Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/autograd.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/cpp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/dispatcher.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/lazy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/meta.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/python.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/structured.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/translate.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/ufunc.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/unboxing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/cpp.py +467 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/dispatcher.py +118 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/functionalization.py +176 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/meta.py +12 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/native.py +153 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/python.py +1481 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/translate.py +430 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/ufunc.py +209 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/api/unboxing.py +248 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyNativeFunctions.h +19 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/LazyIr.h +19 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/MethodOperators.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeFunction.h +17 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterDispatchKey.cpp +54 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/BUILD.bazel +4 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/context.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_annotated_fn_args.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_autograd.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_autograd_functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_inplace_or_view_type.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_python_functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_trace_type.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_variable_factories.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_variable_type.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/load_derivatives.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/build.bzl +14 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/context.py +31 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_annotated_fn_args.py +129 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_inplace_or_view_type.py +613 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_python_functions.py +1377 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_factories.py +115 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_type.py +2164 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/load_derivatives.py +1011 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/ADInplaceOrViewType.cpp +35 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/Functions.cpp +20 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/Functions.h +51 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/TraceType.cpp +40 -0
- env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/VariableType.cpp +65 -0
env-llmeval/lib/python3.10/site-packages/torchgen/api/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/autograd.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/cpp.cpython-310.pyc
ADDED
Binary file (9.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/dispatcher.cpython-310.pyc
ADDED
Binary file (2.68 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/lazy.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/meta.cpython-310.pyc
ADDED
Binary file (417 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/python.cpython-310.pyc
ADDED
Binary file (27.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/structured.cpython-310.pyc
ADDED
Binary file (3.67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/translate.cpython-310.pyc
ADDED
Binary file (7.43 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/ufunc.cpython-310.pyc
ADDED
Binary file (4.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/__pycache__/unboxing.cpython-310.pyc
ADDED
Binary file (4.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/cpp.py
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Sequence, Set, Union
|
2 |
+
|
3 |
+
from torchgen import local
|
4 |
+
from torchgen.api.types import (
|
5 |
+
ArgName,
|
6 |
+
ArrayCType,
|
7 |
+
ArrayRefCType,
|
8 |
+
BaseCType,
|
9 |
+
BaseTypeToCppMapping,
|
10 |
+
Binding,
|
11 |
+
boolT,
|
12 |
+
ConstRefCType,
|
13 |
+
CType,
|
14 |
+
dimnameListT,
|
15 |
+
intArrayRefT,
|
16 |
+
iTensorListRefT,
|
17 |
+
ListCType,
|
18 |
+
longT,
|
19 |
+
MutRefCType,
|
20 |
+
NamedCType,
|
21 |
+
OptionalCType,
|
22 |
+
optionalIntArrayRefT,
|
23 |
+
optionalSymIntArrayRefT,
|
24 |
+
scalarT,
|
25 |
+
SpecialArgName,
|
26 |
+
symIntArrayRefT,
|
27 |
+
SymIntT,
|
28 |
+
tensorListT,
|
29 |
+
tensorOptionsT,
|
30 |
+
tensorT,
|
31 |
+
TupleCType,
|
32 |
+
VectorCType,
|
33 |
+
voidT,
|
34 |
+
)
|
35 |
+
from torchgen.model import (
|
36 |
+
Argument,
|
37 |
+
Arguments,
|
38 |
+
BaseTy,
|
39 |
+
BaseType,
|
40 |
+
FunctionSchema,
|
41 |
+
ListType,
|
42 |
+
NativeFunction,
|
43 |
+
OptionalType,
|
44 |
+
Return,
|
45 |
+
SelfArgument,
|
46 |
+
TensorOptionsArguments,
|
47 |
+
Type,
|
48 |
+
)
|
49 |
+
from torchgen.utils import assert_never
|
50 |
+
|
51 |
+
# This file describes the translation of JIT schema to the public C++
|
52 |
+
# API, which is what people use when they call functions like at::add.
|
53 |
+
#
|
54 |
+
# Prominent characteristics of the C++ API:
|
55 |
+
#
|
56 |
+
# - dtype, layout, device and pin_memory are collected into
|
57 |
+
# a single C++ type TensorOptions (the native functions API
|
58 |
+
# also has this, but tensor options is really most relevant
|
59 |
+
# for the C++ API; it makes calling kwarg factory functions
|
60 |
+
# pleasant)
|
61 |
+
#
|
62 |
+
# - defaulting lives here (in fact, the dispatcher is completely
|
63 |
+
# oblivious of defaults!)
|
64 |
+
#
|
65 |
+
# BTW: policy on name collisions: we try not to have types with
|
66 |
+
# collisions, but functions are fair game to collide
|
67 |
+
|
68 |
+
|
69 |
+
def name(
|
70 |
+
func: FunctionSchema,
|
71 |
+
*,
|
72 |
+
faithful_name_for_out_overloads: bool = False,
|
73 |
+
symint_overload: bool = False,
|
74 |
+
) -> str:
|
75 |
+
name = str(func.name.name)
|
76 |
+
if symint_overload:
|
77 |
+
name += "_symint"
|
78 |
+
if func.is_out_fn():
|
79 |
+
if faithful_name_for_out_overloads:
|
80 |
+
name += "_outf"
|
81 |
+
else:
|
82 |
+
name += "_out"
|
83 |
+
|
84 |
+
return name
|
85 |
+
|
86 |
+
|
87 |
+
# Translation of "value types" in JIT schema to C++ API type. Value
|
88 |
+
# types look the same no matter if they are argument types or return
|
89 |
+
# types. Returns None if the type in question is not a value type.
|
90 |
+
def valuetype_type(
|
91 |
+
t: Type,
|
92 |
+
*,
|
93 |
+
binds: ArgName,
|
94 |
+
remove_non_owning_ref_types: bool = False,
|
95 |
+
symint: bool = False,
|
96 |
+
) -> Optional[NamedCType]:
|
97 |
+
if isinstance(t, BaseType):
|
98 |
+
if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar:
|
99 |
+
return None
|
100 |
+
elif str(t) == "SymInt":
|
101 |
+
if symint:
|
102 |
+
return NamedCType(binds, BaseCType(SymIntT))
|
103 |
+
else:
|
104 |
+
return NamedCType(binds, BaseCType(longT))
|
105 |
+
if remove_non_owning_ref_types:
|
106 |
+
if t.name == BaseTy.str:
|
107 |
+
raise AssertionError(
|
108 |
+
"string ref->value conversion: not implemented yet"
|
109 |
+
)
|
110 |
+
# All other BaseType currently map directly to BaseCppTypes.
|
111 |
+
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name]))
|
112 |
+
elif isinstance(t, OptionalType):
|
113 |
+
elem = valuetype_type(t.elem, binds=binds, symint=symint)
|
114 |
+
if elem is None:
|
115 |
+
return None
|
116 |
+
return NamedCType(binds, OptionalCType(elem.type))
|
117 |
+
elif isinstance(t, ListType):
|
118 |
+
if str(t.elem) == "bool":
|
119 |
+
assert t.size is not None
|
120 |
+
return NamedCType(binds, ArrayCType(BaseCType(boolT), t.size))
|
121 |
+
else:
|
122 |
+
return None
|
123 |
+
else:
|
124 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
125 |
+
|
126 |
+
|
127 |
+
# Translation of types occurring in JIT arguments to a C++ argument type.
|
128 |
+
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
|
129 |
+
# For example, we'll return std::vector<int> instead of IntArrayRef.
|
130 |
+
# See Note [translation from C++ reference to value types]
|
131 |
+
def argumenttype_type(
|
132 |
+
t: Type,
|
133 |
+
*,
|
134 |
+
mutable: bool,
|
135 |
+
binds: ArgName,
|
136 |
+
remove_non_owning_ref_types: bool = False,
|
137 |
+
symint: bool = False,
|
138 |
+
) -> NamedCType:
|
139 |
+
# If it's a value type, do the value type translation
|
140 |
+
r = valuetype_type(
|
141 |
+
t,
|
142 |
+
binds=binds,
|
143 |
+
symint=symint,
|
144 |
+
remove_non_owning_ref_types=remove_non_owning_ref_types,
|
145 |
+
)
|
146 |
+
if r is not None:
|
147 |
+
return r
|
148 |
+
|
149 |
+
if isinstance(t, BaseType):
|
150 |
+
if t.name == BaseTy.Tensor:
|
151 |
+
if mutable and not local.use_const_ref_for_mutable_tensors():
|
152 |
+
return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
|
153 |
+
else:
|
154 |
+
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
|
155 |
+
elif t.name == BaseTy.Scalar:
|
156 |
+
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
157 |
+
else:
|
158 |
+
raise AssertionError(f"base type should have been value type {t}")
|
159 |
+
elif isinstance(t, OptionalType):
|
160 |
+
if str(t.elem) == "Tensor":
|
161 |
+
if mutable and not local.use_const_ref_for_mutable_tensors():
|
162 |
+
return NamedCType(
|
163 |
+
binds, MutRefCType(BaseCType(tensorT))
|
164 |
+
) # TODO: fix this discrepancy
|
165 |
+
else:
|
166 |
+
return NamedCType(
|
167 |
+
binds, ConstRefCType(OptionalCType(BaseCType(tensorT)))
|
168 |
+
)
|
169 |
+
elif str(t.elem) == "Scalar":
|
170 |
+
return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
|
171 |
+
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
|
172 |
+
return NamedCType(binds, BaseCType(optionalIntArrayRefT))
|
173 |
+
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "SymInt":
|
174 |
+
if symint:
|
175 |
+
return NamedCType(binds, BaseCType(optionalSymIntArrayRefT))
|
176 |
+
else:
|
177 |
+
return NamedCType(binds, BaseCType(optionalIntArrayRefT))
|
178 |
+
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds, symint=symint)
|
179 |
+
return NamedCType(binds, OptionalCType(elem.type))
|
180 |
+
elif isinstance(t, ListType):
|
181 |
+
# TODO: remove these special cases, ArrayRef fallthrough works fine
|
182 |
+
if str(t.elem) == "int":
|
183 |
+
if remove_non_owning_ref_types:
|
184 |
+
return NamedCType(binds, VectorCType(BaseCType(longT)))
|
185 |
+
else:
|
186 |
+
return NamedCType(binds, BaseCType(intArrayRefT))
|
187 |
+
if str(t.elem) == "SymInt":
|
188 |
+
if remove_non_owning_ref_types:
|
189 |
+
if symint:
|
190 |
+
return NamedCType(binds, VectorCType(BaseCType(SymIntT)))
|
191 |
+
else:
|
192 |
+
return NamedCType(binds, VectorCType(BaseCType(longT)))
|
193 |
+
else:
|
194 |
+
if symint:
|
195 |
+
return NamedCType(binds, BaseCType(symIntArrayRefT))
|
196 |
+
else:
|
197 |
+
return NamedCType(binds, BaseCType(intArrayRefT))
|
198 |
+
if str(t.elem) == "Tensor":
|
199 |
+
if local.use_ilistref_for_tensor_lists():
|
200 |
+
return NamedCType(binds, ConstRefCType(BaseCType(iTensorListRefT)))
|
201 |
+
else:
|
202 |
+
return NamedCType(binds, BaseCType(tensorListT))
|
203 |
+
elif str(t.elem) == "Scalar":
|
204 |
+
return NamedCType(binds, ArrayRefCType(BaseCType(scalarT)))
|
205 |
+
elif str(t.elem) == "Dimname":
|
206 |
+
return NamedCType(binds, BaseCType(dimnameListT))
|
207 |
+
elif str(t.elem) == "Tensor?":
|
208 |
+
return NamedCType(
|
209 |
+
binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT))))
|
210 |
+
)
|
211 |
+
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds, symint=symint)
|
212 |
+
return NamedCType(binds, ArrayRefCType(elem.type))
|
213 |
+
else:
|
214 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
215 |
+
|
216 |
+
|
217 |
+
# Translate a JIT argument into its C++ type
|
218 |
+
def argument_type(a: Argument, *, binds: ArgName, symint: bool = False) -> NamedCType:
|
219 |
+
return argumenttype_type(a.type, mutable=a.is_write, symint=symint, binds=binds)
|
220 |
+
|
221 |
+
|
222 |
+
# Translation of a (non-multi) return type from JIT to C++
|
223 |
+
# N.B: returntype_type returns a CType, not a NamedCType.
|
224 |
+
# This is mostly because of the mismatch between return types and return names.
|
225 |
+
# e.g. a function with a return type of 'void' has 0 return names,
|
226 |
+
# and a function with a return type of 'std::tuple' has >1 return name.
|
227 |
+
def returntype_type(t: Type, *, mutable: bool, symint: bool = False) -> CType:
|
228 |
+
# placeholder is ignored
|
229 |
+
# NB: symint is ALWAYS respected for return types. So symint argument
|
230 |
+
# here is IGNORED
|
231 |
+
r = valuetype_type(t, binds="__placeholder__", symint=True)
|
232 |
+
if r is not None:
|
233 |
+
return r.type
|
234 |
+
|
235 |
+
if isinstance(t, BaseType):
|
236 |
+
if t.name == BaseTy.Tensor:
|
237 |
+
if mutable:
|
238 |
+
if local.use_const_ref_for_mutable_tensors():
|
239 |
+
return ConstRefCType(BaseCType(tensorT))
|
240 |
+
else:
|
241 |
+
return MutRefCType(BaseCType(tensorT))
|
242 |
+
else:
|
243 |
+
# Note [Tensor Copy Returns]
|
244 |
+
# Currently, we use "Argument.is_write" to determine
|
245 |
+
# whether or not Tensor return types should be copies or references.
|
246 |
+
# If that ever changes, take a look at other locations of this note!
|
247 |
+
return BaseCType(tensorT)
|
248 |
+
elif t.name == BaseTy.Scalar:
|
249 |
+
return BaseCType(scalarT)
|
250 |
+
elif isinstance(t, ListType):
|
251 |
+
assert (
|
252 |
+
not mutable
|
253 |
+
), "Native functions should never return a mutable tensor list. They should return void."
|
254 |
+
elem = returntype_type(t.elem, mutable=False)
|
255 |
+
assert t.size is None, f"fixed size list returns not supported: {t}"
|
256 |
+
return VectorCType(elem)
|
257 |
+
elif isinstance(t, OptionalType):
|
258 |
+
elem = returntype_type(t.elem, mutable=mutable)
|
259 |
+
if str(t.elem) == "Tensor":
|
260 |
+
return OptionalCType(elem)
|
261 |
+
|
262 |
+
raise AssertionError(f"unrecognized return type {t}")
|
263 |
+
|
264 |
+
|
265 |
+
# Translation of a single return to its C++ type
|
266 |
+
def return_type(r: Return, *, symint: bool = False) -> CType:
|
267 |
+
return returntype_type(r.type, mutable=r.is_write, symint=symint)
|
268 |
+
|
269 |
+
|
270 |
+
# Translation of a full (possibly multi) return from JIT to its C++ type
|
271 |
+
def returns_type(rs: Sequence[Return], *, symint: bool = False) -> CType:
|
272 |
+
if len(rs) == 0:
|
273 |
+
return BaseCType(voidT)
|
274 |
+
elif len(rs) == 1:
|
275 |
+
return return_type(rs[0], symint=symint)
|
276 |
+
else:
|
277 |
+
return TupleCType([return_type(r, symint=symint) for r in rs])
|
278 |
+
|
279 |
+
|
280 |
+
def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]:
|
281 |
+
returns: List[str] = []
|
282 |
+
for i, r in enumerate(f.func.returns):
|
283 |
+
# If we have an inplace function, the return argument is
|
284 |
+
# implicitly named self.
|
285 |
+
# TODO: Consider incorporating this into the data model
|
286 |
+
if f.func.name.name.inplace:
|
287 |
+
assert i == 0, "illegal inplace function with multiple returns"
|
288 |
+
name = "self"
|
289 |
+
# If we are out function, the name is the name of the
|
290 |
+
# corresponding output function (r.name will get recorded
|
291 |
+
# in field_name later.)
|
292 |
+
elif f.func.is_out_fn():
|
293 |
+
name = f.func.arguments.out[i].name
|
294 |
+
# If the return argument is explicitly named...
|
295 |
+
elif r.name:
|
296 |
+
name_conflict = any(
|
297 |
+
r.name == a.name for a in f.func.schema_order_arguments()
|
298 |
+
)
|
299 |
+
if name_conflict and not f.func.is_out_fn():
|
300 |
+
name = f"{r.name}_return"
|
301 |
+
else:
|
302 |
+
name = r.name
|
303 |
+
# If there is no explicit name and no fallback name was passed in, we just name the output result,
|
304 |
+
# unless it's a multi-return, in which case it's result0,
|
305 |
+
# result1, etc (zero-indexed)
|
306 |
+
else:
|
307 |
+
name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}"
|
308 |
+
returns.append(name)
|
309 |
+
return returns
|
310 |
+
|
311 |
+
|
312 |
+
JIT_TO_CPP_DEFAULT = {
|
313 |
+
"False": "false",
|
314 |
+
"True": "true",
|
315 |
+
"None": "c10::nullopt", # UGH this one is type directed
|
316 |
+
"Mean": "at::Reduction::Mean",
|
317 |
+
"[]": "{}",
|
318 |
+
"contiguous_format": "MemoryFormat::Contiguous",
|
319 |
+
"long": "at::kLong",
|
320 |
+
}
|
321 |
+
|
322 |
+
|
323 |
+
# Convert a JIT default into C++ expression representing the default
|
324 |
+
def default_expr(d: str, t: Type, *, symint: bool) -> str:
|
325 |
+
if d == "None" and str(t) == "Tensor?":
|
326 |
+
return "{}"
|
327 |
+
if isinstance(t, BaseType) and t.name is BaseTy.str:
|
328 |
+
# Schema allows single quotes but C++ needs double
|
329 |
+
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
|
330 |
+
s = ""
|
331 |
+
i = 1
|
332 |
+
while i + 1 < len(d):
|
333 |
+
if d[i] != "\\":
|
334 |
+
if d[i] == '"':
|
335 |
+
s += '\\"'
|
336 |
+
else:
|
337 |
+
s += d[i]
|
338 |
+
i += 1
|
339 |
+
else:
|
340 |
+
if d[i + 1] == "'":
|
341 |
+
s += "'"
|
342 |
+
else:
|
343 |
+
s += d[i : i + 2]
|
344 |
+
i += 2
|
345 |
+
|
346 |
+
return f'"{s}"'
|
347 |
+
|
348 |
+
if isinstance(t, OptionalType):
|
349 |
+
if d == "None":
|
350 |
+
return "c10::nullopt"
|
351 |
+
|
352 |
+
return default_expr(d, t.elem, symint=symint)
|
353 |
+
|
354 |
+
if isinstance(t, ListType):
|
355 |
+
if d.startswith("[") and d.endswith("]"):
|
356 |
+
return "{" + d[1:-1] + "}"
|
357 |
+
elif symint and d.isdigit() and str(t.elem) == "SymInt":
|
358 |
+
return f"c10::SymInt({d})"
|
359 |
+
elif t.size is None:
|
360 |
+
# NOTE: Sized lists can have scalar defaults
|
361 |
+
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
|
362 |
+
|
363 |
+
return JIT_TO_CPP_DEFAULT.get(d, d)
|
364 |
+
|
365 |
+
|
366 |
+
# Convert an argument into its C++ API form
|
367 |
+
|
368 |
+
|
369 |
+
def argument(
|
370 |
+
a: Union[Argument, TensorOptionsArguments, SelfArgument],
|
371 |
+
*,
|
372 |
+
cpp_no_default_args: Set[str],
|
373 |
+
method: bool,
|
374 |
+
faithful: bool,
|
375 |
+
symint: bool = False,
|
376 |
+
has_tensor_options: bool,
|
377 |
+
) -> List[Binding]:
|
378 |
+
def sub_argument(
|
379 |
+
a: Union[Argument, TensorOptionsArguments, SelfArgument]
|
380 |
+
) -> List[Binding]:
|
381 |
+
return argument(
|
382 |
+
a,
|
383 |
+
cpp_no_default_args=cpp_no_default_args,
|
384 |
+
method=method,
|
385 |
+
faithful=faithful,
|
386 |
+
symint=symint,
|
387 |
+
has_tensor_options=has_tensor_options,
|
388 |
+
)
|
389 |
+
|
390 |
+
if isinstance(a, Argument):
|
391 |
+
binds: ArgName
|
392 |
+
if a.name == "memory_format" and has_tensor_options:
|
393 |
+
binds = SpecialArgName.possibly_redundant_memory_format
|
394 |
+
else:
|
395 |
+
binds = a.name
|
396 |
+
default: Optional[str] = None
|
397 |
+
if a.name not in cpp_no_default_args and a.default is not None:
|
398 |
+
default = default_expr(a.default, a.type, symint=symint)
|
399 |
+
return [
|
400 |
+
Binding(
|
401 |
+
nctype=argument_type(a, binds=binds, symint=symint),
|
402 |
+
name=a.name,
|
403 |
+
default=default,
|
404 |
+
argument=a,
|
405 |
+
)
|
406 |
+
]
|
407 |
+
elif isinstance(a, TensorOptionsArguments):
|
408 |
+
if faithful:
|
409 |
+
return (
|
410 |
+
sub_argument(a.dtype)
|
411 |
+
+ sub_argument(a.layout)
|
412 |
+
+ sub_argument(a.device)
|
413 |
+
+ sub_argument(a.pin_memory)
|
414 |
+
)
|
415 |
+
else:
|
416 |
+
default = None
|
417 |
+
# Enforced by NativeFunction.__post_init__
|
418 |
+
assert "options" not in cpp_no_default_args
|
419 |
+
if all(x.default == "None" for x in a.all()):
|
420 |
+
default = "{}"
|
421 |
+
elif a.dtype.default == "long":
|
422 |
+
default = "at::kLong" # TODO: this is wrong
|
423 |
+
return [
|
424 |
+
Binding(
|
425 |
+
nctype=NamedCType("options", BaseCType(tensorOptionsT)),
|
426 |
+
name="options",
|
427 |
+
default=default,
|
428 |
+
argument=a,
|
429 |
+
)
|
430 |
+
]
|
431 |
+
elif isinstance(a, SelfArgument):
|
432 |
+
if method:
|
433 |
+
# Caller is responsible for installing implicit this in context!
|
434 |
+
return []
|
435 |
+
else:
|
436 |
+
return sub_argument(a.argument)
|
437 |
+
else:
|
438 |
+
assert_never(a)
|
439 |
+
|
440 |
+
|
441 |
+
def arguments(
|
442 |
+
arguments: Arguments,
|
443 |
+
*,
|
444 |
+
faithful: bool,
|
445 |
+
symint: bool = False,
|
446 |
+
method: bool,
|
447 |
+
cpp_no_default_args: Set[str],
|
448 |
+
) -> List[Binding]:
|
449 |
+
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
450 |
+
if faithful:
|
451 |
+
args.extend(arguments.non_out)
|
452 |
+
args.extend(arguments.out)
|
453 |
+
else:
|
454 |
+
args.extend(arguments.out)
|
455 |
+
args.extend(arguments.non_out)
|
456 |
+
return [
|
457 |
+
r.no_default() if faithful else r
|
458 |
+
for a in args
|
459 |
+
for r in argument(
|
460 |
+
a,
|
461 |
+
faithful=faithful,
|
462 |
+
symint=symint,
|
463 |
+
method=method,
|
464 |
+
has_tensor_options=arguments.tensor_options is not None,
|
465 |
+
cpp_no_default_args=cpp_no_default_args,
|
466 |
+
)
|
467 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/dispatcher.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from typing import List, Sequence, Union
|
3 |
+
|
4 |
+
from torchgen.api import cpp
|
5 |
+
|
6 |
+
from torchgen.api.types import ArgName, Binding, CType, NamedCType
|
7 |
+
from torchgen.model import (
|
8 |
+
Argument,
|
9 |
+
FunctionSchema,
|
10 |
+
Return,
|
11 |
+
SelfArgument,
|
12 |
+
TensorOptionsArguments,
|
13 |
+
Type,
|
14 |
+
)
|
15 |
+
from torchgen.utils import assert_never, concatMap
|
16 |
+
|
17 |
+
# This file describes the translation of JIT schema to the dispatcher
|
18 |
+
# API, the *unboxed* calling convention by which invocations through
|
19 |
+
# the dispatcher are made. Historically, the dispatcher API matched
|
20 |
+
# the C++ API, but with the establishment of the boxed API, we've
|
21 |
+
# made changes to the dispatcher API to so that the unboxed API
|
22 |
+
# better aligns with the boxed API. The dispatcher API hooks heavily
|
23 |
+
# into our template based boxing/unboxing machinery, so changes
|
24 |
+
# to this convention will usually need template updates too.
|
25 |
+
#
|
26 |
+
# Prominent characteristics of the dispatcher API:
|
27 |
+
#
|
28 |
+
# - dtype, layout, device and pin_memory are represented as separate
|
29 |
+
# arguments.
|
30 |
+
#
|
31 |
+
|
32 |
+
|
33 |
+
def name(func: FunctionSchema) -> str:
|
34 |
+
return cpp.name(func)
|
35 |
+
|
36 |
+
|
37 |
+
def argumenttype_type(
|
38 |
+
t: Type,
|
39 |
+
*,
|
40 |
+
mutable: bool,
|
41 |
+
binds: ArgName,
|
42 |
+
remove_non_owning_ref_types: bool = False,
|
43 |
+
symint: bool = True,
|
44 |
+
) -> NamedCType:
|
45 |
+
# This is a faux amis. If it makes sense in the future to add
|
46 |
+
# more special cases here, or invert things so cpp.argument_type
|
47 |
+
# calls this, or just completely inline the function, please do
|
48 |
+
# it.
|
49 |
+
return cpp.argumenttype_type(
|
50 |
+
t,
|
51 |
+
mutable=mutable,
|
52 |
+
binds=binds,
|
53 |
+
symint=symint,
|
54 |
+
remove_non_owning_ref_types=remove_non_owning_ref_types,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def argument_type(
|
59 |
+
a: Argument,
|
60 |
+
*,
|
61 |
+
binds: ArgName,
|
62 |
+
remove_non_owning_ref_types: bool = False,
|
63 |
+
symint: bool = True,
|
64 |
+
) -> NamedCType:
|
65 |
+
return argumenttype_type(
|
66 |
+
a.type,
|
67 |
+
mutable=a.is_write,
|
68 |
+
binds=binds,
|
69 |
+
remove_non_owning_ref_types=remove_non_owning_ref_types,
|
70 |
+
symint=symint,
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
def returns_type(rs: Sequence[Return], *, symint: bool = True) -> CType:
|
75 |
+
# At present, there is no difference. But there could be!
|
76 |
+
return cpp.returns_type(rs, symint=symint)
|
77 |
+
|
78 |
+
|
79 |
+
def jit_arguments(func: FunctionSchema) -> List[Argument]:
|
80 |
+
def to_argument(
|
81 |
+
a: Union[Argument, TensorOptionsArguments, SelfArgument]
|
82 |
+
) -> List[Argument]:
|
83 |
+
if isinstance(a, Argument):
|
84 |
+
return [a]
|
85 |
+
elif isinstance(a, SelfArgument):
|
86 |
+
return [a.argument]
|
87 |
+
elif isinstance(a, TensorOptionsArguments):
|
88 |
+
return [a.dtype, a.layout, a.device, a.pin_memory]
|
89 |
+
else:
|
90 |
+
assert_never(a)
|
91 |
+
|
92 |
+
return list(
|
93 |
+
concatMap(
|
94 |
+
to_argument,
|
95 |
+
itertools.chain(
|
96 |
+
func.arguments.positional, func.arguments.kwarg_only, func.arguments.out
|
97 |
+
),
|
98 |
+
)
|
99 |
+
)
|
100 |
+
|
101 |
+
|
102 |
+
def argument(
|
103 |
+
a: Argument, *, remove_non_owning_ref_types: bool = False, symint: bool = True
|
104 |
+
) -> Binding:
|
105 |
+
return Binding(
|
106 |
+
nctype=argument_type(
|
107 |
+
a,
|
108 |
+
binds=a.name,
|
109 |
+
remove_non_owning_ref_types=remove_non_owning_ref_types,
|
110 |
+
symint=symint,
|
111 |
+
),
|
112 |
+
name=a.name,
|
113 |
+
argument=a,
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
def arguments(func: FunctionSchema, *, symint: bool = True) -> List[Binding]:
|
118 |
+
return [argument(a, symint=symint) for a in jit_arguments(func)]
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/functionalization.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
from torchgen.api import dispatcher
|
4 |
+
from torchgen.api.types import (
|
5 |
+
BaseCType,
|
6 |
+
Binding,
|
7 |
+
boolT,
|
8 |
+
ConstRefCType,
|
9 |
+
CType,
|
10 |
+
longT,
|
11 |
+
NamedCType,
|
12 |
+
tensorT,
|
13 |
+
)
|
14 |
+
from torchgen.model import (
|
15 |
+
Argument,
|
16 |
+
BaseTy,
|
17 |
+
BaseType,
|
18 |
+
FunctionSchema,
|
19 |
+
NativeFunctionsViewGroup,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
# This file describes the translation of JIT schema to API's used
|
24 |
+
# when creating view lambdas that are used by the functionalization pass.
|
25 |
+
# There are two types of lambdas: forward lambdas and reverse lambdas.
|
26 |
+
# These API's mostly follow the dispatcher API, with a few quirks:
|
27 |
+
# - The lambda capture has to convert reference types to value types
|
28 |
+
# - While the forward lambda just directly calls into the at::_ops API
|
29 |
+
# (following the dispatcher convention), the logic here for the reverse lambda
|
30 |
+
# is responsible for generating both the call-site, and the declarations
|
31 |
+
# (which are implemented manually in the at::functionalization::impl namespace).
|
32 |
+
|
33 |
+
# The lambdas generated for each view op in the functionalization pass are of the form
|
34 |
+
# [capture_arguments](outer_arguments) -> returns_type {
|
35 |
+
# return name(inner_arguments);
|
36 |
+
# }
|
37 |
+
|
38 |
+
# Define some specific lambda input arguments.
|
39 |
+
base_binding = Binding(
|
40 |
+
name="base",
|
41 |
+
nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))),
|
42 |
+
argument=Argument(
|
43 |
+
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
|
44 |
+
),
|
45 |
+
default=None,
|
46 |
+
)
|
47 |
+
mutated_view_binding = Binding(
|
48 |
+
name="mutated_view",
|
49 |
+
nctype=NamedCType(name="mutated_view", type=ConstRefCType(BaseCType(tensorT))),
|
50 |
+
argument=Argument(
|
51 |
+
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
|
52 |
+
),
|
53 |
+
default=None,
|
54 |
+
)
|
55 |
+
mutated_view_idx_binding = Binding(
|
56 |
+
name="mutated_view_idx",
|
57 |
+
nctype=NamedCType(name="mutated_view_idx", type=BaseCType(longT)),
|
58 |
+
argument=Argument(
|
59 |
+
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
|
60 |
+
),
|
61 |
+
default=None,
|
62 |
+
)
|
63 |
+
reapply_views_binding = Binding(
|
64 |
+
name="reapply_views",
|
65 |
+
nctype=NamedCType(name="reapply_views", type=BaseCType(boolT)),
|
66 |
+
argument=Argument(
|
67 |
+
name="reapply_views", type=BaseType(BaseTy.bool), default=None, annotation=None
|
68 |
+
),
|
69 |
+
default=None,
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
# The lambda capture itself doesn't have a name.
|
74 |
+
# The name returned here corresponds to the name of the inner function called by the lambda.
|
75 |
+
def name(
|
76 |
+
g: NativeFunctionsViewGroup,
|
77 |
+
*,
|
78 |
+
is_reverse: bool,
|
79 |
+
include_namespace: bool,
|
80 |
+
reapply_views: Optional[bool] = None,
|
81 |
+
) -> str:
|
82 |
+
if reapply_views is None:
|
83 |
+
# reapply_views is only important for the fwd lambda,
|
84 |
+
# since we always plumb the runtime "reapply_views" argument into the reverse function.
|
85 |
+
assert is_reverse
|
86 |
+
if is_reverse:
|
87 |
+
# for the reverse: the name of the inverse function always involves "view_copy",
|
88 |
+
# and we plumb the "reapply_views" flag into that function.
|
89 |
+
# (We could avoid doing that, but that would require writing out twice as many view inverse functions).
|
90 |
+
assert g.view_copy is not None
|
91 |
+
api_name = g.view_copy.func.name.unambiguous_name()
|
92 |
+
# in the reverse case, we codegen both the call-sites (which need the full namespace) and the declarations (which don't)
|
93 |
+
if include_namespace:
|
94 |
+
return f"at::functionalization::FunctionalInverses::{api_name}_inverse"
|
95 |
+
else:
|
96 |
+
return f"{api_name}_inverse"
|
97 |
+
# in the forward case, we just directly call into the at::_ops API (so we always need the namespace)
|
98 |
+
assert include_namespace
|
99 |
+
assert g.view_copy is not None
|
100 |
+
api_name = (
|
101 |
+
g.view.func.name.unambiguous_name()
|
102 |
+
if reapply_views
|
103 |
+
else g.view_copy.func.name.unambiguous_name()
|
104 |
+
)
|
105 |
+
return f"at::_ops::{api_name}::call"
|
106 |
+
|
107 |
+
|
108 |
+
def capture_arguments(func: FunctionSchema, *, is_reverse: bool) -> List[Binding]:
|
109 |
+
# capture arguments include all arguments except `self`.
|
110 |
+
# Importantly, they don't include any C++ reference types (or else we'll get a dangling reference in the capture),
|
111 |
+
# So any reference types (IntArrayRef) need to be converted to value types (vector<int64_t>)
|
112 |
+
args = func.arguments.flat_all
|
113 |
+
assert args[0].type == BaseType(BaseTy.Tensor)
|
114 |
+
non_self_args = args[1:]
|
115 |
+
non_self_value_bindings = [
|
116 |
+
dispatcher.argument(a, remove_non_owning_ref_types=True) for a in non_self_args
|
117 |
+
]
|
118 |
+
all_bindings = [reapply_views_binding] + non_self_value_bindings
|
119 |
+
return all_bindings
|
120 |
+
|
121 |
+
|
122 |
+
def returns_type(func: FunctionSchema) -> CType:
|
123 |
+
# Assertion: all view ops return tensor-like outputs
|
124 |
+
assert len(func.returns) >= 1
|
125 |
+
for ret in func.returns:
|
126 |
+
assert ret.type.is_tensor_like()
|
127 |
+
# However, the return type of the lambda is always an individual tensor.
|
128 |
+
# For multi-tensor outputs, each tensor needs to be tracked individually.
|
129 |
+
return BaseCType(tensorT)
|
130 |
+
|
131 |
+
|
132 |
+
def outer_arguments(*, is_reverse: bool) -> List[Binding]:
|
133 |
+
if is_reverse:
|
134 |
+
return [base_binding, mutated_view_binding, mutated_view_idx_binding]
|
135 |
+
else:
|
136 |
+
return [base_binding, mutated_view_idx_binding]
|
137 |
+
|
138 |
+
|
139 |
+
def inner_call_index(func: FunctionSchema) -> Optional[Binding]:
|
140 |
+
# For view ops that return multiple tensors (like `split`), we generate a separate lambda for each output.
|
141 |
+
# When we replay a view op that returns multiple tensors, we need to index into the output appropriately
|
142 |
+
if len(func.returns) > 1 or (
|
143 |
+
len(func.returns) == 1 and func.returns[0].type.is_list_like()
|
144 |
+
):
|
145 |
+
return mutated_view_idx_binding
|
146 |
+
return None
|
147 |
+
|
148 |
+
|
149 |
+
def inner_arguments(func: FunctionSchema, is_reverse: bool) -> List[Binding]:
|
150 |
+
args = func.arguments.flat_all
|
151 |
+
assert args[0].type == BaseType(BaseTy.Tensor)
|
152 |
+
non_self_args = args[1:]
|
153 |
+
# The forward lambda calls the at::_ops API, while the reverse lambda calls the view inverse API.
|
154 |
+
# Both of these follow the dispatcher API.
|
155 |
+
non_self_bindings = [dispatcher.argument(a) for a in non_self_args]
|
156 |
+
if not is_reverse:
|
157 |
+
# the forward lambda swaps out the original tensor argument with the lambd arg "base"
|
158 |
+
return [base_binding] + non_self_bindings
|
159 |
+
else:
|
160 |
+
# the reverse lambda does the same, but with an additional "mutated_view" arg
|
161 |
+
# additionally, we have a calling convention: for view ops that return multiple tensor outputs
|
162 |
+
# their corresponding view_inverse function takes in an additional index argument.
|
163 |
+
index_binding = inner_call_index(func)
|
164 |
+
if index_binding is not None:
|
165 |
+
return [
|
166 |
+
base_binding,
|
167 |
+
mutated_view_binding,
|
168 |
+
reapply_views_binding,
|
169 |
+
index_binding,
|
170 |
+
] + non_self_bindings
|
171 |
+
else:
|
172 |
+
return [
|
173 |
+
base_binding,
|
174 |
+
mutated_view_binding,
|
175 |
+
reapply_views_binding,
|
176 |
+
] + non_self_bindings
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/meta.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchgen.model import NativeFunctionsGroup
|
2 |
+
|
3 |
+
# Follows dispatcher calling convention, but:
|
4 |
+
# - Mutable arguments not allowed. Meta functions are always
|
5 |
+
# written in functional form. Look at FunctionSchema.signature()
|
6 |
+
# - No tensor returns; instead we return a TensorMeta describing
|
7 |
+
# the tensor in question
|
8 |
+
|
9 |
+
|
10 |
+
def name(g: NativeFunctionsGroup) -> str:
|
11 |
+
# use the overload name from the functional version
|
12 |
+
return str(g.functional.func.name).replace(".", "_")
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/native.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Sequence, Union
|
2 |
+
|
3 |
+
from torchgen import local
|
4 |
+
from torchgen.api import cpp
|
5 |
+
|
6 |
+
from torchgen.api.types import (
|
7 |
+
ArgName,
|
8 |
+
BaseCType,
|
9 |
+
Binding,
|
10 |
+
boolT,
|
11 |
+
ConstRefCType,
|
12 |
+
CType,
|
13 |
+
deviceT,
|
14 |
+
layoutT,
|
15 |
+
ListCType,
|
16 |
+
MutRefCType,
|
17 |
+
NamedCType,
|
18 |
+
OptionalCType,
|
19 |
+
scalarT,
|
20 |
+
scalarTypeT,
|
21 |
+
tensorT,
|
22 |
+
)
|
23 |
+
from torchgen.model import (
|
24 |
+
Argument,
|
25 |
+
FunctionSchema,
|
26 |
+
Return,
|
27 |
+
SelfArgument,
|
28 |
+
TensorOptionsArguments,
|
29 |
+
Type,
|
30 |
+
)
|
31 |
+
from torchgen.utils import assert_never
|
32 |
+
|
33 |
+
# This file describes the translation of JIT schema to the native functions API.
|
34 |
+
# This looks a lot like the C++ API (which makes historical sense, because the
|
35 |
+
# idea was you wrote native functions to implement functions in the C++ API),
|
36 |
+
# but over time we have evolved the C++ API without actually changing our
|
37 |
+
# native:: kernels. The intention is to make native API and dispatcher API
|
38 |
+
# line up as closely as possible, since this results in the least overhead
|
39 |
+
# (no translation is needed from dispatcher API to native API).
|
40 |
+
#
|
41 |
+
# NB: this is symint aware, you will get the non-SymInt variant for some
|
42 |
+
# dispatch entries and SymInt for others.
|
43 |
+
|
44 |
+
|
45 |
+
def name(func: FunctionSchema) -> str:
|
46 |
+
name = str(func.name.name)
|
47 |
+
# TODO: delete this!
|
48 |
+
if func.is_out_fn():
|
49 |
+
name += "_out"
|
50 |
+
if func.name.overload_name:
|
51 |
+
name += f"_{func.name.overload_name}"
|
52 |
+
return name
|
53 |
+
|
54 |
+
|
55 |
+
def argumenttype_type(
|
56 |
+
t: Type, *, mutable: bool, binds: ArgName, symint: bool
|
57 |
+
) -> NamedCType:
|
58 |
+
if str(t) == "Tensor?":
|
59 |
+
tensor_type: OptionalCType = OptionalCType(BaseCType(tensorT))
|
60 |
+
if mutable and not local.use_const_ref_for_mutable_tensors():
|
61 |
+
return NamedCType(binds, MutRefCType(tensor_type))
|
62 |
+
else:
|
63 |
+
return NamedCType(binds, ConstRefCType(tensor_type))
|
64 |
+
elif str(t) == "Tensor?[]":
|
65 |
+
return NamedCType(
|
66 |
+
binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT))))
|
67 |
+
)
|
68 |
+
elif str(t) == "Scalar":
|
69 |
+
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
70 |
+
elif str(t) == "Scalar?":
|
71 |
+
return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
|
72 |
+
return cpp.argumenttype_type(t, mutable=mutable, binds=binds, symint=symint)
|
73 |
+
|
74 |
+
|
75 |
+
def returns_type(rs: Sequence[Return], *, symint: bool) -> CType:
|
76 |
+
return cpp.returns_type(rs, symint=symint)
|
77 |
+
|
78 |
+
|
79 |
+
def argument_type(a: Argument, *, binds: ArgName, symint: bool) -> NamedCType:
|
80 |
+
return argumenttype_type(a.type, mutable=a.is_write, binds=binds, symint=symint)
|
81 |
+
|
82 |
+
|
83 |
+
def argument(
|
84 |
+
a: Union[Argument, SelfArgument, TensorOptionsArguments],
|
85 |
+
*,
|
86 |
+
is_out: bool,
|
87 |
+
symint: bool,
|
88 |
+
) -> List[Binding]:
|
89 |
+
# Ideally, we NEVER default native functions. However, there are a number
|
90 |
+
# of functions that call native:: directly and rely on the defaulting
|
91 |
+
# existing. So for BC, we generate defaults for non-out variants (but not
|
92 |
+
# for out variants, where it is impossible to generate an appropriate
|
93 |
+
# default)
|
94 |
+
should_default = not is_out
|
95 |
+
if isinstance(a, Argument):
|
96 |
+
default: Optional[str] = None
|
97 |
+
if should_default and a.default is not None:
|
98 |
+
default = cpp.default_expr(a.default, a.type, symint=symint)
|
99 |
+
return [
|
100 |
+
Binding(
|
101 |
+
nctype=argument_type(a, binds=a.name, symint=symint),
|
102 |
+
name=a.name,
|
103 |
+
default=default,
|
104 |
+
argument=a,
|
105 |
+
)
|
106 |
+
]
|
107 |
+
elif isinstance(a, SelfArgument):
|
108 |
+
# Erase SelfArgument from the distinction
|
109 |
+
return argument(a.argument, is_out=is_out, symint=symint)
|
110 |
+
elif isinstance(a, TensorOptionsArguments):
|
111 |
+
default = None
|
112 |
+
if should_default:
|
113 |
+
default = "{}"
|
114 |
+
# TODO: Not sure why the arguments assigned here are for
|
115 |
+
# TensorOptionsArguments and not the constituent pieces. It seems
|
116 |
+
# to matter
|
117 |
+
return [
|
118 |
+
Binding(
|
119 |
+
nctype=NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))),
|
120 |
+
name="dtype",
|
121 |
+
default=default,
|
122 |
+
argument=a,
|
123 |
+
),
|
124 |
+
Binding(
|
125 |
+
nctype=NamedCType("layout", OptionalCType(BaseCType(layoutT))),
|
126 |
+
name="layout",
|
127 |
+
default=default,
|
128 |
+
argument=a,
|
129 |
+
),
|
130 |
+
Binding(
|
131 |
+
nctype=NamedCType("device", OptionalCType(BaseCType(deviceT))),
|
132 |
+
name="device",
|
133 |
+
default=default,
|
134 |
+
argument=a,
|
135 |
+
),
|
136 |
+
Binding(
|
137 |
+
nctype=NamedCType("pin_memory", OptionalCType(BaseCType(boolT))),
|
138 |
+
name="pin_memory",
|
139 |
+
default=default,
|
140 |
+
argument=a,
|
141 |
+
),
|
142 |
+
]
|
143 |
+
else:
|
144 |
+
assert_never(a)
|
145 |
+
|
146 |
+
|
147 |
+
def arguments(func: FunctionSchema, *, symint: bool) -> List[Binding]:
|
148 |
+
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
149 |
+
args.extend(func.arguments.non_out)
|
150 |
+
args.extend(func.arguments.out)
|
151 |
+
return [
|
152 |
+
r for arg in args for r in argument(arg, symint=symint, is_out=func.is_out_fn())
|
153 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/python.py
ADDED
@@ -0,0 +1,1481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict, List, Optional, Sequence, Set, Tuple, Union
|
3 |
+
|
4 |
+
from torchgen.api import cpp
|
5 |
+
|
6 |
+
from torchgen.api.types import Binding, CppSignature, CppSignatureGroup
|
7 |
+
from torchgen.gen import pythonify_default
|
8 |
+
from torchgen.model import (
|
9 |
+
Argument,
|
10 |
+
BaseTy,
|
11 |
+
BaseType,
|
12 |
+
FunctionSchema,
|
13 |
+
ListType,
|
14 |
+
NativeFunction,
|
15 |
+
OptionalType,
|
16 |
+
Return,
|
17 |
+
Type,
|
18 |
+
Variant,
|
19 |
+
)
|
20 |
+
|
21 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
22 |
+
#
|
23 |
+
# Data Models
|
24 |
+
#
|
25 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
26 |
+
#
|
27 |
+
# [Notes] python binding codegen
|
28 |
+
#
|
29 |
+
# The Python binding codegen produces code that takes the input list of
|
30 |
+
# PyObjects, finds the matching ATen C++ function using PythonArgParser,
|
31 |
+
# converts the PyObjects into C++ types and calls the ATen C++ function:
|
32 |
+
#
|
33 |
+
# +--------+ parsing +------------------------+ binding +-----------------------+
|
34 |
+
# | PyObjs | ---------> | PythonArgParser Output | ---------> | Cpp Function Dispatch |
|
35 |
+
# +--------+ +------------------------+ +-----------------------+
|
36 |
+
#
|
37 |
+
# The following examples demonstrate the data models the Python binding
|
38 |
+
# codegen needs to deal with and the tasks it needs to accomplish. It
|
39 |
+
# helps understand the purpose of the new data types we introduced below.
|
40 |
+
#
|
41 |
+
# - Function Schema (source of truth)
|
42 |
+
#
|
43 |
+
# aten::empty.names(int[] size, *, Dimname[]? names,
|
44 |
+
# ScalarType? dtype=None, Layout? layout=None,
|
45 |
+
# Device? device=None, bool? pin_memory=None,
|
46 |
+
# MemoryFormat? memory_format=None) -> Tensor
|
47 |
+
#
|
48 |
+
# - Python Signature
|
49 |
+
#
|
50 |
+
# It's used to generate input schema string for PythonArgParser.
|
51 |
+
# Note: TensorOptions fields are reordered and the additional
|
52 |
+
# 'requires_grad' field is added:
|
53 |
+
#
|
54 |
+
# empty(IntArrayRef size, *, DimnameList? names,
|
55 |
+
# MemoryFormat? memory_format=None, ScalarType dtype=None,
|
56 |
+
# Layout layout=torch.strided, Device device=None,
|
57 |
+
# bool pin_memory=False, bool requires_grad=False)
|
58 |
+
#
|
59 |
+
# - C++ Signature
|
60 |
+
#
|
61 |
+
# It's used to generate C++ lambda formals & dispatch call.
|
62 |
+
# Note: the scattered TensorOptions fields are packed into 'options'.
|
63 |
+
#
|
64 |
+
# auto dispatch_empty =
|
65 |
+
# [](IntArrayRef size, c10::optional<DimnameList> names,
|
66 |
+
# const TensorOptions & options,
|
67 |
+
# c10::optional<MemoryFormat> memory_format) -> Tensor {
|
68 |
+
# pybind11::gil_scoped_release no_gil;
|
69 |
+
# return torch::empty(size, names, options, memory_format);
|
70 |
+
# };
|
71 |
+
#
|
72 |
+
# - Binding between Python Arguments and C++ Arguments
|
73 |
+
#
|
74 |
+
# Given a set of Python Arguments in scope, we need produce the
|
75 |
+
# binding expressions that translate the Python API into C++ API:
|
76 |
+
#
|
77 |
+
# Python Args Cpp Args Binding Exprs
|
78 |
+
# -----------------------------------------------------------------
|
79 |
+
# 0: size size '_r.intlist(0)'
|
80 |
+
# 1: names names 'names' [special init]
|
81 |
+
# 2: memory_format -------+
|
82 |
+
# 3: dtype -----+-|--> options 'options' [special packing]
|
83 |
+
# 4: layout / |
|
84 |
+
# 5: device / +--> memory_format '_r.memoryformatOptional(2)'
|
85 |
+
# 6: pin_memory /
|
86 |
+
# 7: requires_grad -+
|
87 |
+
#
|
88 |
+
# So the full dispatch expression would look like:
|
89 |
+
#
|
90 |
+
# dispatch_empty(_r.intlist(0), names, options,
|
91 |
+
# _r.memoryformatOptional(2))
|
92 |
+
#
|
93 |
+
# Where does 'names' come from? It involves special local init:
|
94 |
+
#
|
95 |
+
# auto __names = _r.toDimnameListOptional(1);
|
96 |
+
# c10::optional<DimnameList> names =
|
97 |
+
# __names ? c10::make_optional(DimnameList(__names.value()))
|
98 |
+
# : c10::nullopt;
|
99 |
+
#
|
100 |
+
# Where does 'options' come from? It involves special local init
|
101 |
+
# for TensorOptions. Note that Python side has the additional
|
102 |
+
# 'requires_grad' field:
|
103 |
+
#
|
104 |
+
# const auto options = TensorOptions()
|
105 |
+
# .dtype(_r.scalartype(3))
|
106 |
+
# .device(_r.device(5))
|
107 |
+
# .layout(_r.layoutOptional(4))
|
108 |
+
# .requires_grad(_r.toBool(7))
|
109 |
+
# .pinned_memory(_r.toBool(6));
|
110 |
+
#
|
111 |
+
# In some other cases one Python Argument can map to multiple C++
|
112 |
+
# Arguments. For example:
|
113 |
+
#
|
114 |
+
# aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False)
|
115 |
+
# -> (Tensor values, Tensor indices)
|
116 |
+
#
|
117 |
+
# Python Args Cpp Args Binding Exprs
|
118 |
+
# ---------------------------------------------------------------------
|
119 |
+
# +----> max 'out[0]'
|
120 |
+
# /-----> max_values 'out[1]
|
121 |
+
# 0: input / self '_r.tensor(0)'
|
122 |
+
# 1: dim / dim '_r.dimname(1)'
|
123 |
+
# 2: keepdim / keepdim '_r.toBool(2)'
|
124 |
+
# 3: out -----+ [local init] out '_r.tensorlist_n<2>(3)'
|
125 |
+
#
|
126 |
+
# As demonstrated above, the binding can involve reordering,
|
127 |
+
# packing, unpacking and special local inits.
|
128 |
+
#
|
129 |
+
#
|
130 |
+
# Let's look at a concrete example:
|
131 |
+
#
|
132 |
+
# static PythonArgParser parser({
|
133 |
+
# "abs(Tensor input, *, Tensor out=None)",
|
134 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
135 |
+
# ^
|
136 |
+
# +--- Python Schema, represented by PythonSignature and PythonArgument
|
137 |
+
#
|
138 |
+
# }, /*traceable=*/true);
|
139 |
+
#
|
140 |
+
# ParsedArgs<2> parsed_args;
|
141 |
+
# auto _r = parser.parse(nullptr, args, kwargs, parsed_args);
|
142 |
+
#
|
143 |
+
# ...
|
144 |
+
#
|
145 |
+
# if (_r.isNone(1)) {
|
146 |
+
# ~~~~~~~~~~~~ <--- Scattered PythonArgParser output (arg name = 'out')
|
147 |
+
# represented by PythonArgParserOutputExpr
|
148 |
+
#
|
149 |
+
# // aten::abs(Tensor self) -> Tensor
|
150 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
151 |
+
# ^
|
152 |
+
# +--- NativeFunction schema, base version
|
153 |
+
#
|
154 |
+
# auto dispatch_abs = [](const Tensor & self) -> Tensor {
|
155 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
156 |
+
# ^
|
157 |
+
# +--- dispatch_lambda_args / dispatch_lambda_return_str
|
158 |
+
# generated from NativeFunction / CppSignature
|
159 |
+
# (deprecated PythonSignature is special)
|
160 |
+
# arguments are represented by DispatchLambdaArgument
|
161 |
+
#
|
162 |
+
# pybind11::gil_scoped_release no_gil;
|
163 |
+
# return self.abs();
|
164 |
+
# ~~~~~~~~~~~ <--- cpp_dispatch_target / cpp_dispatch_exprs
|
165 |
+
# generated from NativeFunction / CppSignature
|
166 |
+
# };
|
167 |
+
# return wrap(dispatch_abs(_r.tensor(0)));
|
168 |
+
# ~~~~~~~~~~~~~
|
169 |
+
# ^
|
170 |
+
# +--- dispatch_lambda_exprs
|
171 |
+
# binding PythonArgParserOutputExpr (python args)
|
172 |
+
# and DispatchLambdaArgument (c++ args)
|
173 |
+
#
|
174 |
+
# } else {
|
175 |
+
# // aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
176 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
177 |
+
# ^
|
178 |
+
# +--- NativeFunction schema, out-variant
|
179 |
+
#
|
180 |
+
# auto dispatch_abs_out = [](Tensor out, const Tensor & self) -> Tensor {
|
181 |
+
# pybind11::gil_scoped_release no_gil;
|
182 |
+
# return at::abs_out(out, self);
|
183 |
+
# };
|
184 |
+
# return wrap(dispatch_abs_out(_r.tensor(1), _r.tensor(0)));
|
185 |
+
# }
|
186 |
+
#
|
187 |
+
#
|
188 |
+
# [Notes] python interface codegen
|
189 |
+
# The python dataclasses below are used used to generate both python binding code
|
190 |
+
# and pyi type hint signatures.
|
191 |
+
# In theory these two should look very similar, but there are number of differences
|
192 |
+
# in how pyi signatures vs. python_arg_parser signatures are generated.
|
193 |
+
# These differences have been encapsulated in signature_str() vs. signature_str_pyi()
|
194 |
+
# to display the full signatures, and argument_str() vs argument_str_pyi() to display arguments.
|
195 |
+
# For examples, only pyi signatures include return types.
|
196 |
+
|
197 |
+
|
198 |
+
@dataclass(frozen=True)
|
199 |
+
class PythonReturns:
|
200 |
+
returns: Tuple[Return, ...]
|
201 |
+
|
202 |
+
|
203 |
+
@dataclass(frozen=True)
|
204 |
+
class PythonArgument:
|
205 |
+
name: str
|
206 |
+
type: Type
|
207 |
+
default: Optional[str]
|
208 |
+
|
209 |
+
# Used to generate the default init expr for some PythonArgParser outputs, e.g.:
|
210 |
+
#
|
211 |
+
# _r.layoutWithDefault(3, layout_from_backend(self.options().backend())))
|
212 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
213 |
+
# ^
|
214 |
+
# +--- default_init str
|
215 |
+
default_init: Optional[str]
|
216 |
+
|
217 |
+
# Compute argument formal for python argument parsing.
|
218 |
+
# Needs to be consistent with torch/csrc/utils/python_arg_parser.h.
|
219 |
+
def argument_str(self, *, method: bool = False, symint: bool = True) -> str:
|
220 |
+
type_str = (
|
221 |
+
argument_type_str(self.type, symint=symint)
|
222 |
+
.replace("const ", "")
|
223 |
+
.replace(" &", "")
|
224 |
+
)
|
225 |
+
|
226 |
+
name = self.name
|
227 |
+
# s/self/input/ outside method bindings
|
228 |
+
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just
|
229 |
+
# for the parse string
|
230 |
+
if name == "self" and type_str in ["Tensor", "Number"] and not method:
|
231 |
+
name = "input"
|
232 |
+
|
233 |
+
# add default
|
234 |
+
if self.default is not None:
|
235 |
+
default = {
|
236 |
+
"nullptr": "None",
|
237 |
+
"c10::nullopt": "None",
|
238 |
+
"{}": "None",
|
239 |
+
}.get(self.default, self.default)
|
240 |
+
return f"{type_str} {name}={default}"
|
241 |
+
else:
|
242 |
+
return f"{type_str} {name}"
|
243 |
+
|
244 |
+
def argument_str_pyi(
|
245 |
+
self, *, method: bool = False, deprecated: bool = False
|
246 |
+
) -> str:
|
247 |
+
type_str = argument_type_str_pyi(self.type)
|
248 |
+
|
249 |
+
name = self.name
|
250 |
+
# s/self/input/ outside method bindings
|
251 |
+
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just
|
252 |
+
# for the parse string
|
253 |
+
if name == "self" and type_str == "Tensor" and not method and not deprecated:
|
254 |
+
name = "input"
|
255 |
+
|
256 |
+
if name == "from": # from is a Python keyword...
|
257 |
+
name += "_"
|
258 |
+
|
259 |
+
# pyi merges the _out and functional variants into the same signature, with an optional out arg
|
260 |
+
if name == "out" and type_str == "Tensor" and not deprecated:
|
261 |
+
type_str = "Optional[" + type_str + "]"
|
262 |
+
|
263 |
+
# pyi deprecated signatures don't get defaults for their out arg
|
264 |
+
treat_as_no_default = (
|
265 |
+
deprecated
|
266 |
+
and isinstance(self, PythonOutArgument)
|
267 |
+
and self.default == "None"
|
268 |
+
)
|
269 |
+
|
270 |
+
# add default
|
271 |
+
if self.default is not None and not treat_as_no_default:
|
272 |
+
if (
|
273 |
+
isinstance(self.type, ListType)
|
274 |
+
and self.type.elem == BaseType(BaseTy.int)
|
275 |
+
and self.default.startswith("{")
|
276 |
+
and self.default.endswith("}")
|
277 |
+
):
|
278 |
+
default = "(" + self.default[1:-1] + ")"
|
279 |
+
else:
|
280 |
+
default = {
|
281 |
+
"nullptr": "None",
|
282 |
+
"c10::nullopt": "None",
|
283 |
+
"{}": "None",
|
284 |
+
"MemoryFormat::Contiguous": "contiguous_format",
|
285 |
+
"QScheme::PER_TENSOR_AFFINE": "per_tensor_affine",
|
286 |
+
}.get(self.default, self.default)
|
287 |
+
return f"{name}: {type_str} = {default}"
|
288 |
+
else:
|
289 |
+
return f"{name}: {type_str}"
|
290 |
+
|
291 |
+
|
292 |
+
@dataclass(frozen=True)
|
293 |
+
class PythonOutArgument(PythonArgument):
|
294 |
+
# In Python signature multiple output fields are packed into one 'out' argument.
|
295 |
+
# When binding to C++, it's first binded to a local 'out' variable:
|
296 |
+
# 'auto out = _r.tensorlist_n<2>(2);',
|
297 |
+
# then binded to scattered C++ output arguments as 'out[0]', 'out[1]', and etc.
|
298 |
+
# TODO: maybe don't need keep scattered out fields for python signature?
|
299 |
+
outputs: Tuple[PythonArgument, ...]
|
300 |
+
|
301 |
+
@staticmethod
|
302 |
+
def from_outputs(
|
303 |
+
outputs: Tuple[PythonArgument, ...]
|
304 |
+
) -> Optional["PythonOutArgument"]:
|
305 |
+
if not outputs:
|
306 |
+
return None
|
307 |
+
|
308 |
+
size = len(outputs)
|
309 |
+
if size == 1:
|
310 |
+
return PythonOutArgument(
|
311 |
+
name=outputs[0].name,
|
312 |
+
type=outputs[0].type,
|
313 |
+
default="None",
|
314 |
+
default_init=None,
|
315 |
+
outputs=outputs,
|
316 |
+
)
|
317 |
+
elif size > 1:
|
318 |
+
if any(not a.type.is_tensor_like() for a in outputs):
|
319 |
+
raise RuntimeError(f"Unsupported output type: {outputs}")
|
320 |
+
return PythonOutArgument(
|
321 |
+
name="out",
|
322 |
+
# TODO: shouldn't this be OptionalType[ListType[...]], since it defaults to None?
|
323 |
+
type=ListType(BaseType(BaseTy.Tensor), size),
|
324 |
+
default="None",
|
325 |
+
default_init=None,
|
326 |
+
outputs=outputs,
|
327 |
+
)
|
328 |
+
raise AssertionError(r"Unexpected PythonOutArgument size")
|
329 |
+
|
330 |
+
|
331 |
+
@dataclass(frozen=True)
|
332 |
+
class PythonSignature:
|
333 |
+
# Base operator name, without inplace/outplace suffix.
|
334 |
+
name: str
|
335 |
+
|
336 |
+
# Positional arguments.
|
337 |
+
# TODO: create a dedicated SelfArgument type for 'self'?
|
338 |
+
input_args: Tuple[PythonArgument, ...]
|
339 |
+
|
340 |
+
# Keyword arguments excluding the 'out' argument and scattered kwargs belonging
|
341 |
+
# to TensorOptions (dtype, layout, device, pin_memory, requires_grad, etc).
|
342 |
+
input_kwargs: Tuple[PythonArgument, ...]
|
343 |
+
|
344 |
+
output_args: Optional[PythonOutArgument]
|
345 |
+
|
346 |
+
# Return types, which are only used by pyi
|
347 |
+
returns: PythonReturns
|
348 |
+
|
349 |
+
# These are scattered kwargs arguments belonging to TensorOptions.
|
350 |
+
# When binding to C++, they are packed into a TensorOptions object 'options'.
|
351 |
+
# It's possible that the C++ signature doesn't take TensorOptions object (e.g.
|
352 |
+
# for out variant), in which case they will be used as scattered fields without
|
353 |
+
# being packed into 'options'.
|
354 |
+
# TODO: maybe create a PythonTensorOptionsArgument?
|
355 |
+
tensor_options_args: Tuple[PythonArgument, ...]
|
356 |
+
|
357 |
+
# method or function signature?
|
358 |
+
method: bool
|
359 |
+
|
360 |
+
@property
|
361 |
+
def deprecated(self) -> bool:
|
362 |
+
return False
|
363 |
+
|
364 |
+
def arguments(
|
365 |
+
self, *, skip_outputs: bool = False, skip_tensor_options: bool = False
|
366 |
+
) -> Tuple[Union[PythonArgument, PythonOutArgument], ...]:
|
367 |
+
result: List[Union[PythonArgument, PythonOutArgument]] = []
|
368 |
+
result.extend(self.input_args)
|
369 |
+
result.extend(self.input_kwargs)
|
370 |
+
if self.output_args is not None and not skip_outputs:
|
371 |
+
result.append(self.output_args)
|
372 |
+
if not skip_tensor_options:
|
373 |
+
result.extend(self.tensor_options_args)
|
374 |
+
return tuple(result)
|
375 |
+
|
376 |
+
def arguments_count(self) -> int:
|
377 |
+
return len(self.arguments())
|
378 |
+
|
379 |
+
def output_idx(self) -> int:
|
380 |
+
return len(self.input_args) + len(self.input_kwargs)
|
381 |
+
|
382 |
+
# [old codegen] Compute the Python function signature for argument parsing,
|
383 |
+
# as specified in torch/csrc/utils/python_arg_parser.h. WARNING:
|
384 |
+
# this is NOT the same type signature as specified by PEP 484
|
385 |
+
# as understood by mypy; our format was independently developed
|
386 |
+
# and has some quirks to make it more suitable specifically
|
387 |
+
# for error parsing.
|
388 |
+
#
|
389 |
+
# For a translation to mypy-valid type signatures, see
|
390 |
+
# signature_str_pyi().
|
391 |
+
def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str:
|
392 |
+
args = self.arguments(skip_outputs=skip_outputs)
|
393 |
+
schema_formals: List[str] = [
|
394 |
+
a.argument_str(method=self.method, symint=symint) for a in args
|
395 |
+
]
|
396 |
+
positional_argc = len(self.input_args)
|
397 |
+
if len(schema_formals) > positional_argc:
|
398 |
+
schema_formals.insert(positional_argc, "*")
|
399 |
+
|
400 |
+
return f'{self.name}({", ".join(schema_formals)})'
|
401 |
+
|
402 |
+
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
|
403 |
+
args = self.arguments(skip_outputs=skip_outputs)
|
404 |
+
schema_formals: List[str] = [
|
405 |
+
a.argument_str_pyi(method=self.method) for a in args
|
406 |
+
]
|
407 |
+
positional_argc = len(self.input_args)
|
408 |
+
if len(schema_formals) > positional_argc:
|
409 |
+
schema_formals.insert(positional_argc, "*")
|
410 |
+
|
411 |
+
# only pyi signatures include returns
|
412 |
+
returns_str = returns_str_pyi(self)
|
413 |
+
# pyi also includes self (with no typing/defaults) for methods
|
414 |
+
if self.method:
|
415 |
+
schema_formals.insert(0, "self")
|
416 |
+
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
|
417 |
+
|
418 |
+
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]:
|
419 |
+
# only pyi uses vararg signatures
|
420 |
+
args = self.arguments(skip_outputs=skip_outputs)
|
421 |
+
schema_formals: List[str] = [
|
422 |
+
a.argument_str_pyi(method=self.method) for a in args
|
423 |
+
]
|
424 |
+
# vararg only applies to pyi signatures. vararg variants are not generated for all signatures
|
425 |
+
num_args = self.arguments_count()
|
426 |
+
num_positionalargs = len(self.input_args)
|
427 |
+
|
428 |
+
have_vararg_version = False
|
429 |
+
if num_args > 0:
|
430 |
+
vararg_type = args[0].type
|
431 |
+
if (
|
432 |
+
isinstance(vararg_type, ListType)
|
433 |
+
and str(vararg_type.elem) in ["int", "SymInt"]
|
434 |
+
and num_positionalargs == 1
|
435 |
+
):
|
436 |
+
have_vararg_version = True
|
437 |
+
|
438 |
+
if not have_vararg_version:
|
439 |
+
return None
|
440 |
+
# Below are the major changes in vararg vs. regular pyi signatures
|
441 |
+
# vararg signatures also omit the asterix
|
442 |
+
schema_formals[0] = "*" + args[0].name + ": _int"
|
443 |
+
|
444 |
+
returns_str = returns_str_pyi(self)
|
445 |
+
# pyi also includes self (with no typing/defaults) for methods
|
446 |
+
if self.method:
|
447 |
+
schema_formals.insert(0, "self")
|
448 |
+
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
|
449 |
+
|
450 |
+
|
451 |
+
# The deprecated python signature involves some special logic, so create a
|
452 |
+
# dedicated data model to store these extra properties.
|
453 |
+
@dataclass(frozen=True)
|
454 |
+
class PythonSignatureDeprecated(PythonSignature):
|
455 |
+
# Schema for the deprecated function
|
456 |
+
deprecated_schema: FunctionSchema
|
457 |
+
|
458 |
+
# The deprecated signature might miss some arguments that the corresponding
|
459 |
+
# C++ signature expects. We need store the constant default values to pass in.
|
460 |
+
# For example:
|
461 |
+
# [deprecate signature]: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2)
|
462 |
+
# [func schema]: aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
463 |
+
# [func call]: self.addmm(mat1, mat2, beta, 1)
|
464 |
+
# We store ['self', 'mat1', 'mat2', 'beta', '1'] in this case.
|
465 |
+
deprecated_args_exprs: Tuple[str, ...]
|
466 |
+
|
467 |
+
@property
|
468 |
+
def deprecated(self) -> bool:
|
469 |
+
return True
|
470 |
+
|
471 |
+
def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str:
|
472 |
+
return (
|
473 |
+
PythonSignature.signature_str(
|
474 |
+
self, skip_outputs=skip_outputs, symint=symint
|
475 |
+
)
|
476 |
+
+ "|deprecated"
|
477 |
+
)
|
478 |
+
|
479 |
+
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
|
480 |
+
args = self.arguments(skip_outputs=skip_outputs)
|
481 |
+
schema_formals: List[str] = [
|
482 |
+
a.argument_str_pyi(method=self.method, deprecated=True) for a in args
|
483 |
+
]
|
484 |
+
positional_argc = len(self.input_args)
|
485 |
+
if len(schema_formals) > positional_argc:
|
486 |
+
schema_formals.insert(positional_argc, "*")
|
487 |
+
|
488 |
+
returns_str = returns_str_pyi(self)
|
489 |
+
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
|
490 |
+
|
491 |
+
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]:
|
492 |
+
# the codegen doesn't include vararg variants for deprecated signatures
|
493 |
+
return None
|
494 |
+
|
495 |
+
|
496 |
+
# This struct is used to hold the PythonSignature and its corresponding
|
497 |
+
# NativeFunction BEFORE grouping base and out-variant functions.
|
498 |
+
# Why not store NativeFunction in PythonSignature or construct PythonSignature
|
499 |
+
# from NativeFunction? Because they are not 1-1 mapped.
|
500 |
+
# One native function could have both deprecated and non-deprecated python
|
501 |
+
# signatures - NativeFunction doesn't contain information to construct the
|
502 |
+
# deprecated python signature.
|
503 |
+
# One python signature is used to handle both the base and the out-variant
|
504 |
+
# function - see 'PythonSignatureGroup'.
|
505 |
+
@dataclass(frozen=True)
|
506 |
+
class PythonSignatureNativeFunctionPair:
|
507 |
+
signature: PythonSignature
|
508 |
+
function: NativeFunction
|
509 |
+
|
510 |
+
|
511 |
+
# We merge pairs of functions with signatures that are equivalent mod
|
512 |
+
# output arguments, and use a single entry in the python_arg_parser sig
|
513 |
+
# list for both (output arguments become optional).
|
514 |
+
@dataclass(frozen=True)
|
515 |
+
class PythonSignatureGroup:
|
516 |
+
# The signature used for Python argument parsing. The outplace signature
|
517 |
+
# is preferred if exists, because it can be used to parse inputs for both
|
518 |
+
# the out-place variant and the base version (with output omitted).
|
519 |
+
signature: PythonSignature
|
520 |
+
|
521 |
+
# The regular ATen declaration (e.g. conv2d)
|
522 |
+
base: NativeFunction
|
523 |
+
|
524 |
+
# The out variant (e.g. conv2d_out)
|
525 |
+
outplace: Optional[NativeFunction]
|
526 |
+
|
527 |
+
@classmethod
|
528 |
+
def from_pairs(
|
529 |
+
cls,
|
530 |
+
functional: PythonSignatureNativeFunctionPair,
|
531 |
+
out: Optional[PythonSignatureNativeFunctionPair],
|
532 |
+
) -> "PythonSignatureGroup":
|
533 |
+
if out is None:
|
534 |
+
return PythonSignatureGroup(
|
535 |
+
signature=functional.signature,
|
536 |
+
base=functional.function,
|
537 |
+
outplace=None,
|
538 |
+
)
|
539 |
+
|
540 |
+
# prefer the signature with optional out=... arguments because it's the
|
541 |
+
# superset that can be used to parse input for both base and outplace.
|
542 |
+
signature_kwargs = out.signature.__dict__.copy()
|
543 |
+
|
544 |
+
# Out overloads in C++ don't have TensorOptions arguments,
|
545 |
+
# so take these from the functional variant
|
546 |
+
signature_kwargs[
|
547 |
+
"tensor_options_args"
|
548 |
+
] = functional.signature.tensor_options_args
|
549 |
+
|
550 |
+
return PythonSignatureGroup(
|
551 |
+
signature=type(out.signature)(**signature_kwargs),
|
552 |
+
base=functional.function,
|
553 |
+
outplace=out.function,
|
554 |
+
)
|
555 |
+
|
556 |
+
|
557 |
+
# C++ function dispatch is wrapped in a lambda function. The lambda function
|
558 |
+
# has almost the same signature as the C++ function, only with some small
|
559 |
+
# variants - see details below.
|
560 |
+
# This data model is used to represent arguments of the lambda function
|
561 |
+
# signature.
|
562 |
+
@dataclass(frozen=True)
|
563 |
+
class DispatchLambdaArgument:
|
564 |
+
name: str
|
565 |
+
type_str: str
|
566 |
+
is_out_arg: bool
|
567 |
+
|
568 |
+
|
569 |
+
# To pass PyObjects arguments to C++ function (via the lambda wrapper),
|
570 |
+
# we need first convert PyObjects into simple C++ objects. This work
|
571 |
+
# is done by PythonArgParser.
|
572 |
+
# This data model is used to represent the output of PythonArgParser.
|
573 |
+
# It has 1-1 mapping with PythonArgument in PythonSignature.
|
574 |
+
@dataclass(frozen=True)
|
575 |
+
class PythonArgParserOutputExpr:
|
576 |
+
# argument name
|
577 |
+
name: str
|
578 |
+
|
579 |
+
# RHS expression to reference PythonArgParser output.
|
580 |
+
expr: str
|
581 |
+
|
582 |
+
# In some special cases we need create different expr, e.g.:
|
583 |
+
# '_r.isNone(1)' instead of '_r.tensor(1)'.
|
584 |
+
index: int
|
585 |
+
|
586 |
+
# The python argument it maps to.
|
587 |
+
argument: PythonArgument
|
588 |
+
|
589 |
+
@property
|
590 |
+
def is_none_expr(self) -> str:
|
591 |
+
return f"_r.isNone({self.index})"
|
592 |
+
|
593 |
+
|
594 |
+
# To pass PythonArgParser output to the lambda wrapper, we need bind
|
595 |
+
# PythonArgParserOutputExpr to DispatchLambdaArgument.
|
596 |
+
# They are not always 1-1 mapped, e.g. scattered TensorOptions fields
|
597 |
+
# need be packed into a TensorOptions object, which is the argument
|
598 |
+
# that the lambda function wrapper takes.
|
599 |
+
@dataclass(frozen=True)
|
600 |
+
class DispatchLambdaArgumentExprs:
|
601 |
+
# The exprs that provide the binding for lambda arguments, e.g.:
|
602 |
+
#
|
603 |
+
# 'self' -> '_r.tensor(0)'
|
604 |
+
# 'min' -> 'out[0]' / 'min_indices' -> 'out[1]'
|
605 |
+
# 'options' -> 'options'
|
606 |
+
#
|
607 |
+
# It has 1-1 mapping with DispatchLambdaArgument.
|
608 |
+
exprs: Sequence[str]
|
609 |
+
|
610 |
+
# Special local inits, which might introduce new variables that
|
611 |
+
# the 'exprs' above reference, e.g.:
|
612 |
+
#
|
613 |
+
# 'auto out = _r.tensorlist_n<2>(2);'
|
614 |
+
#
|
615 |
+
inits: Sequence[str]
|
616 |
+
|
617 |
+
|
618 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
619 |
+
#
|
620 |
+
# Helper Functions
|
621 |
+
#
|
622 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
623 |
+
|
624 |
+
|
625 |
+
def _cpp_signature(f: NativeFunction, *, method: bool = False) -> CppSignature:
|
626 |
+
return CppSignatureGroup.from_native_function(f, method=method).signature
|
627 |
+
|
628 |
+
|
629 |
+
def has_tensor_options(f: NativeFunction) -> bool:
|
630 |
+
return f.func.arguments.tensor_options is not None
|
631 |
+
|
632 |
+
|
633 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
634 |
+
#
|
635 |
+
# Python Signature
|
636 |
+
#
|
637 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
638 |
+
|
639 |
+
|
640 |
+
# 'simple_type' was introduced by the old codegen, which is slightly
|
641 |
+
# different from the python schema type, e.g.: doesn't have '?' suffix
|
642 |
+
# for optional Tensor/TensorList; doesn't have '[size]' suffix for list type.
|
643 |
+
def argument_type_str(
|
644 |
+
t: Type, *, simple_type: bool = False, symint: bool = True
|
645 |
+
) -> str:
|
646 |
+
if isinstance(t, BaseType):
|
647 |
+
if t.name == BaseTy.Tensor:
|
648 |
+
return "Tensor"
|
649 |
+
elif t.name == BaseTy.int:
|
650 |
+
return "int64_t"
|
651 |
+
elif t.name == BaseTy.float:
|
652 |
+
return "double"
|
653 |
+
elif t.name == BaseTy.str:
|
654 |
+
return "c10::string_view"
|
655 |
+
elif t.name in [
|
656 |
+
BaseTy.bool,
|
657 |
+
BaseTy.QScheme,
|
658 |
+
BaseTy.Scalar,
|
659 |
+
BaseTy.ScalarType,
|
660 |
+
BaseTy.Generator,
|
661 |
+
BaseTy.Storage,
|
662 |
+
BaseTy.Layout,
|
663 |
+
BaseTy.Device,
|
664 |
+
BaseTy.DeviceIndex,
|
665 |
+
BaseTy.MemoryFormat,
|
666 |
+
BaseTy.Dimname,
|
667 |
+
BaseTy.Stream,
|
668 |
+
BaseTy.ConstQuantizerPtr,
|
669 |
+
BaseTy.SymInt,
|
670 |
+
]:
|
671 |
+
# These python schema type names line up with their function schema names
|
672 |
+
return t.name.name
|
673 |
+
|
674 |
+
elif isinstance(t, OptionalType):
|
675 |
+
if str(t.elem) == "Tensor":
|
676 |
+
# Is it desired to keep '?' for simple_type with new style dispatcher?
|
677 |
+
return "Tensor?"
|
678 |
+
elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint)
|
679 |
+
return f"{elem}?"
|
680 |
+
elif isinstance(t, ListType):
|
681 |
+
size = t.size if not simple_type else None
|
682 |
+
if str(t.elem) == "bool":
|
683 |
+
assert t.size is not None
|
684 |
+
return f"::std::array<bool,{t.size}>"
|
685 |
+
elif str(t.elem) == "int":
|
686 |
+
return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef"
|
687 |
+
elif str(t.elem) == "SymInt":
|
688 |
+
if symint:
|
689 |
+
return (
|
690 |
+
f"SymIntArrayRef[{size}]" if size is not None else "SymIntArrayRef"
|
691 |
+
)
|
692 |
+
else:
|
693 |
+
return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef"
|
694 |
+
elif str(t.elem) == "Tensor":
|
695 |
+
return f"TensorList[{size}]" if size is not None else "TensorList"
|
696 |
+
elif str(t.elem) == "Scalar":
|
697 |
+
return f"ScalarList[{size}]" if size is not None else "ScalarList"
|
698 |
+
elif str(t.elem) == "Tensor?":
|
699 |
+
if simple_type:
|
700 |
+
return "c10::List<c10::optional<Tensor>>"
|
701 |
+
else:
|
702 |
+
return "const c10::List<c10::optional<Tensor>> &"
|
703 |
+
elif str(t.elem) == "Dimname":
|
704 |
+
return f"DimnameList[{size}]" if size is not None else "DimnameList"
|
705 |
+
elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint)
|
706 |
+
return f"ArrayRef<{elem}>"
|
707 |
+
|
708 |
+
raise RuntimeError(f"unrecognized type {repr(t)}")
|
709 |
+
|
710 |
+
|
711 |
+
def argument_type_size(t: Type) -> Optional[int]:
|
712 |
+
l = t.is_list_like()
|
713 |
+
if l is not None and str(l.elem) != "bool":
|
714 |
+
return l.size
|
715 |
+
else:
|
716 |
+
return None
|
717 |
+
|
718 |
+
|
719 |
+
def argument(a: Argument) -> PythonArgument:
|
720 |
+
return PythonArgument(
|
721 |
+
name=a.name,
|
722 |
+
type=a.type,
|
723 |
+
# TODO: directly translate a.default to python default
|
724 |
+
default=str(
|
725 |
+
pythonify_default(cpp.default_expr(a.default, a.type, symint=False))
|
726 |
+
)
|
727 |
+
if a.default is not None
|
728 |
+
else None,
|
729 |
+
default_init=None,
|
730 |
+
)
|
731 |
+
|
732 |
+
|
733 |
+
# Generates a PythonSignature that can be used for either .pyi or PythonArgParser codegen
|
734 |
+
def signature(
|
735 |
+
f: NativeFunction, *, method: bool = False, pyi: bool = False
|
736 |
+
) -> PythonSignature:
|
737 |
+
return signature_from_schema(
|
738 |
+
f.func, category_override=f.category_override, method=method, pyi=pyi
|
739 |
+
)
|
740 |
+
|
741 |
+
|
742 |
+
def signature_from_schema(
|
743 |
+
func: FunctionSchema,
|
744 |
+
*,
|
745 |
+
category_override: Optional[str],
|
746 |
+
method: bool = False,
|
747 |
+
pyi: bool = False,
|
748 |
+
) -> PythonSignature:
|
749 |
+
args: List[Argument] = []
|
750 |
+
args.extend(func.arguments.pre_self_positional)
|
751 |
+
# Skip SelfArgument if this is method.
|
752 |
+
if not method and func.arguments.self_arg is not None:
|
753 |
+
args.append(func.arguments.self_arg.argument)
|
754 |
+
args.extend(func.arguments.post_self_positional)
|
755 |
+
args.extend(func.arguments.pre_tensor_options_kwarg_only)
|
756 |
+
# Skip TensorOptionsArguments. Python side TensorOptions
|
757 |
+
# arguments are created based on different rules - see below.
|
758 |
+
args.extend(func.arguments.post_tensor_options_kwarg_only)
|
759 |
+
args.extend(func.arguments.out)
|
760 |
+
|
761 |
+
input_arg_set = {a.name for a in func.arguments.flat_positional}
|
762 |
+
kwarg_only_set = {a.name for a in func.arguments.flat_kwarg_only}
|
763 |
+
out_arg_set = {a.name for a in func.arguments.out}
|
764 |
+
|
765 |
+
input_args = tuple(map(argument, filter(lambda a: a.name in input_arg_set, args)))
|
766 |
+
input_kwargs = tuple(
|
767 |
+
map(argument, filter(lambda a: a.name in kwarg_only_set, args))
|
768 |
+
)
|
769 |
+
outputs = tuple(map(argument, filter(lambda a: a.name in out_arg_set, args)))
|
770 |
+
|
771 |
+
# Reintroduce the scattered fields of TensorOptions for Python.
|
772 |
+
# Compared to the cpp counterpart, the python arguments have new property
|
773 |
+
# (default_init) and a new argument 'requires_grad', which require some
|
774 |
+
# special handlings.
|
775 |
+
# [old codegen] TODO: because these aren't guaranteed to be 100% faithful
|
776 |
+
# to the original versions in the yaml, this recreation is a potential
|
777 |
+
# source of drift between eager and JIT. Pull this logic out to a shared place.
|
778 |
+
|
779 |
+
has_tensor_input_arg = any(
|
780 |
+
a.type.is_tensor_like() for a in func.arguments.flat_non_out
|
781 |
+
)
|
782 |
+
if any(a.name == "requires_grad" for a in func.schema_order_arguments()):
|
783 |
+
raise ValueError(
|
784 |
+
"argument named requires_grad is reserved, should not explicitly add it in the schema"
|
785 |
+
)
|
786 |
+
|
787 |
+
# [old codegen] this probably won't work if one of the returns is not a tensor,
|
788 |
+
# but it will produce a compile-time error that is obvious.
|
789 |
+
has_tensor_return = any(r.type.is_tensor_like() for r in func.returns)
|
790 |
+
|
791 |
+
name: str = cpp.name(func)
|
792 |
+
is_factory_function = category_override == "factory" or (
|
793 |
+
has_tensor_return and not has_tensor_input_arg
|
794 |
+
)
|
795 |
+
is_like_or_new_function = (
|
796 |
+
category_override in ("new", "like")
|
797 |
+
or name.startswith("new_")
|
798 |
+
or name.endswith("_like")
|
799 |
+
)
|
800 |
+
|
801 |
+
tensor_options_args: List[PythonArgument] = []
|
802 |
+
if is_factory_function or is_like_or_new_function:
|
803 |
+
|
804 |
+
def topt_default_init(name: str) -> Optional[str]:
|
805 |
+
topt_args = func.arguments.tensor_options
|
806 |
+
if topt_args is None:
|
807 |
+
return None
|
808 |
+
a = getattr(topt_args, name)
|
809 |
+
if a.default is None or a.default == "None":
|
810 |
+
return None
|
811 |
+
return cpp.default_expr(a.default, a.type, symint=False)
|
812 |
+
|
813 |
+
tensor_options_args.append(
|
814 |
+
PythonArgument(
|
815 |
+
name="dtype",
|
816 |
+
type=OptionalType(BaseType(BaseTy.ScalarType)),
|
817 |
+
default="None",
|
818 |
+
default_init=(
|
819 |
+
None if is_like_or_new_function else topt_default_init("dtype")
|
820 |
+
),
|
821 |
+
)
|
822 |
+
)
|
823 |
+
tensor_options_args.append(
|
824 |
+
PythonArgument(
|
825 |
+
name="layout",
|
826 |
+
type=OptionalType(BaseType(BaseTy.Layout)),
|
827 |
+
default="None",
|
828 |
+
default_init=(
|
829 |
+
None if is_like_or_new_function else topt_default_init("layout")
|
830 |
+
),
|
831 |
+
)
|
832 |
+
)
|
833 |
+
tensor_options_args.append(
|
834 |
+
PythonArgument(
|
835 |
+
name="device",
|
836 |
+
type=OptionalType(BaseType(BaseTy.Device)),
|
837 |
+
default="None",
|
838 |
+
default_init=(
|
839 |
+
None
|
840 |
+
if is_like_or_new_function
|
841 |
+
else (
|
842 |
+
topt_default_init("device")
|
843 |
+
or "torch::tensors::get_default_device()"
|
844 |
+
)
|
845 |
+
),
|
846 |
+
)
|
847 |
+
)
|
848 |
+
tensor_options_args.append(
|
849 |
+
PythonArgument(
|
850 |
+
name="pin_memory",
|
851 |
+
type=OptionalType(BaseType(BaseTy.bool)),
|
852 |
+
default="False",
|
853 |
+
default_init=None,
|
854 |
+
)
|
855 |
+
)
|
856 |
+
tensor_options_args.append(
|
857 |
+
PythonArgument(
|
858 |
+
name="requires_grad",
|
859 |
+
type=OptionalType(BaseType(BaseTy.bool)),
|
860 |
+
default="False",
|
861 |
+
default_init=None,
|
862 |
+
)
|
863 |
+
)
|
864 |
+
|
865 |
+
returns = PythonReturns(returns=func.returns)
|
866 |
+
|
867 |
+
return PythonSignature(
|
868 |
+
name=str(func.name.name),
|
869 |
+
input_args=input_args,
|
870 |
+
input_kwargs=input_kwargs,
|
871 |
+
output_args=PythonOutArgument.from_outputs(outputs),
|
872 |
+
tensor_options_args=tuple(tensor_options_args),
|
873 |
+
returns=returns,
|
874 |
+
method=method,
|
875 |
+
)
|
876 |
+
|
877 |
+
|
878 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
879 |
+
#
|
880 |
+
# Python Interface
|
881 |
+
#
|
882 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
883 |
+
|
884 |
+
|
885 |
+
def namedtuple_fieldnames(returns: Tuple[Return, ...]) -> List[str]:
|
886 |
+
if len(returns) <= 1 or all(r.name is None for r in returns):
|
887 |
+
return []
|
888 |
+
else:
|
889 |
+
if any(r.name is None for r in returns):
|
890 |
+
# When building on Windows, `PyStructSequence_UnnamedField` could not be
|
891 |
+
# resolved by the linker for some reason, which cause error in building:
|
892 |
+
#
|
893 |
+
# python_nn_functions.cpp.obj : error LNK2001: unresolved external symbol
|
894 |
+
# PyStructSequence_UnnamedField
|
895 |
+
#
|
896 |
+
# Thus, at this point in time, we do not support unnamed
|
897 |
+
# fields in namedtuple; you must either name all fields,
|
898 |
+
# or none of them.
|
899 |
+
raise ValueError("Unnamed field is not supported by codegen")
|
900 |
+
|
901 |
+
return [str(r.name) for r in returns]
|
902 |
+
|
903 |
+
|
904 |
+
def argument_type_str_pyi(t: Type) -> str:
|
905 |
+
add_optional = False
|
906 |
+
if isinstance(t, OptionalType):
|
907 |
+
t = t.elem
|
908 |
+
add_optional = True
|
909 |
+
|
910 |
+
if isinstance(t, BaseType):
|
911 |
+
if t.name in [BaseTy.int, BaseTy.DeviceIndex]:
|
912 |
+
ret = "_int"
|
913 |
+
if t.name == BaseTy.SymInt:
|
914 |
+
ret = "Union[_int, SymInt]"
|
915 |
+
elif t.name == BaseTy.float:
|
916 |
+
ret = "_float"
|
917 |
+
elif t.name == BaseTy.str:
|
918 |
+
ret = "str"
|
919 |
+
elif t.name == BaseTy.Scalar:
|
920 |
+
ret = "Union[Number, _complex]"
|
921 |
+
elif t.name == BaseTy.ScalarType:
|
922 |
+
ret = "_dtype"
|
923 |
+
elif t.name == BaseTy.bool:
|
924 |
+
ret = "_bool"
|
925 |
+
elif t.name == BaseTy.QScheme:
|
926 |
+
ret = "_qscheme"
|
927 |
+
elif t.name == BaseTy.Layout:
|
928 |
+
ret = "_layout"
|
929 |
+
elif t.name == BaseTy.Device:
|
930 |
+
ret = "Optional[DeviceLikeType]"
|
931 |
+
elif t.name == BaseTy.MemoryFormat:
|
932 |
+
ret = "memory_format"
|
933 |
+
elif t.name == BaseTy.Dimname:
|
934 |
+
ret = "Union[str, ellipsis, None]"
|
935 |
+
elif t.name == BaseTy.Storage:
|
936 |
+
ret = "Union[Storage, UntypedStorage]"
|
937 |
+
elif t.name in [BaseTy.Tensor, BaseTy.Generator, BaseTy.Stream]:
|
938 |
+
# These python schema type names line up with their function schema names
|
939 |
+
ret = t.name.name
|
940 |
+
|
941 |
+
elif isinstance(t, ListType):
|
942 |
+
if str(t.elem) == "int":
|
943 |
+
ret = "Union[_int, _size]" if t.size is not None else "_size"
|
944 |
+
elif t.is_tensor_like():
|
945 |
+
# TODO: this doesn't seem right...
|
946 |
+
# Tensor?[] currently translates to Optional[Union[Tuple[Tensor, ...], List[Tensor]]]
|
947 |
+
# It should probably translate to Union[Tuple[Optional[Tensor], ...], List[Optional[Tensor]]]
|
948 |
+
if isinstance(t.elem, OptionalType):
|
949 |
+
add_optional = True
|
950 |
+
ret = (
|
951 |
+
"Union[Tensor, Tuple[Tensor, ...], List[Tensor]]"
|
952 |
+
if t.size is not None
|
953 |
+
else "Union[Tuple[Tensor, ...], List[Tensor]]"
|
954 |
+
)
|
955 |
+
elif str(t.elem) == "float":
|
956 |
+
ret = "Sequence[_float]"
|
957 |
+
elif str(t.elem) == "SymInt" and t.size is not None:
|
958 |
+
elem = argument_type_str_pyi(t.elem)
|
959 |
+
ret = f"Union[{elem}, Sequence[{elem}]]"
|
960 |
+
else:
|
961 |
+
elem = argument_type_str_pyi(t.elem)
|
962 |
+
ret = f"Sequence[{elem}]"
|
963 |
+
|
964 |
+
else:
|
965 |
+
raise RuntimeError(f"unrecognized type {repr(t)}")
|
966 |
+
|
967 |
+
if add_optional:
|
968 |
+
ret = "Optional[" + ret + "]"
|
969 |
+
|
970 |
+
return ret
|
971 |
+
|
972 |
+
|
973 |
+
def return_type_str_pyi(t: Type) -> str:
|
974 |
+
# Where arguments are open to accepting Union, return types should return
|
975 |
+
# concrete types
|
976 |
+
|
977 |
+
if isinstance(t, OptionalType):
|
978 |
+
inner = return_type_str_pyi(t.elem)
|
979 |
+
return f"Optional[{inner}]"
|
980 |
+
|
981 |
+
if isinstance(t, BaseType):
|
982 |
+
if t.name == BaseTy.Device:
|
983 |
+
return "_device"
|
984 |
+
elif t.name == BaseTy.Dimname:
|
985 |
+
ret = "Optional[str]"
|
986 |
+
else:
|
987 |
+
return argument_type_str_pyi(t)
|
988 |
+
|
989 |
+
if isinstance(t, ListType):
|
990 |
+
inner = return_type_str_pyi(t.elem)
|
991 |
+
return f"List[{inner}]"
|
992 |
+
|
993 |
+
return argument_type_str_pyi(t)
|
994 |
+
|
995 |
+
|
996 |
+
def returns_named_tuple_pyi(signature: PythonSignature) -> Optional[Tuple[str, str]]:
|
997 |
+
python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns]
|
998 |
+
namedtuple_name = signature.name
|
999 |
+
field_names = namedtuple_fieldnames(signature.returns.returns)
|
1000 |
+
if field_names:
|
1001 |
+
namedtuple_def_lines = [f"class {namedtuple_name}(NamedTuple):"]
|
1002 |
+
namedtuple_def_lines.extend(
|
1003 |
+
f" {name}: {typ}" for name, typ in zip(field_names, python_returns)
|
1004 |
+
)
|
1005 |
+
namedtuple_def_lines.append("") # add an extra newline
|
1006 |
+
namedtuple_def = "\n".join(namedtuple_def_lines)
|
1007 |
+
# Example:
|
1008 |
+
# namedtuple_def = (
|
1009 |
+
# "class max(NamedTuple):\n"
|
1010 |
+
# " values: Tensor\n"
|
1011 |
+
# " indices: Tensor\n"
|
1012 |
+
# )
|
1013 |
+
return namedtuple_name, namedtuple_def
|
1014 |
+
return None
|
1015 |
+
|
1016 |
+
|
1017 |
+
def returns_str_pyi(signature: PythonSignature) -> str:
|
1018 |
+
field_names = namedtuple_fieldnames(signature.returns.returns)
|
1019 |
+
if field_names:
|
1020 |
+
return f"torch.return_types.{signature.name}"
|
1021 |
+
|
1022 |
+
python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns]
|
1023 |
+
if len(python_returns) > 1:
|
1024 |
+
return "Tuple[" + ", ".join(python_returns) + "]"
|
1025 |
+
if len(python_returns) == 1:
|
1026 |
+
return python_returns[0]
|
1027 |
+
return "None"
|
1028 |
+
|
1029 |
+
|
1030 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1031 |
+
#
|
1032 |
+
# C++ Function Dispatch
|
1033 |
+
#
|
1034 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1035 |
+
# This section provides APIs to generate the code that does C++ function
|
1036 |
+
# dispatch. The C++ function call is wrapped by a lambda function.
|
1037 |
+
# For example:
|
1038 |
+
#
|
1039 |
+
# // aten::selu_(Tensor(a!) self) -> Tensor(a!)
|
1040 |
+
# auto dispatch_selu_ = [](Tensor self) -> Tensor {
|
1041 |
+
# pybind11::gil_scoped_release no_gil;
|
1042 |
+
# return at::selu_(self);
|
1043 |
+
# };
|
1044 |
+
#
|
1045 |
+
# The lambda function's signature follows the C++ signature in common
|
1046 |
+
# cases, e.g.:
|
1047 |
+
#
|
1048 |
+
# // aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
|
1049 |
+
# [](const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
|
1050 |
+
#
|
1051 |
+
# For out variant the 'out' argument's type is changed from 'Tensor &'
|
1052 |
+
# to 'Tensor'. It's because when calling the lambda it passes in the
|
1053 |
+
# PythonArgParser output '_r.tensor(3)', which is stack allocated object
|
1054 |
+
# and needs to pass by value. Also see comments in 'dispatch_lambda_return_str()'.
|
1055 |
+
#
|
1056 |
+
# // aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
1057 |
+
# [](Tensor out, const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
|
1058 |
+
#
|
1059 |
+
# For multi-output case it can keep using reference type because the
|
1060 |
+
# PythonArgParser output has been unpacked to local variables, e.g.:
|
1061 |
+
#
|
1062 |
+
# // aten::max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *,
|
1063 |
+
# // Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
|
1064 |
+
# [](Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim) -> std::tuple<Tensor,Tensor>
|
1065 |
+
#
|
1066 |
+
# For deprecated python signature, it should follow deprecated python arg order.
|
1067 |
+
# TODO: This is to keep same byte-for-byte result as the old codegen - maybe unnecessary?
|
1068 |
+
|
1069 |
+
|
1070 |
+
def dispatch_lambda_args(
|
1071 |
+
ps: PythonSignature, f: NativeFunction, symint: bool = True
|
1072 |
+
) -> Tuple[DispatchLambdaArgument, ...]:
|
1073 |
+
if isinstance(ps, PythonSignatureDeprecated):
|
1074 |
+
schema = ps.deprecated_schema
|
1075 |
+
else:
|
1076 |
+
schema = f.func
|
1077 |
+
|
1078 |
+
# Start with cpp arguments - dispatch lambda signature always include 'self'
|
1079 |
+
cpp_args = cpp.arguments(
|
1080 |
+
arguments=schema.arguments,
|
1081 |
+
faithful=False,
|
1082 |
+
symint=symint,
|
1083 |
+
method=False,
|
1084 |
+
cpp_no_default_args=f.cpp_no_default_args,
|
1085 |
+
)
|
1086 |
+
out_args: Set[str] = {a.name for a in schema.arguments.out}
|
1087 |
+
|
1088 |
+
# Convert from cpp argument to lambda argument
|
1089 |
+
def dispatch_lambda_arg(cpp_arg: Binding) -> DispatchLambdaArgument:
|
1090 |
+
type_str = cpp_arg.type
|
1091 |
+
is_out_arg = cpp_arg.name in out_args
|
1092 |
+
if ps.method and cpp_arg.name == "self":
|
1093 |
+
# For method's 'self', we can use 'const Tensor &' and simply ignore mutability!
|
1094 |
+
type_str = "const at::Tensor &"
|
1095 |
+
else:
|
1096 |
+
# For other cases we need prevent dangling refs to temps (unless it's
|
1097 |
+
# unpacked scattered output)
|
1098 |
+
# The reason is explained in the comments above and in 'dispatch_lambda_return_str()'.
|
1099 |
+
# TODO: avoid this special handling?
|
1100 |
+
ensure_temp_safe = len(out_args) <= 1 or not is_out_arg
|
1101 |
+
if ensure_temp_safe:
|
1102 |
+
type_str = {
|
1103 |
+
"at::Tensor &": "at::Tensor",
|
1104 |
+
}.get(type_str, type_str)
|
1105 |
+
return DispatchLambdaArgument(
|
1106 |
+
name=cpp_arg.name,
|
1107 |
+
type_str=type_str,
|
1108 |
+
is_out_arg=is_out_arg,
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
return tuple(map(dispatch_lambda_arg, cpp_args))
|
1112 |
+
|
1113 |
+
|
1114 |
+
# [old codegen] XXX: if you got here because of an assertion failure, it doesn't mean
|
1115 |
+
# it's enough to just extend the list here. Before you do this, make sure
|
1116 |
+
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
|
1117 |
+
SUPPORTED_RETURN_TYPES = {
|
1118 |
+
"at::Tensor",
|
1119 |
+
"::std::tuple<at::Tensor,at::Tensor>",
|
1120 |
+
"::std::tuple<at::Tensor,at::Tensor,at::Tensor>",
|
1121 |
+
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
|
1122 |
+
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
|
1123 |
+
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
|
1124 |
+
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,int64_t>",
|
1125 |
+
"::std::tuple<at::Tensor,at::Tensor,double,int64_t>",
|
1126 |
+
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,int64_t>",
|
1127 |
+
"::std::tuple<at::Tensor,at::Tensor,double,at::Tensor,int64_t>",
|
1128 |
+
"::std::tuple<double,int64_t>",
|
1129 |
+
"::std::tuple<at::Tensor,::std::vector<at::Tensor>>",
|
1130 |
+
"::std::vector<at::Tensor>",
|
1131 |
+
# Needed for flash attention forw/backward
|
1132 |
+
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor>",
|
1133 |
+
"at::Scalar",
|
1134 |
+
"bool",
|
1135 |
+
"int64_t",
|
1136 |
+
"void*",
|
1137 |
+
"void",
|
1138 |
+
"at::QScheme",
|
1139 |
+
"double",
|
1140 |
+
"at::IntArrayRef",
|
1141 |
+
"at::ScalarType",
|
1142 |
+
"at::Stream",
|
1143 |
+
}
|
1144 |
+
|
1145 |
+
|
1146 |
+
def dispatch_lambda_return_str(f: NativeFunction) -> str:
|
1147 |
+
# [old codegen] Remove type annotation (e.g. 'Tensor' rather than 'Tensor &')
|
1148 |
+
# because the dispatch lambdas take mutable arguments *by value*, not
|
1149 |
+
# by reference. If you then return a reference to such an argument, you
|
1150 |
+
# will now have a pointer to a dangling stack entry. Not good.
|
1151 |
+
#
|
1152 |
+
# You want:
|
1153 |
+
#
|
1154 |
+
# auto dispatch_selu_ = [](Tensor self) -> Tensor { ...; return at::selu_(self); };
|
1155 |
+
# ^^^^^^
|
1156 |
+
#
|
1157 |
+
# *not*
|
1158 |
+
#
|
1159 |
+
# auto dispatch_selu_ = [](Tensor self) -> Tensor& { ...; return at::selu_(self); };
|
1160 |
+
# ^^^^^^^
|
1161 |
+
#
|
1162 |
+
# (NB: We can't make dispatch_selu_ take Tensor&, because the enclosing
|
1163 |
+
# codegen looks like dispatch_selu_(_r.tensor(0)), and you can't take a
|
1164 |
+
# mutable reference to temporary. Maybe we could assign it to a
|
1165 |
+
# variable itself.)
|
1166 |
+
returns_without_annotation = tuple(
|
1167 |
+
Return(r.name, r.type, None) for r in f.func.returns
|
1168 |
+
)
|
1169 |
+
return_str = cpp.returns_type(returns_without_annotation, symint=True).cpp_type()
|
1170 |
+
if return_str not in SUPPORTED_RETURN_TYPES:
|
1171 |
+
raise RuntimeError(f"{f.func.name} returns unsupported type {return_str}")
|
1172 |
+
return return_str
|
1173 |
+
|
1174 |
+
|
1175 |
+
def cpp_dispatch_target(f: NativeFunction) -> str:
|
1176 |
+
symint = f.func.has_symint()
|
1177 |
+
name = cpp.name(f.func, symint_overload=symint)
|
1178 |
+
if Variant.method in f.variants:
|
1179 |
+
return f"self.{name}"
|
1180 |
+
if Variant.function in f.variants:
|
1181 |
+
if has_tensor_options(f) or f.func.name.name.base.endswith("_like"):
|
1182 |
+
namespace = "torch"
|
1183 |
+
else:
|
1184 |
+
namespace = "at"
|
1185 |
+
return f"{namespace}::{name}"
|
1186 |
+
raise RuntimeError(f"could not dispatch, neither function nor method: {f.func}")
|
1187 |
+
|
1188 |
+
|
1189 |
+
def cpp_dispatch_exprs(
|
1190 |
+
f: NativeFunction,
|
1191 |
+
*,
|
1192 |
+
python_signature: Optional[PythonSignature] = None,
|
1193 |
+
) -> Tuple[str, ...]:
|
1194 |
+
cpp_args: Sequence[Binding] = _cpp_signature(f, method=False).arguments()
|
1195 |
+
|
1196 |
+
exprs: Tuple[str, ...] = tuple()
|
1197 |
+
if not isinstance(python_signature, PythonSignatureDeprecated):
|
1198 |
+
# By default the exprs are consistent with the C++ signature.
|
1199 |
+
exprs = tuple(a.name for a in cpp_args)
|
1200 |
+
else:
|
1201 |
+
# For deprecated python signature we may need fill in some constants.
|
1202 |
+
exprs = tuple(
|
1203 |
+
filter(
|
1204 |
+
lambda n: n != "out" or f.func.is_out_fn(),
|
1205 |
+
python_signature.deprecated_args_exprs,
|
1206 |
+
)
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
if Variant.method in f.variants:
|
1210 |
+
exprs = tuple(filter("self".__ne__, exprs))
|
1211 |
+
|
1212 |
+
return exprs
|
1213 |
+
|
1214 |
+
|
1215 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1216 |
+
#
|
1217 |
+
# Python / C++ Args Binding
|
1218 |
+
#
|
1219 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1220 |
+
|
1221 |
+
|
1222 |
+
# We explicitly enumerate the PythonArgParser unpacking methods for all
|
1223 |
+
# supported types. This might be more verbose than necessary, partially
|
1224 |
+
# because of the irregularity of unpacking method naming, partially
|
1225 |
+
# because we want to mimic the old codegen behavior - to reject
|
1226 |
+
# unexpected and/or unsupported cases which the old codegen rejects.
|
1227 |
+
# For certain cases it is intentionally more restrictive than necessary,
|
1228 |
+
# e.g.: it doesn't accepts doublelist with definite size.
|
1229 |
+
def arg_parser_unpack_method(
|
1230 |
+
t: Type, default: Optional[str], default_init: Optional[str], *, symint: bool = True
|
1231 |
+
) -> str:
|
1232 |
+
has_default_init = default_init is not None
|
1233 |
+
if has_default_init and str(t) not in (
|
1234 |
+
"ScalarType?",
|
1235 |
+
"ScalarType",
|
1236 |
+
"Device",
|
1237 |
+
"Device?",
|
1238 |
+
"Layout",
|
1239 |
+
"Layout?",
|
1240 |
+
"bool",
|
1241 |
+
"bool?",
|
1242 |
+
):
|
1243 |
+
raise RuntimeError(f"type '{t}' does not supported unpacking with default")
|
1244 |
+
|
1245 |
+
if isinstance(t, BaseType):
|
1246 |
+
if t.name in [
|
1247 |
+
BaseTy.Tensor,
|
1248 |
+
BaseTy.Stream,
|
1249 |
+
BaseTy.Storage,
|
1250 |
+
BaseTy.Scalar,
|
1251 |
+
BaseTy.Dimname,
|
1252 |
+
]:
|
1253 |
+
# These unpack methods line up with their schema names
|
1254 |
+
return t.name.name.lower()
|
1255 |
+
elif t.name == BaseTy.ScalarType:
|
1256 |
+
return "scalartypeWithDefault" if has_default_init else "scalartype"
|
1257 |
+
elif t.name == BaseTy.Device:
|
1258 |
+
return "deviceWithDefault" if has_default_init else "device"
|
1259 |
+
elif t.name == BaseTy.DeviceIndex:
|
1260 |
+
return "toInt64"
|
1261 |
+
elif t.name == BaseTy.int:
|
1262 |
+
return "toInt64"
|
1263 |
+
elif t.name == BaseTy.SymInt:
|
1264 |
+
return "toSymInt" if symint else "toInt64"
|
1265 |
+
elif t.name == BaseTy.bool:
|
1266 |
+
return "toBoolWithDefault" if has_default_init else "toBool"
|
1267 |
+
elif t.name == BaseTy.float:
|
1268 |
+
return "toDouble"
|
1269 |
+
elif t.name == BaseTy.str:
|
1270 |
+
return "stringView"
|
1271 |
+
elif t.name == BaseTy.Layout:
|
1272 |
+
return "layoutWithDefault" if has_default_init else "layout"
|
1273 |
+
elif t.name == BaseTy.MemoryFormat:
|
1274 |
+
return "memoryformat"
|
1275 |
+
|
1276 |
+
elif isinstance(t, OptionalType):
|
1277 |
+
if str(t.elem) == "Tensor":
|
1278 |
+
return "optionalTensor"
|
1279 |
+
elif str(t.elem) == "Generator":
|
1280 |
+
return "generator"
|
1281 |
+
elif str(t.elem) == "Dimname[]":
|
1282 |
+
return "toDimnameListOptional"
|
1283 |
+
elif not has_default_init and default in (None, "None", "c10::nullopt"):
|
1284 |
+
# If default is None: append 'Optional' to elem's unpacking method
|
1285 |
+
return (
|
1286 |
+
arg_parser_unpack_method(t.elem, None, None, symint=symint) + "Optional"
|
1287 |
+
)
|
1288 |
+
else:
|
1289 |
+
# Otherwise, load as underlying type with default
|
1290 |
+
return arg_parser_unpack_method(
|
1291 |
+
t.elem, default, default_init, symint=symint
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
elif isinstance(t, ListType):
|
1295 |
+
if str(t.elem) == "Tensor":
|
1296 |
+
# accept and use definite size
|
1297 |
+
return f"tensorlist_n<{t.size}>" if t.size is not None else "tensorlist"
|
1298 |
+
elif str(t.elem) == "Tensor?":
|
1299 |
+
return "list_of_optional_tensors"
|
1300 |
+
elif str(t.elem) == "Dimname":
|
1301 |
+
# accept definite size
|
1302 |
+
return "dimnamelist"
|
1303 |
+
elif str(t.elem) == "int":
|
1304 |
+
# accept definite size
|
1305 |
+
return "intlist"
|
1306 |
+
elif str(t.elem) == "float":
|
1307 |
+
return "doublelist"
|
1308 |
+
elif str(t.elem) == "SymInt":
|
1309 |
+
# accept definite size
|
1310 |
+
return "symintlist" if symint else "intlist"
|
1311 |
+
elif str(t.elem) == "Scalar":
|
1312 |
+
return "scalarlist"
|
1313 |
+
raise RuntimeError(f"type '{t}' is not supported by PythonArgParser")
|
1314 |
+
|
1315 |
+
|
1316 |
+
# Return RHS expression for python argument using PythonArgParser output.
|
1317 |
+
# e.g. for arg name 'foo', arg type 'bool', arg_index = 2, returns '_r.toBool(2)'
|
1318 |
+
def arg_parser_output_expr(
|
1319 |
+
arg_index: int, a: PythonArgument, *, symint: bool = True
|
1320 |
+
) -> PythonArgParserOutputExpr:
|
1321 |
+
has_default = a.default_init is not None
|
1322 |
+
unpack_method = arg_parser_unpack_method(
|
1323 |
+
t=a.type, default=a.default, default_init=a.default_init, symint=symint
|
1324 |
+
)
|
1325 |
+
default = f", {a.default_init}" if has_default else ""
|
1326 |
+
expr = f"_r.{unpack_method}({arg_index}{default})"
|
1327 |
+
|
1328 |
+
return PythonArgParserOutputExpr(
|
1329 |
+
name=a.name,
|
1330 |
+
expr=expr,
|
1331 |
+
index=arg_index,
|
1332 |
+
argument=a,
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
|
1336 |
+
# Returns a map with key = arg_name and value = PythonArgParserOutputExpr.
|
1337 |
+
def arg_parser_output_exprs(
|
1338 |
+
ps: PythonSignature, f: NativeFunction, *, symint: bool = True
|
1339 |
+
) -> Dict[str, PythonArgParserOutputExpr]:
|
1340 |
+
return {
|
1341 |
+
e.name: e
|
1342 |
+
for i, a in enumerate(ps.arguments())
|
1343 |
+
for e in (arg_parser_output_expr(i, a, symint=symint),)
|
1344 |
+
}
|
1345 |
+
|
1346 |
+
|
1347 |
+
# argument name to type for scattered tensor options fields
|
1348 |
+
TENSOR_OPTIONS_FIELDS = {
|
1349 |
+
"dtype": "ScalarType?",
|
1350 |
+
"device": "Device?",
|
1351 |
+
"layout": "Layout?",
|
1352 |
+
"pin_memory": "bool?",
|
1353 |
+
"requires_grad": "bool?",
|
1354 |
+
}
|
1355 |
+
|
1356 |
+
|
1357 |
+
# bind arg parser outputs (python args) with dispatch lambda arguments (c++ args).
|
1358 |
+
def dispatch_lambda_exprs(
|
1359 |
+
ps: PythonSignature, f: NativeFunction, *, symint: bool = True
|
1360 |
+
) -> DispatchLambdaArgumentExprs:
|
1361 |
+
# This method is to bind 'arg_parser_outputs' and 'lambda_args' by producing
|
1362 |
+
# 'inits' and 'lambda_args_exprs' for each lambda argument using arg parser
|
1363 |
+
# outputs.
|
1364 |
+
arg_parser_outputs = arg_parser_output_exprs(ps, f, symint=symint)
|
1365 |
+
lambda_args = dispatch_lambda_args(ps, f, symint=symint)
|
1366 |
+
inits: List[str] = []
|
1367 |
+
lambda_args_exprs: Dict[str, str] = {}
|
1368 |
+
|
1369 |
+
has_toptions = has_tensor_options(f)
|
1370 |
+
|
1371 |
+
# 1. special inits/unpacking to provide binding exprs for lambda arguments.
|
1372 |
+
for a in ps.arguments(skip_tensor_options=True):
|
1373 |
+
name = a.name
|
1374 |
+
arg_parser_expr = arg_parser_outputs[a.name].expr
|
1375 |
+
|
1376 |
+
if has_toptions and name == "self":
|
1377 |
+
# TODO: why this needs to be special case?
|
1378 |
+
inits.extend(
|
1379 |
+
[
|
1380 |
+
f"auto self = {arg_parser_expr};",
|
1381 |
+
]
|
1382 |
+
)
|
1383 |
+
lambda_args_exprs[name] = name
|
1384 |
+
elif (
|
1385 |
+
isinstance(a, PythonOutArgument)
|
1386 |
+
and len(a.outputs) > 1
|
1387 |
+
and f.func.is_out_fn()
|
1388 |
+
):
|
1389 |
+
inits.extend(
|
1390 |
+
[
|
1391 |
+
f"auto out = {arg_parser_expr};",
|
1392 |
+
]
|
1393 |
+
)
|
1394 |
+
for i, out_arg in enumerate(a.outputs):
|
1395 |
+
lambda_args_exprs[out_arg.name] = f"out[{i}]"
|
1396 |
+
elif str(a.type) == "Dimname[]?":
|
1397 |
+
# [old codegen]
|
1398 |
+
# TODO: make this part of something more general, or get rid of it.
|
1399 |
+
# optional<ArrayRef<T>> are special. The PythonArgParser returns an
|
1400 |
+
# optional<vector<T>>, which cannot be implicitly converted to
|
1401 |
+
# optional<ArrayRef<T>>. One needs to unwrap the optional and rewrap.
|
1402 |
+
inits.extend(
|
1403 |
+
[
|
1404 |
+
f"auto __{name} = {arg_parser_expr};",
|
1405 |
+
f"c10::optional<DimnameList> {name} = __{name} ? c10::make_optional(DimnameList(__{name}.value())) : c10::nullopt;", # noqa: B950
|
1406 |
+
]
|
1407 |
+
)
|
1408 |
+
lambda_args_exprs[name] = name
|
1409 |
+
else:
|
1410 |
+
# default case - directly using PythonArgParser output expr
|
1411 |
+
lambda_args_exprs[name] = arg_parser_expr
|
1412 |
+
|
1413 |
+
# method's self is passed directly to python binding, rather than parsed
|
1414 |
+
if ps.method:
|
1415 |
+
lambda_args_exprs["self"] = "self"
|
1416 |
+
|
1417 |
+
# 2. special packing/checking for TensorOptions.
|
1418 |
+
tensor_options_args_names = [a.name for a in ps.tensor_options_args]
|
1419 |
+
if has_toptions:
|
1420 |
+
if f.func.is_out_fn():
|
1421 |
+
raise RuntimeError(f"{f.func}: tensor options with output arg")
|
1422 |
+
for a in ps.tensor_options_args:
|
1423 |
+
if a.name not in TENSOR_OPTIONS_FIELDS:
|
1424 |
+
raise RuntimeError(
|
1425 |
+
f"{f.func}: unrecognized tensor options field '{a.name}' in python binding arguments"
|
1426 |
+
)
|
1427 |
+
if str(a.type) != TENSOR_OPTIONS_FIELDS.get(a.name):
|
1428 |
+
raise RuntimeError(
|
1429 |
+
f"{f.func}: unrecognized type '{str(a.type)}' for tensor options field '{a.name}'"
|
1430 |
+
)
|
1431 |
+
if not all(
|
1432 |
+
a in tensor_options_args_names for a in TENSOR_OPTIONS_FIELDS.keys()
|
1433 |
+
):
|
1434 |
+
raise RuntimeError(
|
1435 |
+
f"{f.func}: incomplete tensor options args: {tensor_options_args_names}"
|
1436 |
+
)
|
1437 |
+
|
1438 |
+
inits.append(
|
1439 |
+
f"""\
|
1440 |
+
const auto options = TensorOptions()
|
1441 |
+
.dtype({arg_parser_outputs['dtype'].expr})
|
1442 |
+
.device({arg_parser_outputs['device'].expr})
|
1443 |
+
.layout({arg_parser_outputs['layout'].expr})
|
1444 |
+
.requires_grad({arg_parser_outputs['requires_grad'].expr})
|
1445 |
+
.pinned_memory({arg_parser_outputs['pin_memory'].expr});
|
1446 |
+
torch::utils::maybe_initialize_cuda(options);
|
1447 |
+
"""
|
1448 |
+
)
|
1449 |
+
lambda_args_exprs["options"] = "options"
|
1450 |
+
|
1451 |
+
# 3. special case - access scattered TensorOptions fields without packing
|
1452 |
+
# TODO: maybe move to the generator side as it's not related to binding.
|
1453 |
+
if not has_toptions and tensor_options_args_names:
|
1454 |
+
if "dtype" in tensor_options_args_names:
|
1455 |
+
# we're an output-arg variant, check these args against output tensor
|
1456 |
+
if not f.func.is_out_fn():
|
1457 |
+
raise RuntimeError(
|
1458 |
+
f"{f.func}: dtype in tensor_options_args without output arg"
|
1459 |
+
)
|
1460 |
+
if not all(a in tensor_options_args_names for a in ("layout", "device")):
|
1461 |
+
raise RuntimeError(
|
1462 |
+
f"{f.func}: incomplete tensor options for output check"
|
1463 |
+
)
|
1464 |
+
|
1465 |
+
inits.append(
|
1466 |
+
f"""\
|
1467 |
+
check_out_type_matches({arg_parser_outputs['out'].expr}, {arg_parser_outputs['dtype'].expr},
|
1468 |
+
{arg_parser_outputs['dtype'].is_none_expr}, {arg_parser_outputs['layout'].expr},
|
1469 |
+
{arg_parser_outputs['device'].expr}, {arg_parser_outputs['device'].is_none_expr});
|
1470 |
+
"""
|
1471 |
+
)
|
1472 |
+
# we'll set requires_grad on outgoing tensor
|
1473 |
+
if "requires_grad" not in tensor_options_args_names:
|
1474 |
+
raise RuntimeError(
|
1475 |
+
f'{f.func}: expected "requires_grad" in tensor_options_args absent, but found [{tensor_options_args_names}]'
|
1476 |
+
)
|
1477 |
+
|
1478 |
+
return DispatchLambdaArgumentExprs(
|
1479 |
+
exprs=tuple(lambda_args_exprs[a.name] for a in lambda_args),
|
1480 |
+
inits=inits,
|
1481 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/translate.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, NoReturn, Sequence, Union
|
2 |
+
|
3 |
+
from torchgen.api.types import (
|
4 |
+
ArrayRefCType,
|
5 |
+
BaseCType,
|
6 |
+
Binding,
|
7 |
+
boolT,
|
8 |
+
ConstRefCType,
|
9 |
+
deviceT,
|
10 |
+
Expr,
|
11 |
+
intArrayRefT,
|
12 |
+
iOptTensorListRefT,
|
13 |
+
layoutT,
|
14 |
+
ListCType,
|
15 |
+
longT,
|
16 |
+
memoryFormatT,
|
17 |
+
MutRefCType,
|
18 |
+
NamedCType,
|
19 |
+
opmath_t,
|
20 |
+
OptionalCType,
|
21 |
+
optionalIntArrayRefT,
|
22 |
+
optionalScalarRefT,
|
23 |
+
optionalSymIntArrayRefT,
|
24 |
+
optionalTensorRefT,
|
25 |
+
scalar_t,
|
26 |
+
scalarT,
|
27 |
+
scalarTypeT,
|
28 |
+
SpecialArgName,
|
29 |
+
symIntArrayRefT,
|
30 |
+
SymIntT,
|
31 |
+
tensorOptionsT,
|
32 |
+
tensorT,
|
33 |
+
VectorCType,
|
34 |
+
)
|
35 |
+
|
36 |
+
# This file implements a small program synthesis engine that implements
|
37 |
+
# conversions between one API to another.
|
38 |
+
#
|
39 |
+
# The key data type in this file in NamedCType, short for Named C++ semantic type. A NamedCType
|
40 |
+
# represents a C++ type, plus semantic information about what it represents.
|
41 |
+
# For example, consider the argument "bool pin_memory"; its normal C++ type is
|
42 |
+
# "bool", but its C++ semantic type also keeps track that this represents a
|
43 |
+
# "pin_memory"; you can't just use a random other boolean in a context where you
|
44 |
+
# need a "pin_memory"!
|
45 |
+
#
|
46 |
+
# The translator takes a list of needed NamedCTypes, and then figures out how
|
47 |
+
# to construct expressions with these NamedCTypes from the given bindings. Many
|
48 |
+
# of these expressions are trivial (I need a Tensor other; there's a Tensor
|
49 |
+
# other scope); others are more nontrivial and may require packing/unpacking.
|
50 |
+
# Some examples of non-trivial action:
|
51 |
+
#
|
52 |
+
# - Need the "dtype" binding? Well, maybe "dtype" isn't available
|
53 |
+
# in the context, instead, "options" is, and you need to extract
|
54 |
+
# it from there. (Gather)
|
55 |
+
#
|
56 |
+
# - Need the "context" binding? Well, maybe "context" isn't available
|
57 |
+
# in the context, and you need to construct it from "dtype", "device",
|
58 |
+
# etc. (Scatter)
|
59 |
+
#
|
60 |
+
# - Need the "memory_format" binding? Well, actually, it's available
|
61 |
+
# from both "memory_format" and "options", so you had better make sure
|
62 |
+
# they are consistent. (Join)
|
63 |
+
|
64 |
+
options_ctype = NamedCType("options", ConstRefCType(BaseCType(tensorOptionsT)))
|
65 |
+
|
66 |
+
out_tensor_ctype = NamedCType("out", ConstRefCType(BaseCType(tensorT)))
|
67 |
+
|
68 |
+
longVec_ctype = VectorCType(BaseCType(longT))
|
69 |
+
longSymVec_ctype = VectorCType(BaseCType(SymIntT))
|
70 |
+
optionalLongVec_ctype = OptionalCType(VectorCType(BaseCType(longT)))
|
71 |
+
optionalScalar_ctype = OptionalCType(BaseCType(scalarT))
|
72 |
+
optionalTensor_ctype = OptionalCType(BaseCType(tensorT))
|
73 |
+
|
74 |
+
|
75 |
+
class UnsatError(RuntimeError):
|
76 |
+
pass
|
77 |
+
|
78 |
+
|
79 |
+
# Given a set of in-scope bindings and a set of target bindings, synthesize
|
80 |
+
# a list of expressions that uses only the in-scope bindings (bindings) that
|
81 |
+
# have all of the types of goals. You may want to use this function if
|
82 |
+
# you're generating code for a function like:
|
83 |
+
#
|
84 |
+
# void f({args}) {
|
85 |
+
# g({exprs}); // g is a different API
|
86 |
+
# }
|
87 |
+
#
|
88 |
+
# and you need to generate "exprs".
|
89 |
+
#
|
90 |
+
# Typically, a list of Bindings is convenient to get (you usually call something
|
91 |
+
# like arguments() to get them); but technically you only need less information:
|
92 |
+
# for 'bindings' an (un-ordered) list of Exprs is sufficient; similarly, for
|
93 |
+
# 'goals', an (ordered) list of NamedCType goals is sufficient. If you are doing
|
94 |
+
# something more complicated, e.g., tracking the set of bindings in a context,
|
95 |
+
# you may find using these smaller types more convenient.
|
96 |
+
def translate(
|
97 |
+
bindings: Sequence[Union[Expr, Binding]],
|
98 |
+
goals: Sequence[Union[NamedCType, Binding]],
|
99 |
+
*,
|
100 |
+
method: bool = False,
|
101 |
+
allow_expensive_conversions: bool = False,
|
102 |
+
) -> List[Expr]:
|
103 |
+
binding_exprs: List[Expr] = []
|
104 |
+
for b in bindings:
|
105 |
+
if isinstance(b, Binding):
|
106 |
+
binding_exprs.append(
|
107 |
+
Expr(
|
108 |
+
expr=b.name,
|
109 |
+
type=b.nctype,
|
110 |
+
)
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
binding_exprs.append(b)
|
114 |
+
|
115 |
+
goal_ctypes: List[NamedCType] = []
|
116 |
+
for g in goals:
|
117 |
+
if isinstance(g, Binding):
|
118 |
+
goal_ctypes.append(g.nctype)
|
119 |
+
else:
|
120 |
+
goal_ctypes.append(g)
|
121 |
+
|
122 |
+
# Add all the bindings to the context
|
123 |
+
ctx: Dict[NamedCType, str] = {}
|
124 |
+
for b in binding_exprs:
|
125 |
+
ctx[b.type] = b.expr
|
126 |
+
|
127 |
+
# While we're at it, do some simple forward inference, looking through
|
128 |
+
# constructors.
|
129 |
+
#
|
130 |
+
# NB: When should you do forward inference versus backward inference?
|
131 |
+
# The general idea:
|
132 |
+
#
|
133 |
+
# - Backward inference WHEN the goal gets smaller
|
134 |
+
# - Forward inference WHEN the hypothesis gets smaller
|
135 |
+
#
|
136 |
+
# This helps ensure termination: backward inference starts with a goal
|
137 |
+
# and tries to make it simpler and simpler until it's trivial; if the
|
138 |
+
# goal can grow in size, we blow up to a really huge goal size.
|
139 |
+
# Similarly, with forward inference we take hypotheses and decompose
|
140 |
+
# them into simpler hypotheses; if hypotheses could expand in size,
|
141 |
+
# we also have potential nontermination. (In the code below, forward
|
142 |
+
# inference is only ever carried out at a single step, but you could
|
143 |
+
# imagine repeated application of forward inference being profitable.)
|
144 |
+
#
|
145 |
+
# A good starting point in the literature for exploring more about proof
|
146 |
+
# search are these lecture notes
|
147 |
+
# https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf
|
148 |
+
#
|
149 |
+
# TODO: My kingdom for a pattern matcher
|
150 |
+
# https://www.python.org/dev/peps/pep-0634/
|
151 |
+
#
|
152 |
+
# TODO: This could get us in recomputation trouble if b.expr is nontrivial.
|
153 |
+
# Fix this by implementing some sort of sharing so that if multiple
|
154 |
+
# goals share the same expression, we only compute it once. This seems
|
155 |
+
# to matter in practice as compiler is often unwilling to CSE nontrivial
|
156 |
+
# expressions like scalar.to<scalar_t>()
|
157 |
+
t = b.type
|
158 |
+
if (
|
159 |
+
isinstance(t, ConstRefCType)
|
160 |
+
and isinstance(t.elem, OptionalCType)
|
161 |
+
and isinstance(t.elem.elem, BaseCType)
|
162 |
+
and str(t.elem.elem.type) == "at::Tensor"
|
163 |
+
):
|
164 |
+
ctx[
|
165 |
+
NamedCType(t.elem.elem.name, ConstRefCType(BaseCType(tensorT)))
|
166 |
+
] = f"({b.expr}.has_value() ? *{b.expr} : at::Tensor())"
|
167 |
+
|
168 |
+
if t.type == ConstRefCType(OptionalCType(BaseCType(tensorT))):
|
169 |
+
ctx[
|
170 |
+
NamedCType(t.name, BaseCType(optionalTensorRefT))
|
171 |
+
] = f"(({b.expr}.has_value() && (*{b.expr}).defined()) ? at::OptionalTensorRef(*{b.expr}) : at::OptionalTensorRef())"
|
172 |
+
|
173 |
+
if t.type == ConstRefCType(BaseCType(scalarT)):
|
174 |
+
ctx[NamedCType(t.name, BaseCType(opmath_t))] = f"({b.expr}).to<opmath_t>()"
|
175 |
+
|
176 |
+
if t.type == ConstRefCType(OptionalCType(BaseCType(scalarT))):
|
177 |
+
ctx[
|
178 |
+
NamedCType(t.name, BaseCType(optionalScalarRefT))
|
179 |
+
] = f"({b.expr}.has_value() ? at::OptionalScalarRef(&({b.expr}.value())) : at::OptionalScalarRef())"
|
180 |
+
|
181 |
+
if t.type == BaseCType(scalar_t):
|
182 |
+
ctx[
|
183 |
+
NamedCType(t.name, BaseCType(opmath_t))
|
184 |
+
] = f"static_cast<opmath_t>({b.expr})"
|
185 |
+
|
186 |
+
# [Note: IOptTensorListRef]
|
187 |
+
if t.type == ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))):
|
188 |
+
ctx[
|
189 |
+
NamedCType(t.name, BaseCType(iOptTensorListRefT))
|
190 |
+
] = f"at::IOptTensorListRef({b.expr})"
|
191 |
+
|
192 |
+
# Add implicit bindings if the generated code is inside a Tensor method
|
193 |
+
if method:
|
194 |
+
ctx[
|
195 |
+
NamedCType("self", MutRefCType(BaseCType(tensorT)))
|
196 |
+
] = "const_cast<Tensor&>(*this)"
|
197 |
+
ctx[
|
198 |
+
NamedCType("self", ConstRefCType(BaseCType(tensorT)))
|
199 |
+
] = "const_cast<Tensor&>(*this)"
|
200 |
+
# This is better! Byte-for-byte compat
|
201 |
+
# ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = "*this"
|
202 |
+
|
203 |
+
def unsat(goal: NamedCType) -> NoReturn:
|
204 |
+
ctx_desc = "\n".join(
|
205 |
+
f" {t.cpp_type()} {t.name}; // {e}" for t, e in ctx.items()
|
206 |
+
)
|
207 |
+
raise UnsatError(
|
208 |
+
f"""
|
209 |
+
Failed to synthesize the expression "{goal.cpp_type()} {goal.name}".
|
210 |
+
When I failed, the following bindings were available in the context:
|
211 |
+
|
212 |
+
{ctx_desc}
|
213 |
+
|
214 |
+
This probably means there is a missing rule in the rules of torchgen.api.translate.
|
215 |
+
Check this module for more information.
|
216 |
+
"""
|
217 |
+
)
|
218 |
+
|
219 |
+
# A shitty backtracking search implementation. It's shitty because it
|
220 |
+
# does backtracking via stack (bad idea!) and for the most part tries to
|
221 |
+
# avoid backtracking. In particular, if
|
222 |
+
# direct=True, we won't try to do any fancy synthesis, just trivial
|
223 |
+
# conversions (e.g., "T a" is OK for "const T& a"). So all of the
|
224 |
+
# existing rules in this function simply try to solve immediately,
|
225 |
+
# and bail if things don't work out.
|
226 |
+
def solve(goal: NamedCType, *, direct: bool) -> str:
|
227 |
+
def direct_solve(goal: NamedCType) -> str:
|
228 |
+
return solve(goal, direct=True)
|
229 |
+
|
230 |
+
if goal in ctx:
|
231 |
+
# Trivial
|
232 |
+
return ctx[goal]
|
233 |
+
|
234 |
+
# const & is satisfied with mutable &
|
235 |
+
if isinstance(goal.type, ConstRefCType):
|
236 |
+
try:
|
237 |
+
# WARNING: not strictly decreasing; be careful not
|
238 |
+
# to add a direct conversion that goes satisfies
|
239 |
+
# mutable& with const&
|
240 |
+
return solve(
|
241 |
+
NamedCType(goal.name, MutRefCType(goal.type.elem)), direct=direct
|
242 |
+
)
|
243 |
+
except UnsatError:
|
244 |
+
pass
|
245 |
+
|
246 |
+
# mutable & is satisfied with value
|
247 |
+
if isinstance(goal.type, MutRefCType):
|
248 |
+
try:
|
249 |
+
return solve(NamedCType(goal.name, goal.type.elem), direct=direct)
|
250 |
+
except UnsatError:
|
251 |
+
pass
|
252 |
+
|
253 |
+
# TODO: These are referentially equal, shouldn't have to do this;
|
254 |
+
# ensuring we don't use type synonym IntArrayRef in codegen would
|
255 |
+
# help
|
256 |
+
if goal.type == ArrayRefCType(BaseCType(longT)):
|
257 |
+
return solve(NamedCType(goal.name, BaseCType(intArrayRefT)), direct=direct)
|
258 |
+
|
259 |
+
if direct:
|
260 |
+
unsat(goal)
|
261 |
+
|
262 |
+
# For now, all of these rules are mutually exclusive.
|
263 |
+
if goal == NamedCType("memory_format", OptionalCType(BaseCType(memoryFormatT))):
|
264 |
+
memory_format = direct_solve(
|
265 |
+
NamedCType(
|
266 |
+
SpecialArgName.possibly_redundant_memory_format,
|
267 |
+
OptionalCType(BaseCType(memoryFormatT)),
|
268 |
+
)
|
269 |
+
)
|
270 |
+
# No need to join "memory_format" and "options" if the target API takes "options" directly.
|
271 |
+
# Otherwise it will cause the redundant memory_format error.
|
272 |
+
if options_ctype in goal_ctypes:
|
273 |
+
return memory_format
|
274 |
+
try:
|
275 |
+
options = direct_solve(options_ctype)
|
276 |
+
return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})"
|
277 |
+
except UnsatError:
|
278 |
+
return memory_format
|
279 |
+
elif goal == NamedCType("options", BaseCType(tensorOptionsT)):
|
280 |
+
dtype = direct_solve(
|
281 |
+
NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT)))
|
282 |
+
)
|
283 |
+
pin_memory = direct_solve(
|
284 |
+
NamedCType("pin_memory", OptionalCType(BaseCType(boolT)))
|
285 |
+
)
|
286 |
+
device = direct_solve(
|
287 |
+
NamedCType("device", OptionalCType(BaseCType(deviceT)))
|
288 |
+
)
|
289 |
+
layout = direct_solve(
|
290 |
+
NamedCType("layout", OptionalCType(BaseCType(layoutT)))
|
291 |
+
)
|
292 |
+
return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})"
|
293 |
+
|
294 |
+
elif goal == NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))):
|
295 |
+
try:
|
296 |
+
options = direct_solve(options_ctype)
|
297 |
+
return f"optTypeMetaToScalarType({options}.dtype_opt())"
|
298 |
+
except UnsatError:
|
299 |
+
out_tensor = direct_solve(out_tensor_ctype)
|
300 |
+
return f"{out_tensor}.scalar_type()"
|
301 |
+
|
302 |
+
elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))):
|
303 |
+
try:
|
304 |
+
options = direct_solve(options_ctype)
|
305 |
+
return f"{options}.layout_opt()"
|
306 |
+
except UnsatError:
|
307 |
+
out_tensor = direct_solve(out_tensor_ctype)
|
308 |
+
return f"{out_tensor}.layout()"
|
309 |
+
|
310 |
+
elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))):
|
311 |
+
try:
|
312 |
+
options = direct_solve(options_ctype)
|
313 |
+
return f"{options}.device_opt()"
|
314 |
+
except UnsatError:
|
315 |
+
out_tensor = direct_solve(out_tensor_ctype)
|
316 |
+
return f"{out_tensor}.device()"
|
317 |
+
|
318 |
+
elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))):
|
319 |
+
try:
|
320 |
+
options = direct_solve(options_ctype)
|
321 |
+
return f"{options}.pinned_memory_opt()"
|
322 |
+
except UnsatError:
|
323 |
+
# If we're calling a factory op from its out= variant,
|
324 |
+
# We don't actually care about the value of pin_memory.
|
325 |
+
out_tensor = direct_solve(out_tensor_ctype)
|
326 |
+
return "c10::nullopt"
|
327 |
+
|
328 |
+
# We can always do translations from value types to reference types, like vector<int> -> IntArrayRef
|
329 |
+
elif goal.type == BaseCType(intArrayRefT):
|
330 |
+
try:
|
331 |
+
return direct_solve(NamedCType(goal.name, longVec_ctype))
|
332 |
+
except UnsatError:
|
333 |
+
# We can also go SymIntArrayRef -> IntArrayRef
|
334 |
+
symIntArrayRef_type = direct_solve(
|
335 |
+
NamedCType(goal.name, BaseCType(symIntArrayRefT))
|
336 |
+
)
|
337 |
+
return f"C10_AS_INTARRAYREF_SLOW({symIntArrayRef_type})"
|
338 |
+
elif goal.type == BaseCType(symIntArrayRefT):
|
339 |
+
try:
|
340 |
+
r = direct_solve(NamedCType(goal.name, BaseCType(intArrayRefT)))
|
341 |
+
return f"c10::fromIntArrayRefSlow({r})"
|
342 |
+
except UnsatError:
|
343 |
+
return direct_solve(NamedCType(goal.name, longSymVec_ctype))
|
344 |
+
elif goal.type == BaseCType(SymIntT):
|
345 |
+
return direct_solve(NamedCType(goal.name, BaseCType(longT)))
|
346 |
+
elif goal.type == OptionalCType(BaseCType(SymIntT)):
|
347 |
+
argname = direct_solve(
|
348 |
+
NamedCType(goal.name, OptionalCType(BaseCType(longT)))
|
349 |
+
)
|
350 |
+
return f"{argname}.has_value() ? c10::make_optional(c10::SymInt(*{argname})) : c10::nullopt"
|
351 |
+
elif goal.type == BaseCType(longT):
|
352 |
+
symInt_type = direct_solve(NamedCType(goal.name, BaseCType(SymIntT)))
|
353 |
+
return f"{symInt_type}.guard_int(__FILE__, __LINE__)"
|
354 |
+
elif goal.type == OptionalCType(BaseCType(longT)):
|
355 |
+
argname = direct_solve(
|
356 |
+
NamedCType(goal.name, OptionalCType(BaseCType(SymIntT)))
|
357 |
+
)
|
358 |
+
return f"{argname}.has_value() ? c10::make_optional({argname}->guard_int(__FILE__, __LINE__)) : c10::nullopt"
|
359 |
+
elif goal.type == BaseCType(optionalIntArrayRefT):
|
360 |
+
try:
|
361 |
+
return direct_solve(NamedCType(goal.name, optionalLongVec_ctype))
|
362 |
+
except UnsatError:
|
363 |
+
argname = direct_solve(
|
364 |
+
NamedCType(goal.name, BaseCType(optionalSymIntArrayRefT))
|
365 |
+
)
|
366 |
+
return f"{argname}.has_value() ? c10::make_optional(C10_AS_INTARRAYREF_SLOW(*{argname})) : c10::nullopt"
|
367 |
+
elif goal.type == BaseCType(optionalSymIntArrayRefT):
|
368 |
+
# TODO: You might also want to solve this from longSymVec_ctype or
|
369 |
+
# an optional version of it
|
370 |
+
argname = direct_solve(
|
371 |
+
NamedCType(goal.name, BaseCType(optionalIntArrayRefT))
|
372 |
+
)
|
373 |
+
return f"{argname}.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*{argname})) : c10::nullopt"
|
374 |
+
elif goal.type == BaseCType(optionalScalarRefT):
|
375 |
+
return direct_solve(NamedCType(goal.name, optionalScalar_ctype))
|
376 |
+
elif goal.type == BaseCType(optionalTensorRefT):
|
377 |
+
return direct_solve(NamedCType(goal.name, optionalTensor_ctype))
|
378 |
+
|
379 |
+
# Note [translation from C++ reference to value types]
|
380 |
+
# The below cases are all for when we have an argument with a reference type,
|
381 |
+
# and a corresponding goal with a value type.
|
382 |
+
# These are needed when we populate the inputs to a lambda capture and we need
|
383 |
+
# to guarantee the lifetime of each captured argument.
|
384 |
+
# We guard it with an explicit kwarg because converting to a value type is expensive
|
385 |
+
# (O(n)) to convert from IntArrayRef to vector<int>),
|
386 |
+
# so the caller of translate() should be explicit that they need it.
|
387 |
+
if allow_expensive_conversions:
|
388 |
+
if goal.type == VectorCType(BaseCType(longT)):
|
389 |
+
intArrayRef_ctype = NamedCType(goal.name, BaseCType(intArrayRefT))
|
390 |
+
argname = direct_solve(intArrayRef_ctype)
|
391 |
+
return f"{argname}.vec()"
|
392 |
+
if goal.type == VectorCType(BaseCType(SymIntT)):
|
393 |
+
symIntArrayRef_ctype = NamedCType(goal.name, BaseCType(symIntArrayRefT))
|
394 |
+
argname = direct_solve(symIntArrayRef_ctype)
|
395 |
+
return f"{argname}.vec()"
|
396 |
+
elif goal.type == OptionalCType(VectorCType(BaseCType(longT))):
|
397 |
+
optionalIntArrayRef_ctype = NamedCType(
|
398 |
+
goal.name, BaseCType(optionalIntArrayRefT)
|
399 |
+
)
|
400 |
+
argname = direct_solve(optionalIntArrayRef_ctype)
|
401 |
+
return f"{argname}.has_value() ? c10::make_optional({argname}->vec()) : c10::nullopt"
|
402 |
+
elif goal.type == OptionalCType(BaseCType(scalarT)):
|
403 |
+
optionalScalarRef_ctype = NamedCType(
|
404 |
+
goal.name, BaseCType(optionalScalarRefT)
|
405 |
+
)
|
406 |
+
argname = direct_solve(optionalScalarRef_ctype)
|
407 |
+
return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
|
408 |
+
elif goal.type == OptionalCType(BaseCType(scalarT)):
|
409 |
+
optionalTensorRef_ctype = NamedCType(
|
410 |
+
goal.name, BaseCType(optionalTensorRefT)
|
411 |
+
)
|
412 |
+
argname = direct_solve(optionalTensorRef_ctype)
|
413 |
+
return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
|
414 |
+
# Technically, we also need to handle cases of C++ containers holding reference types.
|
415 |
+
# But there currently aren't any ops that require lambda capture codegen
|
416 |
+
# With arguments like std::vector<IntArrayRef>.
|
417 |
+
# If that changes, we'll have to add the translation here.
|
418 |
+
|
419 |
+
# We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor.
|
420 |
+
# We could probably generalize this to non-tensor types too.
|
421 |
+
if goal.type == MutRefCType(BaseCType(tensorT)):
|
422 |
+
const_ref_tensor_ctype = NamedCType(
|
423 |
+
goal.name, ConstRefCType(BaseCType(tensorT))
|
424 |
+
)
|
425 |
+
argname = direct_solve(const_ref_tensor_ctype)
|
426 |
+
return f"const_cast<Tensor&>({argname})"
|
427 |
+
|
428 |
+
unsat(goal)
|
429 |
+
|
430 |
+
return [Expr(solve(g, direct=False), g) for g in goal_ctypes]
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/ufunc.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional
|
3 |
+
|
4 |
+
import torchgen.api.types as api_types
|
5 |
+
|
6 |
+
from torchgen.api import cpp, structured
|
7 |
+
from torchgen.api.types import (
|
8 |
+
ArgName,
|
9 |
+
BaseCppType,
|
10 |
+
BaseCType,
|
11 |
+
Binding,
|
12 |
+
ConstRefCType,
|
13 |
+
CType,
|
14 |
+
NamedCType,
|
15 |
+
scalarT,
|
16 |
+
)
|
17 |
+
from torchgen.model import (
|
18 |
+
Argument,
|
19 |
+
BaseTy,
|
20 |
+
BaseType,
|
21 |
+
DispatchKey,
|
22 |
+
FunctionSchema,
|
23 |
+
NativeFunctionsGroup,
|
24 |
+
Type,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def schema_kernel_name(func: FunctionSchema, dispatch_key: DispatchKey) -> str:
|
29 |
+
assert func.is_out_fn(), "ufunc.kernel_name should only be invoked on out schemas"
|
30 |
+
return f"ufunc_{func.name.name}_{dispatch_key}"
|
31 |
+
|
32 |
+
|
33 |
+
def kernel_name(g: NativeFunctionsGroup, dispatch_key: DispatchKey) -> str:
|
34 |
+
return schema_kernel_name(g.out.func, dispatch_key)
|
35 |
+
|
36 |
+
|
37 |
+
# Tensors are omitted (as they are stored in TensorIterator), everything else is
|
38 |
+
# passed along (technically, we can pass tensors along too, it just wastes
|
39 |
+
# argument registers)
|
40 |
+
#
|
41 |
+
# NB: used for CPU only
|
42 |
+
def dispatchstub_type(t: Type, *, binds: ArgName) -> Optional[NamedCType]:
|
43 |
+
# Dispatch stubs are always plain ints
|
44 |
+
r = cpp.valuetype_type(t, binds=binds, symint=False)
|
45 |
+
if r is not None:
|
46 |
+
return r
|
47 |
+
|
48 |
+
if t == BaseType(BaseTy.Scalar):
|
49 |
+
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
50 |
+
elif t == BaseType(BaseTy.Tensor):
|
51 |
+
return None
|
52 |
+
else:
|
53 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
54 |
+
|
55 |
+
|
56 |
+
def opmath_type(scalar_t: BaseCppType) -> BaseCppType:
|
57 |
+
if scalar_t == api_types.scalar_t:
|
58 |
+
return api_types.opmath_t
|
59 |
+
raise NotImplementedError
|
60 |
+
|
61 |
+
|
62 |
+
# NB: Tensors in constructor are stored in opmath_t, not scalar_t
|
63 |
+
# because Tensor in constructor = its a scalar tensor partially applied =
|
64 |
+
# it can be higher precision and we want to compute in that higher precision
|
65 |
+
#
|
66 |
+
# NB: CUDA only
|
67 |
+
def ufunctor_ctor_type(t: Type, *, binds: ArgName, scalar_t: BaseCppType) -> NamedCType:
|
68 |
+
r = cpp.valuetype_type(t, binds=binds, symint=False)
|
69 |
+
if r is not None:
|
70 |
+
return r
|
71 |
+
|
72 |
+
if t == BaseType(BaseTy.Scalar):
|
73 |
+
return NamedCType(binds, BaseCType(opmath_type(scalar_t)))
|
74 |
+
elif t == BaseType(BaseTy.Tensor):
|
75 |
+
return NamedCType(binds, BaseCType(opmath_type(scalar_t)))
|
76 |
+
else:
|
77 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
78 |
+
|
79 |
+
|
80 |
+
# Only Tensors ever get passed directly to operator()
|
81 |
+
#
|
82 |
+
# NB: CUDA only
|
83 |
+
# (Actually, this works for CPU too)
|
84 |
+
def ufunctor_apply_type(
|
85 |
+
t: Type, *, binds: ArgName, scalar_t: BaseCppType
|
86 |
+
) -> NamedCType:
|
87 |
+
if t == BaseType(BaseTy.Tensor):
|
88 |
+
return NamedCType(binds, BaseCType(scalar_t))
|
89 |
+
else:
|
90 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
91 |
+
|
92 |
+
|
93 |
+
# The actual ufunc template function the user writes. Everything here
|
94 |
+
# is done in the computation type. compute_t is opmath_t in CUDA and scalar_t
|
95 |
+
# in CPU
|
96 |
+
def ufunc_type(t: Type, *, binds: ArgName, compute_t: CType) -> NamedCType:
|
97 |
+
r = cpp.valuetype_type(t, binds=binds, symint=False)
|
98 |
+
if r is not None:
|
99 |
+
return r
|
100 |
+
|
101 |
+
if t == BaseType(BaseTy.Scalar):
|
102 |
+
return NamedCType(binds, compute_t)
|
103 |
+
elif t == BaseType(BaseTy.Tensor):
|
104 |
+
return NamedCType(binds, compute_t)
|
105 |
+
else:
|
106 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
107 |
+
|
108 |
+
|
109 |
+
def ufunctor_ctor_argument(a: Argument, scalar_t: BaseCppType) -> Binding:
|
110 |
+
return Binding(
|
111 |
+
nctype=ufunctor_ctor_type(a.type, binds=a.name, scalar_t=scalar_t),
|
112 |
+
name=a.name,
|
113 |
+
default=None,
|
114 |
+
argument=a,
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
def ufunctor_apply_argument(a: Argument, scalar_t: BaseCppType) -> Binding:
|
119 |
+
return Binding(
|
120 |
+
nctype=ufunctor_apply_type(a.type, binds=a.name, scalar_t=scalar_t),
|
121 |
+
name=a.name,
|
122 |
+
default=None,
|
123 |
+
argument=a,
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
def ufunc_argument(a: Argument, compute_t: CType) -> Binding:
|
128 |
+
return Binding(
|
129 |
+
nctype=ufunc_type(a.type, binds=a.name, compute_t=compute_t),
|
130 |
+
name=a.name,
|
131 |
+
default=None,
|
132 |
+
argument=a,
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
@dataclass(frozen=True)
|
137 |
+
class UfunctorBindings:
|
138 |
+
ctor: List[Binding]
|
139 |
+
apply: List[Binding]
|
140 |
+
|
141 |
+
|
142 |
+
# ufunctors are a CUDA-only concept representing functors that take some of
|
143 |
+
# their arguments on a host-side constructor, and the rest in the device-side
|
144 |
+
# apply. E.g.,
|
145 |
+
#
|
146 |
+
# template <typename scalar_t>
|
147 |
+
# struct CUDAFunctorOnSelf_add {
|
148 |
+
# using opmath_t = at::opmath_type<scalar_t>;
|
149 |
+
# opmath_t other_;
|
150 |
+
# opmath_t alpha_;
|
151 |
+
# CUDAFunctorOnSelf_add(opmath_t other, opmath_t alpha) : other_(other), alpha_(alpha) {}
|
152 |
+
# __device__ scalar_t operator()(scalar_t self) {
|
153 |
+
# return ufunc::add(static_cast<opmath_t>(self), other_, alpha_);
|
154 |
+
# }
|
155 |
+
# };
|
156 |
+
#
|
157 |
+
# The ctor refers to the constructor CUDAFunctorOnSelf_add, while apply refers
|
158 |
+
# to the operator() definition
|
159 |
+
def ufunctor_arguments(
|
160 |
+
g: NativeFunctionsGroup, *, scalar_tensor_idx: Optional[int], scalar_t: BaseCppType
|
161 |
+
) -> UfunctorBindings:
|
162 |
+
ctor = []
|
163 |
+
apply = []
|
164 |
+
for a in g.functional.func.arguments.flat_non_out:
|
165 |
+
if a.type.is_tensor_like():
|
166 |
+
if scalar_tensor_idx == 0:
|
167 |
+
# put it in the ctor anyway
|
168 |
+
ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t))
|
169 |
+
scalar_tensor_idx = None
|
170 |
+
else:
|
171 |
+
if scalar_tensor_idx is not None:
|
172 |
+
scalar_tensor_idx -= 1
|
173 |
+
apply.append(ufunctor_apply_argument(a, scalar_t=scalar_t))
|
174 |
+
else:
|
175 |
+
ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t))
|
176 |
+
assert scalar_tensor_idx is None
|
177 |
+
return UfunctorBindings(ctor=ctor, apply=apply)
|
178 |
+
|
179 |
+
|
180 |
+
# ufuncs are the inner loop template functions that you wrote in ufunc/add.h
|
181 |
+
# which do the actual computation in question. E.g.,
|
182 |
+
#
|
183 |
+
# template <typename T>
|
184 |
+
# C10_HOST_DEVICE T add(T self, T other, T alpha) __ubsan_ignore_undefined__ {
|
185 |
+
# return self + alpha * other;
|
186 |
+
# }
|
187 |
+
#
|
188 |
+
# In this file, we refer to T as compute_t which is bound by caller
|
189 |
+
def ufunc_arguments(g: NativeFunctionsGroup, *, compute_t: CType) -> List[Binding]:
|
190 |
+
return [
|
191 |
+
ufunc_argument(a, compute_t=compute_t)
|
192 |
+
for a in g.functional.func.arguments.flat_non_out
|
193 |
+
]
|
194 |
+
|
195 |
+
|
196 |
+
# Stubs are the DispatchStub trampolines that CPU kernels use to get to their
|
197 |
+
# vectorized versions. E.g.,
|
198 |
+
#
|
199 |
+
# using structured_binary_fn_alpha = void(*)(TensorIteratorBase&, const Scalar& alpha);
|
200 |
+
# DECLARE_DISPATCH(structured_binary_fn_alpha, add_stub);
|
201 |
+
def stub_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
202 |
+
# stubs drop all tensor arguments (they are implicit in the TensorIterator
|
203 |
+
# argument and keep everything else)
|
204 |
+
return [
|
205 |
+
r
|
206 |
+
for a in g.out.func.arguments.flat_non_out
|
207 |
+
if not a.type.is_tensor_like()
|
208 |
+
for r in structured.argument(a)
|
209 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torchgen/api/unboxing.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
from torchgen.api import cpp
|
4 |
+
from torchgen.api.types import Binding, CppSignatureGroup, CType
|
5 |
+
from torchgen.model import (
|
6 |
+
Argument,
|
7 |
+
BaseTy,
|
8 |
+
BaseType,
|
9 |
+
ListType,
|
10 |
+
NativeFunction,
|
11 |
+
OptionalType,
|
12 |
+
Type,
|
13 |
+
)
|
14 |
+
|
15 |
+
# This file generates the code for unboxing wrappers, i.e., the glue logic to unbox a boxed operator and convert the
|
16 |
+
# ivalues from stack to correct arguments to the unboxed kernel, based on corresponding JIT schema. This codegen is
|
17 |
+
# an alternative way to generate unboxing wrappers similar to the existing C++ metaprogramming approach but gets the
|
18 |
+
# job done statically. These generated unboxing wrappers will be useful under the scenario where we need to register
|
19 |
+
# a fixed set of operators known at compile time and thus can save some time in runtime initialization phase.
|
20 |
+
#
|
21 |
+
# Here's an example on how the codegen works:
|
22 |
+
#
|
23 |
+
# - Function Schema (source of truth)
|
24 |
+
#
|
25 |
+
# aten::empty.names(int[] size, *, Dimname[]? names,
|
26 |
+
# ScalarType? dtype=None, Layout? layout=None,
|
27 |
+
# Device? device=None, bool? pin_memory=None,
|
28 |
+
# MemoryFormat? memory_format=None) -> Tensor
|
29 |
+
# - Argument Conversion
|
30 |
+
# Generates C++ code to convert an ivalue (from stack) to its underlying C++ type.
|
31 |
+
# - int[] size
|
32 |
+
# ```cpp
|
33 |
+
# const c10::List<c10::IValue> size_list_in = (std::move(peek(stack, 0, 7))).toList();
|
34 |
+
#
|
35 |
+
# std::vector<int64_t> size_vec;
|
36 |
+
# for (c10::IValue size_elem: size_list_in) {
|
37 |
+
# int64_t size_base = size_elem.to<int64_t>();
|
38 |
+
# size_vec.push_back(size_base);
|
39 |
+
# }
|
40 |
+
# at::ArrayRef<int64_t> size_list_out(size_vec);
|
41 |
+
# ~~~~~~~~~~~~~ <-- The converted argument from ivalues in the stack.
|
42 |
+
# Will be passed to unboxed kernel.
|
43 |
+
# ```
|
44 |
+
# - Dimname[]? names
|
45 |
+
# ```cpp
|
46 |
+
# c10::optional<c10::IValue> names_opt = (std::move(peek(stack, 1, 7))).toOptional<c10::IValue>();
|
47 |
+
# c10::optional<at::ArrayRef<at::Dimname>> names_opt_out;
|
48 |
+
# if (names_opt.has_value()) {
|
49 |
+
# ~~~~~~~~~~~ <-- Unwrapping optional shell
|
50 |
+
# const c10::IValue names_opt_in = names_opt.value();
|
51 |
+
# const c10::List<c10::IValue> names_list_in = names_opt_in.toList();
|
52 |
+
#
|
53 |
+
# std::vector<at::Dimname> names_vec;
|
54 |
+
# for (c10::IValue names_elem: names_list_in) {
|
55 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~ <-- Unrolling list, then convert elements one by one.
|
56 |
+
# at::Dimname names_base = names_elem.to<at::Dimname>();
|
57 |
+
# names_vec.push_back(names_base);
|
58 |
+
# }
|
59 |
+
# at::ArrayRef<at::Dimname> names_list_out(names_vec);
|
60 |
+
#
|
61 |
+
# names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>(names_list_out);
|
62 |
+
# } else {
|
63 |
+
# names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>();
|
64 |
+
# }
|
65 |
+
# ```
|
66 |
+
# - ScalarType? dtype (similarly for the rest of the arguments)
|
67 |
+
# ```cpp
|
68 |
+
# c10::optional<c10::IValue> dtype_opt = (std::move(peek(stack, 2, 7))).toOptional<c10::IValue>();
|
69 |
+
# c10::optional<at::ScalarType> dtype_opt_out;
|
70 |
+
# if (dtype_opt.has_value()) {
|
71 |
+
# const c10::IValue dtype_opt_in = dtype_opt.value();
|
72 |
+
# at::ScalarType dtype_base = dtype_opt_in.to<at::ScalarType>();
|
73 |
+
# ~~~~~~~~~~~~~~~~~~~~ <-- For base types, convert ivalue to it
|
74 |
+
# directly using ".to<T>()" API.
|
75 |
+
# dtype_opt_out = c10::optional<at::ScalarType>(dtype_base);
|
76 |
+
# } else {
|
77 |
+
# dtype_opt_out = c10::optional<at::ScalarType>();
|
78 |
+
# }
|
79 |
+
# ```
|
80 |
+
#
|
81 |
+
# - Unboxed Kernel Call
|
82 |
+
# ```cpp
|
83 |
+
# auto result_ = torch::empty(
|
84 |
+
# size_list_out,
|
85 |
+
# names_opt_out,
|
86 |
+
# options,
|
87 |
+
# memory_format_opt_out
|
88 |
+
# );
|
89 |
+
# ```
|
90 |
+
#
|
91 |
+
# - Push Result Back to Stack
|
92 |
+
# ```cpp
|
93 |
+
# drop(stack, 7);
|
94 |
+
# pack(stack, std::move(result_));
|
95 |
+
# ```
|
96 |
+
connector = "\n\t"
|
97 |
+
|
98 |
+
|
99 |
+
# Return unboxing function name for a NativeFunction
|
100 |
+
def name(f: NativeFunction) -> str:
|
101 |
+
return f.func.name.unambiguous_name()
|
102 |
+
|
103 |
+
|
104 |
+
# Convert all the arguments in a NativeFunction to C++ code
|
105 |
+
def convert_arguments(f: NativeFunction) -> Tuple[List[Binding], List[str]]:
|
106 |
+
# we need the 'self' argument so method needs to be False
|
107 |
+
args = (
|
108 |
+
CppSignatureGroup.from_native_function(f, method=False)
|
109 |
+
.most_faithful_signature()
|
110 |
+
.arguments()
|
111 |
+
)
|
112 |
+
code_list = [
|
113 |
+
f"c10::IValue {args[i].name} = std::move(peek(stack, {i}, {len(args)}));"
|
114 |
+
for i in range(len(args))
|
115 |
+
] + [""]
|
116 |
+
binding_list = []
|
117 |
+
for arg in args:
|
118 |
+
# expecting only Argument
|
119 |
+
if not isinstance(arg.argument, Argument):
|
120 |
+
raise Exception(
|
121 |
+
f"Unexpected argument type, expecting `Argument` but got {arg}"
|
122 |
+
)
|
123 |
+
argument: Argument = arg.argument
|
124 |
+
unboxed_name, _, code, decl = argumenttype_ivalue_convert(
|
125 |
+
argument.type,
|
126 |
+
argument.name,
|
127 |
+
mutable=argument.is_write,
|
128 |
+
)
|
129 |
+
code_list.extend(decl)
|
130 |
+
code_list.extend(code)
|
131 |
+
binding_list.append(arg.with_name(unboxed_name))
|
132 |
+
return binding_list, code_list
|
133 |
+
|
134 |
+
|
135 |
+
# Takes in the type, name and mutability corresponding to an argument, and generates a tuple of:
|
136 |
+
# (1) the C++ code necessary to unbox the argument
|
137 |
+
# (2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType
|
138 |
+
def argumenttype_ivalue_convert(
|
139 |
+
t: Type, arg_name: str, *, mutable: bool = False
|
140 |
+
) -> Tuple[str, CType, List[str], List[str]]:
|
141 |
+
# Unboxing is for mobile, which doesn't care about SymInts
|
142 |
+
ctype = cpp.argumenttype_type(
|
143 |
+
t=t, mutable=mutable, binds=arg_name, symint=False
|
144 |
+
).type
|
145 |
+
|
146 |
+
if isinstance(t, BaseType):
|
147 |
+
out_name = f"{arg_name}_base"
|
148 |
+
code, decl = _gen_code_base_type(
|
149 |
+
arg_name=arg_name, out_name=out_name, ctype=ctype
|
150 |
+
)
|
151 |
+
elif isinstance(t, OptionalType):
|
152 |
+
out_name = f"{arg_name}_opt_out"
|
153 |
+
code, decl = _gen_code_optional_type(
|
154 |
+
arg_name=arg_name,
|
155 |
+
out_name=out_name,
|
156 |
+
t=t,
|
157 |
+
ctype=ctype,
|
158 |
+
)
|
159 |
+
elif isinstance(t, ListType):
|
160 |
+
out_name = f"{arg_name}_list_out"
|
161 |
+
code, decl = _gen_code_list_type(
|
162 |
+
arg_name=arg_name,
|
163 |
+
out_name=out_name,
|
164 |
+
t=t,
|
165 |
+
ctype=ctype,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
raise Exception(f"Cannot handle type {t}. arg_name: {arg_name}")
|
169 |
+
return out_name, ctype, code, decl
|
170 |
+
|
171 |
+
|
172 |
+
def _gen_code_base_type(
|
173 |
+
arg_name: str, out_name: str, ctype: CType
|
174 |
+
) -> Tuple[List[str], List[str]]:
|
175 |
+
return [
|
176 |
+
f"{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();"
|
177 |
+
], []
|
178 |
+
|
179 |
+
|
180 |
+
def _gen_code_optional_type(
|
181 |
+
arg_name: str, out_name: str, t: OptionalType, ctype: CType
|
182 |
+
) -> Tuple[List[str], List[str]]:
|
183 |
+
in_name = f"{arg_name}_opt_in"
|
184 |
+
res_name, _, res_code, decl = argumenttype_ivalue_convert(t.elem, in_name)
|
185 |
+
return (
|
186 |
+
f"""
|
187 |
+
c10::optional<c10::IValue> {arg_name}_opt = {arg_name}.toOptional<c10::IValue>();
|
188 |
+
{ctype.cpp_type(strip_ref=True)} {out_name};
|
189 |
+
if ({arg_name}_opt.has_value()) {{
|
190 |
+
const c10::IValue {in_name} = {arg_name}_opt.value();
|
191 |
+
{connector.join(res_code)}
|
192 |
+
{out_name} = {ctype.cpp_type(strip_ref=True)}({res_name});
|
193 |
+
}} else {{
|
194 |
+
{out_name} = {ctype.cpp_type(strip_ref=True)}();
|
195 |
+
}}
|
196 |
+
""".split(
|
197 |
+
"\n"
|
198 |
+
),
|
199 |
+
decl,
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
def _gen_code_list_type(
|
204 |
+
arg_name: str, out_name: str, t: ListType, ctype: CType
|
205 |
+
) -> Tuple[List[str], List[str]]:
|
206 |
+
in_name = f"{arg_name}_list_in"
|
207 |
+
elem_name = f"{arg_name}_elem"
|
208 |
+
code = [f"const c10::List<c10::IValue> {in_name} = {arg_name}.toList();"]
|
209 |
+
res_name, res_ctype, res_code, decl = argumenttype_ivalue_convert(t.elem, elem_name)
|
210 |
+
# handle list type with size, e.g., bool[4]
|
211 |
+
if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool and t.size:
|
212 |
+
code.extend(
|
213 |
+
f"""
|
214 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = as_array<{res_ctype.cpp_type(strip_ref=True)}, {t.size}>({in_name});
|
215 |
+
""".split(
|
216 |
+
"\n"
|
217 |
+
)
|
218 |
+
)
|
219 |
+
# we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<c10::optional<at::Tensor>>
|
220 |
+
elif isinstance(t.elem, OptionalType):
|
221 |
+
code.extend(
|
222 |
+
f"""
|
223 |
+
{ctype.cpp_type(strip_ref=True)} {out_name};
|
224 |
+
for (c10::IValue {elem_name}: {in_name}) {{
|
225 |
+
{connector.join(res_code)}
|
226 |
+
{out_name}.push_back({res_name});
|
227 |
+
}}
|
228 |
+
""".split(
|
229 |
+
"\n"
|
230 |
+
)
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
# use ArrayRef as default.
|
234 |
+
vec_name = arg_name + "_vec"
|
235 |
+
# need to bring vector instantiation out of scope so that ArrayRef has valid data
|
236 |
+
decl.append(f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};")
|
237 |
+
code.extend(
|
238 |
+
f"""
|
239 |
+
for (c10::IValue {elem_name}: {in_name}) {{
|
240 |
+
{connector.join(res_code)}
|
241 |
+
{vec_name}.push_back({res_name});
|
242 |
+
}}
|
243 |
+
{ctype.cpp_type(strip_ref=True)} {out_name}({vec_name});
|
244 |
+
""".split(
|
245 |
+
"\n"
|
246 |
+
)
|
247 |
+
)
|
248 |
+
return code, decl
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/DispatchKeyNativeFunctions.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// an external backend might generate file within its code tree
|
4 |
+
// and check all the source files within the tree with clang-format.
|
5 |
+
// so, disable it since the backend might have a different config.
|
6 |
+
// clang-format off
|
7 |
+
|
8 |
+
// ${generated_comment}
|
9 |
+
|
10 |
+
#include <ATen/Tensor.h>
|
11 |
+
|
12 |
+
${namespace_prologue}
|
13 |
+
|
14 |
+
struct ${class_name} {
|
15 |
+
|
16 |
+
${dispatch_declarations}
|
17 |
+
|
18 |
+
};
|
19 |
+
${namespace_epilogue}
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/LazyIr.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// This file contains autogenerated LazyTensor IR nodes
|
4 |
+
${lazy_ir_sysinc}
|
5 |
+
${lazy_ir_inc}
|
6 |
+
|
7 |
+
${namespace_prologue}
|
8 |
+
using at::operator<<;
|
9 |
+
|
10 |
+
// kNullValue is used to contribute a static hash value any time
|
11 |
+
// a node has an Optional<Value> input that is nullopt. It is important
|
12 |
+
// to differentiate between HASH(nullopt, something) and HASH(something, nullopt),
|
13 |
+
// and using kNullValue in the hash function in the order of arguments
|
14 |
+
// serves this purpose.
|
15 |
+
static const torch::lazy::Value kNullValue = torch::lazy::Value();
|
16 |
+
|
17 |
+
${ir_declarations}
|
18 |
+
|
19 |
+
${namespace_epilogue}
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/MethodOperators.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#ifdef TORCH_ASSERT_NO_OPERATORS
|
6 |
+
#error This change adds a dependency on native_functions.yaml, \
|
7 |
+
meaning the file will need to be re-compiled every time an operator \
|
8 |
+
is changed or added. Consider if your change would be better placed in \
|
9 |
+
another file, or if a more specific header might achieve the same goal. \
|
10 |
+
See NOTE: [Tensor vs. TensorBase]
|
11 |
+
#endif
|
12 |
+
|
13 |
+
// Forward declarations of any types needed in the operator signatures.
|
14 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
15 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
16 |
+
#include <ATen/core/ATen_fwd.h>
|
17 |
+
|
18 |
+
${MethodOperators_includes}
|
19 |
+
|
20 |
+
namespace at {
|
21 |
+
namespace _ops {
|
22 |
+
${MethodOperators_declarations}
|
23 |
+
} // namespace _ops
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/NativeFunction.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
${extra_includes}
|
16 |
+
|
17 |
+
${native_function_declarations}
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/ATen/templates/RegisterDispatchKey.cpp
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// required for old g++ to compile PRId64 macros, see
|
2 |
+
// https://github.com/pytorch/pytorch/issues/3571
|
3 |
+
// for context
|
4 |
+
#ifndef __STDC_FORMAT_MACROS
|
5 |
+
#define __STDC_FORMAT_MACROS
|
6 |
+
#endif
|
7 |
+
|
8 |
+
// an external backend might generate file within its code tree
|
9 |
+
// and check all the source files within the tree with clang-format.
|
10 |
+
// so, disable it since the backend might have a different config.
|
11 |
+
// clang-format off
|
12 |
+
|
13 |
+
// NOTE: This condition is true for all PyTorch internal libraries, it
|
14 |
+
// just excludes external projects such as torch_xla which
|
15 |
+
// re-use some of the PyTorch codegen machinery.
|
16 |
+
#if defined(CAFFE2_BUILD_MAIN_LIB) || \
|
17 |
+
defined(TORCH_CUDA_BUILD_MAIN_LIB) || \
|
18 |
+
defined(TORCH_HIP_BUILD_MAIN_LIB) || \
|
19 |
+
defined(TORCH_CUDA_CU_BUILD_MAIN_LIB) || \
|
20 |
+
defined(TORCH_CUDA_CPP_BUILD_MAIN_LIB)
|
21 |
+
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
22 |
+
#endif
|
23 |
+
|
24 |
+
// ${generated_comment}
|
25 |
+
|
26 |
+
#include <c10/core/TensorImpl.h>
|
27 |
+
#include <c10/core/Allocator.h>
|
28 |
+
#include <ATen/DeviceGuard.h>
|
29 |
+
#include <ATen/NamedTensorUtils.h>
|
30 |
+
#include <ATen/Utils.h>
|
31 |
+
#include <ATen/WrapDimUtils.h>
|
32 |
+
#include <ATen/Dispatch.h>
|
33 |
+
#include <c10/util/ExclusivelyOwned.h>
|
34 |
+
#include <c10/util/Half.h>
|
35 |
+
#include <c10/core/UndefinedTensorImpl.h>
|
36 |
+
#include <c10/util/Optional.h>
|
37 |
+
#include <ATen/Tensor.h>
|
38 |
+
#include <ATen/native/Resize.h>
|
39 |
+
|
40 |
+
#include <cstddef>
|
41 |
+
#include <functional>
|
42 |
+
#include <memory>
|
43 |
+
#include <utility>
|
44 |
+
|
45 |
+
#include <ATen/Config.h>
|
46 |
+
#include <ATen/core/op_registration/adaption.h>
|
47 |
+
#include <torch/library.h>
|
48 |
+
$extra_cuda_headers
|
49 |
+
$external_backend_headers
|
50 |
+
$dispatch_headers
|
51 |
+
$ops_headers
|
52 |
+
|
53 |
+
// See template file RegisterDispatchDefinitions.ini
|
54 |
+
$dispatch_definitions
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/BUILD.bazel
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
load("//:tools/bazel.bzl", "rules")
|
2 |
+
load(":build.bzl", "define_targets")
|
3 |
+
|
4 |
+
define_targets(rules = rules)
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/context.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_annotated_fn_args.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_autograd.cpython-310.pyc
ADDED
Binary file (3.24 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_autograd_functions.cpython-310.pyc
ADDED
Binary file (20.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_inplace_or_view_type.cpython-310.pyc
ADDED
Binary file (13.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_python_functions.cpython-310.pyc
ADDED
Binary file (27.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_trace_type.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_variable_factories.cpython-310.pyc
ADDED
Binary file (3.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/gen_variable_type.cpython-310.pyc
ADDED
Binary file (46.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/__pycache__/load_derivatives.cpython-310.pyc
ADDED
Binary file (24.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/build.bzl
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def define_targets(rules):
|
2 |
+
rules.py_library(
|
3 |
+
name = "autograd",
|
4 |
+
srcs = rules.glob(["*.py"]),
|
5 |
+
data = rules.glob([
|
6 |
+
"*.yaml",
|
7 |
+
"templates/*",
|
8 |
+
]),
|
9 |
+
visibility = ["//:__subpackages__"],
|
10 |
+
deps = [
|
11 |
+
rules.requirement("PyYAML"),
|
12 |
+
"//torchgen",
|
13 |
+
],
|
14 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/context.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
from torchgen.api.autograd import NativeFunctionWithDifferentiabilityInfo as NFWDI
|
5 |
+
from torchgen.context import native_function_manager
|
6 |
+
from torchgen.utils import T
|
7 |
+
|
8 |
+
|
9 |
+
# Like tools.api.context.with_native_function, but for
|
10 |
+
# NativeFunctionWithDifferentiabilityInfo.
|
11 |
+
def with_native_function_with_differentiability_info(
|
12 |
+
func: Callable[[NFWDI], T]
|
13 |
+
) -> Callable[[NFWDI], T]:
|
14 |
+
@functools.wraps(func)
|
15 |
+
def wrapper(f: NFWDI) -> T:
|
16 |
+
with native_function_manager(f.func):
|
17 |
+
return func(f)
|
18 |
+
|
19 |
+
return wrapper
|
20 |
+
|
21 |
+
|
22 |
+
# Like the above but with an additional dispatch key string argument
|
23 |
+
def with_native_function_with_differentiability_info_and_key(
|
24 |
+
func: Callable[[NFWDI, str], T]
|
25 |
+
) -> Callable[[NFWDI, str], T]:
|
26 |
+
@functools.wraps(func)
|
27 |
+
def wrapper(f: NFWDI, key: str) -> T:
|
28 |
+
with native_function_manager(f.func):
|
29 |
+
return func(f, key)
|
30 |
+
|
31 |
+
return wrapper
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_annotated_fn_args.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
For procedural tests needed for __torch_function__, we use this function
|
3 |
+
to export method names and signatures as needed by the tests in
|
4 |
+
test/test_overrides.py.
|
5 |
+
|
6 |
+
python -m tools.autograd.gen_annotated_fn_args \
|
7 |
+
aten/src/ATen/native/native_functions.yaml \
|
8 |
+
aten/src/ATen/native/tags.yaml \
|
9 |
+
$OUTPUT_DIR \
|
10 |
+
tools/autograd
|
11 |
+
|
12 |
+
Where $OUTPUT_DIR is where you would like the files to be
|
13 |
+
generated. In the full build system, OUTPUT_DIR is
|
14 |
+
torch/testing/_internal/generated
|
15 |
+
"""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
import textwrap
|
20 |
+
from collections import defaultdict
|
21 |
+
|
22 |
+
from typing import Any, Dict, List, Sequence
|
23 |
+
|
24 |
+
import torchgen.api.python as python
|
25 |
+
from torchgen.context import with_native_function
|
26 |
+
|
27 |
+
from torchgen.gen import parse_native_yaml
|
28 |
+
from torchgen.model import Argument, BaseOperatorName, NativeFunction
|
29 |
+
from torchgen.utils import FileManager
|
30 |
+
|
31 |
+
from .gen_python_functions import (
|
32 |
+
is_py_fft_function,
|
33 |
+
is_py_linalg_function,
|
34 |
+
is_py_nn_function,
|
35 |
+
is_py_special_function,
|
36 |
+
is_py_torch_function,
|
37 |
+
is_py_variable_method,
|
38 |
+
should_generate_py_binding,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def gen_annotated(
|
43 |
+
native_yaml_path: str, tags_yaml_path: str, out: str, autograd_dir: str
|
44 |
+
) -> None:
|
45 |
+
native_functions = parse_native_yaml(
|
46 |
+
native_yaml_path, tags_yaml_path
|
47 |
+
).native_functions
|
48 |
+
mappings = (
|
49 |
+
(is_py_torch_function, "torch._C._VariableFunctions"),
|
50 |
+
(is_py_nn_function, "torch._C._nn"),
|
51 |
+
(is_py_linalg_function, "torch._C._linalg"),
|
52 |
+
(is_py_special_function, "torch._C._special"),
|
53 |
+
(is_py_fft_function, "torch._C._fft"),
|
54 |
+
(is_py_variable_method, "torch.Tensor"),
|
55 |
+
)
|
56 |
+
annotated_args: List[str] = []
|
57 |
+
for pred, namespace in mappings:
|
58 |
+
groups: Dict[BaseOperatorName, List[NativeFunction]] = defaultdict(list)
|
59 |
+
for f in native_functions:
|
60 |
+
if not should_generate_py_binding(f) or not pred(f):
|
61 |
+
continue
|
62 |
+
groups[f.func.name.name].append(f)
|
63 |
+
for group in groups.values():
|
64 |
+
for f in group:
|
65 |
+
annotated_args.append(f"{namespace}.{gen_annotated_args(f)}")
|
66 |
+
|
67 |
+
template_path = os.path.join(autograd_dir, "templates")
|
68 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
69 |
+
fm.write_with_template(
|
70 |
+
"annotated_fn_args.py",
|
71 |
+
"annotated_fn_args.py.in",
|
72 |
+
lambda: {
|
73 |
+
"annotated_args": textwrap.indent("\n".join(annotated_args), " "),
|
74 |
+
},
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
@with_native_function
|
79 |
+
def gen_annotated_args(f: NativeFunction) -> str:
|
80 |
+
def _get_kwargs_func_exclusion_list() -> List[str]:
|
81 |
+
# functions that currently don't work with kwargs in test_overrides.py
|
82 |
+
return [
|
83 |
+
"diagonal",
|
84 |
+
"round_",
|
85 |
+
"round",
|
86 |
+
"scatter_",
|
87 |
+
]
|
88 |
+
|
89 |
+
def _add_out_arg(
|
90 |
+
out_args: List[Dict[str, Any]], args: Sequence[Argument], *, is_kwarg_only: bool
|
91 |
+
) -> None:
|
92 |
+
for arg in args:
|
93 |
+
if arg.default is not None:
|
94 |
+
continue
|
95 |
+
out_arg: Dict[str, Any] = {}
|
96 |
+
out_arg["is_kwarg_only"] = str(is_kwarg_only)
|
97 |
+
out_arg["name"] = arg.name
|
98 |
+
out_arg["simple_type"] = python.argument_type_str(
|
99 |
+
arg.type, simple_type=True
|
100 |
+
)
|
101 |
+
size_t = python.argument_type_size(arg.type)
|
102 |
+
if size_t:
|
103 |
+
out_arg["size"] = size_t
|
104 |
+
out_args.append(out_arg)
|
105 |
+
|
106 |
+
out_args: List[Dict[str, Any]] = []
|
107 |
+
_add_out_arg(out_args, f.func.arguments.flat_positional, is_kwarg_only=False)
|
108 |
+
if f"{f.func.name.name}" not in _get_kwargs_func_exclusion_list():
|
109 |
+
_add_out_arg(out_args, f.func.arguments.flat_kwarg_only, is_kwarg_only=True)
|
110 |
+
|
111 |
+
return f"{f.func.name.name}: {repr(out_args)},"
|
112 |
+
|
113 |
+
|
114 |
+
def main() -> None:
|
115 |
+
parser = argparse.ArgumentParser(description="Generate annotated_fn_args script")
|
116 |
+
parser.add_argument(
|
117 |
+
"native_functions", metavar="NATIVE", help="path to native_functions.yaml"
|
118 |
+
)
|
119 |
+
parser.add_argument("tags", metavar="TAGS", help="path to tags.yaml")
|
120 |
+
parser.add_argument("out", metavar="OUT", help="path to output directory")
|
121 |
+
parser.add_argument(
|
122 |
+
"autograd", metavar="AUTOGRAD", help="path to template directory"
|
123 |
+
)
|
124 |
+
args = parser.parse_args()
|
125 |
+
gen_annotated(args.native_functions, args.tags, args.out, args.autograd)
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
main()
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_inplace_or_view_type.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates ADInplaceOrViewType.h/cpp
|
2 |
+
#
|
3 |
+
# NOTE: If any changes are being made to the ADInplaceOrView codegen please also check
|
4 |
+
# if updates are needed in torch/csrc/autograd/autograd_not_implemented_fallback.cpp
|
5 |
+
# The fallback is expected to mimick this codegen, so we should keep the two in sync.
|
6 |
+
|
7 |
+
from typing import Dict, List, Optional, Sequence, Tuple
|
8 |
+
|
9 |
+
from torchgen.api import cpp
|
10 |
+
from torchgen.api.autograd import (
|
11 |
+
dispatch_strategy,
|
12 |
+
gen_differentiable_outputs,
|
13 |
+
NativeFunctionWithDifferentiabilityInfo,
|
14 |
+
)
|
15 |
+
from torchgen.api.types import (
|
16 |
+
BaseCType,
|
17 |
+
Binding,
|
18 |
+
boolT,
|
19 |
+
ConstRefCType,
|
20 |
+
CType,
|
21 |
+
DispatcherSignature,
|
22 |
+
intArrayRefT,
|
23 |
+
longT,
|
24 |
+
OptionalCType,
|
25 |
+
symIntArrayRefT,
|
26 |
+
SymIntT,
|
27 |
+
# See Note [Nested Arg Types]
|
28 |
+
tensorT,
|
29 |
+
)
|
30 |
+
from torchgen.code_template import CodeTemplate
|
31 |
+
from torchgen.context import with_native_function
|
32 |
+
from torchgen.model import (
|
33 |
+
NativeFunction,
|
34 |
+
SchemaKind,
|
35 |
+
SelfArgument,
|
36 |
+
TensorOptionsArguments,
|
37 |
+
Type,
|
38 |
+
)
|
39 |
+
from torchgen.utils import FileManager
|
40 |
+
|
41 |
+
from .context import with_native_function_with_differentiability_info
|
42 |
+
from .gen_trace_type import (
|
43 |
+
get_return_value,
|
44 |
+
MANUAL_AUTOGRAD,
|
45 |
+
tie_return_values,
|
46 |
+
type_wrapper_name,
|
47 |
+
)
|
48 |
+
|
49 |
+
# See NOTE [ Autograd View Variables ] in variable.h for details.
|
50 |
+
# If you update list VIEW_FUNCTIONS or RETURNS_VIEWS_OF_INPUT,
|
51 |
+
# you **MUST** also update the public list of view ops accordingly in
|
52 |
+
# docs/source/tensor_view.rst. Note not all ATen functions are exposed to public,
|
53 |
+
# e.g alias & sparse_coo_tensor_with_dims_and_tensors.
|
54 |
+
#
|
55 |
+
# A map: function name => name of the argument that all outputs are view of
|
56 |
+
|
57 |
+
VIEW_FUNCTIONS_WITH_METADATA_CHANGE = [
|
58 |
+
"view_as_complex",
|
59 |
+
"view_as_real",
|
60 |
+
"_conj",
|
61 |
+
"_neg_view",
|
62 |
+
"_nested_view_from_buffer",
|
63 |
+
]
|
64 |
+
|
65 |
+
VIEW_FUNCTIONS = {
|
66 |
+
"numpy_T": "self",
|
67 |
+
"alias": "self",
|
68 |
+
"as_strided": "self",
|
69 |
+
"diagonal": "self",
|
70 |
+
"expand": "self",
|
71 |
+
"permute": "self",
|
72 |
+
"select": "self",
|
73 |
+
"slice": "self",
|
74 |
+
"split": "self",
|
75 |
+
"split_with_sizes": "self",
|
76 |
+
"squeeze": "self",
|
77 |
+
"t": "self",
|
78 |
+
"transpose": "self",
|
79 |
+
"unfold": "self",
|
80 |
+
"unsqueeze": "self",
|
81 |
+
"flatten": "self",
|
82 |
+
"view": "self",
|
83 |
+
"unbind": "self",
|
84 |
+
"_indices": "self",
|
85 |
+
"_values": "self",
|
86 |
+
"indices": "self",
|
87 |
+
"values": "self",
|
88 |
+
"crow_indices": "self",
|
89 |
+
"col_indices": "self",
|
90 |
+
"ccol_indices": "self",
|
91 |
+
"row_indices": "self",
|
92 |
+
# sparse_coo ctor output should really be views of both indices and values,
|
93 |
+
# but we only supports making as view of a single variable, and indices is
|
94 |
+
# discrete anyways.
|
95 |
+
# FIXME: clone indices on construction.
|
96 |
+
"sparse_coo_tensor_with_dims_and_tensors": "values",
|
97 |
+
"_reshape_alias": "self",
|
98 |
+
"_test_autograd_multiple_dispatch_view": "self",
|
99 |
+
}
|
100 |
+
|
101 |
+
for key in VIEW_FUNCTIONS_WITH_METADATA_CHANGE:
|
102 |
+
VIEW_FUNCTIONS[key] = "self"
|
103 |
+
|
104 |
+
# note: some VIEW_FUNCTIONS are just compositions of the view functions above
|
105 |
+
# this list contains both the root view functions and any that are purely composed
|
106 |
+
# of viewing functions, and is used by the JIT to determine when an operator
|
107 |
+
# may return a view of its inputs; however they may sometimes return a copy.
|
108 |
+
# (e.g. `contiguous`)
|
109 |
+
RETURNS_VIEWS_OF_INPUT = set(VIEW_FUNCTIONS.keys()).union(
|
110 |
+
{
|
111 |
+
"chunk",
|
112 |
+
"detach",
|
113 |
+
"contiguous",
|
114 |
+
"reshape",
|
115 |
+
"reshape_as",
|
116 |
+
"expand_as",
|
117 |
+
"view_as",
|
118 |
+
"real",
|
119 |
+
"imag",
|
120 |
+
"narrow",
|
121 |
+
"movedim",
|
122 |
+
"tensor_split",
|
123 |
+
"swapdims",
|
124 |
+
"swapaxes",
|
125 |
+
"mT",
|
126 |
+
"mH",
|
127 |
+
"adjoint",
|
128 |
+
"matrix_H",
|
129 |
+
}
|
130 |
+
)
|
131 |
+
|
132 |
+
# These are the functions we consider views for the purposes of validating
|
133 |
+
# StorageImpl and TensorImpl in gen_variable_type.
|
134 |
+
# `_unsafe_view` is not included in VIEW_FUNCTIONS above because it is not a
|
135 |
+
# view for the purposes of ADInplaceOrView kernel, we do not want to call as_view
|
136 |
+
# See NOTE [Unsafe View] for more info.
|
137 |
+
ALL_VIEW_FUNCTIONS = {
|
138 |
+
**VIEW_FUNCTIONS,
|
139 |
+
"_unsafe_view": "self",
|
140 |
+
}
|
141 |
+
|
142 |
+
ARRAYREF_TO_VEC = CodeTemplate(
|
143 |
+
"""\
|
144 |
+
auto ${vec} = ${arg}.vec();
|
145 |
+
"""
|
146 |
+
)
|
147 |
+
|
148 |
+
OPTIONAL_TO_VAL = CodeTemplate(
|
149 |
+
"""\
|
150 |
+
auto ${val} = ${arg}.value_or(${default});
|
151 |
+
"""
|
152 |
+
)
|
153 |
+
|
154 |
+
CALL_DISPATCH = CodeTemplate(
|
155 |
+
"""\
|
156 |
+
at::_ops::${unambiguous_name}::call(${unpacked_args})"""
|
157 |
+
)
|
158 |
+
|
159 |
+
SETUP_REPLAY_VIEW_IF_NOT_SUPPORT_AS_STRIDED_OR_VIEW_WITH_METADATA_CHANGE = CodeTemplate(
|
160 |
+
"""\
|
161 |
+
std::function<at::Tensor(const at::Tensor&)> func=nullptr;
|
162 |
+
if (${is_view_with_metadata_change} || !self.unsafeGetTensorImpl()->support_as_strided() ||
|
163 |
+
c10::AutogradState::get_tls_state().get_view_replay_enabled()) {
|
164 |
+
${replay_view_func}
|
165 |
+
}
|
166 |
+
"""
|
167 |
+
)
|
168 |
+
|
169 |
+
REPLAY_VIEW_LAMBDA_FUNC = CodeTemplate(
|
170 |
+
"""\
|
171 |
+
func = [=](const at::Tensor& ${input_base}) {
|
172 |
+
return ${replay_view_call};
|
173 |
+
};
|
174 |
+
"""
|
175 |
+
)
|
176 |
+
|
177 |
+
METHOD_DEFINITION = CodeTemplate(
|
178 |
+
"""\
|
179 |
+
${return_type} ${type_wrapper_name}(${formals}) {
|
180 |
+
${type_definition_body}
|
181 |
+
}
|
182 |
+
"""
|
183 |
+
)
|
184 |
+
|
185 |
+
WRAPPER_REGISTRATION = CodeTemplate(
|
186 |
+
"""\
|
187 |
+
m.impl("${unqual_operator_name_with_overload}",
|
188 |
+
TORCH_FN(${class_type}::${type_wrapper_name})
|
189 |
+
);
|
190 |
+
"""
|
191 |
+
)
|
192 |
+
|
193 |
+
AUTOGRAD_NOT_IMPLEMENTED_REGISTRATION = CodeTemplate(
|
194 |
+
"""\
|
195 |
+
m.impl("${unqual_operator_name_with_overload}", torch::autograd::autogradNotImplementedFallback());
|
196 |
+
"""
|
197 |
+
)
|
198 |
+
|
199 |
+
INPLACE_REDISPATCH = CodeTemplate(
|
200 |
+
"""\
|
201 |
+
{
|
202 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
203 |
+
at::_ops::${unambiguous_name}::redispatch(${unpacked_args});
|
204 |
+
}
|
205 |
+
"""
|
206 |
+
)
|
207 |
+
|
208 |
+
ASSIGN_RETURN_VALUE = CodeTemplate(
|
209 |
+
"""\
|
210 |
+
${return_values} = ${rhs_value};
|
211 |
+
"""
|
212 |
+
)
|
213 |
+
|
214 |
+
VIEW_REDISPATCH = CodeTemplate(
|
215 |
+
"""\
|
216 |
+
${assign_return_values} ([&]() {
|
217 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
218 |
+
return at::_ops::${unambiguous_name}::redispatch(${unpacked_args});
|
219 |
+
})();
|
220 |
+
"""
|
221 |
+
)
|
222 |
+
|
223 |
+
TMP_VAR = "_tmp"
|
224 |
+
|
225 |
+
|
226 |
+
# FIXME: Ideally these functions should be methods on Type class, but we have a
|
227 |
+
# comment in codegen/model.py there saying these concepts are not well defined.
|
228 |
+
# Thus we put a version that commonly used by autograd codegen here.
|
229 |
+
def is_tensor_type(t: Type) -> bool:
|
230 |
+
# TODO: Should handle optional here?
|
231 |
+
return t.is_tensor_like() and t.is_list_like() is None
|
232 |
+
|
233 |
+
|
234 |
+
def is_tensor_list_type(t: Type) -> bool:
|
235 |
+
# TODO: Should handle optional here?
|
236 |
+
return t.is_tensor_like() and t.is_list_like() is not None
|
237 |
+
|
238 |
+
|
239 |
+
UNPACK_TENSOR = CodeTemplate(
|
240 |
+
"""\
|
241 |
+
auto${ref} ${arg_name}_ = unpack${suffix}(${arg_name}, "${arg_name}", ${arg_pos});"""
|
242 |
+
)
|
243 |
+
|
244 |
+
|
245 |
+
def unpacked_name(arg_name: str) -> str:
|
246 |
+
return arg_name + "_"
|
247 |
+
|
248 |
+
|
249 |
+
@with_native_function
|
250 |
+
def unpack_args(f: NativeFunction) -> Tuple[List[str], List[Binding]]:
|
251 |
+
body: List[str] = []
|
252 |
+
unpacked_bindings: List[Binding] = []
|
253 |
+
|
254 |
+
bindings = [
|
255 |
+
r
|
256 |
+
for a in f.func.schema_order_arguments()
|
257 |
+
for r in cpp.argument(
|
258 |
+
a,
|
259 |
+
method=False,
|
260 |
+
symint=True,
|
261 |
+
cpp_no_default_args=set(),
|
262 |
+
faithful=False,
|
263 |
+
has_tensor_options=False,
|
264 |
+
)
|
265 |
+
]
|
266 |
+
|
267 |
+
for i, binding in enumerate(bindings):
|
268 |
+
assert not isinstance(binding.argument, SelfArgument)
|
269 |
+
if isinstance(binding.argument, TensorOptionsArguments):
|
270 |
+
raise RuntimeError("VariableKernel shouldn't take TensorOptions")
|
271 |
+
|
272 |
+
is_nullable = binding.argument.type.is_nullable()
|
273 |
+
if not binding.argument.type.is_tensor_like() or is_nullable:
|
274 |
+
unpacked_bindings.append(binding)
|
275 |
+
continue
|
276 |
+
|
277 |
+
is_tensor_list = is_tensor_list_type(binding.argument.type)
|
278 |
+
ref = (not is_nullable) and not is_tensor_list
|
279 |
+
suffix = "_opt" if is_nullable and not is_tensor_list else ""
|
280 |
+
body.append(
|
281 |
+
UNPACK_TENSOR.substitute(
|
282 |
+
arg_name=binding.name,
|
283 |
+
arg_pos=i,
|
284 |
+
suffix=suffix,
|
285 |
+
ref="&" if ref else "",
|
286 |
+
)
|
287 |
+
)
|
288 |
+
unpacked_bindings.append(
|
289 |
+
Binding(
|
290 |
+
name=unpacked_name(binding.name),
|
291 |
+
nctype=binding.nctype,
|
292 |
+
argument=binding.argument,
|
293 |
+
default=binding.default,
|
294 |
+
)
|
295 |
+
)
|
296 |
+
|
297 |
+
return body, unpacked_bindings
|
298 |
+
|
299 |
+
|
300 |
+
def get_base_name(f: NativeFunction) -> str:
|
301 |
+
return f.func.name.name.base # TODO: should be str(f.func.name.name)?
|
302 |
+
|
303 |
+
|
304 |
+
def get_view_info(f: NativeFunction) -> Optional[str]:
|
305 |
+
base_name = get_base_name(f)
|
306 |
+
view_info = VIEW_FUNCTIONS.get(base_name, None)
|
307 |
+
if view_info is None and base_name in RETURNS_VIEWS_OF_INPUT:
|
308 |
+
view_info = "self"
|
309 |
+
return view_info
|
310 |
+
|
311 |
+
|
312 |
+
# For view replay calls, we generate an ordinary Dispatcher::call() instead, because:
|
313 |
+
# - We want to replay the entire call into the op, including any previously-set dispatch keys (including autograd!).
|
314 |
+
# - The view replay call also is not part of the hot path.
|
315 |
+
def emit_view_call(
|
316 |
+
f: NativeFunction, input_base: str, unpacked_args: Sequence[str]
|
317 |
+
) -> str:
|
318 |
+
# View replay functions use the standard Dispatcher::call API.
|
319 |
+
return CALL_DISPATCH.substitute(
|
320 |
+
unambiguous_name=f.func.name.unambiguous_name(), unpacked_args=unpacked_args
|
321 |
+
)
|
322 |
+
|
323 |
+
|
324 |
+
def emit_view_lambda(f: NativeFunction, unpacked_bindings: List[Binding]) -> str:
|
325 |
+
"""Generate an additional lambda function to recover views in backward when as_strided is not supported.
|
326 |
+
See Note [View + Inplace update for base tensor] and [View + Inplace update for view tensor] for more details.
|
327 |
+
"""
|
328 |
+
input_base = "input_base"
|
329 |
+
replay_view_func = ""
|
330 |
+
updated_unpacked_args: List[str] = []
|
331 |
+
known_view_arg_simple_types: List[CType] = [
|
332 |
+
BaseCType(longT),
|
333 |
+
OptionalCType(BaseCType(longT)),
|
334 |
+
BaseCType(SymIntT),
|
335 |
+
OptionalCType(BaseCType(SymIntT)),
|
336 |
+
BaseCType(boolT),
|
337 |
+
BaseCType(intArrayRefT),
|
338 |
+
BaseCType(symIntArrayRefT),
|
339 |
+
ConstRefCType(BaseCType(tensorT)),
|
340 |
+
]
|
341 |
+
for unpacked_binding in unpacked_bindings:
|
342 |
+
arg, arg_type = unpacked_binding.name, unpacked_binding.nctype.type
|
343 |
+
if arg == "self_":
|
344 |
+
updated_unpacked_args.append(input_base)
|
345 |
+
continue
|
346 |
+
if arg_type not in known_view_arg_simple_types:
|
347 |
+
known_types_str = ", ".join([str(t) for t in known_view_arg_simple_types])
|
348 |
+
raise TypeError(
|
349 |
+
f"You are adding an {arg_type} {arg} argument to op {cpp.name(f.func)} in addition to known types: "
|
350 |
+
f"{known_types_str}. Please update the list or materialize it so that it can be closed "
|
351 |
+
"over by value, also add a test in pytorch/xla/test/test_operations.py where this code "
|
352 |
+
"is exercised."
|
353 |
+
)
|
354 |
+
if arg_type == BaseCType(intArrayRefT) or arg_type == BaseCType(
|
355 |
+
symIntArrayRefT
|
356 |
+
):
|
357 |
+
# It's not safe to close over IntArrayRef by value, since this is a
|
358 |
+
# reference type, so materialize a vector to close over by value
|
359 |
+
arg_vec = arg + "_vec"
|
360 |
+
replay_view_func += ARRAYREF_TO_VEC.substitute(arg=arg, vec=arg_vec)
|
361 |
+
updated_unpacked_args.append(arg_vec)
|
362 |
+
elif arg_type == OptionalCType(BaseCType(longT)):
|
363 |
+
# Materialize int64_t? to int64_t
|
364 |
+
arg_value = arg + "_val"
|
365 |
+
replay_view_func += OPTIONAL_TO_VAL.substitute(
|
366 |
+
arg=arg, val=arg_value, default="0"
|
367 |
+
)
|
368 |
+
updated_unpacked_args.append(arg_value)
|
369 |
+
elif (
|
370 |
+
arg == "nested_size_" or arg == "nested_strides_" or arg == "offsets_"
|
371 |
+
) and arg_type == ConstRefCType(BaseCType(tensorT)):
|
372 |
+
# [NOTE] [Nested Arg Types]
|
373 |
+
# This is temporary. Nested tensors will be migrating to use SymInts and
|
374 |
+
# nested_size and nested_strides will no longer be tensors.
|
375 |
+
updated_unpacked_args.append(arg[:-1])
|
376 |
+
else:
|
377 |
+
updated_unpacked_args.append(arg)
|
378 |
+
|
379 |
+
replay_view_call = emit_view_call(f, input_base, updated_unpacked_args)
|
380 |
+
replay_view_func += REPLAY_VIEW_LAMBDA_FUNC.substitute(
|
381 |
+
input_base=input_base, replay_view_call=replay_view_call
|
382 |
+
)
|
383 |
+
|
384 |
+
is_view_with_metadata_change = (
|
385 |
+
"true" if cpp.name(f.func) in VIEW_FUNCTIONS_WITH_METADATA_CHANGE else "false"
|
386 |
+
)
|
387 |
+
|
388 |
+
return SETUP_REPLAY_VIEW_IF_NOT_SUPPORT_AS_STRIDED_OR_VIEW_WITH_METADATA_CHANGE.substitute(
|
389 |
+
is_view_with_metadata_change=is_view_with_metadata_change,
|
390 |
+
replay_view_func=replay_view_func,
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
def emit_view_body(
|
395 |
+
fn: NativeFunctionWithDifferentiabilityInfo, var: str
|
396 |
+
) -> Tuple[str, str]:
|
397 |
+
# See NOTE [ Autograd View Variables ] in variable.h for details.
|
398 |
+
f = fn.func
|
399 |
+
base_name = get_base_name(f)
|
400 |
+
view_info = get_view_info(f)
|
401 |
+
call = ""
|
402 |
+
differentiable_outputs = gen_differentiable_outputs(fn)
|
403 |
+
differentiable_output_vars = {r.name for r in differentiable_outputs}
|
404 |
+
if not isinstance(view_info, str):
|
405 |
+
raise TypeError(
|
406 |
+
f"The view info should be a string for {base_name}, but it is: {view_info}"
|
407 |
+
)
|
408 |
+
if len(differentiable_output_vars) == 0:
|
409 |
+
# no output is differentiable (.indices() for SparseTensors for example)
|
410 |
+
rhs_value = (
|
411 |
+
f"as_view({view_info}, {var}, "
|
412 |
+
f"/* is_bw_differentiable */ false, /* is_fw_differentiable */ false)"
|
413 |
+
)
|
414 |
+
elif len(differentiable_output_vars) == 1:
|
415 |
+
# Single differentiable output (Tensor or Tensor[])
|
416 |
+
return_info = differentiable_outputs[0]
|
417 |
+
# We only support simple Tensor or a TensorList for functions that return views
|
418 |
+
if not is_tensor_type(return_info.type) and not is_tensor_list_type(
|
419 |
+
return_info.type
|
420 |
+
):
|
421 |
+
raise RuntimeError(
|
422 |
+
f"{base_name} that return differentiable views can only return Tensor or Tensor[]"
|
423 |
+
)
|
424 |
+
|
425 |
+
# See Note [ View + Inplace detection]
|
426 |
+
def get_creation_meta_in_mode(original: str) -> str:
|
427 |
+
creation_meta_with_grad_mode = f"(at::GradMode::is_enabled() ? {original} : CreationMeta::NO_GRAD_MODE)"
|
428 |
+
return f"InferenceMode::is_enabled() ? CreationMeta::INFERENCE_MODE : {creation_meta_with_grad_mode}"
|
429 |
+
|
430 |
+
# Only allow rebasing of the history if we return a single Tensor
|
431 |
+
# If we are in a no grad block, raise a warning
|
432 |
+
# See NOTE [ View + Inplace detection ] for more details about this logic
|
433 |
+
if is_tensor_list_type(return_info.type):
|
434 |
+
creation_meta = get_creation_meta_in_mode("CreationMeta::MULTI_OUTPUT_NODE")
|
435 |
+
call += (
|
436 |
+
f"as_view(/* base */ {view_info}, /* output */ {var}, /* is_bw_differentiable */ true, "
|
437 |
+
"/* is_fw_differentiable */ true, "
|
438 |
+
f"/* creation_meta */ {creation_meta});"
|
439 |
+
)
|
440 |
+
rhs_value = f"std::move({var})"
|
441 |
+
else:
|
442 |
+
_, unpacked_bindings = unpack_args(f)
|
443 |
+
call += emit_view_lambda(f, unpacked_bindings)
|
444 |
+
creation_meta = get_creation_meta_in_mode("CreationMeta::DEFAULT")
|
445 |
+
rhs_value = (
|
446 |
+
f"as_view(/* base */ {view_info}, /* output */ {var}, /* is_bw_differentiable */ true, "
|
447 |
+
"/* is_fw_differentiable */ true, "
|
448 |
+
f"/* view_func */ func, /* creation_meta */ {creation_meta})"
|
449 |
+
)
|
450 |
+
else:
|
451 |
+
# This could be supported but we don't need it at the moment, so keeping things simple.
|
452 |
+
raise RuntimeError(
|
453 |
+
"Function that return multiple differentiable output "
|
454 |
+
"when at least one of them is view is not supported."
|
455 |
+
)
|
456 |
+
return call, rhs_value
|
457 |
+
|
458 |
+
|
459 |
+
def modifies_arguments(f: NativeFunction) -> bool:
|
460 |
+
return f.func.kind() in [SchemaKind.inplace, SchemaKind.out]
|
461 |
+
|
462 |
+
|
463 |
+
@with_native_function_with_differentiability_info
|
464 |
+
def emit_inplace_or_view_body(fn: NativeFunctionWithDifferentiabilityInfo) -> List[str]:
|
465 |
+
f = fn.func
|
466 |
+
inplace_view_body: List[str] = []
|
467 |
+
|
468 |
+
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
469 |
+
dispatcher_exprs = dispatcher_sig.exprs()
|
470 |
+
|
471 |
+
# code-generated ADInplaceOrView kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
472 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
473 |
+
dispatch_key_set = "ks & c10::after_ADInplaceOrView_keyset"
|
474 |
+
redispatch_args = ", ".join([dispatch_key_set] + [a.expr for a in dispatcher_exprs])
|
475 |
+
|
476 |
+
# Note that this calls the slow, dispatching variants of manual_cpp_binding ops.
|
477 |
+
# We could probably work harder to ensure that the fast variants are called instead, but the perf benefit would be minimal.
|
478 |
+
if modifies_arguments(f): # inplace op
|
479 |
+
inplace_view_body.append(
|
480 |
+
INPLACE_REDISPATCH.substitute(
|
481 |
+
unambiguous_name=f.func.name.unambiguous_name(),
|
482 |
+
unpacked_args=redispatch_args,
|
483 |
+
)
|
484 |
+
)
|
485 |
+
for r in cpp.return_names(f):
|
486 |
+
inplace_view_body.append(f"increment_version({r});")
|
487 |
+
else:
|
488 |
+
assert get_view_info(f) is not None
|
489 |
+
inplace_view_body.append(
|
490 |
+
VIEW_REDISPATCH.substitute(
|
491 |
+
assign_return_values="auto " + TMP_VAR + " = ",
|
492 |
+
unambiguous_name=f.func.name.unambiguous_name(),
|
493 |
+
unpacked_args=redispatch_args,
|
494 |
+
)
|
495 |
+
)
|
496 |
+
call, rhs_value = emit_view_body(fn, TMP_VAR)
|
497 |
+
inplace_view_body.append(call)
|
498 |
+
assert rhs_value is not None
|
499 |
+
inplace_view_body.append(
|
500 |
+
ASSIGN_RETURN_VALUE.substitute(
|
501 |
+
return_values=tie_return_values(f), rhs_value=rhs_value
|
502 |
+
)
|
503 |
+
)
|
504 |
+
if f.func.returns:
|
505 |
+
inplace_view_body.append(f"return {get_return_value(f)};")
|
506 |
+
return inplace_view_body
|
507 |
+
|
508 |
+
|
509 |
+
@with_native_function
|
510 |
+
def gen_formals(f: NativeFunction) -> str:
|
511 |
+
return ", ".join(
|
512 |
+
# code-generated autograd kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
513 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
514 |
+
["c10::DispatchKeySet ks"]
|
515 |
+
+ [
|
516 |
+
f'{cpp.argument_type(a, binds="__placeholder__", symint=True).cpp_type()} {a.name}'
|
517 |
+
for a in f.func.schema_order_arguments()
|
518 |
+
]
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
@with_native_function_with_differentiability_info
|
523 |
+
def inplace_or_view_method_definition(
|
524 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
525 |
+
) -> Optional[str]:
|
526 |
+
f = fn.func
|
527 |
+
if get_view_info(f) is None and (
|
528 |
+
# For functions that modify their inputs but don't return them,
|
529 |
+
# we can't give them autograd support.
|
530 |
+
# See https://github.com/pytorch/pytorch/issues/53796
|
531 |
+
not modifies_arguments(f)
|
532 |
+
or len(f.func.returns) == 0
|
533 |
+
):
|
534 |
+
return None
|
535 |
+
return METHOD_DEFINITION.substitute(
|
536 |
+
return_type=cpp.returns_type(f.func.returns, symint=True).cpp_type(),
|
537 |
+
type_wrapper_name=type_wrapper_name(f),
|
538 |
+
formals=gen_formals(f),
|
539 |
+
type_definition_body=emit_inplace_or_view_body(fn),
|
540 |
+
)
|
541 |
+
|
542 |
+
|
543 |
+
@with_native_function_with_differentiability_info
|
544 |
+
def inplace_or_view_method_registration(
|
545 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
546 |
+
) -> Optional[str]:
|
547 |
+
f = fn.func
|
548 |
+
if get_view_info(f) is None and (
|
549 |
+
not modifies_arguments(f) or len(f.func.returns) == 0
|
550 |
+
):
|
551 |
+
return None
|
552 |
+
return WRAPPER_REGISTRATION.substitute(
|
553 |
+
unqual_operator_name_with_overload=f.func.name,
|
554 |
+
type_wrapper_name=type_wrapper_name(f),
|
555 |
+
class_type="ADInplaceOrView",
|
556 |
+
)
|
557 |
+
|
558 |
+
|
559 |
+
def use_derived(fn: NativeFunctionWithDifferentiabilityInfo) -> bool:
|
560 |
+
f = fn.func
|
561 |
+
name = cpp.name(f.func)
|
562 |
+
return name not in MANUAL_AUTOGRAD and dispatch_strategy(fn) == "use_derived"
|
563 |
+
|
564 |
+
|
565 |
+
def gen_inplace_or_view_type_env(
|
566 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
567 |
+
) -> Dict[str, List[str]]:
|
568 |
+
definition = inplace_or_view_method_definition(fn)
|
569 |
+
registration = inplace_or_view_method_registration(fn)
|
570 |
+
|
571 |
+
return {
|
572 |
+
"ops_headers": (
|
573 |
+
[f"#include <ATen/ops/{fn.func.root_name}_ops.h>"]
|
574 |
+
if definition is not None
|
575 |
+
else []
|
576 |
+
),
|
577 |
+
"inplace_or_view_method_definitions": [definition]
|
578 |
+
if definition is not None
|
579 |
+
else [],
|
580 |
+
"inplace_or_view_wrapper_registrations": [registration]
|
581 |
+
if registration is not None
|
582 |
+
else [],
|
583 |
+
}
|
584 |
+
|
585 |
+
|
586 |
+
def gen_inplace_or_view_type(
|
587 |
+
out: str,
|
588 |
+
native_yaml_path: str,
|
589 |
+
tags_yaml_path: str,
|
590 |
+
fns_with_infos: List[NativeFunctionWithDifferentiabilityInfo],
|
591 |
+
template_path: str,
|
592 |
+
) -> None:
|
593 |
+
# NOTE: see Note [Sharded File] at the top of the VariableType.cpp
|
594 |
+
# template regarding sharding of the generated files.
|
595 |
+
num_shards = 2
|
596 |
+
|
597 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
598 |
+
fm.write_sharded(
|
599 |
+
"ADInplaceOrViewType.cpp",
|
600 |
+
[fn for fn in fns_with_infos if use_derived(fn)],
|
601 |
+
key_fn=lambda fn: fn.func.root_name,
|
602 |
+
base_env={
|
603 |
+
"generated_comment": "@"
|
604 |
+
+ f"generated from {fm.template_dir_for_comments()}/ADInplaceOrViewType.cpp",
|
605 |
+
},
|
606 |
+
env_callable=gen_inplace_or_view_type_env,
|
607 |
+
num_shards=2,
|
608 |
+
sharded_keys={
|
609 |
+
"ops_headers",
|
610 |
+
"inplace_or_view_method_definitions",
|
611 |
+
"inplace_or_view_wrapper_registrations",
|
612 |
+
},
|
613 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_python_functions.py
ADDED
@@ -0,0 +1,1377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates Python bindings for ATen functions
|
2 |
+
#
|
3 |
+
# The bindings are generated as methods on python_variable or functions on the
|
4 |
+
# torch._C._nn. torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._sparse
|
5 |
+
# or torch._C._special objects.
|
6 |
+
#
|
7 |
+
|
8 |
+
# Code tries to stick to the following rules:
|
9 |
+
#
|
10 |
+
# - templates should be colocated with the functions that use them.
|
11 |
+
# no templates are currently shared between functions, but if that
|
12 |
+
# happens, maybe put the template with the first one
|
13 |
+
#
|
14 |
+
# - don't use environment dictionaries when calling template.substitute().
|
15 |
+
# pass named arguments directly for everything, otherwise it's much too
|
16 |
+
# hard to track what's actually being used and by who
|
17 |
+
#
|
18 |
+
# - colocate any new hacks/adjustments with existing ones of the same kind.
|
19 |
+
# ideally in a data structure rather than code if possible. See e.g.
|
20 |
+
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
|
21 |
+
#
|
22 |
+
# - similarly, conversions from one format to another should ideally happen
|
23 |
+
# all at once in a single place.
|
24 |
+
#
|
25 |
+
# - no nontrivial nested functions. couple-liners are ok but please no more.
|
26 |
+
# especially avoid functions that read/write outer variables defined far away.
|
27 |
+
#
|
28 |
+
# - raise RuntimeError instead of asserting, and put as much
|
29 |
+
# information as is available into the message. I.e. no need to
|
30 |
+
# plumb in new params whose only purpose is to fill out an error
|
31 |
+
# message, but use what's there
|
32 |
+
#
|
33 |
+
|
34 |
+
import itertools
|
35 |
+
import re
|
36 |
+
from collections import defaultdict
|
37 |
+
|
38 |
+
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Set, Tuple
|
39 |
+
|
40 |
+
import yaml
|
41 |
+
from torchgen.api import cpp
|
42 |
+
from torchgen.api.python import (
|
43 |
+
arg_parser_output_exprs,
|
44 |
+
cpp_dispatch_exprs,
|
45 |
+
cpp_dispatch_target,
|
46 |
+
dispatch_lambda_args,
|
47 |
+
dispatch_lambda_exprs,
|
48 |
+
dispatch_lambda_return_str,
|
49 |
+
has_tensor_options,
|
50 |
+
namedtuple_fieldnames,
|
51 |
+
PythonSignature,
|
52 |
+
PythonSignatureDeprecated,
|
53 |
+
PythonSignatureGroup,
|
54 |
+
PythonSignatureNativeFunctionPair,
|
55 |
+
signature,
|
56 |
+
signature_from_schema,
|
57 |
+
)
|
58 |
+
|
59 |
+
from torchgen.code_template import CodeTemplate
|
60 |
+
from torchgen.context import with_native_function
|
61 |
+
from torchgen.gen import cpp_string, parse_native_yaml, parse_tags_yaml
|
62 |
+
from torchgen.model import (
|
63 |
+
Argument,
|
64 |
+
BaseOperatorName,
|
65 |
+
FunctionSchema,
|
66 |
+
NativeFunction,
|
67 |
+
Type,
|
68 |
+
Variant,
|
69 |
+
)
|
70 |
+
from torchgen.utils import FileManager, split_name_params
|
71 |
+
from torchgen.yaml_utils import YamlLoader
|
72 |
+
|
73 |
+
from .gen_trace_type import should_trace
|
74 |
+
|
75 |
+
#
|
76 |
+
# declarations blocklist
|
77 |
+
# We skip codegen for these functions, for various reasons.
|
78 |
+
# Future PRs will categorize this list and eliminate or hoist
|
79 |
+
# them out of eager-only codegen.
|
80 |
+
# See https://github.com/pytorch/pytorch/issues/30788
|
81 |
+
#
|
82 |
+
|
83 |
+
# These functions require manual Python bindings or are not exposed to Python
|
84 |
+
_SKIP_PYTHON_BINDINGS = [
|
85 |
+
"alias",
|
86 |
+
"contiguous",
|
87 |
+
"is_cuda",
|
88 |
+
"is_sparse",
|
89 |
+
"is_sparse_csr",
|
90 |
+
"size",
|
91 |
+
"stride",
|
92 |
+
"sym_size",
|
93 |
+
"sym_stride",
|
94 |
+
"sym_storage_offset",
|
95 |
+
"sym_numel",
|
96 |
+
".*_backward",
|
97 |
+
".*_backward_(out|input|weight|bias)",
|
98 |
+
".*_forward",
|
99 |
+
".*_forward_out",
|
100 |
+
".*_jvp",
|
101 |
+
"_unsafe_view",
|
102 |
+
"tensor",
|
103 |
+
"_?sparse_(coo|compressed|csr|csc|bsr|bsc)_tensor.*",
|
104 |
+
"_range.*",
|
105 |
+
"_sparse_add_out",
|
106 |
+
"_sparse_div.*",
|
107 |
+
"_sparse_mul.*",
|
108 |
+
"_sparse_sub.*",
|
109 |
+
"_sparse_dense_add_out",
|
110 |
+
"index",
|
111 |
+
"index_out",
|
112 |
+
"unique_dim_consecutive",
|
113 |
+
"_cumsum.*",
|
114 |
+
"_cumprod.*",
|
115 |
+
"_sum.*",
|
116 |
+
"_prod.*",
|
117 |
+
"_th_.*",
|
118 |
+
"_thnn_.*",
|
119 |
+
"range.*",
|
120 |
+
"_solve.*",
|
121 |
+
"_inverse.*",
|
122 |
+
"_cholesky.*",
|
123 |
+
"_triangular_solve.*",
|
124 |
+
"_qr.*",
|
125 |
+
"_svd.*",
|
126 |
+
"slice",
|
127 |
+
"item",
|
128 |
+
"_local_scalar_dense",
|
129 |
+
"to",
|
130 |
+
"_to_copy",
|
131 |
+
"_to_copy_out",
|
132 |
+
"_reshape_copy",
|
133 |
+
"_reshape_copy_out",
|
134 |
+
"copy_sparse_to_sparse_",
|
135 |
+
"copy_",
|
136 |
+
"numpy_T",
|
137 |
+
"matrix_H",
|
138 |
+
"mT",
|
139 |
+
"mH", # these need to be an attributes in Python, not functions
|
140 |
+
"nonzero(_(out|numpy))?",
|
141 |
+
"set_data",
|
142 |
+
".*_overrideable", # overrideable functions for backend extension
|
143 |
+
"data",
|
144 |
+
"is_leaf",
|
145 |
+
"output_nr",
|
146 |
+
"_version",
|
147 |
+
"requires_grad_",
|
148 |
+
"retains_grad",
|
149 |
+
"set_",
|
150 |
+
"_fw_primal",
|
151 |
+
"fake_quantize_per_tensor_affine_cachemask",
|
152 |
+
"fake_quantize_per_channel_affine_cachemask",
|
153 |
+
"_new_zeros_with_same_feature_meta",
|
154 |
+
"_has_same_storage_numel", # used for forward AD internals
|
155 |
+
"_reshape_alias",
|
156 |
+
"replace_", # only used by the functionalization pass, doesn't need to be exposed to python
|
157 |
+
"copy", # only used by the functionalization pass
|
158 |
+
"fill.Tensor", # only used by the functionalization pass
|
159 |
+
"fill.Scalar", # only used by the functionalization pass
|
160 |
+
"lift.*",
|
161 |
+
"normal_functional", # only used by the functionalization pas
|
162 |
+
"nbytes",
|
163 |
+
"itemsize",
|
164 |
+
]
|
165 |
+
|
166 |
+
SKIP_PYTHON_BINDINGS = [
|
167 |
+
re.compile(rf"^{pattern}$") for pattern in _SKIP_PYTHON_BINDINGS
|
168 |
+
]
|
169 |
+
|
170 |
+
# These function signatures are not exposed to Python. Note that this signature
|
171 |
+
# list does not support regex.
|
172 |
+
SKIP_PYTHON_BINDINGS_SIGNATURES = [
|
173 |
+
"add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
|
174 |
+
"add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
|
175 |
+
"sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
|
176 |
+
"sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
|
177 |
+
"mul.Scalar(Tensor self, Scalar other) -> Tensor",
|
178 |
+
"mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
|
179 |
+
"div.Scalar(Tensor self, Scalar other) -> Tensor",
|
180 |
+
"div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
|
181 |
+
]
|
182 |
+
|
183 |
+
|
184 |
+
@with_native_function
|
185 |
+
def should_generate_py_binding(f: NativeFunction) -> bool:
|
186 |
+
# NativeFunctions that are entirely code-generated should not get python bindings
|
187 |
+
# because these codegen implementations are often inefficient. A handful of
|
188 |
+
# view_copy style ops were exposed accidentally when they were handwritten and now
|
189 |
+
# that we are moving them to codegen for bc reasons we need to keep them exposed in
|
190 |
+
# python.
|
191 |
+
if "generated" in f.tags and "view_copy" not in f.tags:
|
192 |
+
return False
|
193 |
+
|
194 |
+
name = cpp.name(f.func)
|
195 |
+
for skip_regex in SKIP_PYTHON_BINDINGS:
|
196 |
+
if skip_regex.match(name):
|
197 |
+
return False
|
198 |
+
|
199 |
+
signature = str(f.func)
|
200 |
+
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
|
201 |
+
if pattern == signature:
|
202 |
+
return False
|
203 |
+
return True
|
204 |
+
|
205 |
+
|
206 |
+
def get_pycname(name: BaseOperatorName) -> str:
|
207 |
+
return f"THPVariable_{name}"
|
208 |
+
|
209 |
+
|
210 |
+
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
|
211 |
+
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
|
212 |
+
|
213 |
+
|
214 |
+
def is_py_variable_method(f: NativeFunction) -> bool:
|
215 |
+
return f.python_module is None and Variant.method in f.variants
|
216 |
+
|
217 |
+
|
218 |
+
def is_py_torch_function(f: NativeFunction) -> bool:
|
219 |
+
return f.python_module is None and Variant.function in f.variants
|
220 |
+
|
221 |
+
|
222 |
+
def is_py_nn_function(f: NativeFunction) -> bool:
|
223 |
+
return f.python_module == "nn"
|
224 |
+
|
225 |
+
|
226 |
+
def is_py_fft_function(f: NativeFunction) -> bool:
|
227 |
+
return f.python_module == "fft"
|
228 |
+
|
229 |
+
|
230 |
+
def is_py_linalg_function(f: NativeFunction) -> bool:
|
231 |
+
return f.python_module == "linalg"
|
232 |
+
|
233 |
+
|
234 |
+
def is_py_nested_function(f: NativeFunction) -> bool:
|
235 |
+
return f.python_module == "nested"
|
236 |
+
|
237 |
+
|
238 |
+
def is_py_sparse_function(f: NativeFunction) -> bool:
|
239 |
+
return f.python_module == "sparse"
|
240 |
+
|
241 |
+
|
242 |
+
def is_py_special_function(f: NativeFunction) -> bool:
|
243 |
+
return f.python_module == "special"
|
244 |
+
|
245 |
+
|
246 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
247 |
+
#
|
248 |
+
# Main Function
|
249 |
+
#
|
250 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
251 |
+
|
252 |
+
|
253 |
+
def gen(
|
254 |
+
out: str,
|
255 |
+
native_yaml_path: str,
|
256 |
+
tags_yaml_path: str,
|
257 |
+
deprecated_yaml_path: str,
|
258 |
+
template_path: str,
|
259 |
+
*,
|
260 |
+
symint: bool = True,
|
261 |
+
) -> None:
|
262 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
263 |
+
native_functions = parse_native_yaml(
|
264 |
+
native_yaml_path, tags_yaml_path
|
265 |
+
).native_functions
|
266 |
+
native_functions = list(filter(should_generate_py_binding, native_functions))
|
267 |
+
|
268 |
+
methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
|
269 |
+
create_python_bindings(
|
270 |
+
fm,
|
271 |
+
methods,
|
272 |
+
is_py_variable_method,
|
273 |
+
None,
|
274 |
+
"python_variable_methods.cpp",
|
275 |
+
method=True,
|
276 |
+
symint=symint,
|
277 |
+
)
|
278 |
+
|
279 |
+
# NOTE: num_shards here must be synced with gatherTorchFunctions in
|
280 |
+
# torch/csrc/autograd/python_torch_functions_manual.cpp
|
281 |
+
functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
|
282 |
+
create_python_bindings_sharded(
|
283 |
+
fm,
|
284 |
+
functions,
|
285 |
+
is_py_torch_function,
|
286 |
+
"torch",
|
287 |
+
"python_torch_functions.cpp",
|
288 |
+
method=False,
|
289 |
+
num_shards=3,
|
290 |
+
symint=symint,
|
291 |
+
)
|
292 |
+
|
293 |
+
create_python_bindings(
|
294 |
+
fm,
|
295 |
+
functions,
|
296 |
+
is_py_nn_function,
|
297 |
+
"torch.nn",
|
298 |
+
"python_nn_functions.cpp",
|
299 |
+
method=False,
|
300 |
+
symint=symint,
|
301 |
+
)
|
302 |
+
|
303 |
+
create_python_bindings(
|
304 |
+
fm,
|
305 |
+
functions,
|
306 |
+
is_py_fft_function,
|
307 |
+
"torch.fft",
|
308 |
+
"python_fft_functions.cpp",
|
309 |
+
method=False,
|
310 |
+
symint=symint,
|
311 |
+
)
|
312 |
+
|
313 |
+
create_python_bindings(
|
314 |
+
fm,
|
315 |
+
functions,
|
316 |
+
is_py_linalg_function,
|
317 |
+
"torch.linalg",
|
318 |
+
"python_linalg_functions.cpp",
|
319 |
+
method=False,
|
320 |
+
symint=symint,
|
321 |
+
)
|
322 |
+
|
323 |
+
create_python_bindings(
|
324 |
+
fm,
|
325 |
+
functions,
|
326 |
+
is_py_nested_function,
|
327 |
+
"torch.nested",
|
328 |
+
"python_nested_functions.cpp",
|
329 |
+
method=False,
|
330 |
+
)
|
331 |
+
|
332 |
+
create_python_bindings(
|
333 |
+
fm,
|
334 |
+
functions,
|
335 |
+
is_py_sparse_function,
|
336 |
+
"torch.sparse",
|
337 |
+
"python_sparse_functions.cpp",
|
338 |
+
method=False,
|
339 |
+
symint=symint,
|
340 |
+
)
|
341 |
+
|
342 |
+
create_python_bindings(
|
343 |
+
fm,
|
344 |
+
functions,
|
345 |
+
is_py_special_function,
|
346 |
+
"torch.special",
|
347 |
+
"python_special_functions.cpp",
|
348 |
+
method=False,
|
349 |
+
symint=symint,
|
350 |
+
)
|
351 |
+
|
352 |
+
# Currently, we only use `functions` to generate `return_types` bindings.
|
353 |
+
# All methods which return namedtuple have function variant at this point.
|
354 |
+
# If any method only operator with namedtuple is added in the future,
|
355 |
+
# we will have to address that.
|
356 |
+
create_python_return_type_bindings(
|
357 |
+
fm, functions, lambda fn: True, "python_return_types.cpp"
|
358 |
+
)
|
359 |
+
create_python_return_type_bindings_header(
|
360 |
+
fm, functions, lambda fn: True, "python_return_types.h"
|
361 |
+
)
|
362 |
+
|
363 |
+
valid_tags = parse_tags_yaml(tags_yaml_path)
|
364 |
+
|
365 |
+
def gen_tags_enum() -> Dict[str, str]:
|
366 |
+
return {
|
367 |
+
"enum_of_valid_tags": (
|
368 |
+
"".join(
|
369 |
+
[f'\n.value("{tag}", at::Tag::{tag})' for tag in sorted(valid_tags)]
|
370 |
+
)
|
371 |
+
)
|
372 |
+
}
|
373 |
+
|
374 |
+
fm.write("python_enum_tag.cpp", gen_tags_enum)
|
375 |
+
|
376 |
+
|
377 |
+
def group_filter_overloads(
|
378 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
379 |
+
pred: Callable[[NativeFunction], bool],
|
380 |
+
) -> Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]:
|
381 |
+
grouped: Dict[
|
382 |
+
BaseOperatorName, List[PythonSignatureNativeFunctionPair]
|
383 |
+
] = defaultdict(list)
|
384 |
+
for pair in pairs:
|
385 |
+
if pred(pair.function):
|
386 |
+
grouped[pair.function.func.name.name].append(pair)
|
387 |
+
return grouped
|
388 |
+
|
389 |
+
|
390 |
+
def create_python_bindings(
|
391 |
+
fm: FileManager,
|
392 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
393 |
+
pred: Callable[[NativeFunction], bool],
|
394 |
+
module: Optional[str],
|
395 |
+
filename: str,
|
396 |
+
*,
|
397 |
+
method: bool,
|
398 |
+
symint: bool = True,
|
399 |
+
) -> None:
|
400 |
+
"""Generates Python bindings to ATen functions"""
|
401 |
+
py_methods: List[str] = []
|
402 |
+
ops_headers: List[str] = []
|
403 |
+
py_method_defs: List[str] = []
|
404 |
+
py_forwards: List[str] = []
|
405 |
+
|
406 |
+
grouped = group_filter_overloads(pairs, pred)
|
407 |
+
|
408 |
+
for name in sorted(grouped.keys(), key=str):
|
409 |
+
overloads = grouped[name]
|
410 |
+
py_methods.append(
|
411 |
+
method_impl(name, module, overloads, method=method, symint=symint)
|
412 |
+
)
|
413 |
+
py_method_defs.append(method_def(name, module, overloads, method=method))
|
414 |
+
py_forwards.extend(forward_decls(name, overloads, method=method))
|
415 |
+
ops_headers.append(f"#include <ATen/ops/{name.base}.h>")
|
416 |
+
|
417 |
+
fm.write_with_template(
|
418 |
+
filename,
|
419 |
+
filename,
|
420 |
+
lambda: {
|
421 |
+
"generated_comment": "@"
|
422 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
423 |
+
"ops_headers": ops_headers,
|
424 |
+
"py_forwards": py_forwards,
|
425 |
+
"py_methods": py_methods,
|
426 |
+
"py_method_defs": py_method_defs,
|
427 |
+
},
|
428 |
+
)
|
429 |
+
|
430 |
+
|
431 |
+
def create_python_return_type_bindings(
|
432 |
+
fm: FileManager,
|
433 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
434 |
+
pred: Callable[[NativeFunction], bool],
|
435 |
+
filename: str,
|
436 |
+
) -> None:
|
437 |
+
"""
|
438 |
+
Generate function to initialize and return named tuple for native functions
|
439 |
+
which returns named tuple and registration invocations in `python_return_types.cpp`.
|
440 |
+
"""
|
441 |
+
py_return_types_definition: List[str] = []
|
442 |
+
py_return_types_registrations: List[str] = []
|
443 |
+
|
444 |
+
grouped = group_filter_overloads(pairs, pred)
|
445 |
+
|
446 |
+
for name in sorted(grouped.keys(), key=str):
|
447 |
+
overloads = grouped[name]
|
448 |
+
definitions, registrations = generate_return_type_definition_and_registrations(
|
449 |
+
overloads
|
450 |
+
)
|
451 |
+
py_return_types_definition.append(
|
452 |
+
"" if not definitions else "\n".join(definitions)
|
453 |
+
)
|
454 |
+
py_return_types_registrations.append(
|
455 |
+
"" if not registrations else "\n".join(registrations)
|
456 |
+
)
|
457 |
+
|
458 |
+
fm.write_with_template(
|
459 |
+
filename,
|
460 |
+
filename,
|
461 |
+
lambda: {
|
462 |
+
"generated_comment": "@"
|
463 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
464 |
+
"py_return_types": py_return_types_definition,
|
465 |
+
"py_return_types_registrations": py_return_types_registrations,
|
466 |
+
},
|
467 |
+
)
|
468 |
+
|
469 |
+
|
470 |
+
def create_python_return_type_bindings_header(
|
471 |
+
fm: FileManager,
|
472 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
473 |
+
pred: Callable[[NativeFunction], bool],
|
474 |
+
filename: str,
|
475 |
+
) -> None:
|
476 |
+
"""
|
477 |
+
Generate function to initialize and return named tuple for native functions
|
478 |
+
which returns named tuple and relevant entry for the map in `python_return_types.cpp`.
|
479 |
+
"""
|
480 |
+
py_return_types_declarations: List[str] = []
|
481 |
+
|
482 |
+
grouped = group_filter_overloads(pairs, pred)
|
483 |
+
|
484 |
+
for name in sorted(grouped.keys(), key=str):
|
485 |
+
overloads = grouped[name]
|
486 |
+
declarations = generate_return_type_declarations(overloads)
|
487 |
+
py_return_types_declarations.append(
|
488 |
+
"" if not declarations else "\n".join(declarations)
|
489 |
+
)
|
490 |
+
|
491 |
+
fm.write_with_template(
|
492 |
+
filename,
|
493 |
+
filename,
|
494 |
+
lambda: {
|
495 |
+
"generated_comment": "@"
|
496 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
497 |
+
"py_return_types_declarations": py_return_types_declarations,
|
498 |
+
},
|
499 |
+
)
|
500 |
+
|
501 |
+
|
502 |
+
def create_python_bindings_sharded(
|
503 |
+
fm: FileManager,
|
504 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
505 |
+
pred: Callable[[NativeFunction], bool],
|
506 |
+
module: Optional[str],
|
507 |
+
filename: str,
|
508 |
+
*,
|
509 |
+
method: bool,
|
510 |
+
num_shards: int,
|
511 |
+
symint: bool = True,
|
512 |
+
) -> None:
|
513 |
+
"""Generates Python bindings to ATen functions"""
|
514 |
+
grouped = group_filter_overloads(pairs, pred)
|
515 |
+
|
516 |
+
def key_func(
|
517 |
+
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
|
518 |
+
) -> str:
|
519 |
+
return kv[0].base
|
520 |
+
|
521 |
+
def env_func(
|
522 |
+
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
|
523 |
+
) -> Dict[str, List[str]]:
|
524 |
+
name, fn_pairs = kv
|
525 |
+
return {
|
526 |
+
"ops_headers": [f"#include <ATen/ops/{name.base}.h>"],
|
527 |
+
"py_forwards": list(forward_decls(name, fn_pairs, method=method)),
|
528 |
+
"py_methods": [
|
529 |
+
method_impl(name, module, fn_pairs, method=method, symint=symint)
|
530 |
+
],
|
531 |
+
"py_method_defs": [method_def(name, module, fn_pairs, method=method)],
|
532 |
+
}
|
533 |
+
|
534 |
+
fm.write_sharded(
|
535 |
+
filename,
|
536 |
+
grouped.items(),
|
537 |
+
base_env={
|
538 |
+
"generated_comment": "@"
|
539 |
+
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
|
540 |
+
},
|
541 |
+
key_fn=key_func,
|
542 |
+
env_callable=env_func,
|
543 |
+
num_shards=num_shards,
|
544 |
+
sharded_keys={"ops_headers", "py_forwards", "py_methods", "py_method_defs"},
|
545 |
+
)
|
546 |
+
|
547 |
+
|
548 |
+
def load_signatures(
|
549 |
+
native_functions: List[NativeFunction],
|
550 |
+
deprecated_yaml_path: str,
|
551 |
+
*,
|
552 |
+
method: bool,
|
553 |
+
skip_deprecated: bool = False,
|
554 |
+
pyi: bool = False,
|
555 |
+
) -> Sequence[PythonSignatureNativeFunctionPair]:
|
556 |
+
@with_native_function
|
557 |
+
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
|
558 |
+
return PythonSignatureNativeFunctionPair(
|
559 |
+
signature=signature(f, method=method, pyi=pyi),
|
560 |
+
function=f,
|
561 |
+
)
|
562 |
+
|
563 |
+
pairs = list(map(gen_signature_pairs, native_functions))
|
564 |
+
deprecated = load_deprecated_signatures(
|
565 |
+
pairs, deprecated_yaml_path, method=method, pyi=pyi
|
566 |
+
)
|
567 |
+
return pairs if skip_deprecated else pairs + deprecated
|
568 |
+
|
569 |
+
|
570 |
+
def load_deprecated_signatures(
|
571 |
+
pairs: Sequence[PythonSignatureNativeFunctionPair],
|
572 |
+
deprecated_yaml_path: str,
|
573 |
+
*,
|
574 |
+
method: bool,
|
575 |
+
pyi: bool,
|
576 |
+
) -> List[PythonSignatureNativeFunctionPair]:
|
577 |
+
# The deprecated.yaml doesn't have complete type information, we need
|
578 |
+
# find and leverage the original ATen signature (to which it delegates
|
579 |
+
# the call) to generate the full python signature.
|
580 |
+
# We join the deprecated and the original signatures using type-only form.
|
581 |
+
|
582 |
+
# group the original ATen signatures by name
|
583 |
+
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
|
584 |
+
for pair in pairs:
|
585 |
+
grouped[pair.signature.name].append(pair)
|
586 |
+
|
587 |
+
# find matching original signatures for each deprecated signature
|
588 |
+
results: List[PythonSignatureNativeFunctionPair] = []
|
589 |
+
|
590 |
+
with open(deprecated_yaml_path) as f:
|
591 |
+
deprecated_defs = yaml.load(f, Loader=YamlLoader)
|
592 |
+
|
593 |
+
for deprecated in deprecated_defs:
|
594 |
+
schema = FunctionSchema.parse(deprecated["name"])
|
595 |
+
aten_name, call_args = split_name_params(deprecated["aten"])
|
596 |
+
is_out = aten_name.endswith("_out")
|
597 |
+
if is_out:
|
598 |
+
aten_name = aten_name.replace("_out", "")
|
599 |
+
|
600 |
+
# HACK: these are fixed constants used to pass the aten function.
|
601 |
+
# The type must be known ahead of time
|
602 |
+
known_constants = {
|
603 |
+
"1": Type.parse("Scalar"),
|
604 |
+
}
|
605 |
+
schema_args_by_name = {a.name: a for a in schema.arguments.flat_all}
|
606 |
+
for name in call_args:
|
607 |
+
assert (
|
608 |
+
name in schema_args_by_name or name in known_constants
|
609 |
+
), f"deprecation definiton: Unrecognized value {name}"
|
610 |
+
|
611 |
+
# Map deprecated signature arguments to their aten signature and test
|
612 |
+
# if the types and alias annotation match.
|
613 |
+
def is_schema_compatible(
|
614 |
+
aten_schema: FunctionSchema,
|
615 |
+
) -> bool:
|
616 |
+
arguments: Iterable[Argument]
|
617 |
+
if is_out:
|
618 |
+
arguments = itertools.chain(
|
619 |
+
aten_schema.arguments.out, aten_schema.arguments.flat_non_out
|
620 |
+
)
|
621 |
+
else:
|
622 |
+
arguments = aten_schema.arguments.flat_all
|
623 |
+
|
624 |
+
for i, arg in enumerate(arguments):
|
625 |
+
if i < len(call_args):
|
626 |
+
arg_name = call_args[i]
|
627 |
+
if arg_name in known_constants:
|
628 |
+
schema_type = known_constants[arg_name]
|
629 |
+
schema_annotation = None
|
630 |
+
else:
|
631 |
+
schema_arg = schema_args_by_name[arg_name]
|
632 |
+
schema_type = schema_arg.type
|
633 |
+
schema_annotation = schema_arg.annotation
|
634 |
+
|
635 |
+
if schema_type != arg.type or schema_annotation != arg.annotation:
|
636 |
+
return False
|
637 |
+
else:
|
638 |
+
if arg.default is None:
|
639 |
+
return False
|
640 |
+
|
641 |
+
return len(schema.returns) == len(aten_schema.returns) and all(
|
642 |
+
a == b for a, b in zip(schema.returns, aten_schema.returns)
|
643 |
+
)
|
644 |
+
|
645 |
+
any_schema_found = False
|
646 |
+
for pair in grouped[aten_name]:
|
647 |
+
if not is_schema_compatible(pair.function.func):
|
648 |
+
continue
|
649 |
+
any_schema_found = True
|
650 |
+
|
651 |
+
python_sig = signature_from_schema(
|
652 |
+
schema,
|
653 |
+
category_override=pair.function.category_override,
|
654 |
+
method=method,
|
655 |
+
pyi=pyi,
|
656 |
+
)
|
657 |
+
|
658 |
+
results.append(
|
659 |
+
PythonSignatureNativeFunctionPair(
|
660 |
+
signature=PythonSignatureDeprecated(
|
661 |
+
name=python_sig.name,
|
662 |
+
input_args=python_sig.input_args,
|
663 |
+
input_kwargs=python_sig.input_kwargs,
|
664 |
+
output_args=python_sig.output_args,
|
665 |
+
tensor_options_args=python_sig.tensor_options_args,
|
666 |
+
method=python_sig.method,
|
667 |
+
deprecated_schema=schema,
|
668 |
+
deprecated_args_exprs=tuple(call_args),
|
669 |
+
returns=python_sig.returns,
|
670 |
+
),
|
671 |
+
function=pair.function,
|
672 |
+
)
|
673 |
+
)
|
674 |
+
assert (
|
675 |
+
any_schema_found
|
676 |
+
), f"No native function with name {aten_name} matched signature:\n {str(schema)}"
|
677 |
+
|
678 |
+
return results
|
679 |
+
|
680 |
+
|
681 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
682 |
+
#
|
683 |
+
# Named Tuple Codegen
|
684 |
+
#
|
685 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
686 |
+
|
687 |
+
|
688 |
+
@with_native_function
|
689 |
+
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
|
690 |
+
name = cpp.name(f.func)
|
691 |
+
fieldnames = namedtuple_fieldnames(f.func.returns)
|
692 |
+
return "_".join([name] + fieldnames)
|
693 |
+
|
694 |
+
|
695 |
+
def emit_namedtuple_call(
|
696 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
697 |
+
) -> Tuple[List[str], Dict[str, str]]:
|
698 |
+
"""
|
699 |
+
Generate block of named tuple type def inits, and add typeref snippets
|
700 |
+
to declarations that use them
|
701 |
+
"""
|
702 |
+
typenames: Dict[
|
703 |
+
str, str
|
704 |
+
] = {} # map from unique name + field name lists to typedef name
|
705 |
+
typedefs: List[str] = [] # typedef declarations and init code
|
706 |
+
|
707 |
+
for overload in overloads:
|
708 |
+
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
|
709 |
+
if not fieldnames:
|
710 |
+
continue
|
711 |
+
|
712 |
+
name = cpp.name(overload.function.func) # use @with_native_function?
|
713 |
+
tn_key = gen_namedtuple_typename_key(overload.function)
|
714 |
+
typename = typenames.get(tn_key)
|
715 |
+
if typename is None:
|
716 |
+
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
|
717 |
+
typenames[tn_key] = typename
|
718 |
+
typedefs.append(
|
719 |
+
f"""\
|
720 |
+
static PyTypeObject* {typename} = generated::get_{name}_namedtuple();"""
|
721 |
+
)
|
722 |
+
|
723 |
+
return typedefs, typenames
|
724 |
+
|
725 |
+
|
726 |
+
def generate_return_type_definition_and_registrations(
|
727 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
728 |
+
) -> Tuple[List[str], List[str]]:
|
729 |
+
"""
|
730 |
+
Generate block of function in `python_return_types.cpp` to initialize
|
731 |
+
and return named tuple for a native function which returns named tuple
|
732 |
+
and registration invocations in same file.
|
733 |
+
"""
|
734 |
+
typenames: Dict[
|
735 |
+
str, str
|
736 |
+
] = {} # map from unique name + field name lists to typedef name
|
737 |
+
definitions: List[str] = [] # function definition to register the typedef
|
738 |
+
registrations: List[str] = [] # register call for the typedef
|
739 |
+
|
740 |
+
for overload in overloads:
|
741 |
+
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
|
742 |
+
if not fieldnames:
|
743 |
+
continue
|
744 |
+
|
745 |
+
fields = ", ".join(f'{{"{fn}", ""}}' for fn in fieldnames)
|
746 |
+
|
747 |
+
name = cpp.name(overload.function.func) # use @with_native_function?
|
748 |
+
tn_key = gen_namedtuple_typename_key(overload.function)
|
749 |
+
typename = typenames.get(tn_key)
|
750 |
+
|
751 |
+
if typename is None:
|
752 |
+
typename = f'{name}NamedTuple{"" if not definitions else len(definitions)}'
|
753 |
+
typenames[tn_key] = typename
|
754 |
+
definitions.append(
|
755 |
+
f"""\
|
756 |
+
PyTypeObject* get_{name}_namedtuple() {{
|
757 |
+
static PyStructSequence_Field NamedTuple_fields[] = {{ {fields}, {{nullptr}} }};
|
758 |
+
static PyTypeObject {typename};
|
759 |
+
static bool is_initialized = false;
|
760 |
+
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, NamedTuple_fields, {len(fieldnames)} }};
|
761 |
+
if (!is_initialized) {{
|
762 |
+
PyStructSequence_InitType(&{typename}, &desc);
|
763 |
+
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
|
764 |
+
is_initialized = true;
|
765 |
+
}}
|
766 |
+
return &{typename};
|
767 |
+
}}
|
768 |
+
"""
|
769 |
+
)
|
770 |
+
registrations.append(
|
771 |
+
f'addReturnType(return_types_module, "{name}", generated::get_{name}_namedtuple());'
|
772 |
+
)
|
773 |
+
|
774 |
+
return definitions, registrations
|
775 |
+
|
776 |
+
|
777 |
+
def generate_return_type_declarations(
|
778 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
779 |
+
) -> List[str]:
|
780 |
+
"""
|
781 |
+
Generate block of function declarations in `python_return_types.h` to initialize
|
782 |
+
and return named tuple for a native function.
|
783 |
+
"""
|
784 |
+
typenames: Dict[
|
785 |
+
str, str
|
786 |
+
] = {} # map from unique name + field name lists to typedef name
|
787 |
+
declarations: List[str] = [] # function declaration to register the typedef
|
788 |
+
|
789 |
+
for overload in overloads:
|
790 |
+
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
|
791 |
+
if not fieldnames:
|
792 |
+
continue
|
793 |
+
|
794 |
+
name = cpp.name(overload.function.func) # use @with_native_function?
|
795 |
+
tn_key = gen_namedtuple_typename_key(overload.function)
|
796 |
+
typename = typenames.get(tn_key)
|
797 |
+
|
798 |
+
if typename is None:
|
799 |
+
typename = (
|
800 |
+
f'{name}NamedTuple{"" if not declarations else len(declarations)}'
|
801 |
+
)
|
802 |
+
typenames[tn_key] = typename
|
803 |
+
declarations.append(f"PyTypeObject* get_{name}_namedtuple();")
|
804 |
+
|
805 |
+
return declarations
|
806 |
+
|
807 |
+
|
808 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
809 |
+
#
|
810 |
+
# Method Impl Codegen
|
811 |
+
#
|
812 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
813 |
+
|
814 |
+
# python binding for all overloads of a particular function/method
|
815 |
+
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(
|
816 |
+
r"""\
|
817 |
+
// ${name}
|
818 |
+
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
819 |
+
{
|
820 |
+
${method_header}
|
821 |
+
static PythonArgParser parser({
|
822 |
+
${signatures}
|
823 |
+
}, /*traceable=*/${traceable});
|
824 |
+
|
825 |
+
ParsedArgs<${max_args}> parsed_args;
|
826 |
+
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
827 |
+
${check_has_torch_function}
|
828 |
+
switch (_r.idx) {
|
829 |
+
${dispatch}
|
830 |
+
}
|
831 |
+
${method_footer}
|
832 |
+
}
|
833 |
+
|
834 |
+
"""
|
835 |
+
)
|
836 |
+
|
837 |
+
# handler for a single parsed signature - may be a single overload or
|
838 |
+
# a pair of overloads that whose signatures only differ in output params
|
839 |
+
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
|
840 |
+
PY_VARIABLE_CASE = CodeTemplate(
|
841 |
+
"""\
|
842 |
+
case ${overload_index}: {
|
843 |
+
${body}
|
844 |
+
}
|
845 |
+
"""
|
846 |
+
)
|
847 |
+
|
848 |
+
# python binding for single-overload function/method
|
849 |
+
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate(
|
850 |
+
"""\
|
851 |
+
// ${name}
|
852 |
+
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
|
853 |
+
{
|
854 |
+
${method_header}
|
855 |
+
static PythonArgParser parser({
|
856 |
+
${signatures}
|
857 |
+
}, /*traceable=*/${traceable});
|
858 |
+
|
859 |
+
ParsedArgs<${max_args}> parsed_args;
|
860 |
+
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
|
861 |
+
${check_has_torch_function}
|
862 |
+
${dispatch}
|
863 |
+
${method_footer}
|
864 |
+
}
|
865 |
+
|
866 |
+
"""
|
867 |
+
)
|
868 |
+
|
869 |
+
# python binding for a method with no args, shortcuts parsing
|
870 |
+
PY_VARIABLE_METHOD_NOARGS = CodeTemplate(
|
871 |
+
"""\
|
872 |
+
// ${name}
|
873 |
+
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
|
874 |
+
{
|
875 |
+
${method_header}
|
876 |
+
${check_has_torch_function}
|
877 |
+
${dispatch}
|
878 |
+
${method_footer}
|
879 |
+
}
|
880 |
+
|
881 |
+
"""
|
882 |
+
)
|
883 |
+
|
884 |
+
|
885 |
+
def method_impl(
|
886 |
+
name: BaseOperatorName,
|
887 |
+
module: Optional[str],
|
888 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
889 |
+
*,
|
890 |
+
method: bool,
|
891 |
+
symint: bool = True,
|
892 |
+
) -> str:
|
893 |
+
"""
|
894 |
+
Generate a python binding for all overloads of an op.
|
895 |
+
"""
|
896 |
+
pycname = get_pycname(name)
|
897 |
+
noarg = is_noarg(overloads)
|
898 |
+
namedtuple_inits, namedtuple_typenames = emit_namedtuple_call(overloads)
|
899 |
+
|
900 |
+
method_header = ["HANDLE_TH_ERRORS"]
|
901 |
+
method_header += namedtuple_inits
|
902 |
+
method_header += (
|
903 |
+
["const Tensor& self = THPVariable_Unpack(self_);"] if method else []
|
904 |
+
)
|
905 |
+
|
906 |
+
method_footer = ([] if noarg else ["Py_RETURN_NONE;"]) + ["END_HANDLE_TH_ERRORS"]
|
907 |
+
|
908 |
+
traceable = "true" if all(should_trace(o.function) for o in overloads) else "false"
|
909 |
+
|
910 |
+
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(
|
911 |
+
overloads, symint=symint
|
912 |
+
)
|
913 |
+
is_singleton = len(grouped_overloads) == 1
|
914 |
+
signatures: List[str] = []
|
915 |
+
dispatch: List[str] = []
|
916 |
+
for overload_index, overload in enumerate(grouped_overloads):
|
917 |
+
signature = overload.signature.signature_str(symint=symint)
|
918 |
+
signatures.append(f"{cpp_string(str(signature))},")
|
919 |
+
dispatch_body = emit_dispatch_case(
|
920 |
+
overload, namedtuple_typenames, symint=symint
|
921 |
+
)
|
922 |
+
dispatch.append(
|
923 |
+
PY_VARIABLE_CASE.substitute(
|
924 |
+
overload_index=overload_index, body=dispatch_body
|
925 |
+
)
|
926 |
+
if not is_singleton
|
927 |
+
else dispatch_body
|
928 |
+
)
|
929 |
+
|
930 |
+
if noarg:
|
931 |
+
template = PY_VARIABLE_METHOD_NOARGS
|
932 |
+
elif is_singleton:
|
933 |
+
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
|
934 |
+
else:
|
935 |
+
template = PY_VARIABLE_METHOD_VARARGS
|
936 |
+
|
937 |
+
return template.substitute(
|
938 |
+
name=name,
|
939 |
+
pycname=pycname,
|
940 |
+
method_header=method_header,
|
941 |
+
max_args=max(o.signature.arguments_count() for o in overloads),
|
942 |
+
signatures=signatures,
|
943 |
+
traceable=traceable,
|
944 |
+
check_has_torch_function=gen_has_torch_function_check(
|
945 |
+
name=name,
|
946 |
+
module=module,
|
947 |
+
noarg=noarg,
|
948 |
+
method=method,
|
949 |
+
),
|
950 |
+
dispatch=dispatch,
|
951 |
+
method_footer=method_footer,
|
952 |
+
self_="self_" if method else "nullptr",
|
953 |
+
)
|
954 |
+
|
955 |
+
|
956 |
+
def gen_has_torch_function_check(
|
957 |
+
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
|
958 |
+
) -> str:
|
959 |
+
if noarg:
|
960 |
+
if method:
|
961 |
+
return f"""\
|
962 |
+
if(check_has_torch_function(self_)) {{
|
963 |
+
return handle_torch_function(self_, "{name}");
|
964 |
+
}}
|
965 |
+
"""
|
966 |
+
else:
|
967 |
+
return ""
|
968 |
+
|
969 |
+
self_ = "self_" if method else "nullptr"
|
970 |
+
namespace = (
|
971 |
+
{
|
972 |
+
"torch": "THPVariableFunctionsModule",
|
973 |
+
"torch.nn": "THPNNVariableFunctionsModule",
|
974 |
+
"torch.fft": "THPFFTVariableFunctionsModule",
|
975 |
+
"torch.linalg": "THPLinalgVariableFunctionsModule",
|
976 |
+
"torch.nested": "THPNestedVariableFunctionsModule",
|
977 |
+
"torch.sparse": "THPSparseVariableFunctionsModule",
|
978 |
+
"torch.special": "THPSpecialVariableFunctionsModule",
|
979 |
+
}[module]
|
980 |
+
if module
|
981 |
+
else "THPVariableClass"
|
982 |
+
)
|
983 |
+
|
984 |
+
return f"""\
|
985 |
+
if(_r.has_torch_function()) {{
|
986 |
+
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
|
987 |
+
}}
|
988 |
+
"""
|
989 |
+
|
990 |
+
|
991 |
+
# handler for output/no-output overload pair
|
992 |
+
PY_VARIABLE_OUT = CodeTemplate(
|
993 |
+
"""\
|
994 |
+
if (_r.isNone(${out_idx})) {
|
995 |
+
${call_dispatch}
|
996 |
+
} else {
|
997 |
+
${call_dispatch_out}
|
998 |
+
}
|
999 |
+
"""
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
|
1003 |
+
def emit_dispatch_case(
|
1004 |
+
overload: PythonSignatureGroup,
|
1005 |
+
namedtuple_typenames: Dict[str, str],
|
1006 |
+
*,
|
1007 |
+
symint: bool = True,
|
1008 |
+
) -> str:
|
1009 |
+
"""
|
1010 |
+
Emit dispatch code for a single parsed signature. This corresponds to either
|
1011 |
+
a single native function, or a pair that differ only in output params. In the
|
1012 |
+
latter case, a single python signature is used for both and dispatching
|
1013 |
+
switches on the presence/absence of passed output args.
|
1014 |
+
"""
|
1015 |
+
if overload.outplace is not None:
|
1016 |
+
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
|
1017 |
+
return PY_VARIABLE_OUT.substitute(
|
1018 |
+
out_idx=overload.signature.output_idx(),
|
1019 |
+
call_dispatch=emit_single_dispatch(
|
1020 |
+
overload.signature, overload.base, namedtuple_typenames, symint=symint
|
1021 |
+
),
|
1022 |
+
call_dispatch_out=emit_single_dispatch(
|
1023 |
+
overload.signature,
|
1024 |
+
overload.outplace,
|
1025 |
+
namedtuple_typenames,
|
1026 |
+
symint=symint,
|
1027 |
+
),
|
1028 |
+
)
|
1029 |
+
else:
|
1030 |
+
# no-output version only
|
1031 |
+
return emit_single_dispatch(
|
1032 |
+
overload.signature, overload.base, namedtuple_typenames, symint=symint
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
|
1036 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1037 |
+
#
|
1038 |
+
# Forward Declarations Codegen
|
1039 |
+
#
|
1040 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1041 |
+
|
1042 |
+
|
1043 |
+
def forward_decls(
|
1044 |
+
name: BaseOperatorName,
|
1045 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
1046 |
+
*,
|
1047 |
+
method: bool,
|
1048 |
+
) -> Tuple[str, ...]:
|
1049 |
+
if method:
|
1050 |
+
return ()
|
1051 |
+
|
1052 |
+
pycname = get_pycname(name)
|
1053 |
+
if is_noarg(overloads):
|
1054 |
+
return (
|
1055 |
+
f"""\
|
1056 |
+
static PyObject * {pycname}(PyObject* self_, PyObject* args);
|
1057 |
+
""",
|
1058 |
+
)
|
1059 |
+
else:
|
1060 |
+
return (
|
1061 |
+
f"""\
|
1062 |
+
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
|
1063 |
+
""",
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
|
1067 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1068 |
+
#
|
1069 |
+
# Method Def (Binding Table Entry) Codegen
|
1070 |
+
#
|
1071 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1072 |
+
|
1073 |
+
|
1074 |
+
def method_def(
|
1075 |
+
name: BaseOperatorName,
|
1076 |
+
module: Optional[str],
|
1077 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair],
|
1078 |
+
*,
|
1079 |
+
method: bool,
|
1080 |
+
) -> str:
|
1081 |
+
"""
|
1082 |
+
Generate method def entry.
|
1083 |
+
"""
|
1084 |
+
pycname = get_pycname(name)
|
1085 |
+
|
1086 |
+
if name.dunder_method:
|
1087 |
+
# PyMethodDef entry for binary op, throws not implemented error
|
1088 |
+
pycname = f"TypeError_to_NotImplemented_<{pycname}>"
|
1089 |
+
|
1090 |
+
if is_noarg(overloads):
|
1091 |
+
flags = "METH_NOARGS" if method else "METH_VARARGS | METH_KEYWORDS"
|
1092 |
+
else:
|
1093 |
+
pycname = f"castPyCFunctionWithKeywords({pycname})"
|
1094 |
+
flags = "METH_VARARGS | METH_KEYWORDS"
|
1095 |
+
|
1096 |
+
if module == "torch":
|
1097 |
+
flags += " | METH_STATIC"
|
1098 |
+
|
1099 |
+
return f'{{"{name}", {pycname}, {flags}, NULL}},'
|
1100 |
+
|
1101 |
+
|
1102 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1103 |
+
#
|
1104 |
+
# Overload Sorting and Grouping
|
1105 |
+
#
|
1106 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1107 |
+
|
1108 |
+
|
1109 |
+
def group_overloads(
|
1110 |
+
overloads: Sequence[PythonSignatureNativeFunctionPair], *, symint: bool = True
|
1111 |
+
) -> Sequence[PythonSignatureGroup]:
|
1112 |
+
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
1113 |
+
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
|
1114 |
+
|
1115 |
+
# first group by signature ignoring out arguments
|
1116 |
+
for overload in overloads:
|
1117 |
+
sig = overload.signature.signature_str(skip_outputs=True, symint=symint)
|
1118 |
+
if overload.function.func.is_out_fn():
|
1119 |
+
if sig in outplaces:
|
1120 |
+
raise RuntimeError(
|
1121 |
+
f"Found duplicated function definition:\n- {overload.function.func}.\n"
|
1122 |
+
f"Existing definition:\n- {outplaces[sig].function.func}."
|
1123 |
+
)
|
1124 |
+
outplaces[sig] = overload
|
1125 |
+
else:
|
1126 |
+
if sig in bases:
|
1127 |
+
raise RuntimeError(
|
1128 |
+
f"Found duplicated function definition:\n- {overload.function.func}.\n"
|
1129 |
+
f"Existing definition:\n- {bases[sig].function.func}."
|
1130 |
+
)
|
1131 |
+
bases[sig] = overload
|
1132 |
+
|
1133 |
+
for sig, out in outplaces.items():
|
1134 |
+
if sig not in bases:
|
1135 |
+
candidates: List[str] = []
|
1136 |
+
for overload in overloads:
|
1137 |
+
if (
|
1138 |
+
str(overload.function.func.name.name)
|
1139 |
+
== str(out.function.func.name.name)
|
1140 |
+
and not overload.function.func.is_out_fn()
|
1141 |
+
and not overload.signature.deprecated
|
1142 |
+
):
|
1143 |
+
candidates.append(
|
1144 |
+
overload.signature.signature_str(
|
1145 |
+
skip_outputs=True, symint=symint
|
1146 |
+
)
|
1147 |
+
)
|
1148 |
+
out_sig = out.signature.signature_str(symint=symint)
|
1149 |
+
raise RuntimeError(
|
1150 |
+
f"While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. "
|
1151 |
+
f"We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema "
|
1152 |
+
"correctly in native_functions.yaml. We discovered the following candidate(s): \n"
|
1153 |
+
+ "\n".join(f"- {candidate}" for candidate in candidates)
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
grouped = [
|
1157 |
+
PythonSignatureGroup.from_pairs(
|
1158 |
+
functional=base,
|
1159 |
+
out=outplaces.get(sig),
|
1160 |
+
)
|
1161 |
+
for sig, base in bases.items()
|
1162 |
+
]
|
1163 |
+
return sort_overloads(grouped, symint=symint)
|
1164 |
+
|
1165 |
+
|
1166 |
+
# This function declares a partial order on declarations, and sorts them according
|
1167 |
+
# to its linear extension. This is necessary, because there's some ambiguity in the
|
1168 |
+
# choice of overload, and we want a different order.
|
1169 |
+
#
|
1170 |
+
# See Note[Order of overloads matters]
|
1171 |
+
#
|
1172 |
+
# A few examples of ambiguous python signature pairs.
|
1173 |
+
#
|
1174 |
+
# All parameters have the same type, except one taking Tensor the other taking
|
1175 |
+
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
|
1176 |
+
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
|
1177 |
+
# Therefore, same input arguments might be accepted by either python signature.
|
1178 |
+
# We want to always parse the one taking Tensor first.
|
1179 |
+
#
|
1180 |
+
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
|
1181 |
+
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
|
1182 |
+
#
|
1183 |
+
# If they have different number of parameters then they are not ambiguous - but
|
1184 |
+
# the difference on output param can be ignored as it's optional.
|
1185 |
+
#
|
1186 |
+
# multiply(Tensor input, Tensor other, *, Tensor out=None)
|
1187 |
+
# multiply(Tensor input, Scalar other)
|
1188 |
+
#
|
1189 |
+
# Both positional args and keyword-only args are considered together.
|
1190 |
+
#
|
1191 |
+
# subtract(Tensor other, *, Scalar alpha=1)
|
1192 |
+
# subtract(Scalar other, Scalar alpha=1)
|
1193 |
+
#
|
1194 |
+
# A few ambiguous cases which it does NOT handle yet.
|
1195 |
+
#
|
1196 |
+
# If there is any difference in other parameters besides the Tensor/Scalar
|
1197 |
+
# difference, then they are not considered ambiguous by this method anymore.
|
1198 |
+
# However, the difference could be too trivial to disambiguate.
|
1199 |
+
#
|
1200 |
+
# foo(Tensor input, Scalar other, Scalar bar)
|
1201 |
+
# foo(Tensor input, Tensor other, double bar)
|
1202 |
+
#
|
1203 |
+
# If they are taking different number of parameters then they are not considered
|
1204 |
+
# ambiguous anymore, even if the difference is only on optional kwargs.
|
1205 |
+
#
|
1206 |
+
# foo(Scalar other, Scalar alpha=1)
|
1207 |
+
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
|
1208 |
+
#
|
1209 |
+
|
1210 |
+
|
1211 |
+
def sort_overloads(
|
1212 |
+
grouped_overloads: Sequence[PythonSignatureGroup], *, symint: bool = True
|
1213 |
+
) -> Sequence[PythonSignatureGroup]:
|
1214 |
+
# NB: Smaller here means lower priority
|
1215 |
+
|
1216 |
+
def is_arg_smaller(t1: Type, t2: Type) -> bool:
|
1217 |
+
return (
|
1218 |
+
str(t1) == "Scalar"
|
1219 |
+
and str(t2) == "Tensor"
|
1220 |
+
or str(t1) == "Scalar?"
|
1221 |
+
and str(t2) == "Tensor?"
|
1222 |
+
or "Dimname" in str(t1)
|
1223 |
+
and "Dimname" not in str(t2)
|
1224 |
+
or
|
1225 |
+
# In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
|
1226 |
+
# discussed why it is important to prioritize int/int? over int[]
|
1227 |
+
str(t1) == "int[]"
|
1228 |
+
and (str(t2) == "int" or str(t2) == "int?")
|
1229 |
+
or
|
1230 |
+
# TensorList currently throws an error during argument parsing, that's why it needs to be
|
1231 |
+
# last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
|
1232 |
+
str(t1) == "Tensor[]"
|
1233 |
+
and str(t2).find("[]") != -1
|
1234 |
+
or
|
1235 |
+
# Prioritize IntArrayRef overload over SymIntArrayRef
|
1236 |
+
str(t1) == "SymInt[]"
|
1237 |
+
and str(t2) == "int[]"
|
1238 |
+
or
|
1239 |
+
# Make sure both in, SymInt are sorted consistently w.r.t. Tensor since Tensor can be implicitly
|
1240 |
+
# converted to either int or SymInt. Prioritize the Tensor overload since it otherwise gets shadowed.
|
1241 |
+
(str(t1) == "SymInt" or str(t1) == "int")
|
1242 |
+
and str(t2) == "Tensor"
|
1243 |
+
)
|
1244 |
+
|
1245 |
+
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
|
1246 |
+
"""Returns True if s1 < s2 in the partial order."""
|
1247 |
+
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
|
1248 |
+
if len(args1) != len(args2):
|
1249 |
+
return False
|
1250 |
+
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
|
1251 |
+
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
|
1252 |
+
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
|
1253 |
+
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
|
1254 |
+
smaller_or_equal = all(
|
1255 |
+
str(arg1.type) == str(arg2.type) or is_arg_smaller(arg1.type, arg2.type)
|
1256 |
+
for arg1, arg2 in zip(args1, args2)
|
1257 |
+
)
|
1258 |
+
return smaller_or_equal and not equal
|
1259 |
+
|
1260 |
+
# First sort by signature
|
1261 |
+
grouped_overloads = sorted(
|
1262 |
+
grouped_overloads, key=lambda x: x.signature.signature_str(symint=symint)
|
1263 |
+
)
|
1264 |
+
|
1265 |
+
# Construct the relation graph
|
1266 |
+
larger_than: Dict[int, Set[int]] = defaultdict(set)
|
1267 |
+
for i1, overload1 in enumerate(grouped_overloads):
|
1268 |
+
for i2, overload2 in enumerate(grouped_overloads):
|
1269 |
+
if is_smaller(overload1.signature, overload2.signature):
|
1270 |
+
larger_than[i1].add(i2)
|
1271 |
+
|
1272 |
+
if not larger_than:
|
1273 |
+
return list(grouped_overloads)
|
1274 |
+
|
1275 |
+
# Use a topological sort to sort overloads according to the partial order.
|
1276 |
+
N = len(grouped_overloads)
|
1277 |
+
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
|
1278 |
+
|
1279 |
+
for idx in range(N):
|
1280 |
+
# The size of sorted_ids will grow to N eventually.
|
1281 |
+
i = sorted_ids[idx]
|
1282 |
+
for j in sorted(larger_than.keys()):
|
1283 |
+
larger = larger_than[j]
|
1284 |
+
larger.discard(i)
|
1285 |
+
if not larger:
|
1286 |
+
del larger_than[j]
|
1287 |
+
sorted_ids.append(j)
|
1288 |
+
|
1289 |
+
return [grouped_overloads[x] for x in sorted_ids]
|
1290 |
+
|
1291 |
+
|
1292 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1293 |
+
#
|
1294 |
+
# Codegen API Integration
|
1295 |
+
#
|
1296 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
1297 |
+
|
1298 |
+
|
1299 |
+
def emit_single_dispatch(
|
1300 |
+
ps: PythonSignature,
|
1301 |
+
f: NativeFunction,
|
1302 |
+
namedtuple_typenames: Dict[str, str],
|
1303 |
+
*,
|
1304 |
+
symint: bool = True,
|
1305 |
+
) -> str:
|
1306 |
+
"""
|
1307 |
+
Emit dispatch code for a single native function.
|
1308 |
+
"""
|
1309 |
+
|
1310 |
+
@with_native_function
|
1311 |
+
def go(f: NativeFunction) -> str:
|
1312 |
+
# header comments
|
1313 |
+
if isinstance(ps, PythonSignatureDeprecated):
|
1314 |
+
schema_comment = f"// [deprecated] aten::{ps.deprecated_schema}"
|
1315 |
+
else:
|
1316 |
+
schema_comment = f"// aten::{f.func}"
|
1317 |
+
|
1318 |
+
deprecated = "[deprecated] " if ps.deprecated else ""
|
1319 |
+
|
1320 |
+
# dispatch lambda signature
|
1321 |
+
name = cpp.name(f.func)
|
1322 |
+
lambda_formals = ", ".join(
|
1323 |
+
f"{a.type_str} {a.name}" for a in dispatch_lambda_args(ps, f, symint=symint)
|
1324 |
+
)
|
1325 |
+
lambda_return = dispatch_lambda_return_str(f)
|
1326 |
+
|
1327 |
+
# dispatch lambda body
|
1328 |
+
dispatch_callee = cpp_dispatch_target(f)
|
1329 |
+
dispatch_args = ", ".join(cpp_dispatch_exprs(f, python_signature=ps))
|
1330 |
+
|
1331 |
+
# from arg parser outputs to dispatch lambda arguments
|
1332 |
+
parser_outputs = arg_parser_output_exprs(ps, f, symint=symint)
|
1333 |
+
lambda_arg_exprs = dispatch_lambda_exprs(ps, f, symint=symint)
|
1334 |
+
inits = "\n".join(lambda_arg_exprs.inits)
|
1335 |
+
lambda_args = ", ".join(lambda_arg_exprs.exprs)
|
1336 |
+
|
1337 |
+
# scatter fields
|
1338 |
+
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
|
1339 |
+
# solution for enabling the 'requires_grad' argument for tensor methods
|
1340 |
+
# new_full, new_empty, and new_zeros. A much better but more difficult to
|
1341 |
+
# implement solution involves refactoring according to Ed's description here:
|
1342 |
+
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
|
1343 |
+
need_set_requires_grad = ps.tensor_options_args and (
|
1344 |
+
not has_tensor_options(f)
|
1345 |
+
or (ps.method and ("requires_grad" in parser_outputs))
|
1346 |
+
)
|
1347 |
+
set_requires_grad = (
|
1348 |
+
f'.set_requires_grad({parser_outputs["requires_grad"].expr})'
|
1349 |
+
if need_set_requires_grad
|
1350 |
+
else ""
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
if lambda_return == "void":
|
1354 |
+
return f"""\
|
1355 |
+
{schema_comment}
|
1356 |
+
{inits}
|
1357 |
+
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
1358 |
+
pybind11::gil_scoped_release no_gil;
|
1359 |
+
{dispatch_callee}({dispatch_args});
|
1360 |
+
}};
|
1361 |
+
dispatch_{name}({lambda_args}){set_requires_grad};
|
1362 |
+
Py_RETURN_NONE;
|
1363 |
+
"""
|
1364 |
+
else:
|
1365 |
+
typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
|
1366 |
+
namedtuple_typeref = f"{typename}, " if typename is not None else ""
|
1367 |
+
return f"""\
|
1368 |
+
{schema_comment}
|
1369 |
+
{inits}
|
1370 |
+
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
|
1371 |
+
pybind11::gil_scoped_release no_gil;
|
1372 |
+
return {dispatch_callee}({dispatch_args});
|
1373 |
+
}};
|
1374 |
+
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
|
1375 |
+
"""
|
1376 |
+
|
1377 |
+
return go(f)
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_factories.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates C++ functions that wrap ATen tensor factory methods to turn them into Variables.
|
2 |
+
#
|
3 |
+
# This writes one file: variable_factories.h
|
4 |
+
|
5 |
+
import re
|
6 |
+
from typing import List, Optional
|
7 |
+
|
8 |
+
import torchgen.api.python as python
|
9 |
+
from torchgen.api import cpp
|
10 |
+
|
11 |
+
from torchgen.api.types import CppSignatureGroup
|
12 |
+
from torchgen.context import with_native_function
|
13 |
+
from torchgen.gen import parse_native_yaml
|
14 |
+
from torchgen.model import NativeFunction, TensorOptionsArguments, Variant
|
15 |
+
from torchgen.utils import FileManager, mapMaybe
|
16 |
+
|
17 |
+
OPTIONAL_TYPE_PATTERN = re.compile(r"c10::optional<(.+)>")
|
18 |
+
TYPE_PATTERN = re.compile(r"(?:const\s+)?([A-Z]\w+)")
|
19 |
+
|
20 |
+
|
21 |
+
# Add 'at::' to types defined in ATen namespace, e.g. Tensor, TensorList, IntArrayRef and etc.
|
22 |
+
# TODO: maybe update the cpp argument API to take optional namespace argument?
|
23 |
+
def fully_qualified_type(argument_type: str) -> str:
|
24 |
+
def maybe_optional_type(type: str, is_opt: bool) -> str:
|
25 |
+
return f"c10::optional<{type}>" if is_opt else type
|
26 |
+
|
27 |
+
opt_match = OPTIONAL_TYPE_PATTERN.match(argument_type)
|
28 |
+
is_opt = opt_match is not None
|
29 |
+
if opt_match:
|
30 |
+
argument_type = argument_type[opt_match.start(1) : opt_match.end(1)]
|
31 |
+
match = TYPE_PATTERN.match(argument_type)
|
32 |
+
if match is None:
|
33 |
+
return maybe_optional_type(argument_type, is_opt)
|
34 |
+
index = match.start(1)
|
35 |
+
qualified_type = f"{argument_type[:index]}at::{argument_type[index:]}"
|
36 |
+
return maybe_optional_type(qualified_type, is_opt)
|
37 |
+
|
38 |
+
|
39 |
+
def gen_variable_factories(
|
40 |
+
out: str, native_yaml_path: str, tags_yaml_path: str, template_path: str
|
41 |
+
) -> None:
|
42 |
+
native_functions = parse_native_yaml(
|
43 |
+
native_yaml_path, tags_yaml_path
|
44 |
+
).native_functions
|
45 |
+
factory_functions = [fn for fn in native_functions if is_factory_function(fn)]
|
46 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
47 |
+
fm.write_with_template(
|
48 |
+
"variable_factories.h",
|
49 |
+
"variable_factories.h",
|
50 |
+
lambda: {
|
51 |
+
"generated_comment": "@"
|
52 |
+
+ f"generated from {fm.template_dir_for_comments()}/variable_factories.h",
|
53 |
+
"ops_headers": [
|
54 |
+
f"#include <ATen/ops/{fn.root_name}.h>" for fn in factory_functions
|
55 |
+
],
|
56 |
+
"function_definitions": list(mapMaybe(process_function, factory_functions)),
|
57 |
+
},
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
@with_native_function
|
62 |
+
def is_factory_function(f: NativeFunction) -> bool:
|
63 |
+
if Variant.function not in f.variants:
|
64 |
+
return False
|
65 |
+
|
66 |
+
name = cpp.name(f.func)
|
67 |
+
has_tensor_options = python.has_tensor_options(f)
|
68 |
+
return has_tensor_options or name.endswith("_like")
|
69 |
+
|
70 |
+
|
71 |
+
@with_native_function
|
72 |
+
def process_function(f: NativeFunction) -> Optional[str]:
|
73 |
+
name = cpp.name(f.func)
|
74 |
+
has_tensor_options = python.has_tensor_options(f)
|
75 |
+
is_factory = has_tensor_options or name.endswith("_like")
|
76 |
+
|
77 |
+
if Variant.function not in f.variants or not is_factory:
|
78 |
+
return None
|
79 |
+
|
80 |
+
cpp_sigs = CppSignatureGroup.from_native_function(f, method=False)
|
81 |
+
sigs = [cpp_sigs.signature]
|
82 |
+
if cpp_sigs.symint_signature is not None:
|
83 |
+
sigs.append(cpp_sigs.symint_signature)
|
84 |
+
r = ""
|
85 |
+
for sig in sigs:
|
86 |
+
formals: List[str] = []
|
87 |
+
exprs: List[str] = []
|
88 |
+
requires_grad = "false"
|
89 |
+
for arg in sig.arguments():
|
90 |
+
qualified_type = fully_qualified_type(arg.type)
|
91 |
+
if arg.default:
|
92 |
+
formals.append(f"{qualified_type} {arg.name} = {arg.default}")
|
93 |
+
else:
|
94 |
+
formals.append(f"{qualified_type} {arg.name}")
|
95 |
+
|
96 |
+
if isinstance(arg.argument, TensorOptionsArguments):
|
97 |
+
# note: we remove the requires_grad setting from the TensorOptions because
|
98 |
+
# it is ignored anyways (and we actually have an assertion that it isn't set
|
99 |
+
# which would fail otherwise). We handle requires_grad explicitly here
|
100 |
+
# instead of passing it through to the kernel.
|
101 |
+
exprs.append(
|
102 |
+
f"at::TensorOptions({arg.name}).requires_grad(c10::nullopt)"
|
103 |
+
)
|
104 |
+
# Manually set the requires_grad bit on the result tensor.
|
105 |
+
requires_grad = f"{arg.name}.requires_grad()"
|
106 |
+
else:
|
107 |
+
exprs.append(arg.name)
|
108 |
+
|
109 |
+
r += f"""\
|
110 |
+
inline at::Tensor {sig.name()}({', '.join(formals)}) {{
|
111 |
+
at::AutoDispatchBelowADInplaceOrView guard;
|
112 |
+
return autograd::make_variable(at::{sig.name()}({', '.join(exprs)}), /*requires_grad=*/{requires_grad});
|
113 |
+
}}
|
114 |
+
"""
|
115 |
+
return r
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/gen_variable_type.py
ADDED
@@ -0,0 +1,2164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generates VariableType.h/cpp
|
2 |
+
#
|
3 |
+
# **If any changes are being made to the VariableType codegen please also check
|
4 |
+
# if updates are needed in torch/csrc/autograd/autograd_not_implemented_fallback.cpp
|
5 |
+
#
|
6 |
+
# VariableType is a subclass of at::Type that provides the binding code
|
7 |
+
# necessary to provide a differentiable version of ATen operators. There are a
|
8 |
+
# number of different things we could mean:
|
9 |
+
#
|
10 |
+
# - Given a non-differentiable forward implementation, we might
|
11 |
+
# directly associate it with a backward implementation to make
|
12 |
+
# it differentiable. This is the common case.
|
13 |
+
#
|
14 |
+
# - Some functions don't need a backwards implementation, because
|
15 |
+
# backpropagation will never propagate beyond them. There are a
|
16 |
+
# number of different reasons why this may be the case:
|
17 |
+
#
|
18 |
+
# - The function has no differentiable inputs
|
19 |
+
# - The function's output is not differentiable
|
20 |
+
# - The function has no data dependency on its input
|
21 |
+
#
|
22 |
+
# - Some function don't need a backwards implementation because they
|
23 |
+
# are implemented as a composition of other (differentiable) ATen
|
24 |
+
# functions. These are dispatched directly to the Type superclass,
|
25 |
+
# which will in turn dispatch back to VariableType for its
|
26 |
+
# differentiable subcomponents.
|
27 |
+
#
|
28 |
+
import re
|
29 |
+
from typing import Callable, Dict, List, Optional, Sequence, Set, Tuple, Union
|
30 |
+
|
31 |
+
from torchgen.api import cpp
|
32 |
+
from torchgen.api.autograd import (
|
33 |
+
DifferentiableInput,
|
34 |
+
dispatch_strategy,
|
35 |
+
ForwardDerivative,
|
36 |
+
gen_differentiable_outputs,
|
37 |
+
is_differentiable,
|
38 |
+
NativeFunctionWithDifferentiabilityInfo,
|
39 |
+
SavedAttribute,
|
40 |
+
)
|
41 |
+
|
42 |
+
from torchgen.api.types import (
|
43 |
+
ArrayRefCType,
|
44 |
+
BaseCppType,
|
45 |
+
BaseCType,
|
46 |
+
Binding,
|
47 |
+
DispatcherSignature,
|
48 |
+
intArrayRefT,
|
49 |
+
iTensorListRefT,
|
50 |
+
ListCType,
|
51 |
+
MutRefCType,
|
52 |
+
OptionalCType,
|
53 |
+
scalarT,
|
54 |
+
SpecialArgName,
|
55 |
+
stringT,
|
56 |
+
symIntArrayRefT,
|
57 |
+
TENSOR_LIST_LIKE_CTYPES,
|
58 |
+
tensorListT,
|
59 |
+
tensorT,
|
60 |
+
TupleCType,
|
61 |
+
VectorCType,
|
62 |
+
)
|
63 |
+
from torchgen.code_template import CodeTemplate
|
64 |
+
from torchgen.context import (
|
65 |
+
native_function_manager,
|
66 |
+
with_native_function,
|
67 |
+
with_native_function_and,
|
68 |
+
)
|
69 |
+
from torchgen.model import (
|
70 |
+
Argument,
|
71 |
+
BaseType,
|
72 |
+
ListType,
|
73 |
+
NativeFunction,
|
74 |
+
SchemaKind,
|
75 |
+
SelfArgument,
|
76 |
+
TensorOptionsArguments,
|
77 |
+
)
|
78 |
+
from torchgen.utils import FileManager, mapMaybe
|
79 |
+
|
80 |
+
from .context import with_native_function_with_differentiability_info_and_key
|
81 |
+
from .gen_inplace_or_view_type import (
|
82 |
+
ALL_VIEW_FUNCTIONS,
|
83 |
+
ASSIGN_RETURN_VALUE,
|
84 |
+
AUTOGRAD_NOT_IMPLEMENTED_REGISTRATION,
|
85 |
+
gen_formals,
|
86 |
+
get_base_name,
|
87 |
+
get_view_info,
|
88 |
+
is_tensor_list_type,
|
89 |
+
is_tensor_type,
|
90 |
+
METHOD_DEFINITION,
|
91 |
+
modifies_arguments,
|
92 |
+
TMP_VAR,
|
93 |
+
unpack_args,
|
94 |
+
unpacked_name,
|
95 |
+
use_derived,
|
96 |
+
WRAPPER_REGISTRATION,
|
97 |
+
)
|
98 |
+
from .gen_trace_type import (
|
99 |
+
declare_returned_variables,
|
100 |
+
get_return_value,
|
101 |
+
MANUAL_AUTOGRAD_AND_TRACER,
|
102 |
+
MANUAL_BACKEND,
|
103 |
+
tie_return_values,
|
104 |
+
type_wrapper_name,
|
105 |
+
)
|
106 |
+
|
107 |
+
# We don't set or modify grad_fn on these methods. Generally, they return
|
108 |
+
# tensors that have requires_grad=False. In-place functions listed here will
|
109 |
+
# not examine or modify requires_grad or grad_fn.
|
110 |
+
# NB: this does NOT include overload name
|
111 |
+
DONT_REQUIRE_DERIVATIVE = {
|
112 |
+
# These only depend on the input Tensor's shape and device, not the data
|
113 |
+
"empty_like",
|
114 |
+
"ones_like",
|
115 |
+
"full_like",
|
116 |
+
"zeros_like",
|
117 |
+
"rand_like",
|
118 |
+
"randn_like",
|
119 |
+
"new_empty",
|
120 |
+
"new_empty_strided",
|
121 |
+
"new_full",
|
122 |
+
"new_zeros",
|
123 |
+
"new_ones",
|
124 |
+
# These are only implemented on integral types
|
125 |
+
"__and__",
|
126 |
+
"__iand__",
|
127 |
+
"__ilshift__",
|
128 |
+
"__ior__",
|
129 |
+
"__irshift__",
|
130 |
+
"__ixor__",
|
131 |
+
"__lshift__",
|
132 |
+
"__or__",
|
133 |
+
"__rshift__",
|
134 |
+
"__xor__",
|
135 |
+
# These work on integral data types, and hence don't require derivative
|
136 |
+
"_sobol_engine_draw",
|
137 |
+
"_sobol_engine_ff",
|
138 |
+
"_sobol_engine_scramble_",
|
139 |
+
"_sobol_engine_initialize_state_",
|
140 |
+
# This is an unsafe method that is meant to be out of reach of autograd.
|
141 |
+
"_coalesced_",
|
142 |
+
# Quantize functions should not record gradients
|
143 |
+
"quantize_per_tensor",
|
144 |
+
"quantize_per_channel",
|
145 |
+
# Functions that return integers should not have output that require gradients
|
146 |
+
"argmax",
|
147 |
+
"argmin",
|
148 |
+
"argsort",
|
149 |
+
"searchsorted",
|
150 |
+
"bucketize",
|
151 |
+
# Functions that return booleans are not differentiable
|
152 |
+
"isnan",
|
153 |
+
"isposinf",
|
154 |
+
"isneginf",
|
155 |
+
"isinf",
|
156 |
+
"signbit",
|
157 |
+
"isin",
|
158 |
+
"allclose",
|
159 |
+
# Functions return none are not differentiable
|
160 |
+
"record_stream",
|
161 |
+
# These functions are not differentiable
|
162 |
+
"logical_and",
|
163 |
+
"logical_xor",
|
164 |
+
"logical_not",
|
165 |
+
"logical_or",
|
166 |
+
# This function returns nested_tensor shape as a tensor that is non-differentiable
|
167 |
+
"_nested_tensor_size",
|
168 |
+
"_nested_tensor_strides",
|
169 |
+
"_nested_tensor_storage_offsets",
|
170 |
+
}
|
171 |
+
|
172 |
+
# The C -> R functions at the time of adding this are still being audited and tested
|
173 |
+
# but will not error out.
|
174 |
+
# C -> C, R -> C functions for which backward is correctly implemented and tested
|
175 |
+
GRADIENT_IMPLEMENTED_FOR_COMPLEX = {
|
176 |
+
"fill",
|
177 |
+
"t",
|
178 |
+
"view",
|
179 |
+
"reshape",
|
180 |
+
"reshape_as",
|
181 |
+
"view_as",
|
182 |
+
"roll",
|
183 |
+
"clone",
|
184 |
+
"block_diag",
|
185 |
+
"diag_embed",
|
186 |
+
"repeat",
|
187 |
+
"expand",
|
188 |
+
"flip",
|
189 |
+
"fliplr",
|
190 |
+
"flipud",
|
191 |
+
"rot90",
|
192 |
+
"nanmean",
|
193 |
+
"nansum",
|
194 |
+
"transpose",
|
195 |
+
"permute",
|
196 |
+
"squeeze",
|
197 |
+
"unsqueeze",
|
198 |
+
"resize",
|
199 |
+
"resize_as",
|
200 |
+
"tril",
|
201 |
+
"triu",
|
202 |
+
"chunk",
|
203 |
+
"zero_",
|
204 |
+
"eq_",
|
205 |
+
"ne_",
|
206 |
+
"add",
|
207 |
+
"__radd__",
|
208 |
+
"sum",
|
209 |
+
"_conj",
|
210 |
+
"sin",
|
211 |
+
"cos",
|
212 |
+
"mul",
|
213 |
+
"sinc",
|
214 |
+
"sinh",
|
215 |
+
"cosh",
|
216 |
+
"__rmul__",
|
217 |
+
"sgn",
|
218 |
+
"asin",
|
219 |
+
"acos",
|
220 |
+
"sub",
|
221 |
+
"div",
|
222 |
+
"cat",
|
223 |
+
"view_as_complex",
|
224 |
+
"index_put",
|
225 |
+
"neg",
|
226 |
+
"complex",
|
227 |
+
"select",
|
228 |
+
"where",
|
229 |
+
"as_strided",
|
230 |
+
"as_strided_scatter",
|
231 |
+
"slice",
|
232 |
+
"constant_pad_nd",
|
233 |
+
"unbind",
|
234 |
+
"split",
|
235 |
+
"split_with_sizes",
|
236 |
+
"unsafe_split",
|
237 |
+
"split_with_sizes_backward",
|
238 |
+
"dot",
|
239 |
+
"vdot",
|
240 |
+
"cholesky",
|
241 |
+
"triangular_solve",
|
242 |
+
"mm",
|
243 |
+
"_unsafe_view",
|
244 |
+
"mv",
|
245 |
+
"outer",
|
246 |
+
"bmm",
|
247 |
+
"diagonal",
|
248 |
+
"alias",
|
249 |
+
"atan",
|
250 |
+
"log",
|
251 |
+
"log10",
|
252 |
+
"log1p",
|
253 |
+
"log2",
|
254 |
+
"logaddexp",
|
255 |
+
"logcumsumexp",
|
256 |
+
"reciprocal",
|
257 |
+
"tan",
|
258 |
+
"pow",
|
259 |
+
"rsqrt",
|
260 |
+
"tanh",
|
261 |
+
"tanh_backward",
|
262 |
+
"asinh",
|
263 |
+
"acosh",
|
264 |
+
"atanh",
|
265 |
+
"take",
|
266 |
+
"fill_",
|
267 |
+
"exp",
|
268 |
+
"exp2",
|
269 |
+
"expm1",
|
270 |
+
"nonzero",
|
271 |
+
"mean",
|
272 |
+
"std_mean",
|
273 |
+
"var_mean",
|
274 |
+
"inverse",
|
275 |
+
"solve",
|
276 |
+
"linalg_cholesky",
|
277 |
+
"addcmul",
|
278 |
+
"addcdiv",
|
279 |
+
"matrix_exp",
|
280 |
+
"linalg_matrix_exp",
|
281 |
+
"_linalg_eigh",
|
282 |
+
"cholesky_solve",
|
283 |
+
"linalg_qr",
|
284 |
+
"_linalg_svd",
|
285 |
+
"_fft_c2c",
|
286 |
+
"_fft_r2c",
|
287 |
+
"linalg_solve",
|
288 |
+
"sqrt",
|
289 |
+
"stack",
|
290 |
+
"gather",
|
291 |
+
"index_select",
|
292 |
+
"index_add_",
|
293 |
+
"linalg_inv",
|
294 |
+
"linalg_inv_ex",
|
295 |
+
"baddbmm",
|
296 |
+
"addbmm",
|
297 |
+
"addmm",
|
298 |
+
"addmv",
|
299 |
+
"addr",
|
300 |
+
"linalg_householder_product",
|
301 |
+
"ormqr",
|
302 |
+
"reflection_pad1d",
|
303 |
+
"reflection_pad2d",
|
304 |
+
"reflection_pad3d",
|
305 |
+
"linalg_cholesky_ex",
|
306 |
+
"linalg_eig",
|
307 |
+
"diagonal_copy",
|
308 |
+
"diagonal_scatter",
|
309 |
+
"select_backward",
|
310 |
+
"diagonal_backward",
|
311 |
+
"slice_backward",
|
312 |
+
"reflection_pad1d_backward",
|
313 |
+
"reflection_pad2d_backward",
|
314 |
+
"reflection_pad3d_backward",
|
315 |
+
"_sparse_sparse_matmul",
|
316 |
+
"replication_pad1d",
|
317 |
+
"replication_pad2d",
|
318 |
+
"replication_pad3d",
|
319 |
+
"put",
|
320 |
+
"put_",
|
321 |
+
"_to_copy",
|
322 |
+
"replication_pad1d_backward",
|
323 |
+
"replication_pad2d_backward",
|
324 |
+
"replication_pad3d_backward",
|
325 |
+
"diag",
|
326 |
+
"masked_scatter",
|
327 |
+
"masked_select",
|
328 |
+
"index_add",
|
329 |
+
"index_fill",
|
330 |
+
"trace",
|
331 |
+
"polar",
|
332 |
+
"cumsum",
|
333 |
+
"rsub",
|
334 |
+
"eig",
|
335 |
+
"lerp",
|
336 |
+
"linalg_vector_norm",
|
337 |
+
"cumprod",
|
338 |
+
"prod",
|
339 |
+
"index_copy",
|
340 |
+
"lu",
|
341 |
+
"unfold",
|
342 |
+
"unfold_backward",
|
343 |
+
"index",
|
344 |
+
"masked_fill",
|
345 |
+
"masked_scatter_backward",
|
346 |
+
"linalg_cross",
|
347 |
+
"lu_unpack",
|
348 |
+
"renorm",
|
349 |
+
"_conj_physical",
|
350 |
+
"linalg_lu_factor_ex",
|
351 |
+
"scatter",
|
352 |
+
"scatter_add",
|
353 |
+
"sigmoid",
|
354 |
+
"sigmoid_backward",
|
355 |
+
"sparse_mask",
|
356 |
+
"trapezoid",
|
357 |
+
"cumulative_trapezoid",
|
358 |
+
"conj_physical_",
|
359 |
+
"_neg_view",
|
360 |
+
"_reshape_alias",
|
361 |
+
"_reshape_copy",
|
362 |
+
"_linalg_det",
|
363 |
+
"lu_solve",
|
364 |
+
"linalg_solve_triangular",
|
365 |
+
"linalg_pinv",
|
366 |
+
"linalg_lstsq",
|
367 |
+
"unfold_copy",
|
368 |
+
"col2im",
|
369 |
+
"im2col",
|
370 |
+
"cholesky_inverse",
|
371 |
+
"to_sparse",
|
372 |
+
"sparse_sampled_addmm",
|
373 |
+
"linalg_lu",
|
374 |
+
"pixel_shuffle",
|
375 |
+
"pixel_unshuffle",
|
376 |
+
"linalg_lu_solve",
|
377 |
+
"_linalg_slogdet",
|
378 |
+
"_linalg_solve_ex",
|
379 |
+
}
|
380 |
+
|
381 |
+
GRADIENT_IMPLEMENTED_FOR_SPARSE_COMPLEX = {
|
382 |
+
"_to_dense",
|
383 |
+
"_coalesce",
|
384 |
+
"coalesce",
|
385 |
+
"values",
|
386 |
+
"_sparse_coo_tensor_with_dims_and_tensors",
|
387 |
+
"_sparse_addmm",
|
388 |
+
}
|
389 |
+
|
390 |
+
GRADIENT_IMPLEMENTED_FOR_COMPLEX.update(GRADIENT_IMPLEMENTED_FOR_SPARSE_COMPLEX)
|
391 |
+
|
392 |
+
# Some operators invalidate the grad_accumulator. Let's reset it.
|
393 |
+
RESET_GRAD_ACCUMULATOR = {"set_", "resize_"}
|
394 |
+
|
395 |
+
# NOTE [ TensorImpl and Storage Pointer Sanity Checks ]
|
396 |
+
#
|
397 |
+
# We check the following properties:
|
398 |
+
# 1) A function should never change the input tensors' underlying c10::TensorImpl
|
399 |
+
# pointers or c10::Storage pointers, even if it modifies its input tensors (via
|
400 |
+
# inplace or out-variants)
|
401 |
+
# If the function does not modify its arguments, we also check the following properties
|
402 |
+
# pertaining to its output:
|
403 |
+
# 2) Its TensorImpl has use_count of 1
|
404 |
+
# 3) If the function is a view function, it has the same StorageImpl as that of
|
405 |
+
# the input it is aliased with. Otherwise, its StorageImpl has use_count of 1
|
406 |
+
#
|
407 |
+
# The following code templates implement the checks for this invariant:
|
408 |
+
SAVE_TENSOR_STORAGE = CodeTemplate(
|
409 |
+
"""\
|
410 |
+
c10::optional<Storage> ${tensor_name}_storage_saved =
|
411 |
+
${tensor_name}.has_storage() ? c10::optional<Storage>(${tensor_name}.storage()) : c10::nullopt;
|
412 |
+
"""
|
413 |
+
)
|
414 |
+
|
415 |
+
|
416 |
+
# If tensor_name == out_tensor_name, used to enforce (1), otherwise used for (2)
|
417 |
+
ENFORCE_SAME_TENSOR_STORAGE = CodeTemplate(
|
418 |
+
"""\
|
419 |
+
if (${tensor_name}_storage_saved.has_value() &&
|
420 |
+
!at::impl::dispatch_mode_enabled() &&
|
421 |
+
!at::impl::tensor_has_dispatch(${tensor_name}))
|
422 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}_storage_saved.value().is_alias_of(${out_tensor_name}.storage()));
|
423 |
+
"""
|
424 |
+
)
|
425 |
+
|
426 |
+
SAVE_TENSORLIST_STORAGE = CodeTemplate(
|
427 |
+
"""\
|
428 |
+
std::vector<c10::optional<Storage>> ${tensorlist_name}_storage_saved(${tensorlist_name}.size());
|
429 |
+
for (const Tensor& tensor : ${tensorlist_name})
|
430 |
+
${tensorlist_name}_storage_saved.push_back(
|
431 |
+
tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
|
432 |
+
"""
|
433 |
+
)
|
434 |
+
|
435 |
+
ENFORCE_SAME_TENSORLIST_STORAGE = CodeTemplate(
|
436 |
+
"""\
|
437 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
438 |
+
if (${tensorlist_name}_storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(${tensorlist_name}))
|
439 |
+
TORCH_INTERNAL_ASSERT(${tensorlist_name}_storage_saved[i].value().is_alias_of(${tensorlist_name}[i].storage()));
|
440 |
+
}
|
441 |
+
"""
|
442 |
+
)
|
443 |
+
|
444 |
+
SAVE_OPTIONALTENSORLIST_STORAGE = CodeTemplate(
|
445 |
+
"""\
|
446 |
+
std::vector<c10::optional<Storage>> ${tensorlist_name}_storage_saved(${tensorlist_name}.size());
|
447 |
+
for (const c10::optional<Tensor>& tensor : ${tensorlist_name})
|
448 |
+
${tensorlist_name}_storage_saved.push_back(
|
449 |
+
tensor.has_value() && tensor->has_storage() ? c10::optional<Storage>(tensor->storage()) : c10::nullopt);
|
450 |
+
"""
|
451 |
+
)
|
452 |
+
|
453 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_STORAGE = CodeTemplate(
|
454 |
+
"""\
|
455 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
456 |
+
if (${tensorlist_name}_storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(${tensorlist_name}))
|
457 |
+
TORCH_INTERNAL_ASSERT(${tensorlist_name}_storage_saved[i].value().is_alias_of(
|
458 |
+
static_cast<c10::optional<Tensor>>(${tensorlist_name}[i])->storage()));
|
459 |
+
}
|
460 |
+
"""
|
461 |
+
)
|
462 |
+
|
463 |
+
SAVE_TENSOR_IMPL = CodeTemplate(
|
464 |
+
"""\
|
465 |
+
c10::intrusive_ptr<TensorImpl> ${tensor_name}_impl_saved;
|
466 |
+
if (${tensor_name}.defined()) ${tensor_name}_impl_saved = ${tensor_name}.getIntrusivePtr();
|
467 |
+
"""
|
468 |
+
)
|
469 |
+
|
470 |
+
ENFORCE_SAME_TENSOR_IMPL = CodeTemplate(
|
471 |
+
"""\
|
472 |
+
if (${tensor_name}_impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(${tensor_name}))
|
473 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}_impl_saved == ${tensor_name}.getIntrusivePtr());
|
474 |
+
"""
|
475 |
+
)
|
476 |
+
|
477 |
+
ENFORCE_TENSOR_IMPL_USE_COUNT_LT_OR_EQ_ONE = CodeTemplate(
|
478 |
+
"""\
|
479 |
+
if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(${tensor_name}))
|
480 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}.use_count() <= 1, "function: ${fn_name}");
|
481 |
+
"""
|
482 |
+
)
|
483 |
+
|
484 |
+
ENFORCE_TENSOR_STORAGE_USE_COUNT_EQUALS_ONE = CodeTemplate(
|
485 |
+
"""\
|
486 |
+
if (${tensor_name}.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(${tensor_name})) {
|
487 |
+
TORCH_INTERNAL_ASSERT(${tensor_name}.storage().use_count() == 1, "function: ${fn_name}");
|
488 |
+
}
|
489 |
+
"""
|
490 |
+
)
|
491 |
+
|
492 |
+
SAVE_TENSORLIST_IMPL = CodeTemplate(
|
493 |
+
"""\
|
494 |
+
std::vector<c10::intrusive_ptr<TensorImpl>> ${tensorlist_name}_impl_saved(${tensorlist_name}.size());
|
495 |
+
for (size_t i=0; i<${tensorlist_name}.size(); i++)
|
496 |
+
if (${tensorlist_name}[i].defined()) ${tensorlist_name}_impl_saved[i] = ${tensorlist_name}[i].getIntrusivePtr();
|
497 |
+
"""
|
498 |
+
)
|
499 |
+
|
500 |
+
ENFORCE_SAME_TENSORLIST_IMPL = CodeTemplate(
|
501 |
+
"""\
|
502 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
503 |
+
if (${tensorlist_name}_impl_saved[i] && !at::impl::tensorlist_has_dispatch(${tensorlist_name}))
|
504 |
+
TORCH_INTERNAL_ASSERT(${tensorlist_name}_impl_saved[i] == ${tensorlist_name}[i].getIntrusivePtr());
|
505 |
+
}
|
506 |
+
"""
|
507 |
+
)
|
508 |
+
|
509 |
+
SAVE_OPTIONALTENSORLIST_IMPL = CodeTemplate(
|
510 |
+
"""\
|
511 |
+
std::vector<c10::intrusive_ptr<TensorImpl>> ${tensorlist_name}_impl_saved(${tensorlist_name}.size());
|
512 |
+
for (size_t i=0; i<${tensorlist_name}.size(); i++) {
|
513 |
+
c10::optional<Tensor> t = ${tensorlist_name}[i];
|
514 |
+
if (t.has_value() && t->defined()) ${tensorlist_name}_impl_saved[i] = t->getIntrusivePtr();
|
515 |
+
}
|
516 |
+
"""
|
517 |
+
)
|
518 |
+
|
519 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_IMPL = CodeTemplate(
|
520 |
+
"""\
|
521 |
+
for (size_t i=0; i<${tensorlist_name}.size() && !at::impl::dispatch_mode_enabled(); i++) {
|
522 |
+
if (${tensorlist_name}_impl_saved[i])
|
523 |
+
TORCH_INTERNAL_ASSERT(
|
524 |
+
${tensorlist_name}_impl_saved[i] == static_cast<c10::optional<Tensor>>(${tensorlist_name}[i])->getIntrusivePtr());
|
525 |
+
}
|
526 |
+
"""
|
527 |
+
)
|
528 |
+
|
529 |
+
# The following list contains functions that we don't enforce the invariant on.
|
530 |
+
DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE = {
|
531 |
+
# These functions are expected to change impl or storage of input tensors
|
532 |
+
"set_",
|
533 |
+
"_cudnn_rnn_flatten_weight",
|
534 |
+
}
|
535 |
+
DONT_ENFORCE_TENSOR_IMPL_USE_COUNT = {
|
536 |
+
# These non-inplace, non-out functions return tensors with use_count > 1
|
537 |
+
# Therefore, they MAY (but not necessarily) return one of its inputs as-is
|
538 |
+
# See https://github.com/pytorch/pytorch/issues/60426 for more information
|
539 |
+
"_embedding_bag",
|
540 |
+
"_embedding_bag_forward_only",
|
541 |
+
"q_per_channel_scales",
|
542 |
+
"q_per_channel_zero_points",
|
543 |
+
"lu_unpack",
|
544 |
+
"_cudnn_rnn_backward",
|
545 |
+
# The below failed StorageImpl use_count check but we skip tensor_impl check
|
546 |
+
# just in case
|
547 |
+
"_cudnn_rnn",
|
548 |
+
"dequantize_self",
|
549 |
+
# lift() should never actually be called with a requires_grad=True tensor,
|
550 |
+
"lift",
|
551 |
+
"lift_fresh",
|
552 |
+
"lift_fresh_copy",
|
553 |
+
# Nested Tensors related functions
|
554 |
+
# _nested_tensor_size() should never actually be called with requires_grad=True tensor
|
555 |
+
"_nested_tensor_size",
|
556 |
+
"_nested_tensor_strides",
|
557 |
+
"_nested_tensor_storage_offsets",
|
558 |
+
}
|
559 |
+
|
560 |
+
DONT_ENFORCE_STORAGE_IMPL_USE_COUNT = {
|
561 |
+
# These non-view functions return tensors with storage use_count != 1
|
562 |
+
"_slow_conv2d_forward",
|
563 |
+
"slow_conv3d_forward",
|
564 |
+
"channel_shuffle",
|
565 |
+
# If an input is returned as-is in output, we cannot guarantee its storage_impl
|
566 |
+
# use count to be 1 either.
|
567 |
+
*DONT_ENFORCE_TENSOR_IMPL_USE_COUNT,
|
568 |
+
}
|
569 |
+
# END CHECKS FOR [ TensorImpl and Storage Pointer Sanity Checks ]
|
570 |
+
|
571 |
+
DECLARE_GRAD_FN = CodeTemplate(
|
572 |
+
"""\
|
573 |
+
std::shared_ptr<${op}> grad_fn;
|
574 |
+
"""
|
575 |
+
)
|
576 |
+
|
577 |
+
DECLARE_VECTOR_OF_GRAD_FN = CodeTemplate(
|
578 |
+
"""\
|
579 |
+
std::vector<std::shared_ptr<${op}>> grad_fns;
|
580 |
+
"""
|
581 |
+
)
|
582 |
+
|
583 |
+
SETUP_ANY_REQUIRES_GRAD = CodeTemplate(
|
584 |
+
"""\
|
585 |
+
[[maybe_unused]] auto _any_requires_grad = compute_requires_grad( ${args_with_derivatives} );
|
586 |
+
${extra_differentiability_conditions}
|
587 |
+
"""
|
588 |
+
)
|
589 |
+
|
590 |
+
SETUP_DERIVATIVE = CodeTemplate(
|
591 |
+
"""\
|
592 |
+
if (_any_requires_grad) {
|
593 |
+
${setup}
|
594 |
+
}
|
595 |
+
"""
|
596 |
+
)
|
597 |
+
|
598 |
+
SETUP_NONE_REQUIRES_GRAD = CodeTemplate(
|
599 |
+
"""\
|
600 |
+
if (compute_requires_grad( ${args_to_check} )) {
|
601 |
+
throw_error_out_requires_grad("${base_name}");
|
602 |
+
}
|
603 |
+
"""
|
604 |
+
)
|
605 |
+
|
606 |
+
ASSIGN_GRAD_FN = CodeTemplate(
|
607 |
+
"""\
|
608 |
+
grad_fn = std::shared_ptr<${op}>(new ${op}(${op_ctor}), deleteNode);
|
609 |
+
grad_fn->set_next_edges(collect_next_edges( ${args_with_derivatives} ));
|
610 |
+
"""
|
611 |
+
)
|
612 |
+
|
613 |
+
# note(crcrpar): `compute_requires_grad` in the template below is supplied with arguments indexed with `i`
|
614 |
+
# while the `SETUP_ANY_REQUIRES_GRAD` above takes whole tensors and scalars.
|
615 |
+
ASSIGN_VECTOR_OF_GRAD_FN = CodeTemplate(
|
616 |
+
"""\
|
617 |
+
for (const auto& i : c10::irange( ${irange} )) {
|
618 |
+
const auto ith_requires_grad = compute_requires_grad(${args_with_derivatives});
|
619 |
+
check_inplace(self[i], ith_requires_grad);
|
620 |
+
grad_fns.push_back([&]() -> std::shared_ptr<${op}> {
|
621 |
+
if (!ith_requires_grad) {
|
622 |
+
return nullptr;
|
623 |
+
} else {
|
624 |
+
auto grad_fn = std::shared_ptr<${op}>(new ${op}(${op_ctor}), deleteNode);
|
625 |
+
grad_fn->set_next_edges(collect_next_edges( ${args_with_derivatives} ));
|
626 |
+
return grad_fn;
|
627 |
+
}
|
628 |
+
}());
|
629 |
+
}
|
630 |
+
"""
|
631 |
+
)
|
632 |
+
|
633 |
+
CALL_REDISPATCH = CodeTemplate(
|
634 |
+
"""\
|
635 |
+
at::redispatch::${api_name}(${unpacked_args})"""
|
636 |
+
)
|
637 |
+
# If the non-variable operation has return values, we use the `tmp` variable to hold the
|
638 |
+
# values temporarily and pass the values to the return variables outside of the
|
639 |
+
# `at::AutoDispatchBelowAutograd` guard block.
|
640 |
+
DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES_JVP_DECOMP = CodeTemplate(
|
641 |
+
"""\
|
642 |
+
auto ${tmp_var} = ([&]() {
|
643 |
+
if (${any_has_forward_grad}) {
|
644 |
+
static c10::OperatorName full_name("aten::${op_name}", "${op_overload}");
|
645 |
+
static c10::optional<c10::OperatorHandle> opt_op = c10::Dispatcher::singleton().findSchema(full_name);
|
646 |
+
return impl::run_jit_decomposition_with_args_for_jvp<${return_types}>("${op_name}", *opt_op, ks, ${arg_names});
|
647 |
+
} else {
|
648 |
+
${guard}
|
649 |
+
return ${base_type_call};
|
650 |
+
}
|
651 |
+
})();
|
652 |
+
"""
|
653 |
+
)
|
654 |
+
|
655 |
+
DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES = CodeTemplate(
|
656 |
+
"""\
|
657 |
+
auto ${tmp_var} = ([&]() {
|
658 |
+
${guard}
|
659 |
+
return ${base_type_call};
|
660 |
+
})();
|
661 |
+
"""
|
662 |
+
)
|
663 |
+
|
664 |
+
DISPATCH_TO_NON_VAR_TYPE_WITHOUT_RETURN_VALUES = CodeTemplate(
|
665 |
+
"""\
|
666 |
+
{
|
667 |
+
${guard}
|
668 |
+
${base_type_call};
|
669 |
+
}
|
670 |
+
"""
|
671 |
+
)
|
672 |
+
|
673 |
+
SET_HISTORY = CodeTemplate(
|
674 |
+
"""\
|
675 |
+
if (grad_fn) {
|
676 |
+
${fn}_history(${differentiable_outputs}, grad_fn);
|
677 |
+
}
|
678 |
+
"""
|
679 |
+
)
|
680 |
+
|
681 |
+
LOOP_OVER_VECTOR_OF_GRAD_FNS = CodeTemplate(
|
682 |
+
"""\
|
683 |
+
if (!grad_fns.empty()) {
|
684 |
+
${preamble}
|
685 |
+
for (const auto& i : c10::irange(grad_fns.size())) {
|
686 |
+
auto grad_fn = grad_fns[i];
|
687 |
+
if (grad_fn != nullptr) {
|
688 |
+
${statements}
|
689 |
+
}
|
690 |
+
}
|
691 |
+
}
|
692 |
+
"""
|
693 |
+
)
|
694 |
+
|
695 |
+
CONDITIONAL = CodeTemplate(
|
696 |
+
"""\
|
697 |
+
if (${cond}) {
|
698 |
+
${statements}
|
699 |
+
}
|
700 |
+
"""
|
701 |
+
)
|
702 |
+
|
703 |
+
RUN_ONLY_IN_DEBUG_MODE = CodeTemplate(
|
704 |
+
"""\
|
705 |
+
#ifndef NDEBUG
|
706 |
+
${statements}
|
707 |
+
#endif
|
708 |
+
"""
|
709 |
+
)
|
710 |
+
|
711 |
+
FW_DERIVATIVE_CHECK_TEMPLATE = CodeTemplate(
|
712 |
+
"""\
|
713 |
+
isFwGradDefined(${req_inp})\
|
714 |
+
"""
|
715 |
+
)
|
716 |
+
FW_DERIVATIVE_SIZE_CHECK_TEMPLATE = CodeTemplate(
|
717 |
+
"""\
|
718 |
+
TORCH_CHECK(
|
719 |
+
self.size() == ${inp_name}.size(),
|
720 |
+
"Tensor lists must have the same number of tensors, got ",
|
721 |
+
self.size(),
|
722 |
+
" and ",
|
723 |
+
${inp_name}.size());
|
724 |
+
"""
|
725 |
+
)
|
726 |
+
|
727 |
+
FW_DERIVATIVE_TENSORLIST_CHECK_TEMPLATE = CodeTemplate(
|
728 |
+
"""\
|
729 |
+
isFwGradDefinedTensorList(${req_inp})\
|
730 |
+
"""
|
731 |
+
)
|
732 |
+
|
733 |
+
FW_DERIVATIVE_DEFINED_GRAD_TEMPLATE = CodeTemplate(
|
734 |
+
"""\
|
735 |
+
auto ${inp_name}_t_raw = toNonOptFwGrad(${inp});
|
736 |
+
auto ${inp_name}_tensor = toNonOptTensor(${inp});
|
737 |
+
auto ${inp_name}_t = (${inp_name}_t_raw.defined() || !${inp_name}_tensor.defined())
|
738 |
+
? ${inp_name}_t_raw : at::${zeros_fn}(${inp_name}_tensor.sizes(), ${inp_name}_tensor.options());
|
739 |
+
"""
|
740 |
+
)
|
741 |
+
|
742 |
+
FW_DERIVATIVE_DEFINED_PRIMAL_TEMPLATE = CodeTemplate(
|
743 |
+
"""\
|
744 |
+
auto ${inp_name}_p = toNonOptPrimal(${inp});
|
745 |
+
"""
|
746 |
+
)
|
747 |
+
|
748 |
+
FW_DERIVATIVE_SETTER_TENSOR = CodeTemplate(
|
749 |
+
"""\
|
750 |
+
if (${out_arg}_new_fw_grad_opt.has_value() && ${out_arg}_new_fw_grad_opt.value().defined() && ${out_arg}.defined()) {
|
751 |
+
// The hardcoded 0 here will need to be updated once we support multiple levels.
|
752 |
+
${out_arg}._set_fw_grad(${out_arg}_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ ${is_inplace});
|
753 |
+
}
|
754 |
+
"""
|
755 |
+
)
|
756 |
+
|
757 |
+
FW_DERIVATIVE_SETTER_TENSOR_FOREACH = CodeTemplate(
|
758 |
+
"""\
|
759 |
+
for (const auto& i : c10::irange(${out_arg}_new_fw_grad_opts.size())) {
|
760 |
+
auto& ${out_arg}_new_fw_grad_opt = ${out_arg}_new_fw_grad_opts[i];
|
761 |
+
if (${out_arg}_new_fw_grad_opt.has_value() && ${out_arg}_new_fw_grad_opt.value().defined() && ${out_arg}[i].defined()) {
|
762 |
+
// The hardcoded 0 here will need to be updated once we support multiple levels.
|
763 |
+
${out_arg}[i]._set_fw_grad(${out_arg}_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ ${is_inplace});
|
764 |
+
}
|
765 |
+
}
|
766 |
+
"""
|
767 |
+
)
|
768 |
+
|
769 |
+
FW_DERIVATIVE_SETTER_MULTI_OUTPUT = CodeTemplate(
|
770 |
+
"""\
|
771 |
+
if (${all_res}_new_fw_grad_opt.has_value() && std::get<${idx}>(${all_res}_new_fw_grad_opt.value()).defined()
|
772 |
+
&& ${out_arg}.defined()) {
|
773 |
+
${out_arg}._set_fw_grad(std::get<${idx}>(${all_res}_new_fw_grad_opt.value()), /* level */ 0, /* is_inplace_op */ false);
|
774 |
+
}
|
775 |
+
"""
|
776 |
+
)
|
777 |
+
|
778 |
+
FW_DERIVATIVE_SETTER_TENSOR_LIST = CodeTemplate(
|
779 |
+
"""\
|
780 |
+
if (${out_arg}_new_fw_grad_opt.has_value()) {
|
781 |
+
auto ${out_arg}_new_fw_grad = ${out_arg}_new_fw_grad_opt.value();
|
782 |
+
TORCH_INTERNAL_ASSERT(${out_arg}.size() == ${out_arg}_new_fw_grad.size());
|
783 |
+
for (const auto i : c10::irange(${out_arg}.size())) {
|
784 |
+
if (${out_arg}_new_fw_grad[i].defined() && ${out_arg}[i].defined()) {
|
785 |
+
// The hardcoded 0 here will need to be updated once we support multiple levels.
|
786 |
+
${out_arg}[i]._set_fw_grad(${out_arg}_new_fw_grad[i], /* level */ 0, /* is_inplace_op */ ${is_inplace});
|
787 |
+
}
|
788 |
+
}
|
789 |
+
}
|
790 |
+
"""
|
791 |
+
)
|
792 |
+
|
793 |
+
FW_DERIVATIVE_TEMPLATE = CodeTemplate(
|
794 |
+
"""\
|
795 |
+
${fw_grad_opt_definition}
|
796 |
+
if (${requires_fw_grad}) {
|
797 |
+
${unpacked_arguments}
|
798 |
+
${out_arg}_new_fw_grad_opt = ${formula};
|
799 |
+
}
|
800 |
+
"""
|
801 |
+
)
|
802 |
+
|
803 |
+
FW_DERIVATIVE_FOREACH_TEMPLATE = CodeTemplate(
|
804 |
+
"""\
|
805 |
+
${fw_grad_opt_definition}
|
806 |
+
for (const auto& i : c10::irange(${vector_of_optional_tensor}.size())) {
|
807 |
+
if (${any_has_forward_grad_for_current_index}) {
|
808 |
+
${unpacked_arguments}
|
809 |
+
${vector_of_optional_tensor}[i] = ${formula};
|
810 |
+
}
|
811 |
+
}
|
812 |
+
"""
|
813 |
+
)
|
814 |
+
|
815 |
+
FW_DERIVATIVE_FORBID_TEMPLATE = CodeTemplate(
|
816 |
+
"""\
|
817 |
+
TORCH_CHECK_NOT_IMPLEMENTED(!(${cond}), "Trying to use forward AD with ${name} that does not support it ${msg}");
|
818 |
+
"""
|
819 |
+
)
|
820 |
+
|
821 |
+
FW_DERIVATIVE_FORBID_LIST_TEMPLATE = CodeTemplate(
|
822 |
+
"""\
|
823 |
+
for (const auto& _t: ${arg}) {
|
824 |
+
TORCH_CHECK_NOT_IMPLEMENTED(!(${cond}), "Trying to use forward AD with ${name} that does not support it ${msg}");
|
825 |
+
}
|
826 |
+
"""
|
827 |
+
)
|
828 |
+
|
829 |
+
|
830 |
+
def gen_variable_type(
|
831 |
+
out: str,
|
832 |
+
native_yaml_path: str,
|
833 |
+
tags_yaml_path: str,
|
834 |
+
fns_with_diff_infos: List[NativeFunctionWithDifferentiabilityInfo],
|
835 |
+
template_path: str,
|
836 |
+
used_keys: Set[str],
|
837 |
+
) -> None:
|
838 |
+
"""VariableType.h and VariableType.cpp body
|
839 |
+
|
840 |
+
This is the at::Type subclass for differentiable tensors. The
|
841 |
+
implementation of each function dispatches to the base tensor type to
|
842 |
+
compute the output. The grad_fn is attached to differentiable functions.
|
843 |
+
"""
|
844 |
+
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
845 |
+
fm.write(
|
846 |
+
"VariableType.h",
|
847 |
+
lambda: {
|
848 |
+
"generated_comment": "@"
|
849 |
+
+ f"generated from {fm.template_dir_for_comments()}/VariableType.h"
|
850 |
+
},
|
851 |
+
)
|
852 |
+
|
853 |
+
# helper that generates a TORCH_LIBRARY_IMPL macro for each
|
854 |
+
# dispatch key that appears in derivatives.yaml
|
855 |
+
def wrapper_registrations(used_keys: Set[str]) -> str:
|
856 |
+
library_impl_macro_list: List[str] = []
|
857 |
+
for key in sorted(used_keys):
|
858 |
+
dispatch_key = key
|
859 |
+
if key == "Default":
|
860 |
+
dispatch_key = "Autograd"
|
861 |
+
library_impl_macro = (
|
862 |
+
f"TORCH_LIBRARY_IMPL(aten, {dispatch_key}, m) "
|
863 |
+
+ "{\n"
|
864 |
+
+ "${"
|
865 |
+
+ f"wrapper_registrations_{key}"
|
866 |
+
+ "}\n}"
|
867 |
+
)
|
868 |
+
library_impl_macro_list += [library_impl_macro]
|
869 |
+
return "\n\n".join(library_impl_macro_list)
|
870 |
+
|
871 |
+
# Generate a new template from VariableType.cpp which replaces ${wrapper_registrations}
|
872 |
+
# with per key TORCH_LIBRARY_IMPL macros for each key that appears in derivatives.yaml
|
873 |
+
fm1 = FileManager(
|
874 |
+
install_dir=out + "/templates", template_dir=template_path, dry_run=False
|
875 |
+
)
|
876 |
+
fm1.write(
|
877 |
+
"VariableType.cpp",
|
878 |
+
lambda: {
|
879 |
+
"type_derived_method_definitions": "\n\n".join(
|
880 |
+
[
|
881 |
+
"${" + f"type_derived_method_definitions_{key}" + "}"
|
882 |
+
for key in sorted(used_keys)
|
883 |
+
]
|
884 |
+
),
|
885 |
+
"wrapper_registrations": wrapper_registrations(used_keys),
|
886 |
+
},
|
887 |
+
)
|
888 |
+
|
889 |
+
# Generate final VariableType_*.cpp files from the generated template
|
890 |
+
fm2 = FileManager(install_dir=out, template_dir=out + "/templates", dry_run=False)
|
891 |
+
|
892 |
+
sharded_keys = set(
|
893 |
+
[f"type_derived_method_definitions_{key}" for key in sorted(used_keys)]
|
894 |
+
+ [f"wrapper_registrations_{key}" for key in sorted(used_keys)]
|
895 |
+
)
|
896 |
+
# NOTE: see Note [Sharded File] at the top of the VariableType.cpp
|
897 |
+
# template regarding sharding of the generated files.
|
898 |
+
fm2.write_sharded(
|
899 |
+
"VariableType.cpp",
|
900 |
+
[fn for fn in fns_with_diff_infos if use_derived(fn)],
|
901 |
+
key_fn=lambda fn: cpp.name(fn.func.func),
|
902 |
+
base_env={
|
903 |
+
"generated_comment": "@"
|
904 |
+
+ f"generated from {fm.template_dir_for_comments()}/VariableType.cpp",
|
905 |
+
},
|
906 |
+
env_callable=gen_variable_type_func,
|
907 |
+
num_shards=5,
|
908 |
+
sharded_keys=sharded_keys,
|
909 |
+
)
|
910 |
+
|
911 |
+
|
912 |
+
@with_native_function_and
|
913 |
+
def gen_wrapper_registration(f: NativeFunction, key: str = "Default") -> str:
|
914 |
+
return WRAPPER_REGISTRATION.substitute(
|
915 |
+
unqual_operator_name_with_overload=f.func.name,
|
916 |
+
type_wrapper_name=type_wrapper_name(f, key),
|
917 |
+
class_type="VariableType",
|
918 |
+
)
|
919 |
+
|
920 |
+
|
921 |
+
def gen_variable_type_func(
|
922 |
+
fn: NativeFunctionWithDifferentiabilityInfo,
|
923 |
+
) -> Dict[str, List[str]]:
|
924 |
+
f = fn.func
|
925 |
+
result = {}
|
926 |
+
with native_function_manager(f):
|
927 |
+
name = cpp.name(f.func)
|
928 |
+
formals = gen_formals(f)
|
929 |
+
|
930 |
+
if (
|
931 |
+
fn.info is None
|
932 |
+
and str(f.func.name.name) not in RESET_GRAD_ACCUMULATOR
|
933 |
+
and get_base_name(f) not in DONT_REQUIRE_DERIVATIVE
|
934 |
+
and len(gen_differentiable_outputs(fn)) > 0
|
935 |
+
and cpp.name(f.func) not in DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE
|
936 |
+
and type_wrapper_name(f) not in DONT_ENFORCE_STORAGE_IMPL_USE_COUNT
|
937 |
+
and type_wrapper_name(f) not in DONT_ENFORCE_TENSOR_IMPL_USE_COUNT
|
938 |
+
):
|
939 |
+
# NOTE: [ Registering AutogradNotImplemented boxed kernel ]
|
940 |
+
#
|
941 |
+
# When there is no derivatives.yaml entry, we register a generic boxed
|
942 |
+
# NotImplemented kernel to set grad_fn to be NotImplemented, so that forward
|
943 |
+
# proceeds as usual but an error is properly produced on backward.
|
944 |
+
# TODO: it would be nice to not have these special cases
|
945 |
+
#
|
946 |
+
# There are several cases where still let codegen handle it:
|
947 |
+
# 1) ops that need to reset grad accumulator (we let codegen handle this case
|
948 |
+
# because) the list is (currently) only accessible in Python.
|
949 |
+
# 2) User explicitly specifies DONT_REQUIRE_DERIVATIVE. This basically makes
|
950 |
+
# autograd a fallthrough with NDEBUG checks. This can be useful for when all
|
951 |
+
# outputs are integral.
|
952 |
+
# 3) When there are no differentiable outputs. This is similar to (2).
|
953 |
+
# 4) There are certain ops where we skip certain NDEBUG checks. this is similar
|
954 |
+
# to (1).
|
955 |
+
type_definition = ""
|
956 |
+
wrapper_registration = AUTOGRAD_NOT_IMPLEMENTED_REGISTRATION.substitute(
|
957 |
+
unqual_operator_name_with_overload=f.func.name
|
958 |
+
)
|
959 |
+
result["type_derived_method_definitions_Default"] = [type_definition]
|
960 |
+
result["wrapper_registrations_Default"] = [wrapper_registration]
|
961 |
+
else:
|
962 |
+
if not fn.info:
|
963 |
+
key = "Default"
|
964 |
+
type_definition = METHOD_DEFINITION.substitute(
|
965 |
+
return_type=cpp.returns_type(
|
966 |
+
f.func.returns, symint=True
|
967 |
+
).cpp_type(),
|
968 |
+
type_wrapper_name=type_wrapper_name(f, key),
|
969 |
+
type_definition_body=emit_body(fn, key),
|
970 |
+
formals=formals,
|
971 |
+
)
|
972 |
+
wrapper_registration = gen_wrapper_registration(f, key)
|
973 |
+
result[f"type_derived_method_definitions_{key}"] = [type_definition]
|
974 |
+
result[f"wrapper_registrations_{key}"] = [wrapper_registration]
|
975 |
+
else:
|
976 |
+
for key in fn.info.keys():
|
977 |
+
type_definition = METHOD_DEFINITION.substitute(
|
978 |
+
return_type=cpp.returns_type(
|
979 |
+
f.func.returns, symint=True
|
980 |
+
).cpp_type(),
|
981 |
+
type_wrapper_name=type_wrapper_name(f, key),
|
982 |
+
type_definition_body=emit_body(fn, key),
|
983 |
+
formals=formals,
|
984 |
+
)
|
985 |
+
wrapper_registration = gen_wrapper_registration(f, key)
|
986 |
+
result[f"type_derived_method_definitions_{key}"] = [type_definition]
|
987 |
+
result[f"wrapper_registrations_{key}"] = [wrapper_registration]
|
988 |
+
# See Note [Manual Backend kernels]
|
989 |
+
assert (name in MANUAL_BACKEND) == f.manual_kernel_registration
|
990 |
+
# If you want to register a kernel to Autograd, you must make the op abstract.
|
991 |
+
# In other words, this op must have dispatch section in native_functions.yaml.
|
992 |
+
if name in MANUAL_AUTOGRAD_AND_TRACER or (
|
993 |
+
fn.info and any(info.has_derivatives for info in fn.info.values())
|
994 |
+
):
|
995 |
+
msg = (
|
996 |
+
f"There's a formula for {name}(or its functional variant) in derivatives.yaml. "
|
997 |
+
f"It's required to add a dispatch section for it with explicit supported backends e.g CPU/CUDA "
|
998 |
+
f"or CompositeExplicitAutograd in native_functions.yaml. Please see "
|
999 |
+
f"https://github.com/pytorch/pytorch/tree/master/aten/src/ATen/native#choosing-the-right-dispatch-keyword "
|
1000 |
+
f"for instructions to choose the right dispatch keyword."
|
1001 |
+
)
|
1002 |
+
assert f.is_abstract, msg
|
1003 |
+
|
1004 |
+
return result
|
1005 |
+
|
1006 |
+
|
1007 |
+
_foreach_ops_without_differentiability_info = {
|
1008 |
+
# No reference backward available due to the lack of `{maximum, minimum}(tensor, scalar)`.
|
1009 |
+
("_foreach_maximum", "Scalar"),
|
1010 |
+
("_foreach_maximum", "ScalarList"),
|
1011 |
+
("_foreach_minimum", "Scalar"),
|
1012 |
+
("_foreach_minimum", "ScalarList"),
|
1013 |
+
# No reference backward available as addcdiv/addcmul don't support Tensor as scaling factor.
|
1014 |
+
("_foreach_addcdiv", "Tensor"),
|
1015 |
+
("_foreach_addcmul", "Tensor"),
|
1016 |
+
("_foreach_copy", ""),
|
1017 |
+
}
|
1018 |
+
|
1019 |
+
_foreach_ops_with_different_arity = {
|
1020 |
+
# These ops lack `alpha` of scaling factor to applied to the right hand side argument.
|
1021 |
+
("_foreach_add", "Scalar"),
|
1022 |
+
("_foreach_add", "ScalarList"),
|
1023 |
+
("_foreach_sub", "Scalar"),
|
1024 |
+
("_foreach_sub", "ScalarList"),
|
1025 |
+
}
|
1026 |
+
|
1027 |
+
|
1028 |
+
@with_native_function_with_differentiability_info_and_key
|
1029 |
+
def emit_body(
|
1030 |
+
fn: NativeFunctionWithDifferentiabilityInfo, key: str = "Default"
|
1031 |
+
) -> List[str]:
|
1032 |
+
assert dispatch_strategy(fn) == "use_derived"
|
1033 |
+
f = fn.func
|
1034 |
+
info = fn.info[key] if fn.info else None
|
1035 |
+
fw_derivatives = fn.fw_derivatives.get(key, []) if fn.fw_derivatives else []
|
1036 |
+
|
1037 |
+
name = cpp.name(f.func)
|
1038 |
+
inplace = f.func.kind() == SchemaKind.inplace
|
1039 |
+
is_out_fn = f.func.kind() == SchemaKind.out
|
1040 |
+
returns_void = len(f.func.returns) == 0
|
1041 |
+
base_name = get_base_name(f)
|
1042 |
+
view_info = get_view_info(f)
|
1043 |
+
|
1044 |
+
is_foreach = name.startswith("_foreach")
|
1045 |
+
is_inplace_foreach = is_foreach and inplace
|
1046 |
+
if is_inplace_foreach:
|
1047 |
+
inplace_foreacharg2refarg: Dict[Argument, Argument] = {}
|
1048 |
+
refargname2inplace_foreacharg: Dict[str, Argument] = {}
|
1049 |
+
base_name_and_overload_name = (f.func.name.name.base, f.func.name.overload_name)
|
1050 |
+
if info is None:
|
1051 |
+
assert (
|
1052 |
+
base_name_and_overload_name
|
1053 |
+
in _foreach_ops_without_differentiability_info
|
1054 |
+
), f"{'.'.join(base_name_and_overload_name)} should have a differentiability info"
|
1055 |
+
else:
|
1056 |
+
assert (
|
1057 |
+
len(f.func.arguments.flat_non_out)
|
1058 |
+
== len(info.func.func.arguments.flat_non_out)
|
1059 |
+
) or (base_name_and_overload_name in _foreach_ops_with_different_arity), (
|
1060 |
+
f"{'.'.join(base_name_and_overload_name)} has {len(f.func.arguments.flat_non_out)} args "
|
1061 |
+
f"but the reference has {len(info.func.func.arguments.flat_non_out)}"
|
1062 |
+
)
|
1063 |
+
for foreach_arg, ref_arg in zip(
|
1064 |
+
f.func.arguments.flat_non_out, info.func.func.arguments.flat_non_out
|
1065 |
+
):
|
1066 |
+
foreach_arg_type = foreach_arg.type
|
1067 |
+
if isinstance(foreach_arg_type, ListType):
|
1068 |
+
foreach_arg_type = foreach_arg_type.elem
|
1069 |
+
assert foreach_arg_type == ref_arg.type
|
1070 |
+
inplace_foreacharg2refarg[foreach_arg] = ref_arg
|
1071 |
+
refargname2inplace_foreacharg[ref_arg.name] = foreach_arg
|
1072 |
+
|
1073 |
+
def gen_differentiable_input(
|
1074 |
+
arg: Union[Argument, SelfArgument, TensorOptionsArguments]
|
1075 |
+
) -> Optional[DifferentiableInput]:
|
1076 |
+
if isinstance(arg, TensorOptionsArguments):
|
1077 |
+
return None
|
1078 |
+
a: Argument = arg.argument if isinstance(arg, SelfArgument) else arg
|
1079 |
+
|
1080 |
+
# TODO: `cpp_type` is only to keep it byte-for-byte compatible with the old codegen, should remove.
|
1081 |
+
# NB: This is not a clone of cpp.argument() - TensorOptionsArguments / faithful / binds are
|
1082 |
+
# not handled properly as they are irrelevant for this codegen.
|
1083 |
+
cpp_type = cpp.argument_type(a, binds=a.name, symint=True).cpp_type()
|
1084 |
+
|
1085 |
+
if not is_differentiable(a.name, a.type, info):
|
1086 |
+
return None
|
1087 |
+
return DifferentiableInput(
|
1088 |
+
name=a.name,
|
1089 |
+
type=a.type,
|
1090 |
+
cpp_type=cpp_type,
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
@with_native_function
|
1094 |
+
def gen_differentiable_inputs(f: NativeFunction) -> List[DifferentiableInput]:
|
1095 |
+
arguments = list(f.func.arguments.non_out)
|
1096 |
+
if is_inplace_foreach and info is not None:
|
1097 |
+
for i, arg in enumerate(f.func.arguments.flat_non_out):
|
1098 |
+
if arg in inplace_foreacharg2refarg:
|
1099 |
+
# note(crcrpar): From what I understand, what matters is only the name.
|
1100 |
+
# Thus originally I only replace argument only when the names are different.
|
1101 |
+
# TODO(crcrpar): Make it simpler.
|
1102 |
+
mapped_arg = inplace_foreacharg2refarg[arg]
|
1103 |
+
arguments[i] = Argument(
|
1104 |
+
mapped_arg.name,
|
1105 |
+
mapped_arg.type,
|
1106 |
+
mapped_arg.default,
|
1107 |
+
mapped_arg.annotation,
|
1108 |
+
)
|
1109 |
+
return list(mapMaybe(gen_differentiable_input, arguments))
|
1110 |
+
|
1111 |
+
def find_args_with_derivatives(
|
1112 |
+
differentiable_inputs: List[DifferentiableInput],
|
1113 |
+
) -> List[DifferentiableInput]:
|
1114 |
+
"""Find arguments that have derivative definitions"""
|
1115 |
+
if info is None or not info.has_derivatives:
|
1116 |
+
return differentiable_inputs
|
1117 |
+
names = {name for d in info.derivatives for name in d.var_names}
|
1118 |
+
differentiable = [arg for arg in differentiable_inputs if arg.name in names]
|
1119 |
+
if len(differentiable) != len(names):
|
1120 |
+
missing = names - {arg.name for arg in differentiable}
|
1121 |
+
raise RuntimeError(
|
1122 |
+
f"Missing arguments for derivatives: {missing} in {info.name}"
|
1123 |
+
)
|
1124 |
+
return differentiable
|
1125 |
+
|
1126 |
+
differentiable_inputs = gen_differentiable_inputs(f)
|
1127 |
+
args_with_derivatives = find_args_with_derivatives(differentiable_inputs)
|
1128 |
+
differentiable_outputs = gen_differentiable_outputs(fn, key)
|
1129 |
+
|
1130 |
+
undifferentiable = (base_name in DONT_REQUIRE_DERIVATIVE) or (
|
1131 |
+
name in DONT_REQUIRE_DERIVATIVE
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
requires_derivative = (
|
1135 |
+
(not undifferentiable)
|
1136 |
+
and (len(differentiable_inputs) > 0)
|
1137 |
+
and (
|
1138 |
+
(len(differentiable_outputs) > 0)
|
1139 |
+
# note(crcrpar): In-place foreach functions are a void function.
|
1140 |
+
or is_inplace_foreach
|
1141 |
+
)
|
1142 |
+
)
|
1143 |
+
|
1144 |
+
if (
|
1145 |
+
info is not None
|
1146 |
+
and info.has_derivatives
|
1147 |
+
and not requires_derivative
|
1148 |
+
# out= ops are allowed to have zero returns which cause requires_derivative to be False
|
1149 |
+
# we shouldn't error out though (out= ops for autograd just redispatch)
|
1150 |
+
and len(f.func.returns) > 0
|
1151 |
+
):
|
1152 |
+
raise RuntimeError(
|
1153 |
+
f"ERROR: derivative ignored for {name} -- specified an autograd function without derivative"
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
# note(crcrpar): In-place foreach functions do not support forward AD
|
1157 |
+
if requires_derivative and len(fw_derivatives) > 0 and not is_inplace_foreach:
|
1158 |
+
assert sum(len(derivative.var_names) for derivative in fw_derivatives) == len(
|
1159 |
+
differentiable_outputs
|
1160 |
+
), (
|
1161 |
+
"Expected the number of forward derivatives implemented to match the "
|
1162 |
+
"number of differentiable outputs. NB: This only applies when at least "
|
1163 |
+
"one forward derivative is implemented. Not implementing any forward "
|
1164 |
+
"derivatives is also okay, and we would require inputs to the op to "
|
1165 |
+
"not have associated tangents in that case."
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
try_jit_decomposition = (
|
1169 |
+
requires_derivative
|
1170 |
+
and len(fw_derivatives) == 0
|
1171 |
+
and (not modifies_arguments(f))
|
1172 |
+
and (not returns_void)
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
def emit_save_inputs() -> List[str]:
|
1176 |
+
setup: List[str] = []
|
1177 |
+
if info is None or not info.has_derivatives:
|
1178 |
+
return setup
|
1179 |
+
|
1180 |
+
has_tensorlist_arg = any(
|
1181 |
+
is_tensor_list_type(arg.type) for arg in args_with_derivatives
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
# We don't want to save tensors if we know that they will never be used
|
1185 |
+
# when computing the derivative, so we add guards to those statements
|
1186 |
+
def guard_for(arg: SavedAttribute) -> Optional[str]:
|
1187 |
+
assert info is not None
|
1188 |
+
|
1189 |
+
# It's hard to determine the edge offset if we have TensorLists
|
1190 |
+
# NOTE(crcrpar): in-place foreach functions' arguments include tensorlist
|
1191 |
+
# but their derivatives don't use it, so let them bypass this check.
|
1192 |
+
if has_tensorlist_arg and (not is_inplace_foreach):
|
1193 |
+
return None
|
1194 |
+
|
1195 |
+
# Empirical evaluation of the cases where we insert those guards in
|
1196 |
+
# backward show that they are somewhat useless. E.g. there's no need
|
1197 |
+
# to guard on some values captured from forward, because they had to
|
1198 |
+
# require_grad if the backward function even gets executed. I don't
|
1199 |
+
# have any good ideas for detecting those cases, so I simply disabled the
|
1200 |
+
# checks.
|
1201 |
+
if "backward" in info.name:
|
1202 |
+
return None
|
1203 |
+
|
1204 |
+
# If there's a single derivative we could compute, we already have
|
1205 |
+
# a requires_grad check that is sufficient
|
1206 |
+
if len(args_with_derivatives) <= 1:
|
1207 |
+
return None
|
1208 |
+
|
1209 |
+
# We really only care about trimming down the amount of tensors we save
|
1210 |
+
if arg.nctype.type != BaseCType(tensorT):
|
1211 |
+
return None
|
1212 |
+
|
1213 |
+
# We want to emit simple guards, so we only allow that if checking one
|
1214 |
+
# input is enough to determine whether we need that value
|
1215 |
+
used_in = [d for d in info.derivatives if arg in d.saved_inputs]
|
1216 |
+
assert len(used_in) > 0
|
1217 |
+
if len(used_in) != 1:
|
1218 |
+
return None
|
1219 |
+
derivative = used_in[0]
|
1220 |
+
|
1221 |
+
# Case with multioutput formulas
|
1222 |
+
# TODO: process all derivative formulas!!!
|
1223 |
+
if len(derivative.var_names) != 1:
|
1224 |
+
wrap_opt_if_start = derivative.formula.find(
|
1225 |
+
f"wrap_opt_if({arg.nctype.name}"
|
1226 |
+
)
|
1227 |
+
if wrap_opt_if_start == -1:
|
1228 |
+
return None
|
1229 |
+
|
1230 |
+
wrap_opt_if_match = re.match(
|
1231 |
+
rf"wrap_opt_if\({arg.nctype.name},(.*?)\)",
|
1232 |
+
derivative.formula[wrap_opt_if_start:],
|
1233 |
+
)
|
1234 |
+
assert wrap_opt_if_match is not None
|
1235 |
+
|
1236 |
+
# Condition is between 'wrap_opt_if(var_name,' and ')'.
|
1237 |
+
condition_slice = slice(len(rf"wrap_opt_if\({arg.nctype.name},"), -1)
|
1238 |
+
wrap_opt_if_condition = wrap_opt_if_match.group(0)[
|
1239 |
+
condition_slice
|
1240 |
+
].strip()
|
1241 |
+
# replace 'grad_input_mask[num]' with 'grad_fn->should_compute_output(num)'
|
1242 |
+
wrap_opt_if_condition = re.sub(
|
1243 |
+
r"grad_input_mask\[(\d+)\]",
|
1244 |
+
r"grad_fn->should_compute_output(\1)",
|
1245 |
+
wrap_opt_if_condition,
|
1246 |
+
)
|
1247 |
+
return f"{wrap_opt_if_condition}"
|
1248 |
+
|
1249 |
+
# Figure out the offset of the edge that uses this variable
|
1250 |
+
derivative_var_name = derivative.var_names[0]
|
1251 |
+
for edge_off, a in enumerate(args_with_derivatives):
|
1252 |
+
if a.name == derivative_var_name:
|
1253 |
+
break
|
1254 |
+
else:
|
1255 |
+
raise AssertionError()
|
1256 |
+
return f"grad_fn->should_compute_output({edge_off})"
|
1257 |
+
|
1258 |
+
if is_inplace_foreach:
|
1259 |
+
save_input_stmts = save_variables(info.all_saved_inputs, False, guard_for)
|
1260 |
+
if save_input_stmts:
|
1261 |
+
setup.append(
|
1262 |
+
LOOP_OVER_VECTOR_OF_GRAD_FNS.substitute(
|
1263 |
+
preamble="", statements=save_input_stmts
|
1264 |
+
)
|
1265 |
+
)
|
1266 |
+
else:
|
1267 |
+
setup.extend(save_variables(info.all_saved_inputs, False, guard_for))
|
1268 |
+
for arg in args_with_derivatives:
|
1269 |
+
if is_tensor_list_type(arg.type):
|
1270 |
+
setup.append(f"grad_fn->{arg.name}_size_ = {arg.name}.size();")
|
1271 |
+
return setup
|
1272 |
+
|
1273 |
+
def setup_derivative(differentiable_inputs: List[DifferentiableInput]) -> List[str]:
|
1274 |
+
body: List[str] = []
|
1275 |
+
if is_out_fn:
|
1276 |
+
# For out functions, ensure that no input or output requires grad
|
1277 |
+
body.append(DECLARE_GRAD_FN.substitute(op="Node"))
|
1278 |
+
body.append(
|
1279 |
+
SETUP_NONE_REQUIRES_GRAD.substitute(
|
1280 |
+
base_name=base_name,
|
1281 |
+
args_to_check=[arg.name for arg in differentiable_inputs],
|
1282 |
+
)
|
1283 |
+
)
|
1284 |
+
body.append(
|
1285 |
+
SETUP_NONE_REQUIRES_GRAD.substitute(
|
1286 |
+
base_name=base_name,
|
1287 |
+
args_to_check=[arg.name for arg in differentiable_outputs],
|
1288 |
+
)
|
1289 |
+
)
|
1290 |
+
return body
|
1291 |
+
|
1292 |
+
op = info.op if info is not None and info.has_derivatives else "NotImplemented"
|
1293 |
+
setup = []
|
1294 |
+
if not is_inplace_foreach:
|
1295 |
+
setup.extend(
|
1296 |
+
ASSIGN_GRAD_FN.substitute(
|
1297 |
+
op=op,
|
1298 |
+
op_ctor=""
|
1299 |
+
if info is not None and info.has_derivatives
|
1300 |
+
else f'"{cpp.name(f.func)}"',
|
1301 |
+
args_with_derivatives=[arg.name for arg in args_with_derivatives],
|
1302 |
+
).split("\n")
|
1303 |
+
)
|
1304 |
+
else:
|
1305 |
+
# note(crcrpar): Assuming in-place foreach function's self_arg is always TensorList.
|
1306 |
+
list_like_arg = "self"
|
1307 |
+
args = [arg.name for arg in args_with_derivatives]
|
1308 |
+
for i, arg in enumerate(args):
|
1309 |
+
if is_inplace_foreach and info is not None:
|
1310 |
+
if arg in refargname2inplace_foreacharg:
|
1311 |
+
foreach_arg = refargname2inplace_foreacharg[arg]
|
1312 |
+
args[i] = foreach_arg.name + (
|
1313 |
+
"[i]" if isinstance(foreach_arg.type, ListType) else ""
|
1314 |
+
)
|
1315 |
+
else:
|
1316 |
+
if arg == list_like_arg:
|
1317 |
+
args[i] = arg + "[i]"
|
1318 |
+
setup.extend(
|
1319 |
+
ASSIGN_VECTOR_OF_GRAD_FN.substitute(
|
1320 |
+
op=op,
|
1321 |
+
op_ctor=""
|
1322 |
+
if info is not None and info.has_derivatives
|
1323 |
+
else f'"{cpp.name(f.func)}"',
|
1324 |
+
args_with_derivatives=args,
|
1325 |
+
irange=f"{list_like_arg}.size()",
|
1326 |
+
).split("\n")
|
1327 |
+
)
|
1328 |
+
setup.extend(emit_save_inputs())
|
1329 |
+
|
1330 |
+
body.extend(
|
1331 |
+
emit_check_no_requires_grad(differentiable_inputs, args_with_derivatives)
|
1332 |
+
)
|
1333 |
+
declare_grad_fn_template = (
|
1334 |
+
DECLARE_GRAD_FN if not is_inplace_foreach else DECLARE_VECTOR_OF_GRAD_FN
|
1335 |
+
)
|
1336 |
+
body.append(declare_grad_fn_template.substitute(op=op))
|
1337 |
+
body.append(SETUP_DERIVATIVE.substitute(setup=setup))
|
1338 |
+
return body
|
1339 |
+
|
1340 |
+
def emit_check_if_in_complex_autograd_allowlist() -> List[str]:
|
1341 |
+
body: List[str] = []
|
1342 |
+
if base_name in GRADIENT_IMPLEMENTED_FOR_COMPLEX:
|
1343 |
+
return body
|
1344 |
+
for arg in differentiable_outputs:
|
1345 |
+
name = arg.name
|
1346 |
+
# TODO: should be `arg.type.is_tensor_like()`?
|
1347 |
+
if arg.cpp_type == "at::Tensor" or arg.cpp_type in TENSOR_LIST_LIKE_CTYPES:
|
1348 |
+
body.append(f'throw_error_for_complex_autograd({name}, "{base_name}");')
|
1349 |
+
return body
|
1350 |
+
|
1351 |
+
def emit_check_no_requires_grad(
|
1352 |
+
tensor_args: List[DifferentiableInput],
|
1353 |
+
args_with_derivatives: List[DifferentiableInput],
|
1354 |
+
) -> List[str]:
|
1355 |
+
"""Checks that arguments without derivatives don't require grad"""
|
1356 |
+
body: List[str] = []
|
1357 |
+
for arg in tensor_args:
|
1358 |
+
if arg in args_with_derivatives:
|
1359 |
+
continue
|
1360 |
+
arg_name = arg.name
|
1361 |
+
if info and arg_name in info.non_differentiable_arg_names:
|
1362 |
+
continue
|
1363 |
+
if arg_name == "output":
|
1364 |
+
# Double-backwards definitions sometimes take in 'input' and
|
1365 |
+
# 'output', but only define the derivative for input.
|
1366 |
+
continue
|
1367 |
+
body.append(f'check_no_requires_grad({arg_name}, "{arg_name}", "{name}");')
|
1368 |
+
return body
|
1369 |
+
|
1370 |
+
def emit_original_self_definition() -> List[str]:
|
1371 |
+
body: List[str] = []
|
1372 |
+
if inplace:
|
1373 |
+
if is_inplace_foreach:
|
1374 |
+
body.append(
|
1375 |
+
"std::vector<c10::optional<at::Tensor>> original_selfs(self.size());"
|
1376 |
+
)
|
1377 |
+
else:
|
1378 |
+
body.append("c10::optional<at::Tensor> original_self;")
|
1379 |
+
|
1380 |
+
all_forward_grad_cond = []
|
1381 |
+
for derivative in fw_derivatives:
|
1382 |
+
if derivative.required_original_self_value:
|
1383 |
+
all_forward_grad_cond.append(
|
1384 |
+
get_any_has_forward_grad_name(derivative.var_names)
|
1385 |
+
)
|
1386 |
+
|
1387 |
+
if all_forward_grad_cond:
|
1388 |
+
if not is_inplace_foreach:
|
1389 |
+
body.append(f'if ({" || ".join(all_forward_grad_cond)}) {{')
|
1390 |
+
body.append(" original_self = self.clone();")
|
1391 |
+
body.append("}")
|
1392 |
+
else:
|
1393 |
+
current_all_forward_grad_cond = [
|
1394 |
+
f"{cond}[i]" for cond in all_forward_grad_cond
|
1395 |
+
]
|
1396 |
+
body.append("for (const auto& i : c10::irange(self.size())) {")
|
1397 |
+
body.append(
|
1398 |
+
f" if ({' || '.join(current_all_forward_grad_cond)}) {{"
|
1399 |
+
)
|
1400 |
+
body.append(" original_selfs[i] = self[i].clone();")
|
1401 |
+
body.append(" }")
|
1402 |
+
body.append("}")
|
1403 |
+
|
1404 |
+
return body
|
1405 |
+
|
1406 |
+
def save_variables(
|
1407 |
+
saved_variables: Sequence[SavedAttribute],
|
1408 |
+
is_output: bool,
|
1409 |
+
guard_for: Callable[[SavedAttribute], Optional[str]] = lambda name: None,
|
1410 |
+
) -> Sequence[str]:
|
1411 |
+
# assign the saved variables to the generated grad_fn
|
1412 |
+
stmts: List[str] = []
|
1413 |
+
for arg in sorted(saved_variables, key=lambda sa: str(sa.nctype.name)):
|
1414 |
+
name = (
|
1415 |
+
arg.nctype.name.name
|
1416 |
+
if isinstance(arg.nctype.name, SpecialArgName)
|
1417 |
+
else arg.nctype.name
|
1418 |
+
)
|
1419 |
+
foreacharg: Optional[Argument] = None
|
1420 |
+
is_foreacharg_list_type: bool = False
|
1421 |
+
type = arg.nctype.type
|
1422 |
+
expr = arg.expr
|
1423 |
+
stmts_prepend = None
|
1424 |
+
if is_inplace_foreach and info is not None:
|
1425 |
+
# todo(crcrpar): See if we can add some check e.g. `assert foreacharg is not None`.
|
1426 |
+
# for now the example assert would fail.
|
1427 |
+
name_to_query = name.split("_scalar_type")[0]
|
1428 |
+
if name_to_query in refargname2inplace_foreacharg:
|
1429 |
+
foreacharg = refargname2inplace_foreacharg[name_to_query]
|
1430 |
+
is_foreacharg_list_type = isinstance(foreacharg.type, ListType)
|
1431 |
+
if foreacharg is not None:
|
1432 |
+
name_in_expr = (
|
1433 |
+
f"{foreacharg.name}{'[i]' if is_foreacharg_list_type else ''}"
|
1434 |
+
)
|
1435 |
+
src_name = name
|
1436 |
+
if "_scalar_type" in src_name:
|
1437 |
+
split_src_name = src_name.split("_scalar_type")
|
1438 |
+
assert len(split_src_name) == 2
|
1439 |
+
src_name = split_src_name[0]
|
1440 |
+
expr = expr.replace(src_name, name_in_expr)
|
1441 |
+
if (
|
1442 |
+
type == BaseCType(tensorT)
|
1443 |
+
or type == OptionalCType(BaseCType(tensorT))
|
1444 |
+
or type == MutRefCType(OptionalCType(BaseCType(tensorT)))
|
1445 |
+
or (is_output and type == BaseCType(scalarT))
|
1446 |
+
):
|
1447 |
+
# note(crcrpar): Here `expr` is generated from scratch, `arg.expr` is ignored.
|
1448 |
+
var = name
|
1449 |
+
name += "_"
|
1450 |
+
if var == "self" and inplace:
|
1451 |
+
original_self_var = (
|
1452 |
+
"original_self"
|
1453 |
+
if not is_inplace_foreach
|
1454 |
+
else "original_selfs[i]"
|
1455 |
+
)
|
1456 |
+
self_var = var if not is_inplace_foreach else var + "[i]"
|
1457 |
+
stmts_prepend = f"if (!{original_self_var}.has_value()) {original_self_var} = {self_var}.clone()"
|
1458 |
+
var = f"{original_self_var}.value()"
|
1459 |
+
assert not is_output
|
1460 |
+
if inplace and is_output:
|
1461 |
+
assert name == "result_"
|
1462 |
+
var = (
|
1463 |
+
"self[i]"
|
1464 |
+
if is_inplace_foreach or is_foreacharg_list_type
|
1465 |
+
else "self"
|
1466 |
+
)
|
1467 |
+
is_inplace_view = f"{var}.is_view()"
|
1468 |
+
expr = f"SavedVariable({var}, {str(is_output).lower()}, {is_inplace_view})"
|
1469 |
+
else:
|
1470 |
+
expr = f"SavedVariable({var}, {str(is_output).lower()})"
|
1471 |
+
if foreacharg is not None and "original_selfs" not in expr:
|
1472 |
+
expr = expr.replace(src_name, name_in_expr)
|
1473 |
+
elif (
|
1474 |
+
type == BaseCType(tensorListT)
|
1475 |
+
or type == ListCType(OptionalCType(BaseCType(tensorT)))
|
1476 |
+
or type == BaseCType(iTensorListRefT)
|
1477 |
+
or type == VectorCType(BaseCType(tensorT))
|
1478 |
+
):
|
1479 |
+
# See Note [nuanced return type of out-of-place foreach functions]
|
1480 |
+
if type == VectorCType(BaseCType(tensorT)):
|
1481 |
+
assert is_foreach and is_output
|
1482 |
+
expr = f"make_saved_variable_list({name}, {str(is_foreach and is_output).lower()})"
|
1483 |
+
name += "_"
|
1484 |
+
elif type == BaseCType(intArrayRefT):
|
1485 |
+
expr = expr + ".vec()"
|
1486 |
+
elif type == BaseCType(symIntArrayRefT):
|
1487 |
+
expr = expr + ".vec()"
|
1488 |
+
elif type == BaseCType(stringT):
|
1489 |
+
expr = f"std::string({expr})"
|
1490 |
+
elif type == OptionalCType(BaseCType(stringT)):
|
1491 |
+
expr = f"{expr}.has_value() ? c10::optional<std::string>(std::string({expr}.value())) : c10::nullopt"
|
1492 |
+
elif type == ArrayRefCType(
|
1493 |
+
elem=BaseCType(type=BaseCppType(ns="at", name="Scalar"))
|
1494 |
+
):
|
1495 |
+
expr = expr + ".vec()"
|
1496 |
+
|
1497 |
+
guard = guard_for(arg)
|
1498 |
+
if guard is None:
|
1499 |
+
if stmts_prepend:
|
1500 |
+
stmts.append(f"{stmts_prepend};")
|
1501 |
+
stmts.append(f"grad_fn->{name} = {expr};")
|
1502 |
+
else:
|
1503 |
+
stmts.append(f"if ({guard}) {{")
|
1504 |
+
if stmts_prepend:
|
1505 |
+
stmts.append(f" {stmts_prepend};")
|
1506 |
+
stmts.append(f" grad_fn->{name} = {expr};")
|
1507 |
+
stmts.append("}")
|
1508 |
+
return stmts
|
1509 |
+
|
1510 |
+
# Generates a Dispatcher::redispatch() call into the dispatcher. We do this mainly for performance reasons:
|
1511 |
+
# - Pre-compute the full DispatchKeySet. This saves the dispatcher from having to read from TLS.
|
1512 |
+
# - redispatch() avoids a redundant call to RecordFunction, which was already called right before
|
1513 |
+
# we entered this autograd kernel.
|
1514 |
+
def emit_dispatch_call(
|
1515 |
+
f: NativeFunction, input_base: str, unpacked_args: Sequence[str]
|
1516 |
+
) -> str:
|
1517 |
+
"""Dispatch call via function in a namespace or method on Tensor."""
|
1518 |
+
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
1519 |
+
dispatcher_exprs = dispatcher_sig.exprs()
|
1520 |
+
|
1521 |
+
# code-generated autograd kernels plumb and recompute dispatch keys directly through the kernel for performance.
|
1522 |
+
# Ops also always have a function variant of the redispatch API.
|
1523 |
+
# See Note [Plumbing Keys Through The Dispatcher] for details.
|
1524 |
+
dispatch_key_set = "ks & c10::after_autograd_keyset"
|
1525 |
+
call = CALL_REDISPATCH.substitute(
|
1526 |
+
api_name=cpp.name(
|
1527 |
+
f.func,
|
1528 |
+
faithful_name_for_out_overloads=True,
|
1529 |
+
symint_overload=f.func.has_symint(),
|
1530 |
+
),
|
1531 |
+
unpacked_args=[dispatch_key_set] + list(unpacked_args),
|
1532 |
+
)
|
1533 |
+
return call
|
1534 |
+
|
1535 |
+
def wrap_output(
|
1536 |
+
f: NativeFunction, unpacked_bindings: List[Binding], var: str
|
1537 |
+
) -> str:
|
1538 |
+
call = ""
|
1539 |
+
rhs_value: Optional[str] = None
|
1540 |
+
if not any(r.type.is_tensor_like() for r in f.func.returns):
|
1541 |
+
rhs_value = var
|
1542 |
+
else:
|
1543 |
+
rhs_value = f"std::move({var})"
|
1544 |
+
assert rhs_value is not None
|
1545 |
+
call += ASSIGN_RETURN_VALUE.substitute(
|
1546 |
+
return_values=tie_return_values(f), rhs_value=rhs_value
|
1547 |
+
)
|
1548 |
+
return call
|
1549 |
+
|
1550 |
+
def check_tensorimpl_and_storage(
|
1551 |
+
call: str, unpacked_bindings: List[Binding]
|
1552 |
+
) -> str:
|
1553 |
+
# See NOTE [ TensorImpl and Storage Pointer Sanity Checks ]
|
1554 |
+
stmts_before_call: List[str] = []
|
1555 |
+
stmts_after_call: List[str] = []
|
1556 |
+
|
1557 |
+
if cpp.name(f.func) in DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE:
|
1558 |
+
return call
|
1559 |
+
|
1560 |
+
# Check properties of inputs (enforce (1))
|
1561 |
+
for unpacked_binding in unpacked_bindings:
|
1562 |
+
arg = unpacked_binding.name
|
1563 |
+
noref_cpp_type = unpacked_binding.nctype.type.remove_const_ref()
|
1564 |
+
if noref_cpp_type == BaseCType(tensorListT) or noref_cpp_type == BaseCType(
|
1565 |
+
iTensorListRefT
|
1566 |
+
):
|
1567 |
+
stmts_before_call += [
|
1568 |
+
SAVE_TENSORLIST_STORAGE.substitute(tensorlist_name=arg),
|
1569 |
+
SAVE_TENSORLIST_IMPL.substitute(tensorlist_name=arg),
|
1570 |
+
]
|
1571 |
+
stmts_after_call += [
|
1572 |
+
ENFORCE_SAME_TENSORLIST_STORAGE.substitute(tensorlist_name=arg),
|
1573 |
+
ENFORCE_SAME_TENSORLIST_IMPL.substitute(tensorlist_name=arg),
|
1574 |
+
]
|
1575 |
+
elif noref_cpp_type == ListCType(OptionalCType(BaseCType(tensorT))):
|
1576 |
+
stmts_before_call += [
|
1577 |
+
SAVE_OPTIONALTENSORLIST_STORAGE.substitute(tensorlist_name=arg),
|
1578 |
+
SAVE_OPTIONALTENSORLIST_IMPL.substitute(tensorlist_name=arg),
|
1579 |
+
]
|
1580 |
+
stmts_after_call += [
|
1581 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_STORAGE.substitute(
|
1582 |
+
tensorlist_name=arg
|
1583 |
+
),
|
1584 |
+
ENFORCE_SAME_OPTIONALTENSORLIST_IMPL.substitute(
|
1585 |
+
tensorlist_name=arg
|
1586 |
+
),
|
1587 |
+
]
|
1588 |
+
elif noref_cpp_type == BaseCType(tensorT):
|
1589 |
+
stmts_before_call += [
|
1590 |
+
SAVE_TENSOR_STORAGE.substitute(tensor_name=arg),
|
1591 |
+
SAVE_TENSOR_IMPL.substitute(tensor_name=arg),
|
1592 |
+
]
|
1593 |
+
stmts_after_call += [
|
1594 |
+
ENFORCE_SAME_TENSOR_STORAGE.substitute(
|
1595 |
+
tensor_name=arg, out_tensor_name=arg
|
1596 |
+
),
|
1597 |
+
ENFORCE_SAME_TENSOR_IMPL.substitute(tensor_name=arg),
|
1598 |
+
]
|
1599 |
+
|
1600 |
+
assert (stmts_before_call and stmts_after_call) or (
|
1601 |
+
not stmts_before_call and not stmts_after_call
|
1602 |
+
)
|
1603 |
+
|
1604 |
+
# Check properties of outputs (enforce (2), (3))
|
1605 |
+
if f.func.kind() not in (SchemaKind.inplace, SchemaKind.out):
|
1606 |
+
base_name = f.func.name.name.base # TODO: should be str(f.func.name.name)?
|
1607 |
+
aliased_arg_name = ALL_VIEW_FUNCTIONS.get(base_name, None)
|
1608 |
+
if aliased_arg_name is not None:
|
1609 |
+
aliased_arg_name = unpacked_name(aliased_arg_name)
|
1610 |
+
for i, (ret, ret_name) in enumerate(
|
1611 |
+
zip(f.func.returns, cpp.return_names(f))
|
1612 |
+
):
|
1613 |
+
noref_cpp_type = cpp.return_type(ret, symint=True).remove_const_ref()
|
1614 |
+
if noref_cpp_type == BaseCType(tensorT):
|
1615 |
+
if aliased_arg_name is not None:
|
1616 |
+
assert (
|
1617 |
+
i == 0
|
1618 |
+
), "Expect non-CompositeImplicitAutograd view function {base} to return single output"
|
1619 |
+
stmts_after_call += [
|
1620 |
+
ENFORCE_SAME_TENSOR_STORAGE.substitute(
|
1621 |
+
tensor_name=aliased_arg_name, out_tensor_name=ret_name
|
1622 |
+
)
|
1623 |
+
]
|
1624 |
+
else:
|
1625 |
+
if (
|
1626 |
+
type_wrapper_name(f)
|
1627 |
+
not in DONT_ENFORCE_STORAGE_IMPL_USE_COUNT
|
1628 |
+
):
|
1629 |
+
stmts_after_call += [
|
1630 |
+
ENFORCE_TENSOR_STORAGE_USE_COUNT_EQUALS_ONE.substitute(
|
1631 |
+
tensor_name=ret_name, fn_name=type_wrapper_name(f)
|
1632 |
+
)
|
1633 |
+
]
|
1634 |
+
|
1635 |
+
if type_wrapper_name(f) not in DONT_ENFORCE_TENSOR_IMPL_USE_COUNT:
|
1636 |
+
stmts_after_call += [
|
1637 |
+
ENFORCE_TENSOR_IMPL_USE_COUNT_LT_OR_EQ_ONE.substitute(
|
1638 |
+
tensor_name=ret_name, fn_name=type_wrapper_name(f)
|
1639 |
+
)
|
1640 |
+
]
|
1641 |
+
|
1642 |
+
# Currently we don't have any functions that return the following types, but
|
1643 |
+
# we should update the checks once we do
|
1644 |
+
elif noref_cpp_type == ListCType(OptionalCType(BaseCType(tensorT))):
|
1645 |
+
raise AssertionError(
|
1646 |
+
f"Please add use_count checks for {noref_cpp_type}"
|
1647 |
+
)
|
1648 |
+
elif noref_cpp_type == BaseCType(tensorListT):
|
1649 |
+
raise AssertionError(
|
1650 |
+
f"Please add use_count checks for {noref_cpp_type}"
|
1651 |
+
)
|
1652 |
+
|
1653 |
+
if stmts_before_call and stmts_after_call:
|
1654 |
+
call = (
|
1655 |
+
RUN_ONLY_IN_DEBUG_MODE.substitute(statements=stmts_before_call)
|
1656 |
+
+ call
|
1657 |
+
+ RUN_ONLY_IN_DEBUG_MODE.substitute(statements=stmts_after_call)
|
1658 |
+
)
|
1659 |
+
return call
|
1660 |
+
|
1661 |
+
def emit_call(
|
1662 |
+
f: NativeFunction, unpacked_bindings: List[Binding], try_jit_decomposition: bool
|
1663 |
+
) -> str:
|
1664 |
+
# We only care about adding `at::AutoDispatchBelowAutograd` guard for non-variable dispatch
|
1665 |
+
# (which corresponds to 'use_derived' strategy). The purpose of this guard is to make sure
|
1666 |
+
# the baseType operations still dispatch to non-Variable type, even if the arguments passed
|
1667 |
+
# in are now Variables.
|
1668 |
+
# See NOTE [ Treating Variables as non-Variables in type dispatch ] for details.
|
1669 |
+
unpacked_args = [b.name for b in unpacked_bindings]
|
1670 |
+
base_type_call = emit_dispatch_call(f, "self_", unpacked_args)
|
1671 |
+
|
1672 |
+
if get_view_info(f) is not None or modifies_arguments(f):
|
1673 |
+
guard = "at::AutoDispatchBelowAutograd guard;"
|
1674 |
+
else:
|
1675 |
+
guard = "at::AutoDispatchBelowADInplaceOrView guard;"
|
1676 |
+
|
1677 |
+
any_has_forward_grad = (
|
1678 |
+
get_any_has_fw_grad_cond(derivative=None)
|
1679 |
+
if requires_derivative
|
1680 |
+
else "false"
|
1681 |
+
)
|
1682 |
+
return_types = ", ".join(
|
1683 |
+
[cpp.return_type(a, symint=True).cpp_type() for a in f.func.returns]
|
1684 |
+
)
|
1685 |
+
if len(f.func.returns) > 1:
|
1686 |
+
return_types = f"std::tuple<{return_types}>"
|
1687 |
+
|
1688 |
+
arg_names = [
|
1689 |
+
a.name
|
1690 |
+
for a in cpp.arguments(
|
1691 |
+
f.func.arguments,
|
1692 |
+
faithful=True,
|
1693 |
+
symint=True,
|
1694 |
+
method=False,
|
1695 |
+
cpp_no_default_args=set(),
|
1696 |
+
)
|
1697 |
+
]
|
1698 |
+
|
1699 |
+
if not modifies_arguments(f) and not returns_void:
|
1700 |
+
if try_jit_decomposition:
|
1701 |
+
call = DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES_JVP_DECOMP.substitute(
|
1702 |
+
base_type_call=base_type_call,
|
1703 |
+
tmp_var=TMP_VAR,
|
1704 |
+
guard=guard,
|
1705 |
+
any_has_forward_grad=any_has_forward_grad,
|
1706 |
+
op_name=cpp.name(f.func),
|
1707 |
+
op_overload=f.func.name.overload_name,
|
1708 |
+
return_types=return_types,
|
1709 |
+
arg_names=arg_names,
|
1710 |
+
)
|
1711 |
+
else:
|
1712 |
+
call = DISPATCH_TO_NON_VAR_TYPE_WITH_TMP_RETURN_VALUES.substitute(
|
1713 |
+
base_type_call=base_type_call,
|
1714 |
+
tmp_var=TMP_VAR,
|
1715 |
+
guard=guard,
|
1716 |
+
)
|
1717 |
+
|
1718 |
+
call += wrap_output(f, unpacked_bindings, TMP_VAR)
|
1719 |
+
else:
|
1720 |
+
assert not try_jit_decomposition
|
1721 |
+
call = DISPATCH_TO_NON_VAR_TYPE_WITHOUT_RETURN_VALUES.substitute(
|
1722 |
+
base_type_call=base_type_call, guard=guard
|
1723 |
+
)
|
1724 |
+
call = check_tensorimpl_and_storage(call, unpacked_bindings)
|
1725 |
+
return call
|
1726 |
+
|
1727 |
+
def emit_history() -> str:
|
1728 |
+
fn = "rebase" if modifies_arguments(f) and view_info is None else "set"
|
1729 |
+
output_names = [r.name for r in differentiable_outputs]
|
1730 |
+
# TODO: flatten allocates a std::vector, which could be expensive
|
1731 |
+
outs = CodeTemplate("flatten_tensor_args( ${outs} )").substitute(
|
1732 |
+
outs=output_names if not is_inplace_foreach else "self"
|
1733 |
+
)
|
1734 |
+
if not is_inplace_foreach:
|
1735 |
+
return SET_HISTORY.substitute(fn=fn, differentiable_outputs=outs)
|
1736 |
+
else:
|
1737 |
+
return LOOP_OVER_VECTOR_OF_GRAD_FNS.substitute(
|
1738 |
+
preamble=(
|
1739 |
+
f"auto differentiable_outputs = {outs};\n"
|
1740 |
+
f"TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());"
|
1741 |
+
),
|
1742 |
+
statements=f"{fn}_history(differentiable_outputs[i], grad_fns[i]);",
|
1743 |
+
)
|
1744 |
+
|
1745 |
+
def emit_save_outputs() -> str:
|
1746 |
+
if is_out_fn:
|
1747 |
+
# out functions don't currently support differentiation
|
1748 |
+
return ""
|
1749 |
+
if info is not None and info.has_derivatives:
|
1750 |
+
stmts = save_variables(info.all_saved_outputs, True)
|
1751 |
+
if len(stmts) == 0:
|
1752 |
+
return ""
|
1753 |
+
if not is_inplace_foreach:
|
1754 |
+
return CONDITIONAL.substitute(cond="grad_fn", statements=stmts)
|
1755 |
+
else:
|
1756 |
+
return LOOP_OVER_VECTOR_OF_GRAD_FNS.substitute(
|
1757 |
+
preamble="", statements=stmts
|
1758 |
+
)
|
1759 |
+
return ""
|
1760 |
+
|
1761 |
+
def emit_any_requires_grad() -> List[str]:
|
1762 |
+
extra_condition = ""
|
1763 |
+
if info and info.output_differentiability_conditions:
|
1764 |
+
assert len(info.output_differentiability_conditions) == 1
|
1765 |
+
extra_condition = f"_any_requires_grad &= ({info.output_differentiability_conditions[0]});"
|
1766 |
+
names_of_args_with_derivatives = [arg.name for arg in args_with_derivatives]
|
1767 |
+
if is_inplace_foreach and info is not None:
|
1768 |
+
for i, arg in enumerate(names_of_args_with_derivatives):
|
1769 |
+
for f_arg, r_arg in inplace_foreacharg2refarg.items():
|
1770 |
+
if arg == r_arg.name:
|
1771 |
+
names_of_args_with_derivatives[i] = f_arg.name
|
1772 |
+
return [
|
1773 |
+
SETUP_ANY_REQUIRES_GRAD.substitute(
|
1774 |
+
args_with_derivatives=names_of_args_with_derivatives,
|
1775 |
+
extra_differentiability_conditions=extra_condition,
|
1776 |
+
)
|
1777 |
+
]
|
1778 |
+
|
1779 |
+
def get_any_has_forward_grad_name(var_names: Tuple[str, ...]) -> str:
|
1780 |
+
if len(var_names) == 1:
|
1781 |
+
return f"_any_has_forward_grad_{var_names[0]}"
|
1782 |
+
else:
|
1783 |
+
return f'_any_has_forward_grad_{"_".join(var_names)}'
|
1784 |
+
|
1785 |
+
def emit_any_has_forward_grad() -> List[str]:
|
1786 |
+
content: List[str] = []
|
1787 |
+
if not is_foreach:
|
1788 |
+
for derivative in fw_derivatives:
|
1789 |
+
requires_fw_grad = get_any_has_fw_grad_cond(derivative=derivative)
|
1790 |
+
if info and info.output_differentiability_conditions:
|
1791 |
+
assert len(info.output_differentiability_conditions) == 1
|
1792 |
+
requires_fw_grad = f"({info.output_differentiability_conditions[0]}) && {requires_fw_grad}"
|
1793 |
+
content.append(
|
1794 |
+
f"[[maybe_unused]] auto {get_any_has_forward_grad_name(derivative.var_names)} = {requires_fw_grad};"
|
1795 |
+
)
|
1796 |
+
else:
|
1797 |
+
for derivative in fw_derivatives:
|
1798 |
+
bool_vector_name = get_any_has_forward_grad_name(derivative.var_names)
|
1799 |
+
cur_derivative_conditions = []
|
1800 |
+
for inp in differentiable_inputs:
|
1801 |
+
if derivative.required_inputs_fw_grad is None:
|
1802 |
+
continue
|
1803 |
+
if inp.name not in derivative.required_inputs_fw_grad:
|
1804 |
+
continue
|
1805 |
+
inp_name = (
|
1806 |
+
inp.name
|
1807 |
+
if not inplace
|
1808 |
+
else refargname2inplace_foreacharg[inp.name].name
|
1809 |
+
)
|
1810 |
+
inp_type = (
|
1811 |
+
inp.type
|
1812 |
+
if not inplace
|
1813 |
+
else refargname2inplace_foreacharg[inp.name].type
|
1814 |
+
)
|
1815 |
+
is_list_type = is_tensor_list_type(inp_type)
|
1816 |
+
if is_list_type:
|
1817 |
+
if inp_name != "self":
|
1818 |
+
content.append(
|
1819 |
+
FW_DERIVATIVE_SIZE_CHECK_TEMPLATE.substitute(
|
1820 |
+
inp_name=inp_name
|
1821 |
+
)
|
1822 |
+
)
|
1823 |
+
cur_derivative_conditions.append(
|
1824 |
+
FW_DERIVATIVE_CHECK_TEMPLATE.substitute(
|
1825 |
+
req_inp=inp_name + "[i]"
|
1826 |
+
)
|
1827 |
+
)
|
1828 |
+
else:
|
1829 |
+
cur_derivative_conditions.append(
|
1830 |
+
FW_DERIVATIVE_CHECK_TEMPLATE.substitute(req_inp=inp_name)
|
1831 |
+
)
|
1832 |
+
|
1833 |
+
content.append(f"std::vector<bool> {bool_vector_name}(self.size());")
|
1834 |
+
content.append("for (const auto& i : c10::irange(self.size())) {")
|
1835 |
+
content.append(
|
1836 |
+
f" {bool_vector_name}[i] = {' || '.join(cur_derivative_conditions)};"
|
1837 |
+
)
|
1838 |
+
content.append("}")
|
1839 |
+
return content
|
1840 |
+
|
1841 |
+
def emit_check_inplace() -> List[str]:
|
1842 |
+
if not inplace:
|
1843 |
+
return []
|
1844 |
+
return [
|
1845 |
+
f"check_inplace({arg.name}, _any_requires_grad);"
|
1846 |
+
for arg in differentiable_outputs
|
1847 |
+
]
|
1848 |
+
|
1849 |
+
def emit_fw_derivatives() -> List[str]:
|
1850 |
+
content: List[str] = []
|
1851 |
+
fw_grad_setters: List[str] = []
|
1852 |
+
for derivative in fw_derivatives:
|
1853 |
+
res = derivative.var_names
|
1854 |
+
if f.func.name.name.inplace:
|
1855 |
+
assert (
|
1856 |
+
len(res) == 1
|
1857 |
+
), "Expected number of outputs to be 1 if function is inplace"
|
1858 |
+
# TODO update this when inplace namings are unified
|
1859 |
+
res = ("self",)
|
1860 |
+
|
1861 |
+
assert derivative.required_inputs_fw_grad is not None
|
1862 |
+
|
1863 |
+
unpacked_arguments = ""
|
1864 |
+
for inp in differentiable_inputs:
|
1865 |
+
inp_name = inp.name
|
1866 |
+
is_input_tensorlist = is_foreach and is_tensor_list_type(
|
1867 |
+
inp.type
|
1868 |
+
if not inplace
|
1869 |
+
else refargname2inplace_foreacharg[inp.name].type
|
1870 |
+
)
|
1871 |
+
input_suffix = "[i]" if is_input_tensorlist else ""
|
1872 |
+
if is_inplace_foreach:
|
1873 |
+
if inp.name in refargname2inplace_foreacharg:
|
1874 |
+
inp_name = refargname2inplace_foreacharg[inp.name].name
|
1875 |
+
zeros_fn = (
|
1876 |
+
"zeros"
|
1877 |
+
if inplace and inp.name == "self"
|
1878 |
+
else "_efficientzerotensor"
|
1879 |
+
)
|
1880 |
+
if inp.name in derivative.required_inputs_fw_grad:
|
1881 |
+
unpacked_arguments += (
|
1882 |
+
FW_DERIVATIVE_DEFINED_GRAD_TEMPLATE.substitute(
|
1883 |
+
inp_name=inp.name,
|
1884 |
+
inp=inp_name + input_suffix,
|
1885 |
+
zeros_fn=zeros_fn,
|
1886 |
+
)
|
1887 |
+
)
|
1888 |
+
if inp.name in (derivative.required_inputs_primal or []):
|
1889 |
+
unpacked_arguments += (
|
1890 |
+
FW_DERIVATIVE_DEFINED_PRIMAL_TEMPLATE.substitute(
|
1891 |
+
inp_name=inp.name,
|
1892 |
+
inp=inp_name + input_suffix,
|
1893 |
+
)
|
1894 |
+
)
|
1895 |
+
if derivative.required_original_self_value:
|
1896 |
+
input_suffix = "s[i]" if is_inplace_foreach else ""
|
1897 |
+
unpacked_arguments += FW_DERIVATIVE_DEFINED_GRAD_TEMPLATE.substitute(
|
1898 |
+
inp_name="original_self",
|
1899 |
+
inp="original_self" + input_suffix,
|
1900 |
+
zeros_fn=zeros_fn,
|
1901 |
+
)
|
1902 |
+
unpacked_arguments += FW_DERIVATIVE_DEFINED_PRIMAL_TEMPLATE.substitute(
|
1903 |
+
inp_name="original_self",
|
1904 |
+
inp="original_self" + input_suffix,
|
1905 |
+
)
|
1906 |
+
elif inplace and derivative.is_reusing_outplace_formula:
|
1907 |
+
# The gradient wasn't already cloned, do it if grad mode is enabled
|
1908 |
+
unpacked_arguments += (
|
1909 |
+
"self_t = GradMode::is_enabled() ? self_t.clone() : self_t;"
|
1910 |
+
)
|
1911 |
+
|
1912 |
+
if inplace:
|
1913 |
+
is_inplace_str = "true"
|
1914 |
+
else:
|
1915 |
+
is_inplace_str = "false"
|
1916 |
+
|
1917 |
+
requires_fw_grad = get_any_has_forward_grad_name(derivative.var_names)
|
1918 |
+
|
1919 |
+
if all(
|
1920 |
+
(isinstance(var_type, BaseType) and var_type.is_tensor_like())
|
1921 |
+
for var_type in derivative.var_types
|
1922 |
+
):
|
1923 |
+
# Is there a way to get from BaseType to BaseCType
|
1924 |
+
if len(derivative.var_types) == 1:
|
1925 |
+
opt_res_grad_type = OptionalCType(BaseCType(tensorT)).cpp_type()
|
1926 |
+
if not is_foreach:
|
1927 |
+
fw_grad_setters.append(
|
1928 |
+
FW_DERIVATIVE_SETTER_TENSOR.substitute(
|
1929 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1930 |
+
)
|
1931 |
+
)
|
1932 |
+
else:
|
1933 |
+
assert res[0] == ("result" if not inplace else "self")
|
1934 |
+
fw_grad_setters.append(
|
1935 |
+
FW_DERIVATIVE_SETTER_TENSOR_FOREACH.substitute(
|
1936 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1937 |
+
)
|
1938 |
+
)
|
1939 |
+
requires_fw_grad += f" && ({derivative.var_names[0]}.defined())"
|
1940 |
+
else:
|
1941 |
+
tuple_type = TupleCType(
|
1942 |
+
[BaseCType(tensorT)] * len(derivative.var_types)
|
1943 |
+
)
|
1944 |
+
opt_res_grad_type = OptionalCType(tuple_type).cpp_type()
|
1945 |
+
for idx, single_res in enumerate(res):
|
1946 |
+
fw_grad_setters.append(
|
1947 |
+
FW_DERIVATIVE_SETTER_MULTI_OUTPUT.substitute(
|
1948 |
+
idx=idx, all_res="_".join(res), out_arg=single_res
|
1949 |
+
)
|
1950 |
+
)
|
1951 |
+
elif (
|
1952 |
+
isinstance(derivative.var_types[0], ListType)
|
1953 |
+
and derivative.var_types[0].is_tensor_like()
|
1954 |
+
):
|
1955 |
+
assert (
|
1956 |
+
len(derivative.var_types) == 1
|
1957 |
+
), "Expected number of outputs to be 1 if function returns ListType"
|
1958 |
+
if not is_foreach:
|
1959 |
+
opt_res_grad_type = OptionalCType(
|
1960 |
+
VectorCType(BaseCType(tensorT))
|
1961 |
+
).cpp_type()
|
1962 |
+
fw_grad_setters.append(
|
1963 |
+
FW_DERIVATIVE_SETTER_TENSOR_LIST.substitute(
|
1964 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1965 |
+
)
|
1966 |
+
)
|
1967 |
+
else:
|
1968 |
+
# TODO(crcrpar): Should this (= the foreach specific logic) be refactored somehow?
|
1969 |
+
# Only out-place foreach functions that have entries in `tools/autograd/derivatives.yaml`
|
1970 |
+
# can reach here.
|
1971 |
+
opt_res_grad_type = OptionalCType(BaseCType(tensorT)).cpp_type()
|
1972 |
+
fw_grad_setters.append(
|
1973 |
+
FW_DERIVATIVE_SETTER_TENSOR_FOREACH.substitute(
|
1974 |
+
out_arg=res[0], is_inplace=is_inplace_str
|
1975 |
+
)
|
1976 |
+
)
|
1977 |
+
else:
|
1978 |
+
raise RuntimeError("Unsupported output type for forward derivative")
|
1979 |
+
|
1980 |
+
if not is_foreach:
|
1981 |
+
fw_grad_opt_definition = f"{opt_res_grad_type} {'_'.join(res)}_new_fw_grad_opt = c10::nullopt;"
|
1982 |
+
# View ops create fw_grad that already is a view of the base's fw_grad so just use that
|
1983 |
+
content.append(
|
1984 |
+
FW_DERIVATIVE_TEMPLATE.substitute(
|
1985 |
+
fw_grad_opt_definition=fw_grad_opt_definition,
|
1986 |
+
requires_fw_grad=requires_fw_grad,
|
1987 |
+
formula=derivative.formula,
|
1988 |
+
out_arg="_".join(res),
|
1989 |
+
unpacked_arguments=unpacked_arguments,
|
1990 |
+
)
|
1991 |
+
)
|
1992 |
+
else:
|
1993 |
+
# note(crcrpar): Assuming `self` is TensorList.
|
1994 |
+
fw_grad_opt_definition = (
|
1995 |
+
f"std::vector<{opt_res_grad_type}> {'_'.join(res)}_new_fw_grad_opts"
|
1996 |
+
"(self.size(), c10::nullopt);"
|
1997 |
+
)
|
1998 |
+
foreach_forward_grad_formula = derivative.formula
|
1999 |
+
_foreach_arg: Union[Argument, DifferentiableInput]
|
2000 |
+
if inplace:
|
2001 |
+
for _foreach_arg, _ref_arg in inplace_foreacharg2refarg.items():
|
2002 |
+
# note(crcrpar): Massage only Scalar and ArrayRef<Scalar> here.
|
2003 |
+
if not (
|
2004 |
+
is_tensor_type(_foreach_arg.type)
|
2005 |
+
or is_tensor_list_type(_foreach_arg.type)
|
2006 |
+
):
|
2007 |
+
pattern = _foreach_arg.name
|
2008 |
+
if isinstance(_foreach_arg.type, ListType):
|
2009 |
+
pattern += "[i]"
|
2010 |
+
foreach_forward_grad_formula = (
|
2011 |
+
foreach_forward_grad_formula.replace(
|
2012 |
+
_ref_arg.name, pattern
|
2013 |
+
)
|
2014 |
+
)
|
2015 |
+
else:
|
2016 |
+
if (
|
2017 |
+
"result" in foreach_forward_grad_formula
|
2018 |
+
and "result[i]" not in foreach_forward_grad_formula
|
2019 |
+
):
|
2020 |
+
foreach_forward_grad_formula = (
|
2021 |
+
foreach_forward_grad_formula.replace("result", "result[i]")
|
2022 |
+
)
|
2023 |
+
|
2024 |
+
content.append(
|
2025 |
+
FW_DERIVATIVE_FOREACH_TEMPLATE.substitute(
|
2026 |
+
fw_grad_opt_definition=fw_grad_opt_definition,
|
2027 |
+
vector_of_optional_tensor=f"{'_'.join(res)}_new_fw_grad_opts",
|
2028 |
+
any_has_forward_grad_for_current_index=" || ".join(
|
2029 |
+
get_any_has_forward_grad_name(derivative.var_names) + "[i]"
|
2030 |
+
for derivative in fw_derivatives
|
2031 |
+
),
|
2032 |
+
formula=foreach_forward_grad_formula,
|
2033 |
+
unpacked_arguments=unpacked_arguments,
|
2034 |
+
)
|
2035 |
+
)
|
2036 |
+
|
2037 |
+
# Set all the grads at the end to avoid: https://github.com/pytorch/pytorch/issues/67367
|
2038 |
+
content.append("\n".join(fw_grad_setters))
|
2039 |
+
return content
|
2040 |
+
|
2041 |
+
def get_any_has_fw_grad_cond(derivative: Optional[ForwardDerivative]) -> str:
|
2042 |
+
#
|
2043 |
+
# Produces a condition string (e.g, "isFwGradDefined(grad_output) || isFwGradDefined(output)")
|
2044 |
+
#
|
2045 |
+
if derivative is None:
|
2046 |
+
# (1) If a derivative is NOT provided, cond will check fw_grad of ALL differentiable inputs
|
2047 |
+
# - Used in the out_fn case when we want to forbid fw derivatives
|
2048 |
+
# - Used in the case where the fw_derivative is not defined, but we want
|
2049 |
+
# To check if there is a decomposition registered for jvp
|
2050 |
+
to_check: List[str] = []
|
2051 |
+
for inp in list(
|
2052 |
+
mapMaybe(
|
2053 |
+
gen_differentiable_input,
|
2054 |
+
f.func.arguments.non_out + list(f.func.arguments.out), # type: ignore[operator]
|
2055 |
+
)
|
2056 |
+
):
|
2057 |
+
if is_tensor_type(inp.type):
|
2058 |
+
to_check.append(
|
2059 |
+
FW_DERIVATIVE_CHECK_TEMPLATE.substitute(req_inp=inp.name)
|
2060 |
+
)
|
2061 |
+
elif is_tensor_list_type(inp.type):
|
2062 |
+
to_check.append(
|
2063 |
+
FW_DERIVATIVE_TENSORLIST_CHECK_TEMPLATE.substitute(
|
2064 |
+
req_inp=inp.name
|
2065 |
+
)
|
2066 |
+
)
|
2067 |
+
else:
|
2068 |
+
raise RuntimeError(
|
2069 |
+
f'Unsupported input type for "{name}" when forbidding forward AD usage.'
|
2070 |
+
)
|
2071 |
+
return f'({" || ".join(to_check)})'
|
2072 |
+
else:
|
2073 |
+
# (2) If derivative is provided, use that information to determine which inputs
|
2074 |
+
# to check fw_grad for
|
2075 |
+
assert derivative.required_inputs_fw_grad is not None
|
2076 |
+
|
2077 |
+
if len(derivative.required_inputs_fw_grad) == 0:
|
2078 |
+
# Handle functions like stack
|
2079 |
+
# For these, we don't unpack anything and always call the user function
|
2080 |
+
if not (
|
2081 |
+
len(differentiable_inputs) == 1
|
2082 |
+
and is_tensor_list_type(differentiable_inputs[0].type)
|
2083 |
+
):
|
2084 |
+
raise RuntimeError(
|
2085 |
+
f'No differentiable input to "{name}" is a differentiable Tensor (as the provided '
|
2086 |
+
"forward AD formula does not use any input tangent) even though a forward gradient "
|
2087 |
+
"formula has been defined for it. This case should only happen for function that "
|
2088 |
+
"take a single TensorList as input. All other cases are not supported right now."
|
2089 |
+
)
|
2090 |
+
any_has_fw_grad = "true"
|
2091 |
+
else:
|
2092 |
+
any_has_fw_grad = " || ".join(
|
2093 |
+
[
|
2094 |
+
(
|
2095 |
+
FW_DERIVATIVE_TENSORLIST_CHECK_TEMPLATE
|
2096 |
+
if is_tensor_list_type(inp.type)
|
2097 |
+
else FW_DERIVATIVE_CHECK_TEMPLATE
|
2098 |
+
).substitute(req_inp=inp.name)
|
2099 |
+
for inp in differentiable_inputs
|
2100 |
+
if inp.name in derivative.required_inputs_fw_grad
|
2101 |
+
]
|
2102 |
+
)
|
2103 |
+
any_has_fw_grad = f"({any_has_fw_grad})"
|
2104 |
+
|
2105 |
+
return any_has_fw_grad
|
2106 |
+
|
2107 |
+
def emit_forbid_fw_derivatives(is_out_fn: bool = False) -> str:
|
2108 |
+
if is_out_fn:
|
2109 |
+
msg = "because it is an out= function"
|
2110 |
+
else:
|
2111 |
+
msg = (
|
2112 |
+
"because it has not been implemented yet.\\nPlease file an issue "
|
2113 |
+
"to PyTorch at https://github.com/pytorch/pytorch/issues/new?template=feature-request.yml "
|
2114 |
+
"so that we can prioritize its implementation."
|
2115 |
+
)
|
2116 |
+
cond = get_any_has_fw_grad_cond(derivative=None)
|
2117 |
+
return (
|
2118 |
+
FW_DERIVATIVE_FORBID_TEMPLATE.substitute(cond=cond, name=name, msg=msg)
|
2119 |
+
if cond != ""
|
2120 |
+
else ""
|
2121 |
+
)
|
2122 |
+
|
2123 |
+
body: List[str] = []
|
2124 |
+
unpack_args_stats, unpacked_bindings = unpack_args(f)
|
2125 |
+
|
2126 |
+
body.extend(unpack_args_stats)
|
2127 |
+
if requires_derivative:
|
2128 |
+
body.extend(emit_any_requires_grad())
|
2129 |
+
body.extend(emit_any_has_forward_grad())
|
2130 |
+
body.extend(emit_check_inplace())
|
2131 |
+
body.extend(emit_original_self_definition())
|
2132 |
+
body.extend(setup_derivative(differentiable_inputs))
|
2133 |
+
body.append(declare_returned_variables(f))
|
2134 |
+
|
2135 |
+
body.append(emit_call(f, unpacked_bindings, try_jit_decomposition))
|
2136 |
+
if requires_derivative:
|
2137 |
+
# set_flags has to appear after version_counter, because rebase_history
|
2138 |
+
# requires that the counter is incremented before it is called
|
2139 |
+
body.append(emit_history())
|
2140 |
+
body.extend(emit_check_if_in_complex_autograd_allowlist())
|
2141 |
+
|
2142 |
+
if is_out_fn:
|
2143 |
+
body.append(emit_forbid_fw_derivatives(is_out_fn=True))
|
2144 |
+
else:
|
2145 |
+
if requires_derivative and not try_jit_decomposition:
|
2146 |
+
if len(fw_derivatives) > 0:
|
2147 |
+
body.extend(emit_fw_derivatives())
|
2148 |
+
else:
|
2149 |
+
body.append(emit_forbid_fw_derivatives())
|
2150 |
+
|
2151 |
+
if requires_derivative:
|
2152 |
+
# Save only after the forward AD has been set up
|
2153 |
+
body.append(emit_save_outputs())
|
2154 |
+
|
2155 |
+
if str(f.func.name.name) in RESET_GRAD_ACCUMULATOR:
|
2156 |
+
# `inplace` implies that there is exactly one output named `self`,
|
2157 |
+
# so we can keep the generated code easy. If you need to
|
2158 |
+
# `reset_grad_accumulator` in an operator that's not `inplace`, you can
|
2159 |
+
# remove this assert but the code generation will get more elaborate
|
2160 |
+
assert inplace
|
2161 |
+
body.append("reset_grad_accumulator(self);")
|
2162 |
+
if not returns_void:
|
2163 |
+
body.append(f"return {get_return_value(f)};")
|
2164 |
+
return body
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/load_derivatives.py
ADDED
@@ -0,0 +1,1011 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Parses derivatives.yaml into autograd functions
|
2 |
+
#
|
3 |
+
# Each autograd function is represented by `DifferentiabilityInfo` containing
|
4 |
+
# a list of `Derivative`. See `torchgen.api.autograd` for the data models.
|
5 |
+
import re
|
6 |
+
from collections import defaultdict
|
7 |
+
from typing import Any, Counter, Dict, List, Match, Optional, Sequence, Set, Tuple
|
8 |
+
|
9 |
+
import yaml
|
10 |
+
from torchgen.api import cpp
|
11 |
+
|
12 |
+
from torchgen.api.autograd import (
|
13 |
+
Derivative,
|
14 |
+
DifferentiabilityInfo,
|
15 |
+
ForwardDerivative,
|
16 |
+
SavedAttribute,
|
17 |
+
)
|
18 |
+
from torchgen.api.types import (
|
19 |
+
BaseCType,
|
20 |
+
Binding,
|
21 |
+
boolT,
|
22 |
+
CppSignatureGroup,
|
23 |
+
layoutT,
|
24 |
+
longT,
|
25 |
+
NamedCType,
|
26 |
+
OptionalCType,
|
27 |
+
scalarTypeT,
|
28 |
+
SpecialArgName,
|
29 |
+
stringT,
|
30 |
+
symIntArrayRefT,
|
31 |
+
SymIntT,
|
32 |
+
tensorGeometryT,
|
33 |
+
tensorOptionsT,
|
34 |
+
typeAndSizeT,
|
35 |
+
VectorCType,
|
36 |
+
)
|
37 |
+
from torchgen.context import with_native_function
|
38 |
+
from torchgen.gen import get_grouped_by_view_native_functions, parse_native_yaml
|
39 |
+
from torchgen.model import (
|
40 |
+
AUTOGRAD_KEYS,
|
41 |
+
FunctionSchema,
|
42 |
+
NativeFunction,
|
43 |
+
NativeFunctionsViewGroup,
|
44 |
+
OperatorName,
|
45 |
+
SchemaKind,
|
46 |
+
Type,
|
47 |
+
Variant,
|
48 |
+
)
|
49 |
+
from torchgen.utils import concatMap, IDENT_REGEX, split_name_params
|
50 |
+
from torchgen.yaml_utils import YamlLoader
|
51 |
+
|
52 |
+
_GLOBAL_LOAD_DERIVATIVE_CACHE = {}
|
53 |
+
|
54 |
+
_VALID_AUTOGRAD_KEYS = set(AUTOGRAD_KEYS)
|
55 |
+
|
56 |
+
|
57 |
+
# This function directly adds per-dispatchkey derivative entries for {view}_copy variants of each view op.
|
58 |
+
# Since every {view} and {view}_copy op shares the same derivative formula,
|
59 |
+
# we generate them here instead of duplicating them in the yaml.
|
60 |
+
# See Note [Codegen'd {view}_copy Operators]
|
61 |
+
def add_view_copy_derivatives(
|
62 |
+
infos: Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]],
|
63 |
+
view_groups: List[NativeFunctionsViewGroup],
|
64 |
+
) -> None:
|
65 |
+
# Get the map from each view op's name to its corresponding view group
|
66 |
+
view_name_to_group: Dict[OperatorName, NativeFunctionsViewGroup] = {
|
67 |
+
g.view.func.name: g for g in view_groups
|
68 |
+
}
|
69 |
+
|
70 |
+
view_infos = {}
|
71 |
+
|
72 |
+
for info_dispatch_dict in infos.values():
|
73 |
+
# maybe_view_group only needs to be calculated once per info_dispatch_dict
|
74 |
+
maybe_view_group = None
|
75 |
+
view_copy_differentiability_infos = {}
|
76 |
+
for dispatch_key, info in info_dispatch_dict.items():
|
77 |
+
maybe_view_group = view_name_to_group.get(info.func.func.name, None)
|
78 |
+
if maybe_view_group is not None and maybe_view_group.view_copy is not None:
|
79 |
+
view_copy_info = info.create_view_copy_from_view_derivative(
|
80 |
+
maybe_view_group
|
81 |
+
)
|
82 |
+
if view_copy_info is not None:
|
83 |
+
fn_schema = view_copy_info.func.func
|
84 |
+
view_copy_differentiability_infos[dispatch_key] = view_copy_info
|
85 |
+
else:
|
86 |
+
break
|
87 |
+
if len(view_copy_differentiability_infos) > 0:
|
88 |
+
assert fn_schema is not None
|
89 |
+
view_infos[fn_schema] = view_copy_differentiability_infos
|
90 |
+
|
91 |
+
infos.update(view_infos)
|
92 |
+
|
93 |
+
|
94 |
+
def load_derivatives(
|
95 |
+
derivatives_yaml_path: str, native_yaml_path: str, tags_yaml_path: str
|
96 |
+
) -> Tuple[Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]], Set[str]]:
|
97 |
+
# Do some caching as this is a deterministic function
|
98 |
+
global _GLOBAL_LOAD_DERIVATIVE_CACHE
|
99 |
+
key = (derivatives_yaml_path, native_yaml_path)
|
100 |
+
if key not in _GLOBAL_LOAD_DERIVATIVE_CACHE:
|
101 |
+
with open(derivatives_yaml_path) as f:
|
102 |
+
definitions = yaml.load(f, Loader=YamlLoader)
|
103 |
+
|
104 |
+
funcs = parse_native_yaml(native_yaml_path, tags_yaml_path).native_functions
|
105 |
+
# From the parsed native functions, separate out the (generated) view_copy functions,
|
106 |
+
# so we can generate derivatives for them separately.
|
107 |
+
native_functions_with_view_groups = get_grouped_by_view_native_functions(funcs)
|
108 |
+
native_functions_without_view_copies = concatMap(
|
109 |
+
# We need to pull out the view_inplace ops too, since they might have their own derivative entries.
|
110 |
+
lambda g: [g]
|
111 |
+
if isinstance(g, NativeFunction)
|
112 |
+
else list(g.functions(include_copy=False)),
|
113 |
+
native_functions_with_view_groups,
|
114 |
+
)
|
115 |
+
view_groups = [
|
116 |
+
g
|
117 |
+
for g in native_functions_with_view_groups
|
118 |
+
if isinstance(g, NativeFunctionsViewGroup)
|
119 |
+
]
|
120 |
+
|
121 |
+
# What's the difference between function schema v.s. signature?
|
122 |
+
# function schema is the complete declaration including mutability annotation / default value and etc.
|
123 |
+
# signature is the canonical schema for a group of functions (in-place/out/functional variants)
|
124 |
+
# that are semantically related.
|
125 |
+
functions_by_signature: Dict[
|
126 |
+
FunctionSchema, List[NativeFunction]
|
127 |
+
] = defaultdict(list)
|
128 |
+
functions_by_schema: Dict[str, NativeFunction] = {}
|
129 |
+
for function in native_functions_without_view_copies:
|
130 |
+
functions_by_signature[function.func.signature()].append(function)
|
131 |
+
assert str(function.func) not in functions_by_schema
|
132 |
+
functions_by_schema[str(function.func)] = function
|
133 |
+
|
134 |
+
# Keep track of how many of which ops we've seen so we can
|
135 |
+
# disambiguate them with a numeric suffix.
|
136 |
+
op_counter = Counter[str]()
|
137 |
+
|
138 |
+
# infos is a dict that maps FunctionSchema -> a dict of per dispatch key DifferentiabilityInfos
|
139 |
+
# this is useful because in tools/autograd/gen_autograd.py:match_differentiability_info
|
140 |
+
# we ultimately need to categorize the DifferentiabilityInfos by FunctionSchema
|
141 |
+
infos: Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]] = {}
|
142 |
+
used_dispatch_keys: Set[str] = set()
|
143 |
+
for defn_dict in definitions:
|
144 |
+
# Ensure that the old derivatives.yaml schema with no dispatch key can be loaded.
|
145 |
+
if "dispatch" not in defn_dict:
|
146 |
+
specification = defn_dict.pop("name")
|
147 |
+
output_differentiability = defn_dict.pop(
|
148 |
+
"output_differentiability", None
|
149 |
+
)
|
150 |
+
defn_dict = {"name": specification, "dispatch": {"Default": defn_dict}}
|
151 |
+
if output_differentiability:
|
152 |
+
defn_dict["output_differentiability"] = output_differentiability
|
153 |
+
name, per_dispatch_diffinfos = create_differentiability_info(
|
154 |
+
defn_dict,
|
155 |
+
functions_by_signature,
|
156 |
+
functions_by_schema,
|
157 |
+
op_counter,
|
158 |
+
used_dispatch_keys,
|
159 |
+
)
|
160 |
+
infos[name] = per_dispatch_diffinfos
|
161 |
+
|
162 |
+
add_view_copy_derivatives(infos, view_groups)
|
163 |
+
|
164 |
+
# cache both loaded infos as well a a set of all the dispatch_keys/aliases
|
165 |
+
# that appear in derivatives.yaml. used_dispatch_keys is useful for generating
|
166 |
+
# VariableType.cpp where we need a TORCH_LIBRARY_IMPL for every autograd dispatch key used
|
167 |
+
_GLOBAL_LOAD_DERIVATIVE_CACHE[key] = infos, used_dispatch_keys
|
168 |
+
|
169 |
+
return _GLOBAL_LOAD_DERIVATIVE_CACHE[key]
|
170 |
+
|
171 |
+
|
172 |
+
# TODO: Why is this going through CppSignatureGroup, that doesn't make sense...
|
173 |
+
@with_native_function
|
174 |
+
def cpp_arguments(f: NativeFunction) -> Sequence[Binding]:
|
175 |
+
sigs = CppSignatureGroup.from_native_function(f, method=False)
|
176 |
+
if sigs.symint_signature is not None:
|
177 |
+
return sigs.symint_signature.arguments()
|
178 |
+
else:
|
179 |
+
return sigs.signature.arguments()
|
180 |
+
|
181 |
+
|
182 |
+
def create_derivative(
|
183 |
+
f: NativeFunction,
|
184 |
+
formula: str,
|
185 |
+
var_names: Tuple[str, ...],
|
186 |
+
available_named_gradients: Sequence[str],
|
187 |
+
) -> Derivative:
|
188 |
+
original_formula = formula
|
189 |
+
arguments: List[NamedCType] = [
|
190 |
+
a.nctype.remove_const_ref() for a in cpp_arguments(f)
|
191 |
+
]
|
192 |
+
|
193 |
+
return_names = tuple(n if n != "self" else "result" for n in cpp.return_names(f))
|
194 |
+
return_types = tuple(
|
195 |
+
cpp.return_type(r, symint=True).remove_const_ref() for r in f.func.returns
|
196 |
+
)
|
197 |
+
|
198 |
+
named_returns = [
|
199 |
+
NamedCType(name, type) for name, type in zip(return_names, return_types)
|
200 |
+
]
|
201 |
+
|
202 |
+
formula, saved_inputs = saved_variables(formula, arguments, var_names)
|
203 |
+
formula, saved_outputs = saved_variables(formula, named_returns, var_names)
|
204 |
+
|
205 |
+
used_named_gradients = {
|
206 |
+
name
|
207 |
+
for name in available_named_gradients
|
208 |
+
if re.search(IDENT_REGEX.format(name), formula)
|
209 |
+
}
|
210 |
+
|
211 |
+
# Check that the referenced derivatives in the formula are in bounds
|
212 |
+
for i in used_gradient_indices(formula):
|
213 |
+
if i >= len(f.func.returns):
|
214 |
+
raise RuntimeError(
|
215 |
+
f"Out of bounds grads access: derivative formula for {cpp.name(f.func)} "
|
216 |
+
f"used grads[{i}], but the forward only returns {len(f.func.returns)} outputs."
|
217 |
+
)
|
218 |
+
|
219 |
+
return Derivative(
|
220 |
+
formula=formula,
|
221 |
+
original_formula=original_formula,
|
222 |
+
var_names=var_names,
|
223 |
+
saved_inputs=saved_inputs,
|
224 |
+
saved_outputs=saved_outputs,
|
225 |
+
named_gradients=used_named_gradients,
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
def create_forward_derivative(
|
230 |
+
f: NativeFunction, formula: str, names: Tuple[str, ...]
|
231 |
+
) -> ForwardDerivative:
|
232 |
+
var_names = names
|
233 |
+
var_types: Optional[Tuple[Type, ...]] = None
|
234 |
+
for r in f.func.returns:
|
235 |
+
if r.name in var_names:
|
236 |
+
if var_types is None:
|
237 |
+
var_types = tuple()
|
238 |
+
var_types = var_types + (r.type,)
|
239 |
+
|
240 |
+
# Handle default return names
|
241 |
+
if var_types is None:
|
242 |
+
if var_names == ("result",):
|
243 |
+
assert len(f.func.returns) == 1
|
244 |
+
var_types = (f.func.returns[0].type,)
|
245 |
+
else:
|
246 |
+
for var_name in var_names:
|
247 |
+
res = re.findall(r"^result(\d+)$", var_name)
|
248 |
+
if len(res) == 1:
|
249 |
+
if var_types is None:
|
250 |
+
var_types = tuple()
|
251 |
+
arg_idx = int(res[0])
|
252 |
+
var_types = var_types + (f.func.returns[arg_idx].type,)
|
253 |
+
|
254 |
+
assert var_types is not None, "No matching output for forward derivative definition"
|
255 |
+
return ForwardDerivative(
|
256 |
+
formula=formula,
|
257 |
+
var_names=var_names,
|
258 |
+
var_types=var_types,
|
259 |
+
required_inputs_fw_grad=None,
|
260 |
+
required_inputs_primal=None,
|
261 |
+
required_original_self_value=False,
|
262 |
+
is_reusing_outplace_formula=False,
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
def postprocess_forward_derivatives(
|
267 |
+
f: NativeFunction,
|
268 |
+
defn_name: str,
|
269 |
+
all_arg_names: List[str],
|
270 |
+
derivatives: List[Derivative],
|
271 |
+
forward_derivatives: List[ForwardDerivative],
|
272 |
+
args_with_derivatives: Sequence[Binding],
|
273 |
+
) -> List[ForwardDerivative]:
|
274 |
+
def find_required_inputs(formula: str, postfix: str) -> Tuple[str, ...]:
|
275 |
+
is_foreach = f.func.name.name.base.startswith("_foreach_")
|
276 |
+
required_inputs = set()
|
277 |
+
for arg in args_with_derivatives:
|
278 |
+
if (
|
279 |
+
arg.type in ("at::TensorList", "const at::ITensorListRef &")
|
280 |
+
and not is_foreach
|
281 |
+
):
|
282 |
+
# The functions taking TensorList handle everything internally
|
283 |
+
continue
|
284 |
+
arg_name = arg.name
|
285 |
+
|
286 |
+
found = re.search(IDENT_REGEX.format(arg_name), formula)
|
287 |
+
if found:
|
288 |
+
raise RuntimeError(
|
289 |
+
f"The forward formula for {defn_name} is using the base name of the {arg_name} "
|
290 |
+
f"argument which is ambiguous. You should use {arg_name}_p to access the primal "
|
291 |
+
f"value and {arg_name}_t to access the tangent."
|
292 |
+
)
|
293 |
+
|
294 |
+
found = re.search(IDENT_REGEX.format(arg_name + postfix), formula)
|
295 |
+
if found:
|
296 |
+
required_inputs.add(arg_name)
|
297 |
+
|
298 |
+
return tuple(required_inputs)
|
299 |
+
|
300 |
+
updated_derivatives: List[ForwardDerivative] = []
|
301 |
+
|
302 |
+
for defn in forward_derivatives:
|
303 |
+
formula = defn.formula
|
304 |
+
required_inputs_tangent = find_required_inputs(formula, "_t")
|
305 |
+
if formula == "auto_element_wise":
|
306 |
+
assert (
|
307 |
+
f.func.kind() != SchemaKind.inplace
|
308 |
+
), f"Cannot use auto_element_wise with {f.func.name} because it is an in-place variant"
|
309 |
+
if (
|
310 |
+
(not len(args_with_derivatives) == 1)
|
311 |
+
or len(forward_derivatives) > 1
|
312 |
+
or len(forward_derivatives[0].var_names) > 1
|
313 |
+
):
|
314 |
+
raise RuntimeError(
|
315 |
+
f"Derivative definition of {defn_name} in derivatives.yaml defines the "
|
316 |
+
"forward definition of gradient as element_wise but this only "
|
317 |
+
"works for functions with a single differentiable input and a "
|
318 |
+
"single differentiable output."
|
319 |
+
)
|
320 |
+
if not len(derivatives) == 1:
|
321 |
+
raise RuntimeError(
|
322 |
+
f"Derivative definition of {defn_name} in derivatives.yaml defines the "
|
323 |
+
"forward definition of gradient as element_wise but it does not "
|
324 |
+
"defines the gradient formula for its argument which is required."
|
325 |
+
)
|
326 |
+
# This transformation is based on the observation that for element-wise functions, the Jacobian
|
327 |
+
# matrix is diagonal and thus doing J * v is the same as (v^T J)^T (in practice, we ignore the transpositions)
|
328 |
+
# For the complex case, we use hermitian transpose and get (v.conj() J).conj()
|
329 |
+
# So here we are going to re-use the backward formula and replace two things:
|
330 |
+
# 1) all occurrences of "grad" with "foo_t.conj()", where foo is the name of the unique differentiable input.
|
331 |
+
# 2) all usage of an original input "foo" with its primal value "foo_p".
|
332 |
+
# 3) conjugate the final result
|
333 |
+
# For example, for abs, the backward formula is:
|
334 |
+
# grad * self.sgn()
|
335 |
+
# And this function generates a forward formula that is:
|
336 |
+
# (self_t.conj() * self_p.sgn()).conj()
|
337 |
+
|
338 |
+
backward_formula = derivatives[0].original_formula
|
339 |
+
input_name = args_with_derivatives[0].name
|
340 |
+
|
341 |
+
# Do replacement 1) of the grad
|
342 |
+
def repl(m: Any) -> str:
|
343 |
+
return f"{m.group(1)}{input_name}_t.conj(){m.group(2)}"
|
344 |
+
|
345 |
+
fw_formula = re.sub(IDENT_REGEX.format("grad"), repl, backward_formula)
|
346 |
+
|
347 |
+
# Do replacement 2) of the input variables
|
348 |
+
for arg in args_with_derivatives:
|
349 |
+
arg_name = arg.name
|
350 |
+
|
351 |
+
def repl(m: Any) -> str:
|
352 |
+
return f"{m.group(1)}{arg_name}_p{m.group(2)}"
|
353 |
+
|
354 |
+
fw_formula = re.sub(IDENT_REGEX.format(arg_name), repl, fw_formula)
|
355 |
+
|
356 |
+
# Do the final conjugate 3)
|
357 |
+
fw_formula = f"({fw_formula}).conj()"
|
358 |
+
|
359 |
+
# Since there is a single differentiable inputs and we necessarily need its tangent we can
|
360 |
+
# simply require all differentiable input's tangent.
|
361 |
+
required_inputs_tangent = tuple(all_arg_names)
|
362 |
+
formula = fw_formula
|
363 |
+
elif formula == "auto_linear":
|
364 |
+
if (
|
365 |
+
len(forward_derivatives) > 1
|
366 |
+
or len(forward_derivatives[0].var_names) > 1
|
367 |
+
):
|
368 |
+
raise RuntimeError(
|
369 |
+
f"Derivative definition of {defn_name} in derivatives.yaml defines the "
|
370 |
+
"forward definition of gradient as linear but this only works "
|
371 |
+
"for functions with a single differentiable output."
|
372 |
+
)
|
373 |
+
# This transformation is based on the observation that linear functions can be written as:
|
374 |
+
# y = f(x) = A * x
|
375 |
+
# For some matrix A and the Jacobian of the function f is also A.
|
376 |
+
# So doing J * v = A * v = f(v).
|
377 |
+
# Hence to do the jvp, we simply need to evaluate the function at the point v instead of x.
|
378 |
+
# We do this by calling the forward again by replacing any occurrence of the differentiable
|
379 |
+
# input "foo" by it's tangent "foo_t".
|
380 |
+
# Note that multiple inputs are not a problem as long as the function is truly linear wrt to
|
381 |
+
# the vector where all the differentiable inputs are stacked.
|
382 |
+
|
383 |
+
diff_arg_names = [arg.name for arg in args_with_derivatives]
|
384 |
+
assert len(diff_arg_names) > 0
|
385 |
+
|
386 |
+
# Do replacement of input variables
|
387 |
+
new_args = []
|
388 |
+
for arg_name in all_arg_names:
|
389 |
+
if arg_name in diff_arg_names:
|
390 |
+
arg_name = arg_name + "_t"
|
391 |
+
new_args.append(arg_name)
|
392 |
+
|
393 |
+
# TODO we are trolling
|
394 |
+
if f.func.has_symint():
|
395 |
+
defn_name += "_symint"
|
396 |
+
|
397 |
+
# Call into the forward again. We need two cases here to handle both Tensor methods and at:: functions.
|
398 |
+
if Variant.function in f.variants:
|
399 |
+
fw_formula = f"at::{defn_name}({', '.join(new_args)})"
|
400 |
+
else:
|
401 |
+
assert Variant.method in f.variants
|
402 |
+
fw_formula = f"{new_args[0]}.{defn_name}({', '.join(new_args[1:])})"
|
403 |
+
|
404 |
+
# All of the input tangents are always used so all of them are required here.
|
405 |
+
required_inputs_tangent = tuple(diff_arg_names)
|
406 |
+
formula = fw_formula
|
407 |
+
|
408 |
+
# At this point, the formula is final and is not modified anymore.
|
409 |
+
|
410 |
+
# During forward formula, we use the primal instead of the input Tensors.
|
411 |
+
# This call inspects the formula to find for which input's primal are used.
|
412 |
+
required_inputs_primal = find_required_inputs(formula, "_p")
|
413 |
+
|
414 |
+
updated_derivatives.append(
|
415 |
+
ForwardDerivative(
|
416 |
+
formula=formula,
|
417 |
+
var_names=defn.var_names,
|
418 |
+
var_types=defn.var_types,
|
419 |
+
required_inputs_fw_grad=required_inputs_tangent,
|
420 |
+
required_inputs_primal=required_inputs_primal,
|
421 |
+
required_original_self_value=False,
|
422 |
+
is_reusing_outplace_formula=False,
|
423 |
+
)
|
424 |
+
)
|
425 |
+
|
426 |
+
return updated_derivatives
|
427 |
+
|
428 |
+
|
429 |
+
def is_forward_derivative_definition(
|
430 |
+
all_arg_names: List[str], names: Tuple[str, ...]
|
431 |
+
) -> bool:
|
432 |
+
for name in names:
|
433 |
+
if name not in all_arg_names:
|
434 |
+
return True
|
435 |
+
else:
|
436 |
+
return False
|
437 |
+
raise RuntimeError("Expected `names` to be non-empty")
|
438 |
+
|
439 |
+
|
440 |
+
def create_differentiability_info(
|
441 |
+
defn_dict: Dict[Any, Any],
|
442 |
+
functions_by_signature: Dict[FunctionSchema, List[NativeFunction]],
|
443 |
+
functions_by_schema: Dict[str, NativeFunction],
|
444 |
+
op_counter: Counter[str],
|
445 |
+
used_dispatch_keys: Set[str],
|
446 |
+
) -> Tuple[FunctionSchema, Dict[str, DifferentiabilityInfo]]:
|
447 |
+
"""Processes a single entry `defn` in derivatives.yaml"""
|
448 |
+
|
449 |
+
def canonical_function(
|
450 |
+
functions: Sequence[NativeFunction], name: str
|
451 |
+
) -> NativeFunction:
|
452 |
+
for f in functions:
|
453 |
+
if (
|
454 |
+
not f.func.is_functional_fn()
|
455 |
+
and not f.func.is_out_fn()
|
456 |
+
and name == str(f.func.name.name)
|
457 |
+
):
|
458 |
+
return f
|
459 |
+
# some functions only have in-place variants
|
460 |
+
assert name + "_" == cpp.name(functions[0].func)
|
461 |
+
return functions[0]
|
462 |
+
|
463 |
+
def split_names(raw_names: str) -> Tuple[str, ...]:
|
464 |
+
"""Given "foo, bar", return ["foo", "bar"]."""
|
465 |
+
return tuple(x.strip() for x in raw_names.split(","))
|
466 |
+
|
467 |
+
def check_grad_usage(defn_name: str, derivatives: Sequence[Derivative]) -> None:
|
468 |
+
"""
|
469 |
+
Check for some subtle mistakes one might make when writing derivatives.
|
470 |
+
These mistakes will compile, but will be latent until a function is
|
471 |
+
used with double backwards.
|
472 |
+
"""
|
473 |
+
|
474 |
+
uses_grad = False # true if any derivative uses "grad"
|
475 |
+
num_grads_uses = 0 # count of uses of "grads" or "grads[INDEX]"
|
476 |
+
uses_named_grads = False # true if any derivative uses "grad_{name}"
|
477 |
+
used_grads_indices: List[int] = [] # which indices of grads are used
|
478 |
+
for d in derivatives:
|
479 |
+
formula = d.formula
|
480 |
+
uses_grad = uses_grad or bool(
|
481 |
+
re.findall(IDENT_REGEX.format("grad"), formula)
|
482 |
+
)
|
483 |
+
num_grads_uses += len(re.findall(IDENT_REGEX.format("grads"), formula))
|
484 |
+
uses_named_grads = uses_named_grads or bool(d.named_gradients)
|
485 |
+
used_grads_indices.extend(used_gradient_indices(formula))
|
486 |
+
# This is a basic sanity check: the number of places we see
|
487 |
+
# "grads" should be no fewer than the number of indices we see
|
488 |
+
# inside "grads". They may not be equal because we may use
|
489 |
+
# "grads" without an index.
|
490 |
+
assert num_grads_uses >= len(used_grads_indices)
|
491 |
+
# Thus if the number is equal, every use of grads is also
|
492 |
+
# indexed.
|
493 |
+
only_used_grads_indices = num_grads_uses == len(used_grads_indices)
|
494 |
+
|
495 |
+
if uses_grad and num_grads_uses > 0:
|
496 |
+
raise RuntimeError(
|
497 |
+
f"Derivative definition of {defn_name} in derivatives.yaml illegally "
|
498 |
+
"mixes use of 'grad' and 'grads'. Consider replacing "
|
499 |
+
"occurrences of 'grad' with 'grads[0]'"
|
500 |
+
)
|
501 |
+
|
502 |
+
if only_used_grads_indices and set(used_grads_indices) == {0}:
|
503 |
+
raise RuntimeError(
|
504 |
+
f"Derivative definition of {defn_name} in derivatives.yaml solely "
|
505 |
+
"refers to 'grads[0]'. If the first output is indeed the "
|
506 |
+
"only differentiable output, replace 'grads[0]' with 'grad'; "
|
507 |
+
"otherwise, there is a likely error in your derivatives "
|
508 |
+
"declaration."
|
509 |
+
)
|
510 |
+
|
511 |
+
if uses_named_grads and (uses_grad or num_grads_uses > 0):
|
512 |
+
raise RuntimeError(
|
513 |
+
f"Derivative definition of {defn_name} in derivatives.yaml illegally "
|
514 |
+
'mixes use of "grad_RETURN_NAME" and "grad" or "grads[x]". Use '
|
515 |
+
"only one method for identifying gradients."
|
516 |
+
)
|
517 |
+
|
518 |
+
@with_native_function
|
519 |
+
def set_up_derivatives(
|
520 |
+
f: NativeFunction,
|
521 |
+
) -> Tuple[
|
522 |
+
Sequence[Derivative],
|
523 |
+
Sequence[ForwardDerivative],
|
524 |
+
Sequence[Binding],
|
525 |
+
Sequence[str],
|
526 |
+
Sequence[str],
|
527 |
+
]:
|
528 |
+
# Set up the derivative information
|
529 |
+
derivatives: List[Derivative] = []
|
530 |
+
forward_derivatives: List[ForwardDerivative] = []
|
531 |
+
non_differentiable_arg_names: List[str] = []
|
532 |
+
args_with_derivatives_set: Set[str] = set()
|
533 |
+
|
534 |
+
all_arg_names = [a.name for a in cpp_arguments(f)]
|
535 |
+
all_ret_names = [
|
536 |
+
r.name for r in f.func.returns
|
537 |
+
] # only used for the assert below
|
538 |
+
# output_differentiability is captured from the enclosed
|
539 |
+
# scope. Don't modify it.
|
540 |
+
#
|
541 |
+
# If it is not present, then no output is explicitly
|
542 |
+
# undifferentiable.
|
543 |
+
#
|
544 |
+
# It may be present and shorter than the length of return
|
545 |
+
# values. If that's the case, any return value that does not
|
546 |
+
# have a corresponding entry is considered not differentiable.
|
547 |
+
differentiability = output_differentiability or [True] * len(f.func.returns)
|
548 |
+
# A return is available as a named gradient ...
|
549 |
+
available_named_gradients = [
|
550 |
+
f"grad_{ret.name}"
|
551 |
+
for ret, differentiable in zip(f.func.returns, differentiability)
|
552 |
+
# if it has not been explicitly made undifferentiable
|
553 |
+
if differentiable
|
554 |
+
# and if it has a name
|
555 |
+
and ret.name is not None
|
556 |
+
# and if its type is differentiable
|
557 |
+
and ret.type.is_tensor_like()
|
558 |
+
]
|
559 |
+
|
560 |
+
for raw_names in sorted(defn.keys()):
|
561 |
+
formula = defn[raw_names]
|
562 |
+
names = split_names(raw_names)
|
563 |
+
|
564 |
+
for name in names:
|
565 |
+
assert not (name in all_arg_names and name in all_ret_names), (
|
566 |
+
f"While processing the derivative formula for '{f.func.name}' wrt '{name}', "
|
567 |
+
f"expected '{name}' to not be both an input arg and named return. "
|
568 |
+
)
|
569 |
+
|
570 |
+
if is_forward_derivative_definition(all_arg_names, names):
|
571 |
+
forward_derivatives.append(create_forward_derivative(f, formula, names))
|
572 |
+
else:
|
573 |
+
if formula.lower().strip() == "non_differentiable":
|
574 |
+
non_differentiable_arg_names += names
|
575 |
+
else:
|
576 |
+
derivative = create_derivative(
|
577 |
+
f, formula, names, available_named_gradients
|
578 |
+
)
|
579 |
+
derivatives.append(derivative)
|
580 |
+
args_with_derivatives_set |= set(names)
|
581 |
+
|
582 |
+
overlap = args_with_derivatives_set.intersection(non_differentiable_arg_names)
|
583 |
+
if overlap:
|
584 |
+
raise RuntimeError(
|
585 |
+
f"derivatives definition for {defn} have overlapped non_differentiable "
|
586 |
+
f"and differentiable variables: {overlap}"
|
587 |
+
)
|
588 |
+
|
589 |
+
# Next, let us determine the list of inputs in order.
|
590 |
+
# TODO: do we need eagerly calculate and save it here? Can it be derived
|
591 |
+
# from NativeFunction and `derivatives` on callsites instead?
|
592 |
+
args_with_derivatives = [
|
593 |
+
a for a in cpp_arguments(f) if a.name in args_with_derivatives_set
|
594 |
+
]
|
595 |
+
|
596 |
+
# Postprocess forward derivatives definitions now that we know the differentiable arguments
|
597 |
+
forward_derivatives = postprocess_forward_derivatives(
|
598 |
+
f,
|
599 |
+
defn_name,
|
600 |
+
all_arg_names,
|
601 |
+
derivatives,
|
602 |
+
forward_derivatives,
|
603 |
+
args_with_derivatives,
|
604 |
+
)
|
605 |
+
|
606 |
+
# Test to see if the use of 'grads' makes sense.
|
607 |
+
check_grad_usage(defn_name, derivatives)
|
608 |
+
|
609 |
+
return (
|
610 |
+
derivatives,
|
611 |
+
forward_derivatives,
|
612 |
+
args_with_derivatives,
|
613 |
+
non_differentiable_arg_names,
|
614 |
+
available_named_gradients,
|
615 |
+
)
|
616 |
+
|
617 |
+
# NB: Removes 'name' from defn dictionary
|
618 |
+
specification = defn_dict.pop("name")
|
619 |
+
defn_name, _ = split_name_params(specification)
|
620 |
+
# NB: Removes 'output_differentiability' from defn dictionary
|
621 |
+
# `None` means all differentiable.
|
622 |
+
output_differentiability = defn_dict.pop("output_differentiability", None)
|
623 |
+
output_differentiability_conditions = None
|
624 |
+
if output_differentiability and any(
|
625 |
+
isinstance(diff, str) for diff in output_differentiability
|
626 |
+
):
|
627 |
+
if len(output_differentiability) != 1:
|
628 |
+
raise RuntimeError(
|
629 |
+
f"Not supported: for {specification},"
|
630 |
+
f"output_differentiability must either be "
|
631 |
+
f"List[bool] or a List[str] where each str is a "
|
632 |
+
f"condition. In the case where it is a condition, "
|
633 |
+
f"we only support single-output functions. "
|
634 |
+
f"Please file us an issue. "
|
635 |
+
)
|
636 |
+
output_differentiability_conditions = output_differentiability
|
637 |
+
output_differentiability = [True]
|
638 |
+
|
639 |
+
schema_function = functions_by_schema.get(specification)
|
640 |
+
if not schema_function:
|
641 |
+
avail = "\n".join(
|
642 |
+
k for k, v in functions_by_schema.items() if cpp.name(v.func) == defn_name
|
643 |
+
)
|
644 |
+
raise RuntimeError(
|
645 |
+
f"could not find ATen function for schema: {specification} "
|
646 |
+
f". Available signatures:\n{avail}"
|
647 |
+
)
|
648 |
+
|
649 |
+
# now map this to the legacy schema; this isn't technically necessary, but we'd need some logic here
|
650 |
+
# to map in-place schemas to the out-of-place variants.
|
651 |
+
# TODO: maybe the logic to handle the legacy schema is no longer necessary?
|
652 |
+
signature = schema_function.func.signature()
|
653 |
+
functions = functions_by_signature[signature]
|
654 |
+
if len(functions) == 0:
|
655 |
+
avail = "\n".join(
|
656 |
+
str(k)
|
657 |
+
for k, v in functions_by_signature.items()
|
658 |
+
if cpp.name(k) == defn_name
|
659 |
+
)
|
660 |
+
raise RuntimeError(
|
661 |
+
f"could not find ATen function for legacy signature: {signature} "
|
662 |
+
f"corresponding to schema {specification}. Please report a bug to PyTorch. "
|
663 |
+
f"Available signatures:\n{avail}"
|
664 |
+
)
|
665 |
+
|
666 |
+
canonical = canonical_function(functions, defn_name)
|
667 |
+
if "grad_input_mask" in (a.name for a in cpp_arguments(canonical)):
|
668 |
+
raise RuntimeError(
|
669 |
+
f"Schema for {defn_name} has an argument named grad_input_mask, "
|
670 |
+
"but this name would be shadowed by our codegen. "
|
671 |
+
"Please use a different name in native_functions.yaml."
|
672 |
+
)
|
673 |
+
|
674 |
+
if "result" in (a.name for a in cpp_arguments(canonical)):
|
675 |
+
raise RuntimeError(
|
676 |
+
f"Schema for {defn_name} has an argument named result, "
|
677 |
+
"but this is only allowed for outputs."
|
678 |
+
"Please use a different name in native_functions.yaml."
|
679 |
+
)
|
680 |
+
|
681 |
+
diffinfo_dict = {}
|
682 |
+
for key, defn in defn_dict["dispatch"].items():
|
683 |
+
if key != "Default" and key not in _VALID_AUTOGRAD_KEYS:
|
684 |
+
raise RuntimeError(
|
685 |
+
f"Invalid dispatch key {key} in derivatives.yaml for {specification},"
|
686 |
+
f" expected key to be one of {_VALID_AUTOGRAD_KEYS}"
|
687 |
+
)
|
688 |
+
if key not in used_dispatch_keys:
|
689 |
+
used_dispatch_keys.add(key)
|
690 |
+
|
691 |
+
(
|
692 |
+
derivatives,
|
693 |
+
forward_derivatives,
|
694 |
+
args_with_derivatives,
|
695 |
+
non_differentiable_arg_names,
|
696 |
+
available_named_gradients,
|
697 |
+
) = set_up_derivatives(canonical)
|
698 |
+
|
699 |
+
used_named_gradients: Set[str] = set()
|
700 |
+
for d in derivatives:
|
701 |
+
used_named_gradients |= d.named_gradients
|
702 |
+
|
703 |
+
# only assign an op name if we are actually going to calculate a derivative
|
704 |
+
op = None
|
705 |
+
if args_with_derivatives:
|
706 |
+
op_prefix = _create_op_prefix(defn_name)
|
707 |
+
if key != "Default":
|
708 |
+
op_prefix = op_prefix + key
|
709 |
+
op = f"{op_prefix}{op_counter[op_prefix]}"
|
710 |
+
op_counter[op_prefix] += 1
|
711 |
+
|
712 |
+
diffinfo_dict[key] = DifferentiabilityInfo(
|
713 |
+
name=defn_name,
|
714 |
+
func=canonical,
|
715 |
+
op=op,
|
716 |
+
derivatives=derivatives,
|
717 |
+
forward_derivatives=forward_derivatives,
|
718 |
+
all_saved_inputs=dedup_vars(
|
719 |
+
[v for d in derivatives for v in d.saved_inputs]
|
720 |
+
),
|
721 |
+
all_saved_outputs=dedup_vars(
|
722 |
+
[v for d in derivatives for v in d.saved_outputs]
|
723 |
+
),
|
724 |
+
available_named_gradients=available_named_gradients,
|
725 |
+
used_named_gradients=used_named_gradients,
|
726 |
+
args_with_derivatives=args_with_derivatives,
|
727 |
+
non_differentiable_arg_names=non_differentiable_arg_names,
|
728 |
+
output_differentiability=output_differentiability,
|
729 |
+
output_differentiability_conditions=output_differentiability_conditions,
|
730 |
+
)
|
731 |
+
|
732 |
+
return canonical.func, diffinfo_dict
|
733 |
+
|
734 |
+
|
735 |
+
GRAD_INDEX_REGEX = r"(?:^|\W)grads\[(\d+)\]"
|
736 |
+
|
737 |
+
|
738 |
+
def used_gradient_indices(formula: str) -> List[int]:
|
739 |
+
"""Determine a list of gradient indices (the i in grads[i]) that
|
740 |
+
are used by the formula.
|
741 |
+
|
742 |
+
>>> used_gradient_indices("foo(grads[0], grads[1])")
|
743 |
+
[0, 1]
|
744 |
+
"""
|
745 |
+
return [int(i) for i in re.findall(GRAD_INDEX_REGEX, formula)]
|
746 |
+
|
747 |
+
|
748 |
+
def saved_variables(
|
749 |
+
formula: str,
|
750 |
+
nctypes: List[NamedCType],
|
751 |
+
var_names: Tuple[str, ...],
|
752 |
+
) -> Tuple[str, Tuple[SavedAttribute, ...]]:
|
753 |
+
def stride_expr(name: str) -> str:
|
754 |
+
assert var_names == (name,), (
|
755 |
+
'Replacement for ".strides()" is currently only supported for single derivatives of the same tensor '
|
756 |
+
'that ".strides()" is being called on.'
|
757 |
+
)
|
758 |
+
return f'strides_or_error({name}, "{name}")'
|
759 |
+
|
760 |
+
REPLACEMENTS: List[Tuple[str, Dict[str, Any]]] = [
|
761 |
+
# replace self.sym_sizes() with self_sym_sizes
|
762 |
+
(
|
763 |
+
r"{}.sym_sizes\(\)",
|
764 |
+
{
|
765 |
+
"suffix": "_sym_sizes",
|
766 |
+
"nctype": lambda name: NamedCType(name, BaseCType(symIntArrayRefT)),
|
767 |
+
},
|
768 |
+
),
|
769 |
+
# replace self->sym_sizes() with self_sym_sizes_opt
|
770 |
+
(
|
771 |
+
r"{}->sym_sizes\(\)",
|
772 |
+
{
|
773 |
+
"suffix": "_sym_sizes_opt",
|
774 |
+
"nctype": lambda name: NamedCType(
|
775 |
+
name, OptionalCType(BaseCType(symIntArrayRefT))
|
776 |
+
),
|
777 |
+
"expr": lambda name: f"{name}.has_value() ? c10::optional<c10::SymIntArrayRef>({name}->sym_sizes()) : c10::nullopt",
|
778 |
+
},
|
779 |
+
),
|
780 |
+
# replace self.sym_blocksize() with self_sym_blocksize_opt
|
781 |
+
(
|
782 |
+
r"{}.sym_blocksize\(\)",
|
783 |
+
{
|
784 |
+
"suffix": "_self_sym_blocksize_opt",
|
785 |
+
"nctype": lambda name: NamedCType(
|
786 |
+
name, OptionalCType(BaseCType(symIntArrayRefT))
|
787 |
+
),
|
788 |
+
"expr": lambda name: f"at::sparse_csr::getSymIntBlockSize({name})",
|
789 |
+
},
|
790 |
+
),
|
791 |
+
# replace self.options() with self_options
|
792 |
+
(
|
793 |
+
r"{}.options\(\)",
|
794 |
+
{
|
795 |
+
"suffix": "_options",
|
796 |
+
"nctype": lambda name: NamedCType(name, BaseCType(tensorOptionsT)),
|
797 |
+
},
|
798 |
+
),
|
799 |
+
# replace zeros_like(self) with self_info
|
800 |
+
(
|
801 |
+
r"zeros_like\({}\)",
|
802 |
+
{
|
803 |
+
"suffix": "_info",
|
804 |
+
"nctype": lambda name: NamedCType(name, BaseCType(typeAndSizeT)),
|
805 |
+
"expr": lambda name: name, # at save-time
|
806 |
+
"res": lambda name: name + "_info.zeros()", # at eval-time
|
807 |
+
},
|
808 |
+
),
|
809 |
+
# replace self.sym_size(2) with self_sym_size_2
|
810 |
+
(
|
811 |
+
r"{}.sym_size\((-?\w+)\)",
|
812 |
+
{
|
813 |
+
"suffix": lambda m: f"_sym_argsize_{m.groups()[0].replace('-', 'minus_')}",
|
814 |
+
"nctype": lambda name: NamedCType(name, BaseCType(SymIntT)),
|
815 |
+
},
|
816 |
+
),
|
817 |
+
# replace self.numel() with self_numel
|
818 |
+
(
|
819 |
+
r"{}.numel\(\)",
|
820 |
+
{
|
821 |
+
"suffix": "_numel",
|
822 |
+
"nctype": lambda name: NamedCType(name, BaseCType(longT)),
|
823 |
+
},
|
824 |
+
),
|
825 |
+
# replace self.sym_numel() with self_sym_numel
|
826 |
+
(
|
827 |
+
r"{}.sym_numel\(\)",
|
828 |
+
{
|
829 |
+
"suffix": "_sym_numel",
|
830 |
+
"nctype": lambda name: NamedCType(name, BaseCType(SymIntT)),
|
831 |
+
},
|
832 |
+
),
|
833 |
+
# replace to_args_sizes(self) with self_args_sizes
|
834 |
+
(
|
835 |
+
r"to_args_sizes\({}\)",
|
836 |
+
{
|
837 |
+
"suffix": "_args_sizes",
|
838 |
+
"nctype": lambda name: NamedCType(
|
839 |
+
name, VectorCType(VectorCType(BaseCType(longT)))
|
840 |
+
),
|
841 |
+
},
|
842 |
+
),
|
843 |
+
# replace to_args_sizes_symint(self) with self_args_sizes
|
844 |
+
(
|
845 |
+
r"to_args_sizes_symint\({}\)",
|
846 |
+
{
|
847 |
+
"suffix": "_args_sizes_symint",
|
848 |
+
"nctype": lambda name: NamedCType(
|
849 |
+
name, VectorCType(VectorCType(BaseCType(SymIntT)))
|
850 |
+
),
|
851 |
+
},
|
852 |
+
),
|
853 |
+
# replace to_args_scalartypes(self) with self_args_scalartypes
|
854 |
+
(
|
855 |
+
r"to_args_scalartypes\({}\)",
|
856 |
+
{
|
857 |
+
"suffix": "_args_scalartypes",
|
858 |
+
"nctype": lambda name: NamedCType(
|
859 |
+
name, VectorCType(BaseCType(scalarTypeT))
|
860 |
+
),
|
861 |
+
},
|
862 |
+
),
|
863 |
+
# replace TensorGeometry(self) with self_geometry
|
864 |
+
(
|
865 |
+
r"TensorGeometry\({}\)",
|
866 |
+
{
|
867 |
+
"suffix": "_geometry",
|
868 |
+
"nctype": lambda name: NamedCType(name, BaseCType(tensorGeometryT)),
|
869 |
+
},
|
870 |
+
),
|
871 |
+
(
|
872 |
+
r"{}.scalar_type\(\)",
|
873 |
+
{
|
874 |
+
"suffix": "_scalar_type",
|
875 |
+
"nctype": lambda name: NamedCType(name, BaseCType(scalarTypeT)),
|
876 |
+
},
|
877 |
+
),
|
878 |
+
# replace self.dim() with self_dim
|
879 |
+
(
|
880 |
+
r"{}.dim\(\)",
|
881 |
+
{
|
882 |
+
"suffix": "_dim",
|
883 |
+
"nctype": lambda name: NamedCType(name, BaseCType(longT)),
|
884 |
+
},
|
885 |
+
),
|
886 |
+
# replace self.sym_strides() with self_sym_strides
|
887 |
+
(
|
888 |
+
r"{}.sym_strides\(\)",
|
889 |
+
{
|
890 |
+
"suffix": "_sym_strides",
|
891 |
+
"nctype": lambda name: NamedCType(name, BaseCType(symIntArrayRefT)),
|
892 |
+
"expr": stride_expr,
|
893 |
+
},
|
894 |
+
),
|
895 |
+
# replace self.layout() with self_layout
|
896 |
+
(
|
897 |
+
r"{}.layout\(\)",
|
898 |
+
{
|
899 |
+
"suffix": "_layout",
|
900 |
+
"nctype": lambda name: NamedCType(name, BaseCType(layoutT)),
|
901 |
+
},
|
902 |
+
),
|
903 |
+
# replace self.is_conj() with self_conjugate
|
904 |
+
(
|
905 |
+
r"{}.is_conj\(\)",
|
906 |
+
{
|
907 |
+
"suffix": "_conjugate",
|
908 |
+
"nctype": lambda name: NamedCType(name, BaseCType(boolT)),
|
909 |
+
},
|
910 |
+
),
|
911 |
+
]
|
912 |
+
|
913 |
+
# find which arguments need to be saved
|
914 |
+
saved: List[SavedAttribute] = []
|
915 |
+
|
916 |
+
if ".sizes()" in formula or "->sizes()" in formula:
|
917 |
+
raise RuntimeError(
|
918 |
+
".sizes() is not supported in derivative formulas. Instead, please use the SymInt version,"
|
919 |
+
+ f".sym_sizes(), which returned a c10::SymIntArrayRef. formula={formula}"
|
920 |
+
)
|
921 |
+
if re.search(r"\.size\([-]?\d+\)", formula) or re.search(
|
922 |
+
r"->size\([-]?\d+\)", formula
|
923 |
+
):
|
924 |
+
raise RuntimeError(
|
925 |
+
".size(int) is not supported in derivative formulas. Instead, please use the SymInt version,"
|
926 |
+
+ f".sym_size(int), which returned a c10::SymIntArrayRef. formula={formula}"
|
927 |
+
)
|
928 |
+
if ".strides()" in formula or "->strides()" in formula:
|
929 |
+
raise RuntimeError(
|
930 |
+
".strides() is not supported in derivative formulas. Instead, please use the SymInt version,"
|
931 |
+
+ f".sym_strides(), which returned a c10::SymIntArrayRef. formula={formula}"
|
932 |
+
)
|
933 |
+
for nctype in nctypes:
|
934 |
+
name = (
|
935 |
+
nctype.name.name if isinstance(nctype.name, SpecialArgName) else nctype.name
|
936 |
+
)
|
937 |
+
# First search the formula for expressions which can be evaluated
|
938 |
+
# when the autograd Function is created to avoid saving variables
|
939 |
+
for regex, info in REPLACEMENTS:
|
940 |
+
|
941 |
+
def repl(m: Match[str]) -> str:
|
942 |
+
suffix: str = (
|
943 |
+
info["suffix"](m) if callable(info["suffix"]) else info["suffix"]
|
944 |
+
)
|
945 |
+
expr: str = info["expr"](name) if "expr" in info else m.group(0)
|
946 |
+
saved.append(
|
947 |
+
SavedAttribute(
|
948 |
+
nctype=info["nctype"](name + suffix),
|
949 |
+
expr=expr,
|
950 |
+
)
|
951 |
+
)
|
952 |
+
if "res" in info:
|
953 |
+
replacement: str = info["res"](name)
|
954 |
+
return replacement
|
955 |
+
return name + suffix
|
956 |
+
|
957 |
+
formula = re.sub(regex.format(name), repl, formula)
|
958 |
+
|
959 |
+
# c10::optional<std::string> types stored in Backward nodes must be
|
960 |
+
# converted to c10::optional<c10::string_view> before being passed into
|
961 |
+
# the backward function
|
962 |
+
if nctype.type == OptionalCType(BaseCType(stringT)):
|
963 |
+
formula = re.sub(
|
964 |
+
rf"\b{name}\b",
|
965 |
+
f"{name}.has_value() ? c10::optional<c10::string_view>({name}.value()) : c10::nullopt",
|
966 |
+
formula,
|
967 |
+
)
|
968 |
+
|
969 |
+
# Find any variables which remain in the formula and save them
|
970 |
+
if re.search(IDENT_REGEX.format(name), formula):
|
971 |
+
saved.append(
|
972 |
+
SavedAttribute(
|
973 |
+
nctype=nctype,
|
974 |
+
expr=name,
|
975 |
+
)
|
976 |
+
)
|
977 |
+
|
978 |
+
return formula, tuple(saved)
|
979 |
+
|
980 |
+
|
981 |
+
def _create_op_prefix(name: str) -> str:
|
982 |
+
"""Takes a native function name converts to a op prefix name.
|
983 |
+
|
984 |
+
Note that the "name" parameter must be the native function name
|
985 |
+
without the optional variant suffix, so "add" instead of
|
986 |
+
"add.out".
|
987 |
+
|
988 |
+
OP names correspond to classes, hence the change to title case.
|
989 |
+
|
990 |
+
Example::
|
991 |
+
>>> _create_op_prefix('add')
|
992 |
+
'AddBackward'
|
993 |
+
"""
|
994 |
+
camel_case = "".join([p.title() for p in name.split("_")])
|
995 |
+
return (camel_case + "Backward").replace("ForwardBackward", "Backward")
|
996 |
+
|
997 |
+
|
998 |
+
def dedup_vars(vars: Sequence[SavedAttribute]) -> Sequence[SavedAttribute]:
|
999 |
+
seen: Set[str] = set()
|
1000 |
+
saved: List[SavedAttribute] = []
|
1001 |
+
for var in vars:
|
1002 |
+
name = (
|
1003 |
+
var.nctype.name.name
|
1004 |
+
if isinstance(var.nctype.name, SpecialArgName)
|
1005 |
+
else var.nctype.name
|
1006 |
+
)
|
1007 |
+
if name in seen:
|
1008 |
+
continue
|
1009 |
+
seen.add(name)
|
1010 |
+
saved.append(var)
|
1011 |
+
return saved
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/ADInplaceOrViewType.cpp
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
2 |
+
#include "torch/csrc/autograd/VariableTypeUtils.h"
|
3 |
+
|
4 |
+
#include <torch/library.h>
|
5 |
+
|
6 |
+
// ${generated_comment}
|
7 |
+
|
8 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
9 |
+
#include <ATen/Operators.h>
|
10 |
+
#else
|
11 |
+
$ops_headers
|
12 |
+
#endif
|
13 |
+
|
14 |
+
using namespace at;
|
15 |
+
using torch::autograd::CreationMeta;
|
16 |
+
using torch::autograd::as_view;
|
17 |
+
using torch::autograd::increment_version;
|
18 |
+
|
19 |
+
namespace torch {
|
20 |
+
|
21 |
+
namespace ADInplaceOrView {
|
22 |
+
|
23 |
+
namespace {
|
24 |
+
${inplace_or_view_method_definitions}
|
25 |
+
} // namespace
|
26 |
+
} // namespace ADInplaceOrView
|
27 |
+
|
28 |
+
namespace {
|
29 |
+
|
30 |
+
TORCH_LIBRARY_IMPL(aten, ADInplaceOrView, m) {
|
31 |
+
${inplace_or_view_wrapper_registrations};
|
32 |
+
}
|
33 |
+
|
34 |
+
} // namespace
|
35 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/Functions.cpp
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "torch/csrc/autograd/FunctionsManual.h"
|
2 |
+
#include "torch/csrc/dynamo/compiled_autograd.h"
|
3 |
+
|
4 |
+
// ${generated_comment}
|
5 |
+
|
6 |
+
// The manual function definitions that used to be here are now in torch/csrc/autograd/FunctionsManual.cpp
|
7 |
+
// This speeds up re-compilation and allow to share these implementations so that they can be
|
8 |
+
// used for forward mode AD formulas as well.
|
9 |
+
|
10 |
+
using namespace torch::autograd::generated::details;
|
11 |
+
using at::Tensor;
|
12 |
+
using at::Scalar;
|
13 |
+
using at::IntArrayRef;
|
14 |
+
using at::TensorList;
|
15 |
+
|
16 |
+
namespace torch::autograd::generated {
|
17 |
+
|
18 |
+
${autograd_function_definitions}
|
19 |
+
|
20 |
+
} // namespace torch::autograd::generated
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/Functions.h
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// ${generated_comment}
|
4 |
+
|
5 |
+
#include <ATen/ATen.h>
|
6 |
+
#include <ATen/core/functional.h>
|
7 |
+
#include <ATen/TensorGeometry.h>
|
8 |
+
|
9 |
+
#include "torch/csrc/autograd/function.h"
|
10 |
+
#include "torch/csrc/autograd/variable.h"
|
11 |
+
#include "torch/csrc/autograd/saved_variable.h"
|
12 |
+
#include <torch/csrc/Export.h>
|
13 |
+
|
14 |
+
#include <c10/core/SymIntArrayRef.h>
|
15 |
+
|
16 |
+
namespace torch { namespace autograd { namespace generated {
|
17 |
+
|
18 |
+
using at::Scalar;
|
19 |
+
using at::Tensor;
|
20 |
+
using at::IntArrayRef;
|
21 |
+
using at::ArrayRef;
|
22 |
+
using at::Type;
|
23 |
+
using at::TensorGeometry;
|
24 |
+
using at::ScalarType;
|
25 |
+
using c10::optional;
|
26 |
+
using c10::fmap;
|
27 |
+
|
28 |
+
inline std::vector<Tensor> unpack_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) {
|
29 |
+
// NB: we must explicitly do the conversion in the lambda, otherwise template
|
30 |
+
// deduction will give a Tensor of Variable which is not convertible
|
31 |
+
return fmap(xs, [&saved_for](const SavedVariable& x) {
|
32 |
+
// TODO(crcrpar): Use `std::move(saved_for)` to avoid incrementing refcount, which would need refactoring.
|
33 |
+
return static_cast<Tensor>(x.unpack(saved_for));
|
34 |
+
});
|
35 |
+
}
|
36 |
+
|
37 |
+
inline c10::List<c10::optional<Tensor>> unpack_opt_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) {
|
38 |
+
torch::List<c10::optional<Tensor>> result;
|
39 |
+
result.reserve(xs.size());
|
40 |
+
for (const SavedVariable& v : xs) {
|
41 |
+
auto var = v.unpack(saved_for);
|
42 |
+
result.push_back(var.defined() ? c10::optional<Tensor>(var) : c10::nullopt);
|
43 |
+
}
|
44 |
+
return result;
|
45 |
+
}
|
46 |
+
|
47 |
+
using torch::autograd::TypeAndSize;
|
48 |
+
|
49 |
+
${autograd_function_declarations}
|
50 |
+
|
51 |
+
}}} // namespace torch::autograd::generated
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/TraceType.cpp
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
2 |
+
#include "torch/csrc/jit/frontend/tracer.h"
|
3 |
+
|
4 |
+
#include <torch/library.h>
|
5 |
+
|
6 |
+
#include "torch/csrc/autograd/function.h"
|
7 |
+
|
8 |
+
#include "ATen/quantized/Quantizer.h"
|
9 |
+
|
10 |
+
// ${generated_comment}
|
11 |
+
|
12 |
+
// See the `Tracer` section in `torch/csrc/jit/OVERVIEW.md`.
|
13 |
+
// NOTE See [Sharded File] comment in VariableType
|
14 |
+
|
15 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
16 |
+
#include <ATen/Operators.h>
|
17 |
+
#else
|
18 |
+
$ops_headers
|
19 |
+
#endif
|
20 |
+
|
21 |
+
using namespace at;
|
22 |
+
|
23 |
+
namespace torch {
|
24 |
+
|
25 |
+
namespace TraceType {
|
26 |
+
|
27 |
+
namespace {
|
28 |
+
${trace_method_definitions}
|
29 |
+
} // namespace
|
30 |
+
} // namespace TraceType
|
31 |
+
|
32 |
+
namespace {
|
33 |
+
|
34 |
+
TORCH_LIBRARY_IMPL(aten, Tracer, m) {
|
35 |
+
${trace_wrapper_registrations};
|
36 |
+
}
|
37 |
+
|
38 |
+
} // namespace
|
39 |
+
|
40 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torchgen/packaged/autograd/templates/VariableType.cpp
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "torch/csrc/autograd/VariableTypeUtils.h"
|
2 |
+
#include "torch/csrc/autograd/generated/VariableType.h"
|
3 |
+
#include "torch/csrc/autograd/FunctionsManual.h"
|
4 |
+
|
5 |
+
#include <ATen/RedispatchFunctions.h>
|
6 |
+
#include <c10/core/impl/TorchDispatchModeTLS.h>
|
7 |
+
#include <ATen/core/TorchDispatchUtils.h>
|
8 |
+
#include <torch/library.h>
|
9 |
+
|
10 |
+
#include <ATen/SparseCsrTensorUtils.h>
|
11 |
+
|
12 |
+
|
13 |
+
// ${generated_comment}
|
14 |
+
|
15 |
+
// NOTE [Sharded File]: on this file's split-into-shards state
|
16 |
+
//
|
17 |
+
// Back in the good old days, VariableType.cpp was generated as one
|
18 |
+
// file with every function in it, and everything was great and
|
19 |
+
// simple.
|
20 |
+
//
|
21 |
+
// However, this file was also very large (over 36,000 lines), and
|
22 |
+
// compiling it was very slow, and in fact was a significant
|
23 |
+
// bottleneck for incremental rebuilds. To address this, we now
|
24 |
+
// generate the file split across multiple shards, named
|
25 |
+
// VariableType_0.cpp and so on, which can be compiled in parallel.
|
26 |
+
//
|
27 |
+
// For ease of inspection and debugging, so that it's not necessary to
|
28 |
+
// go rooting around in multiple files, we also generate all the
|
29 |
+
// functions together in VariableTypeEverything.cpp. This generated
|
30 |
+
// file is only for convenience; it's not actually used in the
|
31 |
+
// build. If the file you're looking at now is one of the shards, you
|
32 |
+
// may want to switch over to the Everything variant to make you
|
33 |
+
// grepping smoother.
|
34 |
+
|
35 |
+
using namespace at;
|
36 |
+
using namespace torch::autograd::generated;
|
37 |
+
using namespace torch::autograd::generated::details;
|
38 |
+
|
39 |
+
|
40 |
+
namespace torch::autograd {
|
41 |
+
|
42 |
+
namespace VariableType {
|
43 |
+
namespace{
|
44 |
+
C10_UNUSED void reset_grad_accumulator(Variable & self) {
|
45 |
+
AutogradMeta* meta = torch::autograd::impl::get_autograd_meta(self);
|
46 |
+
if (meta != nullptr) {
|
47 |
+
meta->grad_accumulator_.reset();
|
48 |
+
}
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
namespace {
|
53 |
+
|
54 |
+
|
55 |
+
${type_derived_method_definitions}
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
namespace {
|
60 |
+
|
61 |
+
${wrapper_registrations}
|
62 |
+
|
63 |
+
}
|
64 |
+
|
65 |
+
} // namespace torch::autograd
|