File size: 6,698 Bytes
71a0112 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from dataclasses import dataclass
from typing import List, Optional
import torchgen.api.types as api_types
from torchgen.api import cpp, structured
from torchgen.api.types import (
ArgName,
BaseCppType,
BaseCType,
Binding,
ConstRefCType,
CType,
NamedCType,
scalarT,
)
from torchgen.model import (
Argument,
BaseTy,
BaseType,
DispatchKey,
FunctionSchema,
NativeFunctionsGroup,
Type,
)
def schema_kernel_name(func: FunctionSchema, dispatch_key: DispatchKey) -> str:
assert func.is_out_fn(), "ufunc.kernel_name should only be invoked on out schemas"
return f"ufunc_{func.name.name}_{dispatch_key}"
def kernel_name(g: NativeFunctionsGroup, dispatch_key: DispatchKey) -> str:
return schema_kernel_name(g.out.func, dispatch_key)
# Tensors are omitted (as they are stored in TensorIterator), everything else is
# passed along (technically, we can pass tensors along too, it just wastes
# argument registers)
#
# NB: used for CPU only
def dispatchstub_type(t: Type, *, binds: ArgName) -> Optional[NamedCType]:
# Dispatch stubs are always plain ints
r = cpp.valuetype_type(t, binds=binds, symint=False)
if r is not None:
return r
if t == BaseType(BaseTy.Scalar):
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
elif t == BaseType(BaseTy.Tensor):
return None
else:
raise AssertionError(f"unrecognized type {repr(t)}")
def opmath_type(scalar_t: BaseCppType) -> BaseCppType:
if scalar_t == api_types.scalar_t:
return api_types.opmath_t
raise NotImplementedError
# NB: Tensors in constructor are stored in opmath_t, not scalar_t
# because Tensor in constructor = its a scalar tensor partially applied =
# it can be higher precision and we want to compute in that higher precision
#
# NB: CUDA only
def ufunctor_ctor_type(t: Type, *, binds: ArgName, scalar_t: BaseCppType) -> NamedCType:
r = cpp.valuetype_type(t, binds=binds, symint=False)
if r is not None:
return r
if t == BaseType(BaseTy.Scalar):
return NamedCType(binds, BaseCType(opmath_type(scalar_t)))
elif t == BaseType(BaseTy.Tensor):
return NamedCType(binds, BaseCType(opmath_type(scalar_t)))
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Only Tensors ever get passed directly to operator()
#
# NB: CUDA only
# (Actually, this works for CPU too)
def ufunctor_apply_type(
t: Type, *, binds: ArgName, scalar_t: BaseCppType
) -> NamedCType:
if t == BaseType(BaseTy.Tensor):
return NamedCType(binds, BaseCType(scalar_t))
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# The actual ufunc template function the user writes. Everything here
# is done in the computation type. compute_t is opmath_t in CUDA and scalar_t
# in CPU
def ufunc_type(t: Type, *, binds: ArgName, compute_t: CType) -> NamedCType:
r = cpp.valuetype_type(t, binds=binds, symint=False)
if r is not None:
return r
if t == BaseType(BaseTy.Scalar):
return NamedCType(binds, compute_t)
elif t == BaseType(BaseTy.Tensor):
return NamedCType(binds, compute_t)
else:
raise AssertionError(f"unrecognized type {repr(t)}")
def ufunctor_ctor_argument(a: Argument, scalar_t: BaseCppType) -> Binding:
return Binding(
nctype=ufunctor_ctor_type(a.type, binds=a.name, scalar_t=scalar_t),
name=a.name,
default=None,
argument=a,
)
def ufunctor_apply_argument(a: Argument, scalar_t: BaseCppType) -> Binding:
return Binding(
nctype=ufunctor_apply_type(a.type, binds=a.name, scalar_t=scalar_t),
name=a.name,
default=None,
argument=a,
)
def ufunc_argument(a: Argument, compute_t: CType) -> Binding:
return Binding(
nctype=ufunc_type(a.type, binds=a.name, compute_t=compute_t),
name=a.name,
default=None,
argument=a,
)
@dataclass(frozen=True)
class UfunctorBindings:
ctor: List[Binding]
apply: List[Binding]
# ufunctors are a CUDA-only concept representing functors that take some of
# their arguments on a host-side constructor, and the rest in the device-side
# apply. E.g.,
#
# template <typename scalar_t>
# struct CUDAFunctorOnSelf_add {
# using opmath_t = at::opmath_type<scalar_t>;
# opmath_t other_;
# opmath_t alpha_;
# CUDAFunctorOnSelf_add(opmath_t other, opmath_t alpha) : other_(other), alpha_(alpha) {}
# __device__ scalar_t operator()(scalar_t self) {
# return ufunc::add(static_cast<opmath_t>(self), other_, alpha_);
# }
# };
#
# The ctor refers to the constructor CUDAFunctorOnSelf_add, while apply refers
# to the operator() definition
def ufunctor_arguments(
g: NativeFunctionsGroup, *, scalar_tensor_idx: Optional[int], scalar_t: BaseCppType
) -> UfunctorBindings:
ctor = []
apply = []
for a in g.functional.func.arguments.flat_non_out:
if a.type.is_tensor_like():
if scalar_tensor_idx == 0:
# put it in the ctor anyway
ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t))
scalar_tensor_idx = None
else:
if scalar_tensor_idx is not None:
scalar_tensor_idx -= 1
apply.append(ufunctor_apply_argument(a, scalar_t=scalar_t))
else:
ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t))
assert scalar_tensor_idx is None
return UfunctorBindings(ctor=ctor, apply=apply)
# ufuncs are the inner loop template functions that you wrote in ufunc/add.h
# which do the actual computation in question. E.g.,
#
# template <typename T>
# C10_HOST_DEVICE T add(T self, T other, T alpha) __ubsan_ignore_undefined__ {
# return self + alpha * other;
# }
#
# In this file, we refer to T as compute_t which is bound by caller
def ufunc_arguments(g: NativeFunctionsGroup, *, compute_t: CType) -> List[Binding]:
return [
ufunc_argument(a, compute_t=compute_t)
for a in g.functional.func.arguments.flat_non_out
]
# Stubs are the DispatchStub trampolines that CPU kernels use to get to their
# vectorized versions. E.g.,
#
# using structured_binary_fn_alpha = void(*)(TensorIteratorBase&, const Scalar& alpha);
# DECLARE_DISPATCH(structured_binary_fn_alpha, add_stub);
def stub_arguments(g: NativeFunctionsGroup) -> List[Binding]:
# stubs drop all tensor arguments (they are implicit in the TensorIterator
# argument and keep everything else)
return [
r
for a in g.out.func.arguments.flat_non_out
if not a.type.is_tensor_like()
for r in structured.argument(a)
]
|