File size: 9,460 Bytes
71a0112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from typing import List, Tuple

from torchgen.api import cpp
from torchgen.api.types import Binding, CppSignatureGroup, CType
from torchgen.model import (
    Argument,
    BaseTy,
    BaseType,
    ListType,
    NativeFunction,
    OptionalType,
    Type,
)

# This file generates the code for unboxing wrappers, i.e., the glue logic to unbox a boxed operator and convert the
# ivalues from stack to correct arguments to the unboxed kernel, based on corresponding JIT schema. This codegen is
# an alternative way to generate unboxing wrappers similar to the existing C++ metaprogramming approach but gets the
# job done statically. These generated unboxing wrappers will be useful under the scenario where we need to register
# a fixed set of operators known at compile time and thus can save some time in runtime initialization phase.
#
# Here's an example on how the codegen works:
#
# - Function Schema (source of truth)
#
#      aten::empty.names(int[] size, *, Dimname[]? names,
#                        ScalarType? dtype=None, Layout? layout=None,
#                        Device? device=None, bool? pin_memory=None,
#                        MemoryFormat? memory_format=None) -> Tensor
# - Argument Conversion
#       Generates C++ code to convert an ivalue (from stack) to its underlying C++ type.
#    - int[] size
#        ```cpp
#           const c10::List<c10::IValue> size_list_in = (std::move(peek(stack, 0, 7))).toList();
#
#           std::vector<int64_t> size_vec;
#           for (c10::IValue size_elem: size_list_in) {
#               int64_t size_base = size_elem.to<int64_t>();
#               size_vec.push_back(size_base);
#           }
#           at::ArrayRef<int64_t> size_list_out(size_vec);
#                                 ~~~~~~~~~~~~~ <-- The converted argument from ivalues in the stack.
#                                                   Will be passed to unboxed kernel.
#       ```
#    - Dimname[]? names
#       ```cpp
#           c10::optional<c10::IValue> names_opt = (std::move(peek(stack, 1, 7))).toOptional<c10::IValue>();
#           c10::optional<at::ArrayRef<at::Dimname>> names_opt_out;
#           if (names_opt.has_value()) {
#                         ~~~~~~~~~~~ <-- Unwrapping optional shell
#               const c10::IValue names_opt_in = names_opt.value();
#               const c10::List<c10::IValue> names_list_in = names_opt_in.toList();
#
#               std::vector<at::Dimname> names_vec;
#               for (c10::IValue names_elem: names_list_in) {
#                                ~~~~~~~~~~~~~~~~~~~~~~~~~ <-- Unrolling list, then convert elements one by one.
#                   at::Dimname names_base = names_elem.to<at::Dimname>();
#                   names_vec.push_back(names_base);
#               }
#               at::ArrayRef<at::Dimname> names_list_out(names_vec);
#
#               names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>(names_list_out);
#           } else {
#               names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>();
#           }
#       ```
#    - ScalarType? dtype (similarly for the rest of the arguments)
#       ```cpp
#           c10::optional<c10::IValue> dtype_opt = (std::move(peek(stack, 2, 7))).toOptional<c10::IValue>();
#           c10::optional<at::ScalarType> dtype_opt_out;
#           if (dtype_opt.has_value()) {
#               const c10::IValue dtype_opt_in = dtype_opt.value();
#               at::ScalarType dtype_base = dtype_opt_in.to<at::ScalarType>();
#                                                        ~~~~~~~~~~~~~~~~~~~~ <-- For base types, convert ivalue to it
#                                                                                 directly using ".to<T>()" API.
#               dtype_opt_out = c10::optional<at::ScalarType>(dtype_base);
#           } else {
#               dtype_opt_out = c10::optional<at::ScalarType>();
#           }
#       ```
#
# - Unboxed Kernel Call
#   ```cpp
#       auto result_ = torch::empty(
#           size_list_out,
#           names_opt_out,
#           options,
#           memory_format_opt_out
#       );
#   ```
#
# - Push Result Back to Stack
#   ```cpp
#       drop(stack, 7);
#       pack(stack, std::move(result_));
#   ```
connector = "\n\t"


# Return unboxing function name for a NativeFunction
def name(f: NativeFunction) -> str:
    return f.func.name.unambiguous_name()


# Convert all the arguments in a NativeFunction to C++ code
def convert_arguments(f: NativeFunction) -> Tuple[List[Binding], List[str]]:
    # we need the 'self' argument so method needs to be False
    args = (
        CppSignatureGroup.from_native_function(f, method=False)
        .most_faithful_signature()
        .arguments()
    )
    code_list = [
        f"c10::IValue {args[i].name} = std::move(peek(stack, {i}, {len(args)}));"
        for i in range(len(args))
    ] + [""]
    binding_list = []
    for arg in args:
        # expecting only Argument
        if not isinstance(arg.argument, Argument):
            raise Exception(
                f"Unexpected argument type, expecting `Argument` but got {arg}"
            )
        argument: Argument = arg.argument
        unboxed_name, _, code, decl = argumenttype_ivalue_convert(
            argument.type,
            argument.name,
            mutable=argument.is_write,
        )
        code_list.extend(decl)
        code_list.extend(code)
        binding_list.append(arg.with_name(unboxed_name))
    return binding_list, code_list


# Takes in the type, name and mutability corresponding to an argument, and generates a tuple of:
# (1) the C++ code necessary to unbox the argument
# (2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType
def argumenttype_ivalue_convert(
    t: Type, arg_name: str, *, mutable: bool = False
) -> Tuple[str, CType, List[str], List[str]]:
    # Unboxing is for mobile, which doesn't care about SymInts
    ctype = cpp.argumenttype_type(
        t=t, mutable=mutable, binds=arg_name, symint=False
    ).type

    if isinstance(t, BaseType):
        out_name = f"{arg_name}_base"
        code, decl = _gen_code_base_type(
            arg_name=arg_name, out_name=out_name, ctype=ctype
        )
    elif isinstance(t, OptionalType):
        out_name = f"{arg_name}_opt_out"
        code, decl = _gen_code_optional_type(
            arg_name=arg_name,
            out_name=out_name,
            t=t,
            ctype=ctype,
        )
    elif isinstance(t, ListType):
        out_name = f"{arg_name}_list_out"
        code, decl = _gen_code_list_type(
            arg_name=arg_name,
            out_name=out_name,
            t=t,
            ctype=ctype,
        )
    else:
        raise Exception(f"Cannot handle type {t}. arg_name: {arg_name}")
    return out_name, ctype, code, decl


def _gen_code_base_type(
    arg_name: str, out_name: str, ctype: CType
) -> Tuple[List[str], List[str]]:
    return [
        f"{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();"
    ], []


def _gen_code_optional_type(
    arg_name: str, out_name: str, t: OptionalType, ctype: CType
) -> Tuple[List[str], List[str]]:
    in_name = f"{arg_name}_opt_in"
    res_name, _, res_code, decl = argumenttype_ivalue_convert(t.elem, in_name)
    return (
        f"""
c10::optional<c10::IValue> {arg_name}_opt = {arg_name}.toOptional<c10::IValue>();
{ctype.cpp_type(strip_ref=True)} {out_name};
if ({arg_name}_opt.has_value()) {{
    const c10::IValue {in_name} = {arg_name}_opt.value();
    {connector.join(res_code)}
    {out_name} = {ctype.cpp_type(strip_ref=True)}({res_name});
}} else {{
    {out_name} = {ctype.cpp_type(strip_ref=True)}();
}}
        """.split(
            "\n"
        ),
        decl,
    )


def _gen_code_list_type(
    arg_name: str, out_name: str, t: ListType, ctype: CType
) -> Tuple[List[str], List[str]]:
    in_name = f"{arg_name}_list_in"
    elem_name = f"{arg_name}_elem"
    code = [f"const c10::List<c10::IValue> {in_name} = {arg_name}.toList();"]
    res_name, res_ctype, res_code, decl = argumenttype_ivalue_convert(t.elem, elem_name)
    # handle list type with size, e.g., bool[4]
    if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool and t.size:
        code.extend(
            f"""
{ctype.cpp_type(strip_ref=True)} {out_name} = as_array<{res_ctype.cpp_type(strip_ref=True)}, {t.size}>({in_name});
            """.split(
                "\n"
            )
        )
    # we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<c10::optional<at::Tensor>>
    elif isinstance(t.elem, OptionalType):
        code.extend(
            f"""
{ctype.cpp_type(strip_ref=True)} {out_name};
for (c10::IValue {elem_name}: {in_name}) {{
    {connector.join(res_code)}
    {out_name}.push_back({res_name});
}}
            """.split(
                "\n"
            )
        )
    else:
        # use ArrayRef as default.
        vec_name = arg_name + "_vec"
        # need to bring vector instantiation out of scope so that ArrayRef has valid data
        decl.append(f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};")
        code.extend(
            f"""
for (c10::IValue {elem_name}: {in_name}) {{
    {connector.join(res_code)}
    {vec_name}.push_back({res_name});
}}
{ctype.cpp_type(strip_ref=True)} {out_name}({vec_name});
            """.split(
                "\n"
            )
        )
    return code, decl