689
+ e = compute_error(res.y, y_true, rtol, atol)
690
+ assert_(np.all(e < 5))
691
+
692
+ t_eval = [4.99, 3, 1.5, 1.1, 1.01]
693
+ res = solve_ivp(fun_rational, [5, 1], y0, rtol=rtol, atol=atol,
694
+ t_eval=t_eval)
695
+ assert_equal(res.t, t_eval)
696
+ assert_(res.t_events is None)
697
+ assert_(res.success)
698
+ assert_equal(res.status, 0)
699
+
700
+ t_eval = [4, 6]
701
+ assert_raises(ValueError, solve_ivp, fun_rational, [5, 9], y0,
702
+ rtol=rtol, atol=atol, t_eval=t_eval)
703
+
704
+
705
+ def test_t_eval_dense_output():
706
+ rtol = 1e-3
707
+ atol = 1e-6
708
+ y0 = [1/3, 2/9]
709
+ t_span = [5, 9]
710
+ t_eval = np.linspace(t_span[0], t_span[1], 10)
711
+ res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
712
+ t_eval=t_eval)
713
+ res_d = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
714
+ t_eval=t_eval, dense_output=True)
715
+ assert_equal(res.t, t_eval)
716
+ assert_(res.t_events is None)
717
+ assert_(res.success)
718
+ assert_equal(res.status, 0)
719
+
720
+ assert_equal(res.t, res_d.t)
721
+ assert_equal(res.y, res_d.y)
722
+ assert_(res_d.t_events is None)
723
+ assert_(res_d.success)
724
+ assert_equal(res_d.status, 0)
725
+
726
+ # if t and y are equal only test values for one case
727
+ y_true = sol_rational(res.t)
728
+ e = compute_error(res.y, y_true, rtol, atol)
729
+ assert_(np.all(e < 5))
730
+
731
+
732
+ def test_t_eval_early_event():
733
+ def early_event(t, y):
734
+ return t - 7
735
+
736
+ early_event.terminal = True
737
+
738
+ rtol = 1e-3
739
+ atol = 1e-6
740
+ y0 = [1/3, 2/9]
741
+ t_span = [5, 9]
742
+ t_eval = np.linspace(7.5, 9, 16)
743
+ for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
744
+ with suppress_warnings() as sup:
745
+ sup.filter(UserWarning,
746
+ "The following arguments have no effect for a chosen "
747
+ "solver: `jac`")
748
+ res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
749
+ method=method, t_eval=t_eval, events=early_event,
750
+ jac=jac_rational)
751
+ assert res.success
752
+ assert res.message == 'A termination event occurred.'
753
+ assert res.status == 1
754
+ assert not res.t and not res.y
755
+ assert len(res.t_events) == 1
756
+ assert res.t_events[0].size == 1
757
+ assert res.t_events[0][0] == 7
758
+
759
+
760
+ def test_event_dense_output_LSODA():
761
+ def event_lsoda(t, y):
762
+ return y[0] - 2.02e-5
763
+
764
+ rtol = 1e-3
765
+ atol = 1e-6
766
+ y0 = [0.05]
767
+ t_span = [-2, 2]
768
+ first_step = 1e-3
769
+ res = solve_ivp(
770
+ fun_event_dense_output_LSODA,
771
+ t_span,
772
+ y0,
773
+ method="LSODA",
774
+ dense_output=True,
775
+ events=event_lsoda,
776
+ first_step=first_step,
777
+ max_step=1,
778
+ rtol=rtol,
779
+ atol=atol,
780
+ jac=jac_event_dense_output_LSODA,
781
+ )
782
+
783
+ assert_equal(res.t[0], t_span[0])
784
+ assert_equal(res.t[-1], t_span[-1])
785
+ assert_allclose(first_step, np.abs(res.t[1] - t_span[0]))
786
+ assert res.success
787
+ assert_equal(res.status, 0)
788
+
789
+ y_true = sol_event_dense_output_LSODA(res.t)
790
+ e = compute_error(res.y, y_true, rtol, atol)
791
+ assert_array_less(e, 5)
792
+
793
+ tc = np.linspace(*t_span)
794
+ yc_true = sol_event_dense_output_LSODA(tc)
795
+ yc = res.sol(tc)
796
+ e = compute_error(yc, yc_true, rtol, atol)
797
+ assert_array_less(e, 5)
798
+
799
+ assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
800
+
801
+
802
+ def test_no_integration():
803
+ for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
804
+ sol = solve_ivp(lambda t, y: -y, [4, 4], [2, 3],
805
+ method=method, dense_output=True)
806
+ assert_equal(sol.sol(4), [2, 3])
807
+ assert_equal(sol.sol([4, 5, 6]), [[2, 2, 2], [3, 3, 3]])
808
+
809
+
810
+ def test_no_integration_class():
811
+ for method in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
812
+ solver = method(lambda t, y: -y, 0.0, [10.0, 0.0], 0.0)
813
+ solver.step()
814
+ assert_equal(solver.status, 'finished')
815
+ sol = solver.dense_output()
816
+ assert_equal(sol(0.0), [10.0, 0.0])
817
+ assert_equal(sol([0, 1, 2]), [[10, 10, 10], [0, 0, 0]])
818
+
819
+ solver = method(lambda t, y: -y, 0.0, [], np.inf)
820
+ solver.step()
821
+ assert_equal(solver.status, 'finished')
822
+ sol = solver.dense_output()
823
+ assert_equal(sol(100.0), [])
824
+ assert_equal(sol([0, 1, 2]), np.empty((0, 3)))
825
+
826
+
827
+ def test_empty():
828
+ def fun(t, y):
829
+ return np.zeros((0,))
830
+
831
+ y0 = np.zeros((0,))
832
+
833
+ for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
834
+ sol = assert_no_warnings(solve_ivp, fun, [0, 10], y0,
835
+ method=method, dense_output=True)
836
+ assert_equal(sol.sol(10), np.zeros((0,)))
837
+ assert_equal(sol.sol([1, 2, 3]), np.zeros((0, 3)))
838
+
839
+ for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
840
+ sol = assert_no_warnings(solve_ivp, fun, [0, np.inf], y0,
841
+ method=method, dense_output=True)
842
+ assert_equal(sol.sol(10), np.zeros((0,)))
843
+ assert_equal(sol.sol([1, 2, 3]), np.zeros((0, 3)))
844
+
845
+
846
+ def test_ConstantDenseOutput():
847
+ sol = ConstantDenseOutput(0, 1, np.array([1, 2]))
848
+ assert_allclose(sol(1.5), [1, 2])
849
+ assert_allclose(sol([1, 1.5, 2]), [[1, 1, 1], [2, 2, 2]])
850
+
851
+ sol = ConstantDenseOutput(0, 1, np.array([]))
852
+ assert_allclose(sol(1.5), np.empty(0))
853
+ assert_allclose(sol([1, 1.5, 2]), np.empty((0, 3)))
854
+
855
+
856
+ def test_classes():
857
+ y0 = [1 / 3, 2 / 9]
858
+ for cls in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
859
+ solver = cls(fun_rational, 5, y0, np.inf)
860
+ assert_equal(solver.n, 2)
861
+ assert_equal(solver.status, 'running')
862
+ assert_equal(solver.t_bound, np.inf)
863
+ assert_equal(solver.direction, 1)
864
+ assert_equal(solver.t, 5)
865
+ assert_equal(solver.y, y0)
866
+ assert_(solver.step_size is None)
867
+ if cls is not LSODA:
868
+ assert_(solver.nfev > 0)
869
+ assert_(solver.njev >= 0)
870
+ assert_equal(solver.nlu, 0)
871
+ else:
872
+ assert_equal(solver.nfev, 0)
873
+ assert_equal(solver.njev, 0)
874
+ assert_equal(solver.nlu, 0)
875
+
876
+ assert_raises(RuntimeError, solver.dense_output)
877
+
878
+ message = solver.step()
879
+ assert_equal(solver.status, 'running')
880
+ assert_equal(message, None)
881
+ assert_equal(solver.n, 2)
882
+ assert_equal(solver.t_bound, np.inf)
883
+ assert_equal(solver.direction, 1)
884
+ assert_(solver.t > 5)
885
+ assert_(not np.all(np.equal(solver.y, y0)))
886
+ assert_(solver.step_size > 0)
887
+ assert_(solver.nfev > 0)
888
+ assert_(solver.njev >= 0)
889
+ assert_(solver.nlu >= 0)
890
+ sol = solver.dense_output()
891
+ assert_allclose(sol(5), y0, rtol=1e-15, atol=0)
892
+
893
+
894
+ def test_OdeSolution():
895
+ ts = np.array([0, 2, 5], dtype=float)
896
+ s1 = ConstantDenseOutput(ts[0], ts[1], np.array([-1]))
897
+ s2 = ConstantDenseOutput(ts[1], ts[2], np.array([1]))
898
+
899
+ sol = OdeSolution(ts, [s1, s2])
900
+
901
+ assert_equal(sol(-1), [-1])
902
+ assert_equal(sol(1), [-1])
903
+ assert_equal(sol(2), [-1])
904
+ assert_equal(sol(3), [1])
905
+ assert_equal(sol(5), [1])
906
+ assert_equal(sol(6), [1])
907
+
908
+ assert_equal(sol([0, 6, -2, 1.5, 4.5, 2.5, 5, 5.5, 2]),
909
+ np.array([[-1, 1, -1, -1, 1, 1, 1, 1, -1]]))
910
+
911
+ ts = np.array([10, 4, -3])
912
+ s1 = ConstantDenseOutput(ts[0], ts[1], np.array([-1]))
913
+ s2 = ConstantDenseOutput(ts[1], ts[2], np.array([1]))
914
+
915
+ sol = OdeSolution(ts, [s1, s2])
916
+ assert_equal(sol(11), [-1])
917
+ assert_equal(sol(10), [-1])
918
+ assert_equal(sol(5), [-1])
919
+ assert_equal(sol(4), [-1])
920
+ assert_equal(sol(0), [1])
921
+ assert_equal(sol(-3), [1])
922
+ assert_equal(sol(-4), [1])
923
+
924
+ assert_equal(sol([12, -5, 10, -3, 6, 1, 4]),
925
+ np.array([[-1, 1, -1, 1, -1, 1, -1]]))
926
+
927
+ ts = np.array([1, 1])
928
+ s = ConstantDenseOutput(1, 1, np.array([10]))
929
+ sol = OdeSolution(ts, [s])
930
+ assert_equal(sol(0), [10])
931
+ assert_equal(sol(1), [10])
932
+ assert_equal(sol(2), [10])
933
+
934
+ assert_equal(sol([2, 1, 0]), np.array([[10, 10, 10]]))
935
+
936
+
937
+ def test_num_jac():
938
+ def fun(t, y):
939
+ return np.vstack([
940
+ -0.04 * y[0] + 1e4 * y[1] * y[2],
941
+ 0.04 * y[0] - 1e4 * y[1] * y[2] - 3e7 * y[1] ** 2,
942
+ 3e7 * y[1] ** 2
943
+ ])
944
+
945
+ def jac(t, y):
946
+ return np.array([
947
+ [-0.04, 1e4 * y[2], 1e4 * y[1]],
948
+ [0.04, -1e4 * y[2] - 6e7 * y[1], -1e4 * y[1]],
949
+ [0, 6e7 * y[1], 0]
950
+ ])
951
+
952
+ t = 1
953
+ y = np.array([1, 0, 0])
954
+ J_true = jac(t, y)
955
+ threshold = 1e-5
956
+ f = fun(t, y).ravel()
957
+
958
+ J_num, factor = num_jac(fun, t, y, f, threshold, None)
959
+ assert_allclose(J_num, J_true, rtol=1e-5, atol=1e-5)
960
+
961
+ J_num, factor = num_jac(fun, t, y, f, threshold, factor)
962
+ assert_allclose(J_num, J_true, rtol=1e-5, atol=1e-5)
963
+
964
+
965
+ def test_num_jac_sparse():
966
+ def fun(t, y):
967
+ e = y[1:]**3 - y[:-1]**2
968
+ z = np.zeros(y.shape[1])
969
+ return np.vstack((z, 3 * e)) + np.vstack((2 * e, z))
970
+
971
+ def structure(n):
972
+ A = np.zeros((n, n), dtype=int)
973
+ A[0, 0] = 1
974
+ A[0, 1] = 1
975
+ for i in range(1, n - 1):
976
+ A[i, i - 1: i + 2] = 1
977
+ A[-1, -1] = 1
978
+ A[-1, -2] = 1
979
+
980
+ return A
981
+
982
+ np.random.seed(0)
983
+ n = 20
984
+ y = np.random.randn(n)
985
+ A = structure(n)
986
+ groups = group_columns(A)
987
+
988
+ f = fun(0, y[:, None]).ravel()
989
+
990
+ # Compare dense and sparse results, assuming that dense implementation
991
+ # is correct (as it is straightforward).
992
+ J_num_sparse, factor_sparse = num_jac(fun, 0, y.ravel(), f, 1e-8, None,
993
+ sparsity=(A, groups))
994
+ J_num_dense, factor_dense = num_jac(fun, 0, y.ravel(), f, 1e-8, None)
995
+ assert_allclose(J_num_dense, J_num_sparse.toarray(),
996
+ rtol=1e-12, atol=1e-14)
997
+ assert_allclose(factor_dense, factor_sparse, rtol=1e-12, atol=1e-14)
998
+
999
+ # Take small factors to trigger their recomputing inside.
1000
+ factor = np.random.uniform(0, 1e-12, size=n)
1001
+ J_num_sparse, factor_sparse = num_jac(fun, 0, y.ravel(), f, 1e-8, factor,
1002
+ sparsity=(A, groups))
1003
+ J_num_dense, factor_dense = num_jac(fun, 0, y.ravel(), f, 1e-8, factor)
1004
+
1005
+ assert_allclose(J_num_dense, J_num_sparse.toarray(),
1006
+ rtol=1e-12, atol=1e-14)
1007
+ assert_allclose(factor_dense, factor_sparse, rtol=1e-12, atol=1e-14)
1008
+
1009
+
1010
+ def test_args():
1011
+
1012
+ # sys3 is actually two decoupled systems. (x, y) form a
1013
+ # linear oscillator, while z is a nonlinear first order
1014
+ # system with equilibria at z=0 and z=1. If k > 0, z=1
1015
+ # is stable and z=0 is unstable.
1016
+
1017
+ def sys3(t, w, omega, k, zfinal):
1018
+ x, y, z = w
1019
+ return [-omega*y, omega*x, k*z*(1 - z)]
1020
+
1021
+ def sys3_jac(t, w, omega, k, zfinal):
1022
+ x, y, z = w
1023
+ J = np.array([[0, -omega, 0],
1024
+ [omega, 0, 0],
1025
+ [0, 0, k*(1 - 2*z)]])
1026
+ return J
1027
+
1028
+ def sys3_x0decreasing(t, w, omega, k, zfinal):
1029
+ x, y, z = w
1030
+ return x
1031
+
1032
+ def sys3_y0increasing(t, w, omega, k, zfinal):
1033
+ x, y, z = w
1034
+ return y
1035
+
1036
+ def sys3_zfinal(t, w, omega, k, zfinal):
1037
+ x, y, z = w
1038
+ return z - zfinal
1039
+
1040
+ # Set the event flags for the event functions.
1041
+ sys3_x0decreasing.direction = -1
1042
+ sys3_y0increasing.direction = 1
1043
+ sys3_zfinal.terminal = True
1044
+
1045
+ omega = 2
1046
+ k = 4
1047
+
1048
+ tfinal = 5
1049
+ zfinal = 0.99
1050
+ # Find z0 such that when z(0) = z0, z(tfinal) = zfinal.
1051
+ # The condition z(tfinal) = zfinal is the terminal event.
1052
+ z0 = np.exp(-k*tfinal)/((1 - zfinal)/zfinal + np.exp(-k*tfinal))
1053
+
1054
+ w0 = [0, -1, z0]
1055
+
1056
+ # Provide the jac argument and use the Radau method to ensure that the use
1057
+ # of the Jacobian function is exercised.
1058
+ # If event handling is working, the solution will stop at tfinal, not tend.
1059
+ tend = 2*tfinal
1060
+ sol = solve_ivp(sys3, [0, tend], w0,
1061
+ events=[sys3_x0decreasing, sys3_y0increasing, sys3_zfinal],
1062
+ dense_output=True, args=(omega, k, zfinal),
1063
+ method='Radau', jac=sys3_jac,
1064
+ rtol=1e-10, atol=1e-13)
1065
+
1066
+ # Check that we got the expected events at the expected times.
1067
+ x0events_t = sol.t_events[0]
1068
+ y0events_t = sol.t_events[1]
1069
+ zfinalevents_t = sol.t_events[2]
1070
+ assert_allclose(x0events_t, [0.5*np.pi, 1.5*np.pi])
1071
+ assert_allclose(y0events_t, [0.25*np.pi, 1.25*np.pi])
1072
+ assert_allclose(zfinalevents_t, [tfinal])
1073
+
1074
+ # Check that the solution agrees with the known exact solution.
1075
+ t = np.linspace(0, zfinalevents_t[0], 250)
1076
+ w = sol.sol(t)
1077
+ assert_allclose(w[0], np.sin(omega*t), rtol=1e-9, atol=1e-12)
1078
+ assert_allclose(w[1], -np.cos(omega*t), rtol=1e-9, atol=1e-12)
1079
+ assert_allclose(w[2], 1/(((1 - z0)/z0)*np.exp(-k*t) + 1),
1080
+ rtol=1e-9, atol=1e-12)
1081
+
1082
+ # Check that the state variables have the expected values at the events.
1083
+ x0events = sol.sol(x0events_t)
1084
+ y0events = sol.sol(y0events_t)
1085
+ zfinalevents = sol.sol(zfinalevents_t)
1086
+ assert_allclose(x0events[0], np.zeros_like(x0events[0]), atol=5e-14)
1087
+ assert_allclose(x0events[1], np.ones_like(x0events[1]))
1088
+ assert_allclose(y0events[0], np.ones_like(y0events[0]))
1089
+ assert_allclose(y0events[1], np.zeros_like(y0events[1]), atol=5e-14)
1090
+ assert_allclose(zfinalevents[2], [zfinal])
1091
+
1092
+
1093
+ def test_array_rtol():
1094
+ # solve_ivp had a bug with array_like `rtol`; see gh-15482
1095
+ # check that it's fixed
1096
+ def f(t, y):
1097
+ return y[0], y[1]
1098
+
1099
+ # no warning (or error) when `rtol` is array_like
1100
+ sol = solve_ivp(f, (0, 1), [1., 1.], rtol=[1e-1, 1e-1])
1101
+ err1 = np.abs(np.linalg.norm(sol.y[:, -1] - np.exp(1)))
1102
+
1103
+ # warning when an element of `rtol` is too small
1104
+ with pytest.warns(UserWarning, match="At least one element..."):
1105
+ sol = solve_ivp(f, (0, 1), [1., 1.], rtol=[1e-1, 1e-16])
1106
+ err2 = np.abs(np.linalg.norm(sol.y[:, -1] - np.exp(1)))
1107
+
1108
+ # tighter rtol improves the error
1109
+ assert err2 < err1
1110
+
1111
+ @pytest.mark.parametrize('method', ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA'])
1112
+ def test_integration_zero_rhs(method):
1113
+ result = solve_ivp(fun_zero, [0, 10], np.ones(3), method=method)
1114
+ assert_(result.success)
1115
+ assert_equal(result.status, 0)
1116
+ assert_allclose(result.y, 1.0, rtol=1e-15)
1117
+
1118
+
1119
+ def test_args_single_value():
1120
+ def fun_with_arg(t, y, a):
1121
+ return a*y
1122
+
1123
+ message = "Supplied 'args' cannot be unpacked."
1124
+ with pytest.raises(TypeError, match=message):
1125
+ solve_ivp(fun_with_arg, (0, 0.1), [1], args=-1)
1126
+
1127
+ sol = solve_ivp(fun_with_arg, (0, 0.1), [1], args=(-1,))
1128
+ assert_allclose(sol.y[0, -1], np.exp(-0.1))
1129
+
1130
+ @pytest.mark.parametrize("f0_fill", [np.nan, np.inf])
1131
+ def test_initial_state_finiteness(f0_fill):
1132
+ # regression test for gh-17846
1133
+ msg = "All components of the initial state `y0` must be finite."
1134
+ with pytest.raises(ValueError, match=msg):
1135
+ solve_ivp(fun_zero, [0, 10], np.full(3, f0_fill))
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_rk.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+ from numpy.testing import assert_allclose, assert_
3
+ import numpy as np
4
+ from scipy.integrate import RK23, RK45, DOP853
5
+ from scipy.integrate._ivp import dop853_coefficients
6
+
7
+
8
+ @pytest.mark.parametrize("solver", [RK23, RK45, DOP853])
9
+ def test_coefficient_properties(solver):
10
+ assert_allclose(np.sum(solver.B), 1, rtol=1e-15)
11
+ assert_allclose(np.sum(solver.A, axis=1), solver.C, rtol=1e-14)
12
+
13
+
14
+ def test_coefficient_properties_dop853():
15
+ assert_allclose(np.sum(dop853_coefficients.B), 1, rtol=1e-15)
16
+ assert_allclose(np.sum(dop853_coefficients.A, axis=1),
17
+ dop853_coefficients.C,
18
+ rtol=1e-14)
19
+
20
+
21
+ @pytest.mark.parametrize("solver_class", [RK23, RK45, DOP853])
22
+ def test_error_estimation(solver_class):
23
+ step = 0.2
24
+ solver = solver_class(lambda t, y: y, 0, [1], 1, first_step=step)
25
+ solver.step()
26
+ error_estimate = solver._estimate_error(solver.K, step)
27
+ error = solver.y - np.exp([step])
28
+ assert_(np.abs(error) < np.abs(error_estimate))
29
+
30
+
31
+ @pytest.mark.parametrize("solver_class", [RK23, RK45, DOP853])
32
+ def test_error_estimation_complex(solver_class):
33
+ h = 0.2
34
+ solver = solver_class(lambda t, y: 1j * y, 0, [1j], 1, first_step=h)
35
+ solver.step()
36
+ err_norm = solver._estimate_error_norm(solver.K, h, scale=[1])
37
+ assert np.isrealobj(err_norm)
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_ode.py ADDED
@@ -0,0 +1,1376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Authors: Pearu Peterson, Pauli Virtanen, John Travers
2
+ """
3
+ First-order ODE integrators.
4
+
5
+ User-friendly interface to various numerical integrators for solving a
6
+ system of first order ODEs with prescribed initial conditions::
7
+
8
+ d y(t)[i]
9
+ --------- = f(t,y(t))[i],
10
+ d t
11
+
12
+ y(t=0)[i] = y0[i],
13
+
14
+ where::
15
+
16
+ i = 0, ..., len(y0) - 1
17
+
18
+ class ode
19
+ ---------
20
+
21
+ A generic interface class to numeric integrators. It has the following
22
+ methods::
23
+
24
+ integrator = ode(f, jac=None)
25
+ integrator = integrator.set_integrator(name, **params)
26
+ integrator = integrator.set_initial_value(y0, t0=0.0)
27
+ integrator = integrator.set_f_params(*args)
28
+ integrator = integrator.set_jac_params(*args)
29
+ y1 = integrator.integrate(t1, step=False, relax=False)
30
+ flag = integrator.successful()
31
+
32
+ class complex_ode
33
+ -----------------
34
+
35
+ This class has the same generic interface as ode, except it can handle complex
36
+ f, y and Jacobians by transparently translating them into the equivalent
37
+ real-valued system. It supports the real-valued solvers (i.e., not zvode) and is
38
+ an alternative to ode with the zvode solver, sometimes performing better.
39
+ """
40
+ # XXX: Integrators must have:
41
+ # ===========================
42
+ # cvode - C version of vode and vodpk with many improvements.
43
+ # Get it from http://www.netlib.org/ode/cvode.tar.gz.
44
+ # To wrap cvode to Python, one must write the extension module by
45
+ # hand. Its interface is too much 'advanced C' that using f2py
46
+ # would be too complicated (or impossible).
47
+ #
48
+ # How to define a new integrator:
49
+ # ===============================
50
+ #
51
+ # class myodeint(IntegratorBase):
52
+ #
53
+ # runner = <odeint function> or None
54
+ #
55
+ # def __init__(self,...): # required
56
+ # <initialize>
57
+ #
58
+ # def reset(self,n,has_jac): # optional
59
+ # # n - the size of the problem (number of equations)
60
+ # # has_jac - whether user has supplied its own routine for Jacobian
61
+ # <allocate memory,initialize further>
62
+ #
63
+ # def run(self,f,jac,y0,t0,t1,f_params,jac_params): # required
64
+ # # this method is called to integrate from t=t0 to t=t1
65
+ # # with initial condition y0. f and jac are user-supplied functions
66
+ # # that define the problem. f_params,jac_params are additional
67
+ # # arguments
68
+ # # to these functions.
69
+ # <calculate y1>
70
+ # if <calculation was unsuccessful>:
71
+ # self.success = 0
72
+ # return t1,y1
73
+ #
74
+ # # In addition, one can define step() and run_relax() methods (they
75
+ # # take the same arguments as run()) if the integrator can support
76
+ # # these features (see IntegratorBase doc strings).
77
+ #
78
+ # if myodeint.runner:
79
+ # IntegratorBase.integrator_classes.append(myodeint)
80
+
81
+ __all__ = ['ode', 'complex_ode']
82
+
83
+ import re
84
+ import warnings
85
+
86
+ from numpy import asarray, array, zeros, isscalar, real, imag, vstack
87
+
88
+ from . import _vode
89
+ from . import _dop
90
+ from . import _lsoda
91
+
92
+
93
+ _dop_int_dtype = _dop.types.intvar.dtype
94
+ _vode_int_dtype = _vode.types.intvar.dtype
95
+ _lsoda_int_dtype = _lsoda.types.intvar.dtype
96
+
97
+
98
+ # ------------------------------------------------------------------------------
99
+ # User interface
100
+ # ------------------------------------------------------------------------------
101
+
102
+
103
+ class ode:
104
+ """
105
+ A generic interface class to numeric integrators.
106
+
107
+ Solve an equation system :math:`y'(t) = f(t,y)` with (optional) ``jac = df/dy``.
108
+
109
+ *Note*: The first two arguments of ``f(t, y, ...)`` are in the
110
+ opposite order of the arguments in the system definition function used
111
+ by `scipy.integrate.odeint`.
112
+
113
+ Parameters
114
+ ----------
115
+ f : callable ``f(t, y, *f_args)``
116
+ Right-hand side of the differential equation. t is a scalar,
117
+ ``y.shape == (n,)``.
118
+ ``f_args`` is set by calling ``set_f_params(*args)``.
119
+ `f` should return a scalar, array or list (not a tuple).
120
+ jac : callable ``jac(t, y, *jac_args)``, optional
121
+ Jacobian of the right-hand side, ``jac[i,j] = d f[i] / d y[j]``.
122
+ ``jac_args`` is set by calling ``set_jac_params(*args)``.
123
+
124
+ Attributes
125
+ ----------
126
+ t : float
127
+ Current time.
128
+ y : ndarray
129
+ Current variable values.
130
+
131
+ See also
132
+ --------
133
+ odeint : an integrator with a simpler interface based on lsoda from ODEPACK
134
+ quad : for finding the area under a curve
135
+
136
+ Notes
137
+ -----
138
+ Available integrators are listed below. They can be selected using
139
+ the `set_integrator` method.
140
+
141
+ "vode"
142
+
143
+ Real-valued Variable-coefficient Ordinary Differential Equation
144
+ solver, with fixed-leading-coefficient implementation. It provides
145
+ implicit Adams method (for non-stiff problems) and a method based on
146
+ backward differentiation formulas (BDF) (for stiff problems).
147
+
148
+ Source: http://www.netlib.org/ode/vode.f
149
+
150
+ .. warning::
151
+
152
+ This integrator is not re-entrant. You cannot have two `ode`
153
+ instances using the "vode" integrator at the same time.
154
+
155
+ This integrator accepts the following parameters in `set_integrator`
156
+ method of the `ode` class:
157
+
158
+ - atol : float or sequence
159
+ absolute tolerance for solution
160
+ - rtol : float or sequence
161
+ relative tolerance for solution
162
+ - lband : None or int
163
+ - uband : None or int
164
+ Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband.
165
+ Setting these requires your jac routine to return the jacobian
166
+ in packed format, jac_packed[i-j+uband, j] = jac[i,j]. The
167
+ dimension of the matrix must be (lband+uband+1, len(y)).
168
+ - method: 'adams' or 'bdf'
169
+ Which solver to use, Adams (non-stiff) or BDF (stiff)
170
+ - with_jacobian : bool
171
+ This option is only considered when the user has not supplied a
172
+ Jacobian function and has not indicated (by setting either band)
173
+ that the Jacobian is banded. In this case, `with_jacobian` specifies
174
+ whether the iteration method of the ODE solver's correction step is
175
+ chord iteration with an internally generated full Jacobian or
176
+ functional iteration with no Jacobian.
177
+ - nsteps : int
178
+ Maximum number of (internally defined) steps allowed during one
179
+ call to the solver.
180
+ - first_step : float
181
+ - min_step : float
182
+ - max_step : float
183
+ Limits for the step sizes used by the integrator.
184
+ - order : int
185
+ Maximum order used by the integrator,
186
+ order <= 12 for Adams, <= 5 for BDF.
187
+
188
+ "zvode"
189
+
190
+ Complex-valued Variable-coefficient Ordinary Differential Equation
191
+ solver, with fixed-leading-coefficient implementation. It provides
192
+ implicit Adams method (for non-stiff problems) and a method based on
193
+ backward differentiation formulas (BDF) (for stiff problems).
194
+
195
+ Source: http://www.netlib.org/ode/zvode.f
196
+
197
+ .. warning::
198
+
199
+ This integrator is not re-entrant. You cannot have two `ode`
200
+ instances using the "zvode" integrator at the same time.
201
+
202
+ This integrator accepts the same parameters in `set_integrator`
203
+ as the "vode" solver.
204
+
205
+ .. note::
206
+
207
+ When using ZVODE for a stiff system, it should only be used for
208
+ the case in which the function f is analytic, that is, when each f(i)
209
+ is an analytic function of each y(j). Analyticity means that the
210
+ partial derivative df(i)/dy(j) is a unique complex number, and this
211
+ fact is critical in the way ZVODE solves the dense or banded linear
212
+ systems that arise in the stiff case. For a complex stiff ODE system
213
+ in which f is not analytic, ZVODE is likely to have convergence
214
+ failures, and for this problem one should instead use DVODE on the
215
+ equivalent real system (in the real and imaginary parts of y).
216
+
217
+ "lsoda"
218
+
219
+ Real-valued Variable-coefficient Ordinary Differential Equation
220
+ solver, with fixed-leading-coefficient implementation. It provides
221
+ automatic method switching between implicit Adams method (for non-stiff
222
+ problems) and a method based on backward differentiation formulas (BDF)
223
+ (for stiff problems).
224
+
225
+ Source: http://www.netlib.org/odepack
226
+
227
+ .. warning::
228
+
229
+ This integrator is not re-entrant. You cannot have two `ode`
230
+ instances using the "lsoda" integrator at the same time.
231
+
232
+ This integrator accepts the following parameters in `set_integrator`
233
+ method of the `ode` class:
234
+
235
+ - atol : float or sequence
236
+ absolute tolerance for solution
237
+ - rtol : float or sequence
238
+ relative tolerance for solution
239
+ - lband : None or int
240
+ - uband : None or int
241
+ Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband.
242
+ Setting these requires your jac routine to return the jacobian
243
+ in packed format, jac_packed[i-j+uband, j] = jac[i,j].
244
+ - with_jacobian : bool
245
+ *Not used.*
246
+ - nsteps : int
247
+ Maximum number of (internally defined) steps allowed during one
248
+ call to the solver.
249
+ - first_step : float
250
+ - min_step : float
251
+ - max_step : float
252
+ Limits for the step sizes used by the integrator.
253
+ - max_order_ns : int
254
+ Maximum order used in the nonstiff case (default 12).
255
+ - max_order_s : int
256
+ Maximum order used in the stiff case (default 5).
257
+ - max_hnil : int
258
+ Maximum number of messages reporting too small step size (t + h = t)
259
+ (default 0)
260
+ - ixpr : int
261
+ Whether to generate extra printing at method switches (default False).
262
+
263
+ "dopri5"
264
+
265
+ This is an explicit runge-kutta method of order (4)5 due to Dormand &
266
+ Prince (with stepsize control and dense output).
267
+
268
+ Authors:
269
+
270
+ E. Hairer and G. Wanner
271
+ Universite de Geneve, Dept. de Mathematiques
272
+ CH-1211 Geneve 24, Switzerland
273
274
+
275
+ This code is described in [HNW93]_.
276
+
277
+ This integrator accepts the following parameters in set_integrator()
278
+ method of the ode class:
279
+
280
+ - atol : float or sequence
281
+ absolute tolerance for solution
282
+ - rtol : float or sequence
283
+ relative tolerance for solution
284
+ - nsteps : int
285
+ Maximum number of (internally defined) steps allowed during one
286
+ call to the solver.
287
+ - first_step : float
288
+ - max_step : float
289
+ - safety : float
290
+ Safety factor on new step selection (default 0.9)
291
+ - ifactor : float
292
+ - dfactor : float
293
+ Maximum factor to increase/decrease step size by in one step
294
+ - beta : float
295
+ Beta parameter for stabilised step size control.
296
+ - verbosity : int
297
+ Switch for printing messages (< 0 for no messages).
298
+
299
+ "dop853"
300
+
301
+ This is an explicit runge-kutta method of order 8(5,3) due to Dormand
302
+ & Prince (with stepsize control and dense output).
303
+
304
+ Options and references the same as "dopri5".
305
+
306
+ Examples
307
+ --------
308
+
309
+ A problem to integrate and the corresponding jacobian:
310
+
311
+ >>> from scipy.integrate import ode
312
+ >>>
313
+ >>> y0, t0 = [1.0j, 2.0], 0
314
+ >>>
315
+ >>> def f(t, y, arg1):
316
+ ... return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
317
+ >>> def jac(t, y, arg1):
318
+ ... return [[1j*arg1, 1], [0, -arg1*2*y[1]]]
319
+
320
+ The integration:
321
+
322
+ >>> r = ode(f, jac).set_integrator('zvode', method='bdf')
323
+ >>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
324
+ >>> t1 = 10
325
+ >>> dt = 1
326
+ >>> while r.successful() and r.t < t1:
327
+ ... print(r.t+dt, r.integrate(r.t+dt))
328
+ 1 [-0.71038232+0.23749653j 0.40000271+0.j ]
329
+ 2.0 [0.19098503-0.52359246j 0.22222356+0.j ]
330
+ 3.0 [0.47153208+0.52701229j 0.15384681+0.j ]
331
+ 4.0 [-0.61905937+0.30726255j 0.11764744+0.j ]
332
+ 5.0 [0.02340997-0.61418799j 0.09523835+0.j ]
333
+ 6.0 [0.58643071+0.339819j 0.08000018+0.j ]
334
+ 7.0 [-0.52070105+0.44525141j 0.06896565+0.j ]
335
+ 8.0 [-0.15986733-0.61234476j 0.06060616+0.j ]
336
+ 9.0 [0.64850462+0.15048982j 0.05405414+0.j ]
337
+ 10.0 [-0.38404699+0.56382299j 0.04878055+0.j ]
338
+
339
+ References
340
+ ----------
341
+ .. [HNW93] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary
342
+ Differential Equations i. Nonstiff Problems. 2nd edition.
343
+ Springer Series in Computational Mathematics,
344
+ Springer-Verlag (1993)
345
+
346
+ """
347
+
348
+ def __init__(self, f, jac=None):
349
+ self.stiff = 0
350
+ self.f = f
351
+ self.jac = jac
352
+ self.f_params = ()
353
+ self.jac_params = ()
354
+ self._y = []
355
+
356
+ @property
357
+ def y(self):
358
+ return self._y
359
+
360
+ def set_initial_value(self, y, t=0.0):
361
+ """Set initial conditions y(t) = y."""
362
+ if isscalar(y):
363
+ y = [y]
364
+ n_prev = len(self._y)
365
+ if not n_prev:
366
+ self.set_integrator('') # find first available integrator
367
+ self._y = asarray(y, self._integrator.scalar)
368
+ self.t = t
369
+ self._integrator.reset(len(self._y), self.jac is not None)
370
+ return self
371
+
372
+ def set_integrator(self, name, **integrator_params):
373
+ """
374
+ Set integrator by name.
375
+
376
+ Parameters
377
+ ----------
378
+ name : str
379
+ Name of the integrator.
380
+ **integrator_params
381
+ Additional parameters for the integrator.
382
+ """
383
+ integrator = find_integrator(name)
384
+ if integrator is None:
385
+ # FIXME: this really should be raise an exception. Will that break
386
+ # any code?
387
+ message = f'No integrator name match with {name!r} or is not available.'
388
+ warnings.warn(message, stacklevel=2)
389
+ else:
390
+ self._integrator = integrator(**integrator_params)
391
+ if not len(self._y):
392
+ self.t = 0.0
393
+ self._y = array([0.0], self._integrator.scalar)
394
+ self._integrator.reset(len(self._y), self.jac is not None)
395
+ return self
396
+
397
+ def integrate(self, t, step=False, relax=False):
398
+ """Find y=y(t), set y as an initial condition, and return y.
399
+
400
+ Parameters
401
+ ----------
402
+ t : float
403
+ The endpoint of the integration step.
404
+ step : bool
405
+ If True, and if the integrator supports the step method,
406
+ then perform a single integration step and return.
407
+ This parameter is provided in order to expose internals of
408
+ the implementation, and should not be changed from its default
409
+ value in most cases.
410
+ relax : bool
411
+ If True and if the integrator supports the run_relax method,
412
+ then integrate until t_1 >= t and return. ``relax`` is not
413
+ referenced if ``step=True``.
414
+ This parameter is provided in order to expose internals of
415
+ the implementation, and should not be changed from its default
416
+ value in most cases.
417
+
418
+ Returns
419
+ -------
420
+ y : float
421
+ The integrated value at t
422
+ """
423
+ if step and self._integrator.supports_step:
424
+ mth = self._integrator.step
425
+ elif relax and self._integrator.supports_run_relax:
426
+ mth = self._integrator.run_relax
427
+ else:
428
+ mth = self._integrator.run
429
+
430
+ try:
431
+ self._y, self.t = mth(self.f, self.jac or (lambda: None),
432
+ self._y, self.t, t,
433
+ self.f_params, self.jac_params)
434
+ except SystemError as e:
435
+ # f2py issue with tuple returns, see ticket 1187.
436
+ raise ValueError(
437
+ 'Function to integrate must not return a tuple.'
438
+ ) from e
439
+
440
+ return self._y
441
+
442
+ def successful(self):
443
+ """Check if integration was successful."""
444
+ try:
445
+ self._integrator
446
+ except AttributeError:
447
+ self.set_integrator('')
448
+ return self._integrator.success == 1
449
+
450
+ def get_return_code(self):
451
+ """Extracts the return code for the integration to enable better control
452
+ if the integration fails.
453
+
454
+ In general, a return code > 0 implies success, while a return code < 0
455
+ implies failure.
456
+
457
+ Notes
458
+ -----
459
+ This section describes possible return codes and their meaning, for available
460
+ integrators that can be selected by `set_integrator` method.
461
+
462
+ "vode"
463
+
464
+ =========== =======
465
+ Return Code Message
466
+ =========== =======
467
+ 2 Integration successful.
468
+ -1 Excess work done on this call. (Perhaps wrong MF.)
469
+ -2 Excess accuracy requested. (Tolerances too small.)
470
+ -3 Illegal input detected. (See printed message.)
471
+ -4 Repeated error test failures. (Check all input.)
472
+ -5 Repeated convergence failures. (Perhaps bad Jacobian
473
+ supplied or wrong choice of MF or tolerances.)
474
+ -6 Error weight became zero during problem. (Solution
475
+ component i vanished, and ATOL or ATOL(i) = 0.)
476
+ =========== =======
477
+
478
+ "zvode"
479
+
480
+ =========== =======
481
+ Return Code Message
482
+ =========== =======
483
+ 2 Integration successful.
484
+ -1 Excess work done on this call. (Perhaps wrong MF.)
485
+ -2 Excess accuracy requested. (Tolerances too small.)
486
+ -3 Illegal input detected. (See printed message.)
487
+ -4 Repeated error test failures. (Check all input.)
488
+ -5 Repeated convergence failures. (Perhaps bad Jacobian
489
+ supplied or wrong choice of MF or tolerances.)
490
+ -6 Error weight became zero during problem. (Solution
491
+ component i vanished, and ATOL or ATOL(i) = 0.)
492
+ =========== =======
493
+
494
+ "dopri5"
495
+
496
+ =========== =======
497
+ Return Code Message
498
+ =========== =======
499
+ 1 Integration successful.
500
+ 2 Integration successful (interrupted by solout).
501
+ -1 Input is not consistent.
502
+ -2 Larger nsteps is needed.
503
+ -3 Step size becomes too small.
504
+ -4 Problem is probably stiff (interrupted).
505
+ =========== =======
506
+
507
+ "dop853"
508
+
509
+ =========== =======
510
+ Return Code Message
511
+ =========== =======
512
+ 1 Integration successful.
513
+ 2 Integration successful (interrupted by solout).
514
+ -1 Input is not consistent.
515
+ -2 Larger nsteps is needed.
516
+ -3 Step size becomes too small.
517
+ -4 Problem is probably stiff (interrupted).
518
+ =========== =======
519
+
520
+ "lsoda"
521
+
522
+ =========== =======
523
+ Return Code Message
524
+ =========== =======
525
+ 2 Integration successful.
526
+ -1 Excess work done on this call (perhaps wrong Dfun type).
527
+ -2 Excess accuracy requested (tolerances too small).
528
+ -3 Illegal input detected (internal error).
529
+ -4 Repeated error test failures (internal error).
530
+ -5 Repeated convergence failures (perhaps bad Jacobian or tolerances).
531
+ -6 Error weight became zero during problem.
532
+ -7 Internal workspace insufficient to finish (internal error).
533
+ =========== =======
534
+ """
535
+ try:
536
+ self._integrator
537
+ except AttributeError:
538
+ self.set_integrator('')
539
+ return self._integrator.istate
540
+
541
+ def set_f_params(self, *args):
542
+ """Set extra parameters for user-supplied function f."""
543
+ self.f_params = args
544
+ return self
545
+
546
+ def set_jac_params(self, *args):
547
+ """Set extra parameters for user-supplied function jac."""
548
+ self.jac_params = args
549
+ return self
550
+
551
+ def set_solout(self, solout):
552
+ """
553
+ Set callable to be called at every successful integration step.
554
+
555
+ Parameters
556
+ ----------
557
+ solout : callable
558
+ ``solout(t, y)`` is called at each internal integrator step,
559
+ t is a scalar providing the current independent position
560
+ y is the current solution ``y.shape == (n,)``
561
+ solout should return -1 to stop integration
562
+ otherwise it should return None or 0
563
+
564
+ """
565
+ if self._integrator.supports_solout:
566
+ self._integrator.set_solout(solout)
567
+ if self._y is not None:
568
+ self._integrator.reset(len(self._y), self.jac is not None)
569
+ else:
570
+ raise ValueError("selected integrator does not support solout,"
571
+ " choose another one")
572
+
573
+
574
+ def _transform_banded_jac(bjac):
575
+ """
576
+ Convert a real matrix of the form (for example)
577
+
578
+ [0 0 A B] [0 0 0 B]
579
+ [0 0 C D] [0 0 A D]
580
+ [E F G H] to [0 F C H]
581
+ [I J K L] [E J G L]
582
+ [I 0 K 0]
583
+
584
+ That is, every other column is shifted up one.
585
+ """
586
+ # Shift every other column.
587
+ newjac = zeros((bjac.shape[0] + 1, bjac.shape[1]))
588
+ newjac[1:, ::2] = bjac[:, ::2]
589
+ newjac[:-1, 1::2] = bjac[:, 1::2]
590
+ return newjac
591
+
592
+
593
+ class complex_ode(ode):
594
+ """
595
+ A wrapper of ode for complex systems.
596
+
597
+ This functions similarly as `ode`, but re-maps a complex-valued
598
+ equation system to a real-valued one before using the integrators.
599
+
600
+ Parameters
601
+ ----------
602
+ f : callable ``f(t, y, *f_args)``
603
+ Rhs of the equation. t is a scalar, ``y.shape == (n,)``.
604
+ ``f_args`` is set by calling ``set_f_params(*args)``.
605
+ jac : callable ``jac(t, y, *jac_args)``
606
+ Jacobian of the rhs, ``jac[i,j] = d f[i] / d y[j]``.
607
+ ``jac_args`` is set by calling ``set_f_params(*args)``.
608
+
609
+ Attributes
610
+ ----------
611
+ t : float
612
+ Current time.
613
+ y : ndarray
614
+ Current variable values.
615
+
616
+ Examples
617
+ --------
618
+ For usage examples, see `ode`.
619
+
620
+ """
621
+
622
+ def __init__(self, f, jac=None):
623
+ self.cf = f
624
+ self.cjac = jac
625
+ if jac is None:
626
+ ode.__init__(self, self._wrap, None)
627
+ else:
628
+ ode.__init__(self, self._wrap, self._wrap_jac)
629
+
630
+ def _wrap(self, t, y, *f_args):
631
+ f = self.cf(*((t, y[::2] + 1j * y[1::2]) + f_args))
632
+ # self.tmp is a real-valued array containing the interleaved
633
+ # real and imaginary parts of f.
634
+ self.tmp[::2] = real(f)
635
+ self.tmp[1::2] = imag(f)
636
+ return self.tmp
637
+
638
+ def _wrap_jac(self, t, y, *jac_args):
639
+ # jac is the complex Jacobian computed by the user-defined function.
640
+ jac = self.cjac(*((t, y[::2] + 1j * y[1::2]) + jac_args))
641
+
642
+ # jac_tmp is the real version of the complex Jacobian. Each complex
643
+ # entry in jac, say 2+3j, becomes a 2x2 block of the form
644
+ # [2 -3]
645
+ # [3 2]
646
+ jac_tmp = zeros((2 * jac.shape[0], 2 * jac.shape[1]))
647
+ jac_tmp[1::2, 1::2] = jac_tmp[::2, ::2] = real(jac)
648
+ jac_tmp[1::2, ::2] = imag(jac)
649
+ jac_tmp[::2, 1::2] = -jac_tmp[1::2, ::2]
650
+
651
+ ml = getattr(self._integrator, 'ml', None)
652
+ mu = getattr(self._integrator, 'mu', None)
653
+ if ml is not None or mu is not None:
654
+ # Jacobian is banded. The user's Jacobian function has computed
655
+ # the complex Jacobian in packed format. The corresponding
656
+ # real-valued version has every other column shifted up.
657
+ jac_tmp = _transform_banded_jac(jac_tmp)
658
+
659
+ return jac_tmp
660
+
661
+ @property
662
+ def y(self):
663
+ return self._y[::2] + 1j * self._y[1::2]
664
+
665
+ def set_integrator(self, name, **integrator_params):
666
+ """
667
+ Set integrator by name.
668
+
669
+ Parameters
670
+ ----------
671
+ name : str
672
+ Name of the integrator
673
+ **integrator_params
674
+ Additional parameters for the integrator.
675
+ """
676
+ if name == 'zvode':
677
+ raise ValueError("zvode must be used with ode, not complex_ode")
678
+
679
+ lband = integrator_params.get('lband')
680
+ uband = integrator_params.get('uband')
681
+ if lband is not None or uband is not None:
682
+ # The Jacobian is banded. Override the user-supplied bandwidths
683
+ # (which are for the complex Jacobian) with the bandwidths of
684
+ # the corresponding real-valued Jacobian wrapper of the complex
685
+ # Jacobian.
686
+ integrator_params['lband'] = 2 * (lband or 0) + 1
687
+ integrator_params['uband'] = 2 * (uband or 0) + 1
688
+
689
+ return ode.set_integrator(self, name, **integrator_params)
690
+
691
+ def set_initial_value(self, y, t=0.0):
692
+ """Set initial conditions y(t) = y."""
693
+ y = asarray(y)
694
+ self.tmp = zeros(y.size * 2, 'float')
695
+ self.tmp[::2] = real(y)
696
+ self.tmp[1::2] = imag(y)
697
+ return ode.set_initial_value(self, self.tmp, t)
698
+
699
+ def integrate(self, t, step=False, relax=False):
700
+ """Find y=y(t), set y as an initial condition, and return y.
701
+
702
+ Parameters
703
+ ----------
704
+ t : float
705
+ The endpoint of the integration step.
706
+ step : bool
707
+ If True, and if the integrator supports the step method,
708
+ then perform a single integration step and return.
709
+ This parameter is provided in order to expose internals of
710
+ the implementation, and should not be changed from its default
711
+ value in most cases.
712
+ relax : bool
713
+ If True and if the integrator supports the run_relax method,
714
+ then integrate until t_1 >= t and return. ``relax`` is not
715
+ referenced if ``step=True``.
716
+ This parameter is provided in order to expose internals of
717
+ the implementation, and should not be changed from its default
718
+ value in most cases.
719
+
720
+ Returns
721
+ -------
722
+ y : float
723
+ The integrated value at t
724
+ """
725
+ y = ode.integrate(self, t, step, relax)
726
+ return y[::2] + 1j * y[1::2]
727
+
728
+ def set_solout(self, solout):
729
+ """
730
+ Set callable to be called at every successful integration step.
731
+
732
+ Parameters
733
+ ----------
734
+ solout : callable
735
+ ``solout(t, y)`` is called at each internal integrator step,
736
+ t is a scalar providing the current independent position
737
+ y is the current solution ``y.shape == (n,)``
738
+ solout should return -1 to stop integration
739
+ otherwise it should return None or 0
740
+
741
+ """
742
+ if self._integrator.supports_solout:
743
+ self._integrator.set_solout(solout, complex=True)
744
+ else:
745
+ raise TypeError("selected integrator does not support solouta,"
746
+ + "choose another one")
747
+
748
+
749
+ # ------------------------------------------------------------------------------
750
+ # ODE integrators
751
+ # ------------------------------------------------------------------------------
752
+
753
+ def find_integrator(name):
754
+ for cl in IntegratorBase.integrator_classes:
755
+ if re.match(name, cl.__name__, re.I):
756
+ return cl
757
+ return None
758
+
759
+
760
+ class IntegratorConcurrencyError(RuntimeError):
761
+ """
762
+ Failure due to concurrent usage of an integrator that can be used
763
+ only for a single problem at a time.
764
+
765
+ """
766
+
767
+ def __init__(self, name):
768
+ msg = ("Integrator `%s` can be used to solve only a single problem "
769
+ "at a time. If you want to integrate multiple problems, "
770
+ "consider using a different integrator "
771
+ "(see `ode.set_integrator`)") % name
772
+ RuntimeError.__init__(self, msg)
773
+
774
+
775
+ class IntegratorBase:
776
+ runner = None # runner is None => integrator is not available
777
+ success = None # success==1 if integrator was called successfully
778
+ istate = None # istate > 0 means success, istate < 0 means failure
779
+ supports_run_relax = None
780
+ supports_step = None
781
+ supports_solout = False
782
+ integrator_classes = []
783
+ scalar = float
784
+
785
+ def acquire_new_handle(self):
786
+ # Some of the integrators have internal state (ancient
787
+ # Fortran...), and so only one instance can use them at a time.
788
+ # We keep track of this, and fail when concurrent usage is tried.
789
+ self.__class__.active_global_handle += 1
790
+ self.handle = self.__class__.active_global_handle
791
+
792
+ def check_handle(self):
793
+ if self.handle is not self.__class__.active_global_handle:
794
+ raise IntegratorConcurrencyError(self.__class__.__name__)
795
+
796
+ def reset(self, n, has_jac):
797
+ """Prepare integrator for call: allocate memory, set flags, etc.
798
+ n - number of equations.
799
+ has_jac - if user has supplied function for evaluating Jacobian.
800
+ """
801
+
802
+ def run(self, f, jac, y0, t0, t1, f_params, jac_params):
803
+ """Integrate from t=t0 to t=t1 using y0 as an initial condition.
804
+ Return 2-tuple (y1,t1) where y1 is the result and t=t1
805
+ defines the stoppage coordinate of the result.
806
+ """
807
+ raise NotImplementedError('all integrators must define '
808
+ 'run(f, jac, t0, t1, y0, f_params, jac_params)')
809
+
810
+ def step(self, f, jac, y0, t0, t1, f_params, jac_params):
811
+ """Make one integration step and return (y1,t1)."""
812
+ raise NotImplementedError('%s does not support step() method' %
813
+ self.__class__.__name__)
814
+
815
+ def run_relax(self, f, jac, y0, t0, t1, f_params, jac_params):
816
+ """Integrate from t=t0 to t>=t1 and return (y1,t)."""
817
+ raise NotImplementedError('%s does not support run_relax() method' %
818
+ self.__class__.__name__)
819
+
820
+ # XXX: __str__ method for getting visual state of the integrator
821
+
822
+
823
+ def _vode_banded_jac_wrapper(jacfunc, ml, jac_params):
824
+ """
825
+ Wrap a banded Jacobian function with a function that pads
826
+ the Jacobian with `ml` rows of zeros.
827
+ """
828
+
829
+ def jac_wrapper(t, y):
830
+ jac = asarray(jacfunc(t, y, *jac_params))
831
+ padded_jac = vstack((jac, zeros((ml, jac.shape[1]))))
832
+ return padded_jac
833
+
834
+ return jac_wrapper
835
+
836
+
837
+ class vode(IntegratorBase):
838
+ runner = getattr(_vode, 'dvode', None)
839
+
840
+ messages = {-1: 'Excess work done on this call. (Perhaps wrong MF.)',
841
+ -2: 'Excess accuracy requested. (Tolerances too small.)',
842
+ -3: 'Illegal input detected. (See printed message.)',
843
+ -4: 'Repeated error test failures. (Check all input.)',
844
+ -5: 'Repeated convergence failures. (Perhaps bad'
845
+ ' Jacobian supplied or wrong choice of MF or tolerances.)',
846
+ -6: 'Error weight became zero during problem. (Solution'
847
+ ' component i vanished, and ATOL or ATOL(i) = 0.)'
848
+ }
849
+ supports_run_relax = 1
850
+ supports_step = 1
851
+ active_global_handle = 0
852
+
853
+ def __init__(self,
854
+ method='adams',
855
+ with_jacobian=False,
856
+ rtol=1e-6, atol=1e-12,
857
+ lband=None, uband=None,
858
+ order=12,
859
+ nsteps=500,
860
+ max_step=0.0, # corresponds to infinite
861
+ min_step=0.0,
862
+ first_step=0.0, # determined by solver
863
+ ):
864
+
865
+ if re.match(method, r'adams', re.I):
866
+ self.meth = 1
867
+ elif re.match(method, r'bdf', re.I):
868
+ self.meth = 2
869
+ else:
870
+ raise ValueError('Unknown integration method %s' % method)
871
+ self.with_jacobian = with_jacobian
872
+ self.rtol = rtol
873
+ self.atol = atol
874
+ self.mu = uband
875
+ self.ml = lband
876
+
877
+ self.order = order
878
+ self.nsteps = nsteps
879
+ self.max_step = max_step
880
+ self.min_step = min_step
881
+ self.first_step = first_step
882
+ self.success = 1
883
+
884
+ self.initialized = False
885
+
886
+ def _determine_mf_and_set_bands(self, has_jac):
887
+ """
888
+ Determine the `MF` parameter (Method Flag) for the Fortran subroutine `dvode`.
889
+
890
+ In the Fortran code, the legal values of `MF` are:
891
+ 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25,
892
+ -11, -12, -14, -15, -21, -22, -24, -25
893
+ but this Python wrapper does not use negative values.
894
+
895
+ Returns
896
+
897
+ mf = 10*self.meth + miter
898
+
899
+ self.meth is the linear multistep method:
900
+ self.meth == 1: method="adams"
901
+ self.meth == 2: method="bdf"
902
+
903
+ miter is the correction iteration method:
904
+ miter == 0: Functional iteration; no Jacobian involved.
905
+ miter == 1: Chord iteration with user-supplied full Jacobian.
906
+ miter == 2: Chord iteration with internally computed full Jacobian.
907
+ miter == 3: Chord iteration with internally computed diagonal Jacobian.
908
+ miter == 4: Chord iteration with user-supplied banded Jacobian.
909
+ miter == 5: Chord iteration with internally computed banded Jacobian.
910
+
911
+ Side effects: If either self.mu or self.ml is not None and the other is None,
912
+ then the one that is None is set to 0.
913
+ """
914
+
915
+ jac_is_banded = self.mu is not None or self.ml is not None
916
+ if jac_is_banded:
917
+ if self.mu is None:
918
+ self.mu = 0
919
+ if self.ml is None:
920
+ self.ml = 0
921
+
922
+ # has_jac is True if the user provided a Jacobian function.
923
+ if has_jac:
924
+ if jac_is_banded:
925
+ miter = 4
926
+ else:
927
+ miter = 1
928
+ else:
929
+ if jac_is_banded:
930
+ if self.ml == self.mu == 0:
931
+ miter = 3 # Chord iteration with internal diagonal Jacobian.
932
+ else:
933
+ miter = 5 # Chord iteration with internal banded Jacobian.
934
+ else:
935
+ # self.with_jacobian is set by the user in
936
+ # the call to ode.set_integrator.
937
+ if self.with_jacobian:
938
+ miter = 2 # Chord iteration with internal full Jacobian.
939
+ else:
940
+ miter = 0 # Functional iteration; no Jacobian involved.
941
+
942
+ mf = 10 * self.meth + miter
943
+ return mf
944
+
945
+ def reset(self, n, has_jac):
946
+ mf = self._determine_mf_and_set_bands(has_jac)
947
+
948
+ if mf == 10:
949
+ lrw = 20 + 16 * n
950
+ elif mf in [11, 12]:
951
+ lrw = 22 + 16 * n + 2 * n * n
952
+ elif mf == 13:
953
+ lrw = 22 + 17 * n
954
+ elif mf in [14, 15]:
955
+ lrw = 22 + 18 * n + (3 * self.ml + 2 * self.mu) * n
956
+ elif mf == 20:
957
+ lrw = 20 + 9 * n
958
+ elif mf in [21, 22]:
959
+ lrw = 22 + 9 * n + 2 * n * n
960
+ elif mf == 23:
961
+ lrw = 22 + 10 * n
962
+ elif mf in [24, 25]:
963
+ lrw = 22 + 11 * n + (3 * self.ml + 2 * self.mu) * n
964
+ else:
965
+ raise ValueError('Unexpected mf=%s' % mf)
966
+
967
+ if mf % 10 in [0, 3]:
968
+ liw = 30
969
+ else:
970
+ liw = 30 + n
971
+
972
+ rwork = zeros((lrw,), float)
973
+ rwork[4] = self.first_step
974
+ rwork[5] = self.max_step
975
+ rwork[6] = self.min_step
976
+ self.rwork = rwork
977
+
978
+ iwork = zeros((liw,), _vode_int_dtype)
979
+ if self.ml is not None:
980
+ iwork[0] = self.ml
981
+ if self.mu is not None:
982
+ iwork[1] = self.mu
983
+ iwork[4] = self.order
984
+ iwork[5] = self.nsteps
985
+ iwork[6] = 2 # mxhnil
986
+ self.iwork = iwork
987
+
988
+ self.call_args = [self.rtol, self.atol, 1, 1,
989
+ self.rwork, self.iwork, mf]
990
+ self.success = 1
991
+ self.initialized = False
992
+
993
+ def run(self, f, jac, y0, t0, t1, f_params, jac_params):
994
+ if self.initialized:
995
+ self.check_handle()
996
+ else:
997
+ self.initialized = True
998
+ self.acquire_new_handle()
999
+
1000
+ if self.ml is not None and self.ml > 0:
1001
+ # Banded Jacobian. Wrap the user-provided function with one
1002
+ # that pads the Jacobian array with the extra `self.ml` rows
1003
+ # required by the f2py-generated wrapper.
1004
+ jac = _vode_banded_jac_wrapper(jac, self.ml, jac_params)
1005
+
1006
+ args = ((f, jac, y0, t0, t1) + tuple(self.call_args) +
1007
+ (f_params, jac_params))
1008
+ y1, t, istate = self.runner(*args)
1009
+ self.istate = istate
1010
+ if istate < 0:
1011
+ unexpected_istate_msg = f'Unexpected istate={istate:d}'
1012
+ warnings.warn('{:s}: {:s}'.format(self.__class__.__name__,
1013
+ self.messages.get(istate, unexpected_istate_msg)),
1014
+ stacklevel=2)
1015
+ self.success = 0
1016
+ else:
1017
+ self.call_args[3] = 2 # upgrade istate from 1 to 2
1018
+ self.istate = 2
1019
+ return y1, t
1020
+
1021
+ def step(self, *args):
1022
+ itask = self.call_args[2]
1023
+ self.call_args[2] = 2
1024
+ r = self.run(*args)
1025
+ self.call_args[2] = itask
1026
+ return r
1027
+
1028
+ def run_relax(self, *args):
1029
+ itask = self.call_args[2]
1030
+ self.call_args[2] = 3
1031
+ r = self.run(*args)
1032
+ self.call_args[2] = itask
1033
+ return r
1034
+
1035
+
1036
+ if vode.runner is not None:
1037
+ IntegratorBase.integrator_classes.append(vode)
1038
+
1039
+
1040
+ class zvode(vode):
1041
+ runner = getattr(_vode, 'zvode', None)
1042
+
1043
+ supports_run_relax = 1
1044
+ supports_step = 1
1045
+ scalar = complex
1046
+ active_global_handle = 0
1047
+
1048
+ def reset(self, n, has_jac):
1049
+ mf = self._determine_mf_and_set_bands(has_jac)
1050
+
1051
+ if mf in (10,):
1052
+ lzw = 15 * n
1053
+ elif mf in (11, 12):
1054
+ lzw = 15 * n + 2 * n ** 2
1055
+ elif mf in (-11, -12):
1056
+ lzw = 15 * n + n ** 2
1057
+ elif mf in (13,):
1058
+ lzw = 16 * n
1059
+ elif mf in (14, 15):
1060
+ lzw = 17 * n + (3 * self.ml + 2 * self.mu) * n
1061
+ elif mf in (-14, -15):
1062
+ lzw = 16 * n + (2 * self.ml + self.mu) * n
1063
+ elif mf in (20,):
1064
+ lzw = 8 * n
1065
+ elif mf in (21, 22):
1066
+ lzw = 8 * n + 2 * n ** 2
1067
+ elif mf in (-21, -22):
1068
+ lzw = 8 * n + n ** 2
1069
+ elif mf in (23,):
1070
+ lzw = 9 * n
1071
+ elif mf in (24, 25):
1072
+ lzw = 10 * n + (3 * self.ml + 2 * self.mu) * n
1073
+ elif mf in (-24, -25):
1074
+ lzw = 9 * n + (2 * self.ml + self.mu) * n
1075
+
1076
+ lrw = 20 + n
1077
+
1078
+ if mf % 10 in (0, 3):
1079
+ liw = 30
1080
+ else:
1081
+ liw = 30 + n
1082
+
1083
+ zwork = zeros((lzw,), complex)
1084
+ self.zwork = zwork
1085
+
1086
+ rwork = zeros((lrw,), float)
1087
+ rwork[4] = self.first_step
1088
+ rwork[5] = self.max_step
1089
+ rwork[6] = self.min_step
1090
+ self.rwork = rwork
1091
+
1092
+ iwork = zeros((liw,), _vode_int_dtype)
1093
+ if self.ml is not None:
1094
+ iwork[0] = self.ml
1095
+ if self.mu is not None:
1096
+ iwork[1] = self.mu
1097
+ iwork[4] = self.order
1098
+ iwork[5] = self.nsteps
1099
+ iwork[6] = 2 # mxhnil
1100
+ self.iwork = iwork
1101
+
1102
+ self.call_args = [self.rtol, self.atol, 1, 1,
1103
+ self.zwork, self.rwork, self.iwork, mf]
1104
+ self.success = 1
1105
+ self.initialized = False
1106
+
1107
+
1108
+ if zvode.runner is not None:
1109
+ IntegratorBase.integrator_classes.append(zvode)
1110
+
1111
+
1112
+ class dopri5(IntegratorBase):
1113
+ runner = getattr(_dop, 'dopri5', None)
1114
+ name = 'dopri5'
1115
+ supports_solout = True
1116
+
1117
+ messages = {1: 'computation successful',
1118
+ 2: 'computation successful (interrupted by solout)',
1119
+ -1: 'input is not consistent',
1120
+ -2: 'larger nsteps is needed',
1121
+ -3: 'step size becomes too small',
1122
+ -4: 'problem is probably stiff (interrupted)',
1123
+ }
1124
+
1125
+ def __init__(self,
1126
+ rtol=1e-6, atol=1e-12,
1127
+ nsteps=500,
1128
+ max_step=0.0,
1129
+ first_step=0.0, # determined by solver
1130
+ safety=0.9,
1131
+ ifactor=10.0,
1132
+ dfactor=0.2,
1133
+ beta=0.0,
1134
+ method=None,
1135
+ verbosity=-1, # no messages if negative
1136
+ ):
1137
+ self.rtol = rtol
1138
+ self.atol = atol
1139
+ self.nsteps = nsteps
1140
+ self.max_step = max_step
1141
+ self.first_step = first_step
1142
+ self.safety = safety
1143
+ self.ifactor = ifactor
1144
+ self.dfactor = dfactor
1145
+ self.beta = beta
1146
+ self.verbosity = verbosity
1147
+ self.success = 1
1148
+ self.set_solout(None)
1149
+
1150
+ def set_solout(self, solout, complex=False):
1151
+ self.solout = solout
1152
+ self.solout_cmplx = complex
1153
+ if solout is None:
1154
+ self.iout = 0
1155
+ else:
1156
+ self.iout = 1
1157
+
1158
+ def reset(self, n, has_jac):
1159
+ work = zeros((8 * n + 21,), float)
1160
+ work[1] = self.safety
1161
+ work[2] = self.dfactor
1162
+ work[3] = self.ifactor
1163
+ work[4] = self.beta
1164
+ work[5] = self.max_step
1165
+ work[6] = self.first_step
1166
+ self.work = work
1167
+ iwork = zeros((21,), _dop_int_dtype)
1168
+ iwork[0] = self.nsteps
1169
+ iwork[2] = self.verbosity
1170
+ self.iwork = iwork
1171
+ self.call_args = [self.rtol, self.atol, self._solout,
1172
+ self.iout, self.work, self.iwork]
1173
+ self.success = 1
1174
+
1175
+ def run(self, f, jac, y0, t0, t1, f_params, jac_params):
1176
+ x, y, iwork, istate = self.runner(*((f, t0, y0, t1) +
1177
+ tuple(self.call_args) + (f_params,)))
1178
+ self.istate = istate
1179
+ if istate < 0:
1180
+ unexpected_istate_msg = f'Unexpected istate={istate:d}'
1181
+ warnings.warn('{:s}: {:s}'.format(self.__class__.__name__,
1182
+ self.messages.get(istate, unexpected_istate_msg)),
1183
+ stacklevel=2)
1184
+ self.success = 0
1185
+ return y, x
1186
+
1187
+ def _solout(self, nr, xold, x, y, nd, icomp, con):
1188
+ if self.solout is not None:
1189
+ if self.solout_cmplx:
1190
+ y = y[::2] + 1j * y[1::2]
1191
+ return self.solout(x, y)
1192
+ else:
1193
+ return 1
1194
+
1195
+
1196
+ if dopri5.runner is not None:
1197
+ IntegratorBase.integrator_classes.append(dopri5)
1198
+
1199
+
1200
+ class dop853(dopri5):
1201
+ runner = getattr(_dop, 'dop853', None)
1202
+ name = 'dop853'
1203
+
1204
+ def __init__(self,
1205
+ rtol=1e-6, atol=1e-12,
1206
+ nsteps=500,
1207
+ max_step=0.0,
1208
+ first_step=0.0, # determined by solver
1209
+ safety=0.9,
1210
+ ifactor=6.0,
1211
+ dfactor=0.3,
1212
+ beta=0.0,
1213
+ method=None,
1214
+ verbosity=-1, # no messages if negative
1215
+ ):
1216
+ super().__init__(rtol, atol, nsteps, max_step, first_step, safety,
1217
+ ifactor, dfactor, beta, method, verbosity)
1218
+
1219
+ def reset(self, n, has_jac):
1220
+ work = zeros((11 * n + 21,), float)
1221
+ work[1] = self.safety
1222
+ work[2] = self.dfactor
1223
+ work[3] = self.ifactor
1224
+ work[4] = self.beta
1225
+ work[5] = self.max_step
1226
+ work[6] = self.first_step
1227
+ self.work = work
1228
+ iwork = zeros((21,), _dop_int_dtype)
1229
+ iwork[0] = self.nsteps
1230
+ iwork[2] = self.verbosity
1231
+ self.iwork = iwork
1232
+ self.call_args = [self.rtol, self.atol, self._solout,
1233
+ self.iout, self.work, self.iwork]
1234
+ self.success = 1
1235
+
1236
+
1237
+ if dop853.runner is not None:
1238
+ IntegratorBase.integrator_classes.append(dop853)
1239
+
1240
+
1241
+ class lsoda(IntegratorBase):
1242
+ runner = getattr(_lsoda, 'lsoda', None)
1243
+ active_global_handle = 0
1244
+
1245
+ messages = {
1246
+ 2: "Integration successful.",
1247
+ -1: "Excess work done on this call (perhaps wrong Dfun type).",
1248
+ -2: "Excess accuracy requested (tolerances too small).",
1249
+ -3: "Illegal input detected (internal error).",
1250
+ -4: "Repeated error test failures (internal error).",
1251
+ -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).",
1252
+ -6: "Error weight became zero during problem.",
1253
+ -7: "Internal workspace insufficient to finish (internal error)."
1254
+ }
1255
+
1256
+ def __init__(self,
1257
+ with_jacobian=False,
1258
+ rtol=1e-6, atol=1e-12,
1259
+ lband=None, uband=None,
1260
+ nsteps=500,
1261
+ max_step=0.0, # corresponds to infinite
1262
+ min_step=0.0,
1263
+ first_step=0.0, # determined by solver
1264
+ ixpr=0,
1265
+ max_hnil=0,
1266
+ max_order_ns=12,
1267
+ max_order_s=5,
1268
+ method=None
1269
+ ):
1270
+
1271
+ self.with_jacobian = with_jacobian
1272
+ self.rtol = rtol
1273
+ self.atol = atol
1274
+ self.mu = uband
1275
+ self.ml = lband
1276
+
1277
+ self.max_order_ns = max_order_ns
1278
+ self.max_order_s = max_order_s
1279
+ self.nsteps = nsteps
1280
+ self.max_step = max_step
1281
+ self.min_step = min_step
1282
+ self.first_step = first_step
1283
+ self.ixpr = ixpr
1284
+ self.max_hnil = max_hnil
1285
+ self.success = 1
1286
+
1287
+ self.initialized = False
1288
+
1289
+ def reset(self, n, has_jac):
1290
+ # Calculate parameters for Fortran subroutine dvode.
1291
+ if has_jac:
1292
+ if self.mu is None and self.ml is None:
1293
+ jt = 1
1294
+ else:
1295
+ if self.mu is None:
1296
+ self.mu = 0
1297
+ if self.ml is None:
1298
+ self.ml = 0
1299
+ jt = 4
1300
+ else:
1301
+ if self.mu is None and self.ml is None:
1302
+ jt = 2
1303
+ else:
1304
+ if self.mu is None:
1305
+ self.mu = 0
1306
+ if self.ml is None:
1307
+ self.ml = 0
1308
+ jt = 5
1309
+ lrn = 20 + (self.max_order_ns + 4) * n
1310
+ if jt in [1, 2]:
1311
+ lrs = 22 + (self.max_order_s + 4) * n + n * n
1312
+ elif jt in [4, 5]:
1313
+ lrs = 22 + (self.max_order_s + 5 + 2 * self.ml + self.mu) * n
1314
+ else:
1315
+ raise ValueError('Unexpected jt=%s' % jt)
1316
+ lrw = max(lrn, lrs)
1317
+ liw = 20 + n
1318
+ rwork = zeros((lrw,), float)
1319
+ rwork[4] = self.first_step
1320
+ rwork[5] = self.max_step
1321
+ rwork[6] = self.min_step
1322
+ self.rwork = rwork
1323
+ iwork = zeros((liw,), _lsoda_int_dtype)
1324
+ if self.ml is not None:
1325
+ iwork[0] = self.ml
1326
+ if self.mu is not None:
1327
+ iwork[1] = self.mu
1328
+ iwork[4] = self.ixpr
1329
+ iwork[5] = self.nsteps
1330
+ iwork[6] = self.max_hnil
1331
+ iwork[7] = self.max_order_ns
1332
+ iwork[8] = self.max_order_s
1333
+ self.iwork = iwork
1334
+ self.call_args = [self.rtol, self.atol, 1, 1,
1335
+ self.rwork, self.iwork, jt]
1336
+ self.success = 1
1337
+ self.initialized = False
1338
+
1339
+ def run(self, f, jac, y0, t0, t1, f_params, jac_params):
1340
+ if self.initialized:
1341
+ self.check_handle()
1342
+ else:
1343
+ self.initialized = True
1344
+ self.acquire_new_handle()
1345
+ args = [f, y0, t0, t1] + self.call_args[:-1] + \
1346
+ [jac, self.call_args[-1], f_params, 0, jac_params]
1347
+ y1, t, istate = self.runner(*args)
1348
+ self.istate = istate
1349
+ if istate < 0:
1350
+ unexpected_istate_msg = f'Unexpected istate={istate:d}'
1351
+ warnings.warn('{:s}: {:s}'.format(self.__class__.__name__,
1352
+ self.messages.get(istate, unexpected_istate_msg)),
1353
+ stacklevel=2)
1354
+ self.success = 0
1355
+ else:
1356
+ self.call_args[3] = 2 # upgrade istate from 1 to 2
1357
+ self.istate = 2
1358
+ return y1, t
1359
+
1360
+ def step(self, *args):
1361
+ itask = self.call_args[2]
1362
+ self.call_args[2] = 2
1363
+ r = self.run(*args)
1364
+ self.call_args[2] = itask
1365
+ return r
1366
+
1367
+ def run_relax(self, *args):
1368
+ itask = self.call_args[2]
1369
+ self.call_args[2] = 3
1370
+ r = self.run(*args)
1371
+ self.call_args[2] = itask
1372
+ return r
1373
+
1374
+
1375
+ if lsoda.runner:
1376
+ IntegratorBase.integrator_classes.append(lsoda)
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_odepack.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (83.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/integrate/_odepack_py.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: Travis Oliphant
2
+
3
+ __all__ = ['odeint', 'ODEintWarning']
4
+
5
+ import numpy as np
6
+ from . import _odepack
7
+ from copy import copy
8
+ import warnings
9
+
10
+
11
+ class ODEintWarning(Warning):
12
+ """Warning raised during the execution of `odeint`."""
13
+ pass
14
+
15
+
16
+ _msgs = {2: "Integration successful.",
17
+ 1: "Nothing was done; the integration time was 0.",
18
+ -1: "Excess work done on this call (perhaps wrong Dfun type).",
19
+ -2: "Excess accuracy requested (tolerances too small).",
20
+ -3: "Illegal input detected (internal error).",
21
+ -4: "Repeated error test failures (internal error).",
22
+ -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).",
23
+ -6: "Error weight became zero during problem.",
24
+ -7: "Internal workspace insufficient to finish (internal error).",
25
+ -8: "Run terminated (internal error)."
26
+ }
27
+
28
+
29
+ def odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0,
30
+ ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0,
31
+ hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12,
32
+ mxords=5, printmessg=0, tfirst=False):
33
+ """
34
+ Integrate a system of ordinary differential equations.
35
+
36
+ .. note:: For new code, use `scipy.integrate.solve_ivp` to solve a
37
+ differential equation.
38
+
39
+ Solve a system of ordinary differential equations using lsoda from the
40
+ FORTRAN library odepack.
41
+
42
+ Solves the initial value problem for stiff or non-stiff systems
43
+ of first order ode-s::
44
+
45
+ dy/dt = func(y, t, ...) [or func(t, y, ...)]
46
+
47
+ where y can be a vector.
48
+
49
+ .. note:: By default, the required order of the first two arguments of
50
+ `func` are in the opposite order of the arguments in the system
51
+ definition function used by the `scipy.integrate.ode` class and
52
+ the function `scipy.integrate.solve_ivp`. To use a function with
53
+ the signature ``func(t, y, ...)``, the argument `tfirst` must be
54
+ set to ``True``.
55
+
56
+ Parameters
57
+ ----------
58
+ func : callable(y, t, ...) or callable(t, y, ...)
59
+ Computes the derivative of y at t.
60
+ If the signature is ``callable(t, y, ...)``, then the argument
61
+ `tfirst` must be set ``True``.
62
+ y0 : array
63
+ Initial condition on y (can be a vector).
64
+ t : array
65
+ A sequence of time points for which to solve for y. The initial
66
+ value point should be the first element of this sequence.
67
+ This sequence must be monotonically increasing or monotonically
68
+ decreasing; repeated values are allowed.
69
+ args : tuple, optional
70
+ Extra arguments to pass to function.
71
+ Dfun : callable(y, t, ...) or callable(t, y, ...)
72
+ Gradient (Jacobian) of `func`.
73
+ If the signature is ``callable(t, y, ...)``, then the argument
74
+ `tfirst` must be set ``True``.
75
+ col_deriv : bool, optional
76
+ True if `Dfun` defines derivatives down columns (faster),
77
+ otherwise `Dfun` should define derivatives across rows.
78
+ full_output : bool, optional
79
+ True if to return a dictionary of optional outputs as the second output
80
+ printmessg : bool, optional
81
+ Whether to print the convergence message
82
+ tfirst : bool, optional
83
+ If True, the first two arguments of `func` (and `Dfun`, if given)
84
+ must ``t, y`` instead of the default ``y, t``.
85
+
86
+ .. versionadded:: 1.1.0
87
+
88
+ Returns
89
+ -------
90
+ y : array, shape (len(t), len(y0))
91
+ Array containing the value of y for each desired time in t,
92
+ with the initial value `y0` in the first row.
93
+ infodict : dict, only returned if full_output == True
94
+ Dictionary containing additional output information
95
+
96
+ ======= ============================================================
97
+ key meaning
98
+ ======= ============================================================
99
+ 'hu' vector of step sizes successfully used for each time step
100
+ 'tcur' vector with the value of t reached for each time step
101
+ (will always be at least as large as the input times)
102
+ 'tolsf' vector of tolerance scale factors, greater than 1.0,
103
+ computed when a request for too much accuracy was detected
104
+ 'tsw' value of t at the time of the last method switch
105
+ (given for each time step)
106
+ 'nst' cumulative number of time steps
107
+ 'nfe' cumulative number of function evaluations for each time step
108
+ 'nje' cumulative number of jacobian evaluations for each time step
109
+ 'nqu' a vector of method orders for each successful step
110
+ 'imxer' index of the component of largest magnitude in the
111
+ weighted local error vector (e / ewt) on an error return, -1
112
+ otherwise
113
+ 'lenrw' the length of the double work array required
114
+ 'leniw' the length of integer work array required
115
+ 'mused' a vector of method indicators for each successful time step:
116
+ 1: adams (nonstiff), 2: bdf (stiff)
117
+ ======= ============================================================
118
+
119
+ Other Parameters
120
+ ----------------
121
+ ml, mu : int, optional
122
+ If either of these are not None or non-negative, then the
123
+ Jacobian is assumed to be banded. These give the number of
124
+ lower and upper non-zero diagonals in this banded matrix.
125
+ For the banded case, `Dfun` should return a matrix whose
126
+ rows contain the non-zero bands (starting with the lowest diagonal).
127
+ Thus, the return matrix `jac` from `Dfun` should have shape
128
+ ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``.
129
+ The data in `jac` must be stored such that ``jac[i - j + mu, j]``
130
+ holds the derivative of the ``i``\\ th equation with respect to the
131
+ ``j``\\ th state variable. If `col_deriv` is True, the transpose of
132
+ this `jac` must be returned.
133
+ rtol, atol : float, optional
134
+ The input parameters `rtol` and `atol` determine the error
135
+ control performed by the solver. The solver will control the
136
+ vector, e, of estimated local errors in y, according to an
137
+ inequality of the form ``max-norm of (e / ewt) <= 1``,
138
+ where ewt is a vector of positive error weights computed as
139
+ ``ewt = rtol * abs(y) + atol``.
140
+ rtol and atol can be either vectors the same length as y or scalars.
141
+ Defaults to 1.49012e-8.
142
+ tcrit : ndarray, optional
143
+ Vector of critical points (e.g., singularities) where integration
144
+ care should be taken.
145
+ h0 : float, (0: solver-determined), optional
146
+ The step size to be attempted on the first step.
147
+ hmax : float, (0: solver-determined), optional
148
+ The maximum absolute step size allowed.
149
+ hmin : float, (0: solver-determined), optional
150
+ The minimum absolute step size allowed.
151
+ ixpr : bool, optional
152
+ Whether to generate extra printing at method switches.
153
+ mxstep : int, (0: solver-determined), optional
154
+ Maximum number of (internally defined) steps allowed for each
155
+ integration point in t.
156
+ mxhnil : int, (0: solver-determined), optional
157
+ Maximum number of messages printed.
158
+ mxordn : int, (0: solver-determined), optional
159
+ Maximum order to be allowed for the non-stiff (Adams) method.
160
+ mxords : int, (0: solver-determined), optional
161
+ Maximum order to be allowed for the stiff (BDF) method.
162
+
163
+ See Also
164
+ --------
165
+ solve_ivp : solve an initial value problem for a system of ODEs
166
+ ode : a more object-oriented integrator based on VODE
167
+ quad : for finding the area under a curve
168
+
169
+ Examples
170
+ --------
171
+ The second order differential equation for the angle `theta` of a
172
+ pendulum acted on by gravity with friction can be written::
173
+
174
+ theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0
175
+
176
+ where `b` and `c` are positive constants, and a prime (') denotes a
177
+ derivative. To solve this equation with `odeint`, we must first convert
178
+ it to a system of first order equations. By defining the angular
179
+ velocity ``omega(t) = theta'(t)``, we obtain the system::
180
+
181
+ theta'(t) = omega(t)
182
+ omega'(t) = -b*omega(t) - c*sin(theta(t))
183
+
184
+ Let `y` be the vector [`theta`, `omega`]. We implement this system
185
+ in Python as:
186
+
187
+ >>> import numpy as np
188
+ >>> def pend(y, t, b, c):
189
+ ... theta, omega = y
190
+ ... dydt = [omega, -b*omega - c*np.sin(theta)]
191
+ ... return dydt
192
+ ...
193
+
194
+ We assume the constants are `b` = 0.25 and `c` = 5.0:
195
+
196
+ >>> b = 0.25
197
+ >>> c = 5.0
198
+
199
+ For initial conditions, we assume the pendulum is nearly vertical
200
+ with `theta(0)` = `pi` - 0.1, and is initially at rest, so
201
+ `omega(0)` = 0. Then the vector of initial conditions is
202
+
203
+ >>> y0 = [np.pi - 0.1, 0.0]
204
+
205
+ We will generate a solution at 101 evenly spaced samples in the interval
206
+ 0 <= `t` <= 10. So our array of times is:
207
+
208
+ >>> t = np.linspace(0, 10, 101)
209
+
210
+ Call `odeint` to generate the solution. To pass the parameters
211
+ `b` and `c` to `pend`, we give them to `odeint` using the `args`
212
+ argument.
213
+
214
+ >>> from scipy.integrate import odeint
215
+ >>> sol = odeint(pend, y0, t, args=(b, c))
216
+
217
+ The solution is an array with shape (101, 2). The first column
218
+ is `theta(t)`, and the second is `omega(t)`. The following code
219
+ plots both components.
220
+
221
+ >>> import matplotlib.pyplot as plt
222
+ >>> plt.plot(t, sol[:, 0], 'b', label='theta(t)')
223
+ >>> plt.plot(t, sol[:, 1], 'g', label='omega(t)')
224
+ >>> plt.legend(loc='best')
225
+ >>> plt.xlabel('t')
226
+ >>> plt.grid()
227
+ >>> plt.show()
228
+ """
229
+
230
+ if ml is None:
231
+ ml = -1 # changed to zero inside function call
232
+ if mu is None:
233
+ mu = -1 # changed to zero inside function call
234
+
235
+ dt = np.diff(t)
236
+ if not ((dt >= 0).all() or (dt <= 0).all()):
237
+ raise ValueError("The values in t must be monotonically increasing "
238
+ "or monotonically decreasing; repeated values are "
239
+ "allowed.")
240
+
241
+ t = copy(t)
242
+ y0 = copy(y0)
243
+ output = _odepack.odeint(func, y0, t, args, Dfun, col_deriv, ml, mu,
244
+ full_output, rtol, atol, tcrit, h0, hmax, hmin,
245
+ ixpr, mxstep, mxhnil, mxordn, mxords,
246
+ int(bool(tfirst)))
247
+ if output[-1] < 0:
248
+ warning_msg = (f"{_msgs[output[-1]]} Run with full_output = 1 to "
249
+ f"get quantitative information.")
250
+ warnings.warn(warning_msg, ODEintWarning, stacklevel=2)
251
+ elif printmessg:
252
+ warning_msg = _msgs[output[-1]]
253
+ warnings.warn(warning_msg, ODEintWarning, stacklevel=2)
254
+
255
+ if full_output:
256
+ output[1]['message'] = _msgs[output[-1]]
257
+
258
+ output = output[:-1]
259
+ if len(output) == 1:
260
+ return output[0]
261
+ else:
262
+ return output