File size: 68,708 Bytes
4ba564c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 |
from __future__ import annotations # remove after python 3.11
from functools import wraps
from typing import List, Optional, Sequence, Tuple, TypeVar
from .._C.libtriton.triton import ir
from ..common.build import is_hip
from . import core as tl
T = TypeVar('T')
# TODO: redundant code -- remove after 3P backend refactor
def _is_cuda(target):
from ..compiler.compiler import CudaTargetDescriptor
return isinstance(target, CudaTargetDescriptor)
# Create custom exception that prints message "hello"
class IncompatibleTypeErrorImpl(Exception):
def __init__(self, type_a, type_b):
self.type_a = type_a
self.type_b = type_b
self.message = "invalid operands of type " + self.type_a.__repr__() + " and " + self.type_b.__repr__()
super(IncompatibleTypeErrorImpl, self).__init__(self.message)
# ===----------------------------------------------------------------------===##
# Programming Model
# ===----------------------------------------------------------------------===##
def program_id(axis: int, builder: ir.builder) -> tl.tensor:
if axis not in (0, 1, 2):
raise ValueError(f"program_id axis must be 0, 1, or 2 but got {axis}")
return tl.tensor(builder.create_get_program_id(axis), tl.int32)
def num_programs(axis: int, builder: ir.builder) -> tl.tensor:
if axis not in (0, 1, 2):
raise ValueError(f"num_programs axis must be 0, 1, or 2 but got {axis}")
return tl.tensor(builder.create_get_num_programs(axis), tl.int32)
# ===----------------------------------------------------------------------===//
# Implicit Casting Utilities
# ===----------------------------------------------------------------------===//
def integer_promote_impl(a_ty: tl.dtype, b_ty: tl.dtype) -> tl.dtype:
a_rank = a_ty.int_bitwidth
b_rank = b_ty.int_bitwidth
a_sn = a_ty.int_signedness
b_sn = b_ty.int_signedness
# Rules for signedness taken from "Usual arithmetic conversions" on
# https://en.cppreference.com/w/c/language/conversion.
if a_sn == b_sn:
return a_ty if a_rank > b_rank else b_ty
elif a_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
return a_ty if a_rank >= b_rank else b_ty
elif b_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
return b_ty if b_rank >= a_rank else a_ty
assert False
def computation_type_impl(a_ty: tl.dtype, b_ty: tl.dtype, div_or_mod: bool) -> tl.dtype:
# 1) if one operand is double, the other is implicitly
# converted to double
if a_ty.is_fp64() or b_ty.is_fp64():
return tl.float64
# 2) if one operand is float, the other is implicitly
# converted to float
if a_ty.is_fp32() or b_ty.is_fp32():
return tl.float32
# 3 ) if one operand is half, the other is implicitly converted to half
# unless we're doing / or %, which do not exist natively in PTX for fp16.
# Supported PTX op: add, sub, mul, fma, neg, abs, min, max, tanh, ex2, setp
if a_ty.is_fp16() or b_ty.is_fp16():
if div_or_mod:
return tl.float32
else:
return tl.float16
# 4) return bf16 only if both operands are of bf16
if a_ty.is_bf16() or b_ty.is_bf16():
if div_or_mod:
return tl.float32
if a_ty.is_bf16() and b_ty.is_bf16():
return tl.bfloat16
return tl.float32
if not a_ty.is_int() or not b_ty.is_int():
assert False
# 5 ) both operands are integer and undergo
# integer promotion
if div_or_mod and a_ty.int_signedness != b_ty.int_signedness:
raise ValueError("Cannot use /, #, or % with " + a_ty.__repr__() + " and " + b_ty.__repr__() +
" because they have different signedness;"
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
return integer_promote_impl(a_ty, b_ty)
# ===----------------------------------------------------------------------===//
# Binary Operators
# ===----------------------------------------------------------------------===//
def check_ptr_type_impl(type_a: tl.dtype, type_b: tl.dtype, allow_ptr_a: bool) -> None:
if type_a.is_ptr():
if not allow_ptr_a:
raise IncompatibleTypeErrorImpl(type_a, type_b)
# T* + U* with T != U
if type_b.is_ptr() and (type_a != type_b):
raise IncompatibleTypeErrorImpl(type_a, type_b)
# T* + float
if type_b.is_floating():
raise IncompatibleTypeErrorImpl(type_a, type_b)
def binary_op_type_checking_impl(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder, allow_lhs_ptr=False,
allow_rhs_ptr=False, arithmetic_check=True,
div_or_mod=False) -> Tuple[tl.tensor, tl.tensor]:
# implicit broadcasting
lhs, rhs = broadcast_impl_value(lhs, rhs, builder)
# implicit typecasting
lhs_sca_ty = lhs.type.scalar
rhs_sca_ty = rhs.type.scalar
check_ptr_type_impl(lhs_sca_ty, rhs_sca_ty, allow_lhs_ptr)
check_ptr_type_impl(rhs_sca_ty, lhs_sca_ty, allow_rhs_ptr)
if arithmetic_check and not lhs_sca_ty.is_ptr() and not rhs_sca_ty.is_ptr():
ret_sca_ty = computation_type_impl(lhs_sca_ty, rhs_sca_ty, div_or_mod)
lhs = cast(lhs, ret_sca_ty, builder)
rhs = cast(rhs, ret_sca_ty, builder)
return lhs, rhs
def add(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_ptr() and other_scalar_ty.is_ptr():
raise ValueError("cannot add pointers together")
# offset + ptr
# ptr + offset
if other_scalar_ty.is_ptr() and not input_scalar_ty.is_ptr():
input, other = other, input
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_ptr():
return tl.tensor(builder.create_addptr(input.handle, other.handle), input.type)
# float + float
elif input_scalar_ty.is_floating():
return tl.tensor(builder.create_fadd(input.handle, other.handle), input.type)
# int + int
elif input_scalar_ty.is_int():
return tl.tensor(builder.create_add(input.handle, other.handle), input.type)
assert False
def sub(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, True, False)
scalar_ty = input.type.scalar
# ptr - offset
if scalar_ty.is_ptr():
return tl.tensor(builder.create_addptr(input.handle, minus(other, builder).handle), input.type)
# float - float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fsub(input.handle, other.handle), input.type)
# int - int
elif scalar_ty.is_int():
return tl.tensor(builder.create_sub(input.handle, other.handle), input.type)
assert False
def mul(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float * float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fmul(input.handle, other.handle), input.type)
# * int
elif scalar_ty.is_int():
return tl.tensor(builder.create_mul(input.handle, other.handle), input.type)
assert False
def truediv(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
# float / int
if input_scalar_ty.is_floating() and other_scalar_ty.is_int():
other = cast(other, input_scalar_ty, builder)
# int / float
elif input_scalar_ty.is_int() and other_scalar_ty.is_floating():
input = cast(input, other_scalar_ty, builder)
# int / int (cast to tl.float32)
elif input_scalar_ty.is_int() and other_scalar_ty.is_int():
input = cast(input, tl.float32, builder)
other = cast(other, tl.float32, builder)
# float / float (cast to the highest exponent type)
elif input_scalar_ty.is_floating() and other_scalar_ty.is_floating():
if input_scalar_ty.fp_mantissa_width > other_scalar_ty.fp_mantissa_width:
other = cast(other, input_scalar_ty, builder)
else:
input = cast(input, other_scalar_ty, builder)
# unreachable
else:
assert False
return tl.tensor(builder.create_fdiv(input.handle, other.handle), input.type)
def floordiv(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_int() and other_scalar_ty.is_int():
ret_ty = integer_promote_impl(input_scalar_ty, other_scalar_ty)
input = cast(input, ret_ty, builder)
other = cast(other, ret_ty, builder)
if ret_ty.is_int_signed():
return tl.tensor(builder.create_sdiv(input.handle, other.handle), input.type)
else:
return tl.tensor(builder.create_udiv(input.handle, other.handle), input.type)
assert False
def fdiv(input: tl.tensor, other: tl.tensor, ieee_rounding: bool, builder: ir.builder) -> tl.tensor:
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if not input_scalar_ty.is_floating() or not other_scalar_ty.is_floating():
raise ValueError("both operands of fdiv must have floating scalar type")
input, other = binary_op_type_checking_impl(input, other, builder, False, False, False, True)
ret = builder.create_fdiv(input.handle, other.handle)
return tl.tensor(ret, input.type)
def mod(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
# float % float
if scalar_ty.is_floating():
# input - input.div(other, rounding_mode="floor") * other
ret = sub(input, mul(floor(fdiv(input, other, False, builder), builder), other, builder), builder)
return ret
# % int
elif scalar_ty.is_int():
if scalar_ty.int_signedness != other_scalar_ty.int_signedness:
raise ValueError("Cannot mod " + scalar_ty.__repr__() + " by " + other_scalar_ty.__repr__() + " "
"because they have different signedness;"
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_srem(input.handle, other.handle), input.type)
else:
return tl.tensor(builder.create_urem(input.handle, other.handle), input.type)
assert False
##############
# bitwise ops
##############
def bitwise_op_type_checking_impl(input: tl.tensor, other: tl.tensor,
builder: ir.builder) -> Tuple[tl.tensor, tl.tensor]:
input, other = binary_op_type_checking_impl(input, other, builder, False, False, False)
input_sca_ty = input.type.scalar
other_sca_ty = other.type.scalar
if not input_sca_ty.is_int() or not other_sca_ty.is_int():
raise IncompatibleTypeErrorImpl(input_sca_ty, other_sca_ty)
ret_sca_ty = integer_promote_impl(input_sca_ty, other_sca_ty)
if ret_sca_ty != input_sca_ty:
input = cast(input, ret_sca_ty, builder)
if ret_sca_ty != other_sca_ty:
other = cast(other, ret_sca_ty, builder)
return input, other
def and_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_and(input.handle, other.handle), input.type)
def or_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_or(input.handle, other.handle), input.type)
def xor_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_xor(input.handle, other.handle), input.type)
def logical_and(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
if not input.type.is_int1():
input = bitcast(input, tl.dtype("int1"), builder)
if not other.type.is_int1():
other = bitcast(other, tl.dtype("int1"), builder)
return and_(input, other, builder)
def logical_or(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
if not input.type.is_int1():
input = bitcast(input, tl.dtype("int1"), builder)
if not other.type.is_int1():
other = bitcast(other, tl.dtype("int1"), builder)
return or_(input, other, builder)
def not_(input: tl.tensor, builder: ir.builder):
if not input.type.is_int1():
input = bitcast(input, tl.dtype("int1"), builder)
return invert(input, builder)
def lshr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_lshr(input.handle, other.handle), input.type)
def ashr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_ashr(input.handle, other.handle), input.type)
def shl(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = bitwise_op_type_checking_impl(input, other, builder)
return tl.tensor(builder.create_shl(input.handle, other.handle), input.type)
# ===----------------------------------------------------------------------===//
# Unary Operators
# ===----------------------------------------------------------------------===//
def plus(input: tl.tensor) -> tl.tensor:
return input
def minus(input: tl.tensor, builder: ir.builder) -> tl.tensor:
input_sca_ty = input.type.scalar
if input_sca_ty.is_ptr():
raise ValueError("wrong type argument to unary minus (" + input_sca_ty.__repr__() + ")")
_0 = tl.tensor(builder.get_null_value(input_sca_ty.to_ir(builder)), input_sca_ty)
return sub(_0, input, builder)
def invert(input: tl.tensor, builder: tl.tensor) -> tl.tensor:
input_sca_ty = input.type.scalar
if input_sca_ty.is_ptr() or input_sca_ty.is_floating():
raise ValueError("wrong type argument to unary invert (" + input_sca_ty.__repr__() + ")")
_1 = tl.tensor(builder.get_all_ones_value(input_sca_ty.to_ir(builder)), input_sca_ty)
return xor_(input, _1, builder)
# ===----------------------------------------------------------------------===//
# Comparison Operators
# ===----------------------------------------------------------------------===//
def _bool_like(v: tl.tensor) -> tl.block_type:
if not v.type.is_block():
return tl.int1
shape = v.type.shape
return tl.block_type(tl.int1, shape)
def greater_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float > float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOGT(input.handle, other.handle), _bool_like(input))
# > int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSGT(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpUGT(input.handle, other.handle), _bool_like(input))
assert False
def greater_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float >= float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOGE(input.handle, other.handle), _bool_like(input))
# >= int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSGE(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpUGE(input.handle, other.handle), _bool_like(input))
assert False
def less_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float < float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOLT(input.handle, other.handle), _bool_like(input))
# < int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSLT(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpULT(input.handle, other.handle), _bool_like(input))
assert False
def less_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float < float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOLE(input.handle, other.handle), _bool_like(input))
# < int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return tl.tensor(builder.create_icmpSLE(input.handle, other.handle), _bool_like(input))
else:
return tl.tensor(builder.create_icmpULE(input.handle, other.handle), _bool_like(input))
assert False
def equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float == float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpOEQ(input.handle, other.handle), _bool_like(input))
# == int
elif scalar_ty.is_int():
return tl.tensor(builder.create_icmpEQ(input.handle, other.handle), _bool_like(input))
assert False
def not_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
input, other = binary_op_type_checking_impl(input, other, builder)
scalar_ty = input.type.scalar
# float == float
if scalar_ty.is_floating():
return tl.tensor(builder.create_fcmpUNE(input.handle, other.handle), _bool_like(input))
# == int
elif scalar_ty.is_int():
return tl.tensor(builder.create_icmpNE(input.handle, other.handle), _bool_like(input))
assert False
# ===----------------------------------------------------------------------===//
# Block Creation
# ===----------------------------------------------------------------------===//
def arange(start: int, end: int, builder: ir.builder) -> tl.tensor:
if not isinstance(start, int) or not isinstance(end, int):
raise ValueError("arange's arguments must be of type tl.constexpr")
is_start_int64 = bool(start >> 32)
is_end_int64 = bool(end >> 32)
if is_start_int64 or is_end_int64:
raise ValueError("arange must fit in int32")
if end <= start:
raise ValueError("arange's end argument must be greater than the start argument")
shape = [end - start]
ret_ty = tl.block_type(tl.int32, shape)
return tl.tensor(builder.create_make_range(start, end), ret_ty)
def full(shape: List[int], value, dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
if isinstance(value, tl.tensor):
assert value.numel.value == 1, "only accepts size-1 tensor"
value = cast(value, dtype, builder)
else:
# scalar
if dtype is None:
raise ValueError("dtype must be specified when value is not a tensor")
if value == 0:
value = builder.get_null_value(dtype.to_ir(builder))
else:
get_value_fn = getattr(builder, f"get_{dtype.name}")
value = get_value_fn(value)
value = tl.tensor(value, dtype)
return splat(value, shape, builder)
# ===----------------------------------------------------------------------===//
# Shape Manipulation
# ===----------------------------------------------------------------------===//
def splat(value: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor:
assert not value.type.is_block(), "Cannot splat a block tensor"
if len(shape) == 0:
return value
ret_ty = tl.block_type(value.dtype, shape)
return tl.tensor(builder.create_splat(value.handle, shape), ret_ty)
def view(input: tl.tensor, dst_shape: List[int], builder: ir.builder) -> tl.tensor:
numel = 1
for s in dst_shape:
numel *= s
if input.type.numel != numel:
raise ValueError("cannot view block of different shape")
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return tl.tensor(builder.create_reshape(input.handle, dst_shape, True), ret_ty)
def reshape(input: tl.tensor, dst_shape: List[int], builder: ir.builder) -> tl.tensor:
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return tl.tensor(builder.create_reshape(input.handle, dst_shape, False), ret_ty)
def expand_dims(input: tl.tensor, axis: int, builder: ir.builder) -> tl.tensor:
dst_shape = [tl._constexpr_to_value(x) for x in input.shape]
dst_shape.insert(axis, 1)
if not input.type.is_block():
return splat(input, shape=dst_shape, builder=builder)
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return tl.tensor(builder.create_expand_dims(input.handle, axis), ret_ty)
def cat(lhs: tl.tensor, rhs: tl.tensor, can_reorder: bool, builder: ir.builder) -> tl.tensor:
assert can_reorder, "current implementation of `cat` always may reorder elements"
assert len(lhs.shape) == 1
ret_type = tl.block_type(lhs.type.scalar, [lhs.shape[0] + rhs.shape[0]])
return tl.tensor(builder.create_cat(lhs.handle, rhs.handle), ret_type)
def trans(input: tl.tensor, builder: ir.builder) -> tl.tensor:
if len(input.shape) != 2:
raise ValueError("Only 2D tensors can be transposed")
ret_type = tl.block_type(input.type.scalar, [input.shape[1], input.shape[0]])
return tl.tensor(builder.create_trans(input.handle), ret_type)
def broadcast_impl_shape(input: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor:
if not input.type.is_block():
ret_ty = tl.block_type(input.type, shape)
return tl.tensor(builder.create_splat(input.handle, shape), ret_ty)
src_shape = input.type.get_block_shapes()
if len(src_shape) != len(shape):
raise ValueError(f"Cannot broadcast, rank mismatch: {src_shape}, {shape}")
if shape == src_shape:
return input
for i, item in enumerate(src_shape):
if shape[i] != item and item != 1:
raise ValueError(f"Cannot broadcast, the expanded size of the tensor ({shape[i]})"
f" must match the existing size ({item}) at non-singleton dimension"
f" {i}: {src_shape}, {shape}")
ret_ty = tl.block_type(input.type.scalar, shape)
return tl.tensor(builder.create_broadcast(input.handle, shape), ret_ty)
def broadcast_impl_value(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder) -> tl.tensor:
lhs_ty = lhs.type
rhs_ty = rhs.type
# make_shape_compatible(block, scalar)
if lhs_ty.is_block() and not rhs_ty.is_block():
rhs_ty = tl.block_type(rhs_ty.scalar, lhs_ty.shape)
rhs = tl.tensor(builder.create_splat(rhs.handle, lhs_ty.get_block_shapes()), rhs_ty)
# make_shape_compatible(scalar, block)
elif not lhs_ty.is_block() and rhs_ty.is_block():
lhs_ty = tl.block_type(lhs_ty.scalar, rhs_ty.shape)
lhs = tl.tensor(builder.create_splat(lhs.handle, rhs_ty.get_block_shapes()), lhs_ty)
# make_shape_compatible(block, block)
elif lhs_ty.is_block() and rhs_ty.is_block():
lhs_shape = lhs_ty.get_block_shapes()
rhs_shape = rhs_ty.get_block_shapes()
if len(lhs_shape) < len(rhs_shape):
# Add new axes to lhs
for dim in range(len(lhs_shape), len(rhs_shape)):
lhs = tl.tensor(builder.create_expand_dims(lhs.handle, 0),
tl.block_type(lhs_ty.scalar, [1] + lhs_shape))
lhs_ty = lhs.type
lhs_shape = lhs_ty.get_block_shapes()
elif len(rhs_shape) < len(lhs_shape):
# Add new axes to rhs
for dim in range(len(rhs_shape), len(lhs_shape)):
rhs = tl.tensor(builder.create_expand_dims(rhs.handle, 0),
tl.block_type(rhs_ty.scalar, [1] + rhs_shape))
rhs_ty = rhs.type
rhs_shape = rhs_ty.get_block_shapes()
assert len(rhs_shape) == len(lhs_shape)
ret_shape = []
for i, left in enumerate(lhs_shape):
right = rhs_shape[i]
if left == 1:
ret_shape.append(right)
elif right == 1:
ret_shape.append(left)
elif left == right:
ret_shape.append(left)
else:
raise ValueError("Cannot make_shape_compatible: incompatible dimensions "
"at index " + str(i) + ": " + str(left) + " and " + str(right))
if lhs_shape != ret_shape:
ret_ty = tl.block_type(lhs_ty.scalar, ret_shape)
lhs = tl.tensor(builder.create_broadcast(lhs.handle, ret_shape), ret_ty)
if rhs_shape != ret_shape:
ret_ty = tl.block_type(rhs_ty.scalar, ret_shape)
rhs = tl.tensor(builder.create_broadcast(rhs.handle, ret_shape), ret_ty)
# (scalar, scalar) => returns original blocks
return lhs, rhs
#######
# cast
#######
def bitcast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder) -> tl.tensor:
src_ty = input.type
if src_ty.is_block():
dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes())
if src_ty == dst_ty:
return input
src_sca_ty = src_ty.scalar
dst_sca_ty = dst_ty.scalar
if src_sca_ty.is_ptr() or dst_sca_ty.is_ptr():
return cast(input, dst_ty, builder)
# Bitcast
src_bits = src_sca_ty.primitive_bitwidth
dst_bits = dst_sca_ty.primitive_bitwidth
if src_bits != dst_bits:
raise ValueError("Cannot bitcast data-type of size " + str(src_bits) + " to "
"data-type of size " + str(dst_bits))
return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty)
def cast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder) -> tl.tensor:
src_ty = input.type
if isinstance(dst_ty, tl.constexpr):
dst_ty = dst_ty.value
if src_ty.is_block():
dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes())
if src_ty == dst_ty:
return input
src_sca_ty = src_ty.scalar
dst_sca_ty = dst_ty.scalar
if _is_cuda(builder.target) and builder.target.capability < 89 and \
(src_sca_ty.is_fp8e4nv() or dst_sca_ty.is_fp8e4nv()):
assert False, "fp8e4nv data type is not supported on CUDA arch < 89"
# Casting with customized floating types involved: fp8 <=> bf16, fp16, fp32, fp64
if (src_sca_ty.is_fp8() and dst_sca_ty.is_floating()) or \
(src_sca_ty.is_floating() and dst_sca_ty.is_fp8()):
return tl.tensor(builder.create_fp_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
# bf16 <=> (not fp32)
if (src_sca_ty.is_fp16() and not dst_sca_ty.is_fp32()) or \
(src_sca_ty.is_bf16() and not dst_sca_ty.is_fp32()):
return cast(cast(input, tl.float32, builder), dst_sca_ty, builder)
# Standard floating types' casting: truncation
# fp64 => fp32, fp16, bf16
# fp32 => fp16, bf16
truncate_fp = src_sca_ty.is_floating() and \
dst_sca_ty.is_floating() and \
src_sca_ty.primitive_bitwidth > dst_sca_ty.primitive_bitwidth
if truncate_fp:
return tl.tensor(builder.create_fp_trunc(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Standard floating types' casting: extension
# fp32 => fp64
# fp16 => fp32, fp64
# bf16 => fp32, fp64
ext_fp = src_sca_ty.is_floating() and \
dst_sca_ty.is_floating() and \
src_sca_ty.primitive_bitwidth < dst_sca_ty.primitive_bitwidth
if ext_fp:
return tl.tensor(builder.create_fp_ext(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting between integer types
if src_sca_ty.is_int() and dst_sca_ty.is_int() and \
(src_sca_ty.int_bitwidth != dst_sca_ty.int_bitwidth or src_sca_ty.int_signedness != dst_sca_ty.int_signedness):
sign_extend = src_sca_ty.is_int_signed() and not src_sca_ty.is_bool()
if dst_sca_ty.is_bool():
ty = input.dtype.to_ir(builder)
_0 = tl.tensor(builder.get_null_value(ty), input.dtype)
return not_equal(input, _0, builder)
else:
return tl.tensor(builder.create_int_cast(input.handle, dst_ty.to_ir(builder), sign_extend), dst_ty)
# Casting standard floating types to integer types
if src_sca_ty.is_standard_floating() and dst_sca_ty.is_int():
if dst_sca_ty.is_bool():
ty = input.dtype.to_ir(builder)
_0 = tl.tensor(builder.get_null_value(ty), input.dtype)
return not_equal(input, _0, builder)
elif dst_sca_ty.is_int_signed():
return tl.tensor(builder.create_fp_to_si(input.handle, dst_ty.to_ir(builder)), dst_ty)
else:
return tl.tensor(builder.create_fp_to_ui(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting integer types to standard floating types
if src_sca_ty.is_int() and dst_sca_ty.is_standard_floating():
if src_sca_ty.is_bool() or not src_sca_ty.is_int_signed():
return tl.tensor(builder.create_ui_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
else:
return tl.tensor(builder.create_si_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting pointer types to integer types
if src_sca_ty.is_ptr() and dst_sca_ty.is_int():
bitwidth = dst_sca_ty.int_bitwidth
if bitwidth == 64:
return tl.tensor(builder.create_ptr_to_int(input.handle, dst_ty.to_ir(builder)), dst_ty)
if bitwidth == 1:
return not_equal(cast(input, tl.int64, builder), tl.tensor(builder.get_int64(0), tl.int64), builder)
# Casting integer types to pointer types
if src_sca_ty.is_int() and dst_sca_ty.is_ptr():
return tl.tensor(builder.create_int_to_ptr(input.handle, dst_ty.to_ir(builder)), dst_ty)
# Casting pointer types to pointer types
if src_sca_ty.is_ptr() and dst_sca_ty.is_ptr():
return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty)
assert False, f'cannot cast {input} to {dst_ty}'
# ===----------------------------------------------------------------------===//
# Memory Operators
# ===----------------------------------------------------------------------===//
def _str_to_load_cache_modifier(cache_modifier):
cache = ir.CACHE_MODIFIER.NONE # default
if cache_modifier:
if cache_modifier == ".ca":
cache = ir.CACHE_MODIFIER.CA
elif cache_modifier == ".cg":
cache = ir.CACHE_MODIFIER.CG
else:
raise ValueError(f"Cache modifier {cache_modifier} not supported")
return cache
def _str_to_store_cache_modifier(cache_modifier):
cache = ir.CACHE_MODIFIER.NONE # default
if cache_modifier:
if cache_modifier == ".wb":
cache = ir.CACHE_MODIFIER.WB
elif cache_modifier == ".cg":
cache = ir.CACHE_MODIFIER.CG
elif cache_modifier == ".cs":
cache = ir.CACHE_MODIFIER.CS
elif cache_modifier == ".wt":
cache = ir.CACHE_MODIFIER.WT
else:
raise ValueError(f"Cache modifier {cache_modifier} not supported")
return cache
def _str_to_eviction_policy(eviction_policy):
eviction = ir.EVICTION_POLICY.NORMAL # default
if eviction_policy:
if eviction_policy == "evict_last":
eviction = ir.EVICTION_POLICY.EVICT_LAST
elif eviction_policy == "evict_first":
eviction = ir.EVICTION_POLICY.EVICT_FIRST
else:
raise ValueError(f"Eviction policy {eviction_policy} not supported")
return eviction
def _str_to_padding_option(padding_option):
padding = None # default
if padding_option:
if padding_option == "zero":
padding = ir.PADDING_OPTION.PAD_ZERO
elif padding_option == "nan":
padding = ir.PADDING_OPTION.PAD_NAN
else:
raise ValueError(f"Padding option {padding_option} not supported")
return padding
def _str_to_sem(sem_option):
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
if sem_option:
if sem_option == "acquire":
sem = ir.MEM_SEMANTIC.ACQUIRE
elif sem_option == "release":
sem = ir.MEM_SEMANTIC.RELEASE
elif sem_option == "acq_rel":
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
elif sem_option == "relaxed":
sem = ir.MEM_SEMANTIC.RELAXED
else:
raise ValueError(f"Memory semantic {sem_option} not supported")
return sem
def _str_to_scope(scope_option):
scope = ir.MEM_SYNC_SCOPE.GPU
if scope_option:
if scope_option == "gpu":
scope = ir.MEM_SYNC_SCOPE.GPU
elif scope_option == "cta":
scope = ir.MEM_SYNC_SCOPE.CTA
elif scope_option == "sys":
scope = ir.MEM_SYNC_SCOPE.SYSTEM
else:
raise ValueError(f"Memory semantic {scope_option} not supported")
return scope
def _canonicalize_boundary_check(boundary_check, block_shape):
if boundary_check:
if not hasattr(boundary_check, "__iter__"):
boundary_check = [boundary_check]
boundary_check = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in boundary_check]
for dim in boundary_check:
assert isinstance(dim, int) and 0 <= dim < len(block_shape)
assert len(boundary_check) > 0
assert len(boundary_check) == len(set(boundary_check)), "Duplicate dimension in `boundary_check`"
return sorted(boundary_check)
return tuple()
def _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder):
# Load by a block pointer: `pointer_type<block_type<>>`
# Block pointer can not have `mask` and `other` arguments
if mask or other:
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
elt_ty = ptr.type.element_ty.element_ty
assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`"
if elt_ty.is_int() and padding == ir.PADDING_OPTION.PAD_NAN:
raise ValueError("Padding option `nan` is not supported for integer block pointers")
# `dst_ty` is de-referenced type of the pointer type
dst_ty = ptr.type.element_ty
# Check `boundary_check` argument
boundary_check = _canonicalize_boundary_check(boundary_check, dst_ty.get_block_shapes())
# Build IR
return tl.tensor(
builder.create_tensor_pointer_load(ptr.handle, boundary_check, padding, cache, eviction, is_volatile), dst_ty)
def _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder):
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
if not ptr.type.scalar.is_ptr():
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.load`")
# Check `mask`, `other`, `boundary_check`, and `padding` arguments
if not mask and other:
raise ValueError("`other` cannot be provided without `mask`")
if padding or boundary_check:
raise ValueError("`padding_option` or `boundary_check` argument is not supported for loading a tensor of"
"pointers or loading a scalar. Because the compiler does not know the boundary; please "
"use block pointers (defined by `make_block_ptr`) instead")
# For a pointer of scalar, check the type of `mask` and `other`
if not ptr.type.is_block():
if mask and mask.type.is_block():
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
if other and other.type.is_block():
raise ValueError("Other argument cannot be block type if pointer argument is not a block")
# Make `mask` and `other` into the same shape as `ptr`
if ptr.type.is_block():
if mask:
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
if other:
other = broadcast_impl_shape(other, ptr.type.get_block_shapes(), builder)
# Get `pointer_type<elt_ty>` and `elt_ty`
ptr_ty = ptr.type.scalar
elt_ty = ptr_ty.element_ty
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if elt_ty == tl.int1:
elt_ty = tl.int8
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
ptr = cast(ptr, ptr_ty, builder)
# Cast `other` into `ele_ty` type
if other:
other = cast(other, elt_ty, builder)
# Create loaded result type `dst_ty`
if ptr.type.is_block():
shape = ptr.type.get_block_shapes()
dst_ty = tl.block_type(elt_ty, shape)
else:
# Load by de-referencing the pointer of scalar
dst_ty = elt_ty
# Build IR
if not mask:
return tl.tensor(builder.create_load(ptr.handle, cache, eviction, is_volatile), dst_ty)
else:
return tl.tensor(
builder.create_masked_load(ptr.handle, mask.handle, other.handle if other else None, cache, eviction,
is_volatile), dst_ty)
def load(ptr: tl.tensor, mask: Optional[tl.tensor], other: Optional[tl.tensor], boundary_check, padding_option: str,
cache_modifier: str, eviction_policy: str, is_volatile: bool, builder: ir.builder) -> tl.tensor:
# Cache, eviction and padding options
cache = _str_to_load_cache_modifier(cache_modifier)
eviction = _str_to_eviction_policy(eviction_policy)
padding = _str_to_padding_option(padding_option)
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
# Load by a block pointer: `pointer_type<block_type<>>`
return _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder)
else:
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
return _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder)
def _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder):
# Store by a block pointer: `pointer_type<block_type<>>`
# Block pointers can not have the `mask` argument
if mask:
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
# Check same shape and element type
block_shape = ptr.type.element_ty.get_block_shapes()
if not val.type.is_block():
val = broadcast_impl_shape(val, block_shape, builder)
assert val.type.is_block(), "Value argument must be block type or a scalar"
assert block_shape == val.type.get_block_shapes(
), f"Block shape({block_shape}) and value shape({val.type.get_block_shapes()}) mismatch"
assert ptr.type.element_ty.element_ty == val.type.element_ty, f"Block element type({ptr.type.element_ty.element_ty}) and value element type({val.type.element_ty}) mismatch"
elt_ty = ptr.type.element_ty.element_ty
assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`"
# Check `boundary_check` argument
boundary_check = _canonicalize_boundary_check(boundary_check, block_shape)
# Build IR
return tl.tensor(builder.create_tensor_pointer_store(ptr.handle, val.handle, boundary_check, cache, eviction),
tl.void)
def _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder):
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
if not ptr.type.scalar.is_ptr():
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.store`")
# Check `boundary_check` argument
if boundary_check:
raise ValueError("`boundary_check` argument is not supported for storing a tensor of pointers or storing a "
"scalar. Because the compiler does not know the boundary; please use block pointers "
"(defined by `make_block_ptr`) instead")
# For a pointer of scalar, check the type of `val` and `mask`
if not ptr.type.is_block():
if val.type.is_block():
raise ValueError("Value argument cannot be block type if pointer argument is not a block")
if mask and mask.type.is_block():
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
# Make `mask` and `val` into the same shape as `ptr`
if ptr.type.is_block():
val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder)
if mask:
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
ptr_ty = ptr.type.scalar
elt_ty = ptr_ty.element_ty
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if elt_ty == tl.int1:
elt_ty = tl.int8
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
ptr = cast(ptr, ptr_ty, builder)
# Cast to target data type
val = cast(val, elt_ty, builder)
# Build IR
if not mask:
return tl.tensor(builder.create_store(ptr.handle, val.handle, cache, eviction), tl.void)
if not mask.type.scalar.is_bool():
raise ValueError("Mask must have boolean scalar type")
return tl.tensor(builder.create_masked_store(ptr.handle, val.handle, mask.handle, cache, eviction), tl.void)
def store(ptr: tl.tensor, val: tl.tensor, mask: Optional[tl.tensor], boundary_check, cache_modifier: str,
eviction_policy: str, builder: ir.builder) -> tl.tensor:
# Cache and eviction options
cache = _str_to_store_cache_modifier(cache_modifier)
eviction = _str_to_eviction_policy(eviction_policy)
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
# Store by a block pointer: `pointer_type<block_type<>>`
return _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder)
else:
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
return _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder)
#########
# atomic
#########
def atomic_cas(ptr: tl.tensor, cmp: tl.tensor, val: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
element_ty = ptr.type.scalar.element_ty
if element_ty.primitive_bitwidth not in [16, 32, 64]:
raise ValueError("atomic_cas only supports elements with width {16, 32, 64}")
return tl.tensor(builder.create_atomic_cas(ptr.handle, cmp.handle, val.handle, sem, scope), val.type)
def atom_red_typechecking_impl(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, op: str,
builder: ir.builder) -> Tuple[tl.tensor, tl.tensor, tl.tensor]:
if not ptr.type.scalar.is_ptr():
raise ValueError("Pointer argument of store instruction is " + ptr.type.__repr__())
element_ty = ptr.type.scalar.element_ty
if element_ty is tl.float16 and op != 'add':
raise ValueError("atomic_" + op + " does not support fp16")
if element_ty in [tl.int1, tl.int8, tl.int16, tl.bfloat16]:
raise ValueError("atomic_" + op + " does not support " + str(element_ty))
if ptr.type.is_block():
if mask:
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
if val:
val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder)
val = cast(val, ptr.type.scalar.element_ty, builder)
if not mask:
mask_ir = builder.get_int1(True)
mask_ty = tl.int1
if ptr.type.is_block():
mask_ir = builder.create_splat(mask_ir, ptr.type.get_block_shapes())
mask_ty = tl.block_type(tl.int1, ptr.type.get_block_shapes())
mask = tl.tensor(mask_ir, mask_ty)
return ptr, val, mask
def atomic_max(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'max', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
sca_ty = val.type.scalar
# direct call to atomic_max for integers
if sca_ty.is_int():
if sca_ty.is_int_signed():
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
else:
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
# for float
# return atomic_smax(i_ptr, i_val) if val >= 0
# return atomic_umin(i_ptr, i_val) if val < 0
if sca_ty not in {tl.float32, tl.float64}:
raise TypeError(f"atomic_max not supported for dtype {sca_ty}")
itype = tl.int32 if sca_ty == tl.float32 else tl.float64
zero = full([], 0.0, sca_ty, builder)
i_val = bitcast(val, itype, builder)
i_ptr = bitcast(ptr, tl.pointer_type(itype, 1), builder)
pos = greater_equal(val, zero, builder)
neg = less_than(val, zero, builder)
pos_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, i_ptr.handle, i_val.handle,
and_(mask, pos, builder).handle, sem, scope), i_val.type)
neg_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, i_ptr.handle, i_val.handle,
and_(mask, neg, builder).handle, sem, scope), i_val.type)
ret = where(pos, pos_ret, neg_ret, builder)
return bitcast(ret, sca_ty, builder)
def atomic_min(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'min', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
sca_ty = val.type.scalar
# direct call to atomic_min for integers
if sca_ty.is_int():
if sca_ty.is_int_signed():
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
else:
return tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
# for float
# return atomic_smin(i_ptr, i_val) if val >= 0
# return atomic_umax(i_ptr, i_val) if val < 0
if sca_ty not in {tl.float32, tl.float64}:
raise TypeError(f"atomic_min not supported for dtype {sca_ty}")
itype = tl.int32 if sca_ty == tl.float32 else tl.float64
zero = full([], 0.0, sca_ty, builder)
i_val = bitcast(val, itype, builder)
i_ptr = bitcast(ptr, tl.pointer_type(itype, 1), builder)
pos = greater_equal(val, zero, builder)
neg = less_than(val, zero, builder)
pos_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, i_ptr.handle, i_val.handle,
and_(mask, pos, builder).handle, sem, scope), i_val.type)
neg_ret = tl.tensor(
builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, i_ptr.handle, i_val.handle,
and_(mask, neg, builder).handle, sem, scope), i_val.type)
ret = where(pos, pos_ret, neg_ret, builder)
return bitcast(ret, sca_ty, builder)
def atomic_add(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'add', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
sca_ty = val.type.scalar
op = ir.ATOMIC_OP.FADD if sca_ty.is_floating() else ir.ATOMIC_OP.ADD
return tl.tensor(builder.create_atomic_rmw(op, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
def atomic_and(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'and', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.AND, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
def atomic_or(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'or', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.OR, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
def atomic_xor(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xor', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XOR, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
def atomic_xchg(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str,
builder: ir.builder) -> tl.tensor:
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xchg', builder)
sem = _str_to_sem(sem)
scope = _str_to_scope(scope)
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XCHG, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
# ===----------------------------------------------------------------------===//
# Linear Algebra
# ===----------------------------------------------------------------------===//
def gpu_has_mfma() -> bool:
if not is_hip():
return False
return True # mfma supported in ['gfx908', 'gfx90a']
def mfma_supported(M, N, K, allow_tf32, ret_scalar_ty) -> bool:
if not gpu_has_mfma():
return False
# TODO: Add check for configurations and types.
return True
def dot(lhs: tl.tensor, rhs: tl.tensor, acc: tl.tensor, allow_tf32: bool, max_num_imprecise_acc: int,
out_dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
def assert_dtypes_valid(lhs_dtype, rhs_dtype, target):
# Checks for non-cuda archs
if not _is_cuda(target):
assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!"
return
# Checks for cuda arch
if target.capability < 90:
assert not lhs_dtype.is_fp8e4nv() and not rhs_dtype.is_fp8e4nv(
), "Dot op does not support fp8e4nv on CUDA arch < 90"
if lhs_dtype.is_fp8() and rhs_dtype.is_fp8():
return
assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!"
else:
assert not lhs_dtype.is_fp8e4b15() and not rhs_dtype.is_fp8e4b15(
), "Dot op does not support fp8e4b15 on CUDA arch >= 90"
assert not lhs_dtype.is_fp8e4b15x4() and not rhs_dtype.is_fp8e4b15x4(
), "Dot op does not support fp8e4b15x4 on CUDA arch >= 90"
if lhs_dtype.is_int() or rhs_dtype.is_int():
assert lhs_dtype == rhs_dtype, f"Both operands must be same type. First operand ({lhs_dtype}) and second operand ({rhs_dtype})"
assert lhs_dtype.is_int8() or lhs_dtype.is_uint8(
), f"Both operands must be either int8 or uint8. Operand type ({lhs_dtype})"
elif lhs_dtype.is_fp8() or rhs_dtype.is_fp8():
assert lhs_dtype.is_fp8e4nv() or lhs_dtype.is_fp8e5(
), f"Only supports fp8e4nv or fp8e5. First operand ({lhs_dtype})"
assert rhs_dtype.is_fp8e4nv() or rhs_dtype.is_fp8e5(
), f"Only supports fp8e4nv or fp8e5. Second operand ({rhs_dtype})"
else:
assert lhs_dtype.is_fp16() or lhs_dtype.is_bf16() or lhs_dtype.is_fp32() or lhs_dtype.is_int1(
), f"Unsupported dtype {lhs_dtype}"
assert rhs_dtype.is_fp16() or rhs_dtype.is_bf16() or rhs_dtype.is_fp32() or rhs_dtype.is_int1(
), f"Unsupported dtype {rhs_dtype}"
assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!"
assert lhs.type.is_block() and rhs.type.is_block()
assert_dtypes_valid(lhs.dtype, rhs.dtype, builder.target)
assert len(lhs.shape) == 2, f"First input shape ({lhs.shape}) is not two dimensional!"
assert len(rhs.shape) == 2, f"Second input shape ({rhs.shape}) is not two dimensional!"
assert lhs.shape[1].value == rhs.shape[
0].value, f"First input shape ({lhs.shape}) and second input shape {rhs.shape} are not compatible for matmul (second index of first shape ({lhs.shape[1].value}) must be equal to first index of second shape ({rhs.shape[0].value})"
assert lhs.shape[0].value >= 16 and lhs.shape[1].value >= 16 \
and rhs.shape[1].value >= 16, \
f"All values in both first input shape ({lhs.shape}) and second input shape ({rhs.shape}) must be >= 16!"
if lhs.type.scalar.is_int():
assert lhs.type.scalar == tl.int8, "only int8 supported!"
# TODO: This is CUDA specific, check if ROCm has the same limitation
assert lhs.shape[1].value >= 32, "small blocks not supported!"
_0 = builder.get_int32(0)
ret_scalar_ty = tl.int32
elif out_dtype.is_bf16():
raise ValueError(
"out_dtype=bfloat16 is unsupported. Please use out_dtype=float32/float16 and cast with `.to(tl.bfloat16)`")
elif lhs.type.scalar.is_fp32() or lhs.type.scalar.is_bf16():
_0 = builder.get_fp32(0)
ret_scalar_ty = tl.float32
else:
_0 = builder.get_fp16(0) if out_dtype.is_fp16() else builder.get_fp32(0)
ret_scalar_ty = out_dtype
M = lhs.type.shape[0]
N = rhs.type.shape[1]
# Cast operands of types f16 and i8 for configurations where FMA only supported.
if is_hip() and not mfma_supported(M, N, lhs.type.shape[1], allow_tf32, ret_scalar_ty):
ret_cast_scalar_ty = tl.float32 if lhs.type.scalar.is_int() else ret_scalar_ty
lhs = cast(lhs, ret_cast_scalar_ty, builder)
rhs = cast(rhs, ret_cast_scalar_ty, builder)
if ret_cast_scalar_ty == tl.float16:
_0 = builder.create_splat(builder.get_fp16(0), [M, N])
else:
_0 = builder.create_splat(builder.get_fp32(0), [M, N])
ret_ty = tl.block_type(ret_cast_scalar_ty, [M, N])
ret = tl.tensor(builder.create_dot(lhs.handle, rhs.handle, _0, allow_tf32), ret_ty)
return cast(ret, ret_scalar_ty, builder)
if is_hip() and mfma_supported(M, N, lhs.type.shape[1], allow_tf32,
ret_scalar_ty) and ret_scalar_ty.primitive_bitwidth < 32:
if lhs.type.scalar.is_int():
ret_dot_scalar_ty = tl.int32
_0 = builder.create_splat(builder.get_int32(0), [M, N])
else:
ret_dot_scalar_ty = tl.float32
_0 = builder.create_splat(builder.get_fp32(0), [M, N])
ret_ty = tl.block_type(ret_dot_scalar_ty, [M, N])
ret = tl.tensor(builder.create_dot(lhs.handle, rhs.handle, _0, allow_tf32), ret_ty)
return cast(ret, ret_scalar_ty, builder)
ret_ty = tl.block_type(ret_scalar_ty, [M, N])
if acc is None:
acc_handle = builder.create_splat(_0, [M, N])
else:
acc_handle = acc.handle
assert acc.type == ret_ty
# max_num_imprecise_acc only applies to fp8 -> fp32 dot on sm_90
if not (_is_cuda(builder.target) and builder.target.capability == 90 and lhs.dtype.is_fp8() and rhs.dtype.is_fp8()
and ret_scalar_ty.is_fp32()):
max_num_imprecise_acc = 0
if max_num_imprecise_acc is None:
max_num_imprecise_acc = 2**30
return tl.tensor(builder.create_dot(lhs.handle, rhs.handle, acc_handle, allow_tf32, max_num_imprecise_acc), ret_ty)
# ===----------------------------------------------------------------------===//
# Indexing
# ===----------------------------------------------------------------------===//
def where(condition: tl.tensor, x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor:
condition = cast(condition, tl.int1, builder)
if condition.type.is_block():
condition, x = broadcast_impl_value(condition, x, builder)
x, y = broadcast_impl_value(x, y, builder)
condition, x = broadcast_impl_value(condition, x, builder)
x, y = binary_op_type_checking_impl(x, y, builder, True, True)
if not condition.type.is_block():
condition, _ = broadcast_impl_value(condition, x, builder)
ret_ty = x.type
return tl.tensor(builder.create_select(condition.handle, x.handle, y.handle), ret_ty)
# ===----------------------------------------------------------------------===//
# Reduction
# ===----------------------------------------------------------------------===
def reduction(inputs: Sequence[tl.tensor], axis: int, region_builder_fn, builder: ir.builder) -> Tuple[tl.tensor, ...]:
if axis is None:
new_inputs = []
for i in range(len(inputs)):
new_shape = [inputs[i].numel.value]
new_inputs.append(view(inputs[i], new_shape, builder))
inputs = tuple(new_inputs)
axis = 0
# get result shape
shape = inputs[0].type.shape
ret_shape = [s for i, s in enumerate(shape) if i != axis]
for t in inputs:
assert t.type.shape == shape
def wrap_tensor(x, scalar_ty):
if ret_shape:
res_ty = tl.block_type(scalar_ty, ret_shape)
else:
# 0d-tensor -> scalar
res_ty = scalar_ty
return tl.tensor(x, res_ty)
reduce_op = builder.create_reduce([t.handle for t in inputs], axis)
region_builder_fn(reduce_op)
reduce_op.verify()
return tuple(wrap_tensor(reduce_op.get_result(i), inputs[i].type.scalar) for i in range(len(inputs)))
# ===----------------------------------------------------------------------===
# Associative Scan
# ===----------------------------------------------------------------------===
def associative_scan(inputs: Sequence[tl.tensor], axis: int, region_builder_fn,
builder: ir.builder) -> Tuple[tl.tensor, ...]:
if len(inputs) != 1:
raise ValueError("Current implementation only support single tensor input")
shape = inputs[0].type.shape
def wrap_tensor(x, scalar_ty):
res_ty = tl.block_type(scalar_ty, shape)
return tl.tensor(x, res_ty)
scan_op = builder.create_scan([t.handle for t in inputs], axis)
region_builder_fn(scan_op)
scan_op.verify()
return tuple(wrap_tensor(scan_op.get_result(i), inputs[i].type.scalar) for i in range(len(inputs)))
# ===----------------------------------------------------------------------===
# Math
# ===----------------------------------------------------------------------===
def _check_dtype(dtypes: List[str]) -> T:
"""
We're following libdevice's convention to check accepted data types for math functions.
It is not a good practice to support all data types as accelerators/GPUs don't support
many float16 and bfloat16 math operations.
We should let the users know that they are using and invoke explicit cast to convert
the data type to the supported one.
"""
def wrapper(fn):
@wraps(fn)
def check(*args, **kwargs):
# concatenate args and kwargs
all_args = list(args) + list(kwargs.values())
for arg in [a for a in all_args if isinstance(a, tl.tensor)]:
if arg.type.scalar.name not in dtypes:
raise ValueError(f"Expected dtype {dtypes} but got {arg.type.scalar.name}")
return fn(*args, **kwargs)
return check
return wrapper
def umulhi(x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor:
x, y = binary_op_type_checking_impl(x, y, builder)
# FIXME(Keren): not portable, should be fixed
from . import math
return math.mulhi(x, y, _builder=builder)
@_check_dtype(dtypes=["fp32", "fp64"])
def floor(x: tl.tensor, builder: ir.builder) -> tl.tensor:
# FIXME(Keren): not portable, should be fixed
from . import math
return math.floor(x, _builder=builder)
@_check_dtype(dtypes=["fp32", "fp64"])
def exp(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_exp(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def log(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_log(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def cos(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_cos(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def sin(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_sin(x.handle), x.type)
@_check_dtype(dtypes=["fp32", "fp64"])
def sqrt(x: tl.tensor, builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_sqrt(x.handle), x.type)
def abs(x: tl.tensor, builder: ir.builder) -> tl.tensor:
dtype = x.dtype
if dtype.is_floating():
return tl.tensor(builder.create_fabs(x.handle), x.type)
elif dtype.is_int_signed():
return tl.tensor(builder.create_iabs(x.handle), x.type)
elif dtype.is_int_unsigned():
return x # no-op
else:
assert False, f"Unexpected dtype {dtype}"
##
def multiple_of(x: tl.tensor, values: List[int]) -> tl.tensor:
if max(1, len(x.shape)) != len(values):
raise ValueError("Shape of input to multiple_of does not match the length of values")
x.handle.set_attr("tt.divisibility", ir.make_attr(values, x.handle.get_context()))
return x
def max_contiguous(x: tl.tensor, values: List[int]) -> tl.tensor:
if len(x.shape) != len(values):
raise ValueError("Shape of input to max_contiguous does not match the length of values")
x.handle.set_attr("tt.contiguity", ir.make_attr(values, x.handle.get_context()))
return x
def max_constancy(x: tl.tensor, values: List[int]) -> tl.tensor:
if len(x.shape) != len(values):
raise ValueError("Shape of input to max_constancy does not match the length of values")
x.handle.set_attr("tt.constancy", ir.make_attr(values, x.handle.get_context()))
return x
def debug_barrier(builder: ir.builder) -> tl.tensor:
return tl.tensor(builder.create_barrier(), tl.void)
def device_print(prefix: str, args: List[tl.tensor], builder: ir.builder) -> tl.tensor:
# It makes sense visually for prefix to end in ": "; make it so. Also,
# non-empty prefixes should start with " ".
if not prefix.endswith(" ") and args:
prefix += " "
if not prefix.endswith(": ") and args:
prefix = prefix[:-1] + ": "
if len(prefix) > 2 and not prefix.startswith(" "):
prefix = " " + prefix
new_args = []
for arg in args:
new_args.append(arg.handle)
return tl.tensor(builder.create_print(prefix, new_args), tl.void)
def device_assert(cond: tl.tensor, msg: str, file_name: str, func_name, lineno: int, builder: ir.builder) -> tl.tensor:
cond_ty = cond.type
if not cond_ty.is_block():
cond_ty = tl.block_type(cond_ty.scalar, (1, ))
cond = tl.tensor(builder.create_splat(cond.handle, (1, )), cond_ty)
return tl.tensor(builder.create_assert(cond.handle, msg, file_name, func_name, lineno), tl.void)
def _convert_elem_to_ir_value(builder, elem, require_i64):
if isinstance(elem, int):
elem = tl.constexpr(elem)
if isinstance(elem, tl.constexpr):
return builder.get_int64(elem.value) if require_i64 else builder.get_int32(elem.value)
elif isinstance(elem, tl.tensor):
assert elem.numel.value == 1, "Expected a scalar in shape/strides/offsets"
assert elem.dtype.is_int(), "Expected an integer scalar type in shape/strides/offsets"
if elem.dtype != tl.int64 and require_i64:
return builder.create_int_cast(elem.handle, builder.get_int64_ty(), elem.dtype.is_int_signed())
elif elem.dtype != tl.int32:
return builder.create_int_cast(elem.handle, builder.get_int32_ty(), elem.dtype.is_int_signed())
return elem.handle
assert False, f"Unsupported element type in shape/strides/offsets: {type(elem)}"
def _convert_to_ir_values(builder, list_like, require_i64=True):
if hasattr(list_like, "__iter__"):
return [_convert_elem_to_ir_value(builder, elem, require_i64) for elem in list_like]
return [_convert_elem_to_ir_value(builder, list_like, require_i64)]
def make_block_ptr(base: tl.tensor, shape, strides, offsets, block_shape, order, builder: ir.builder) -> tl.tensor:
# Convert dynamic arguments to IR values
# NOTES(Chenggang): current `shape/strides` are `int64_t`, while `offsets/block_shape` are `int32_t`
shape = _convert_to_ir_values(builder, shape)
strides = _convert_to_ir_values(builder, strides)
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
# Check `base` type
if not base.type.is_ptr() or base.type.element_ty.is_block():
raise ValueError("Expected `base` to be a pointer type (but not a block pointer type or others)")
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if base.type.element_ty == tl.int1:
base = cast(base, tl.pointer_type(tl.int8, base.type.address_space), builder)
# Check whether `block_shape` is static
if not hasattr(block_shape, "__iter__"):
block_shape = [block_shape]
block_shape = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in block_shape]
assert all([isinstance(elem, int) and -2**31 <= elem < 2**31 for elem in block_shape]), \
"Expected a list of constant integers (`int32_t` range) in `block_shape`"
# Check `order`
if not hasattr(order, "__iter__"):
order = [order]
order = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in order]
assert sorted(order) == list(range(len(order))), "Expected a permutation of (0, 1, ..., len(order)-1) in order"
# Must have same length
assert all([len(block_shape) == len(list_like) for list_like in [shape, strides, offsets, order]]), \
"Expected shape/strides/offsets/block_shape to have the same length"
# Build value, the type is:
# `pointer_type<blocked<shape, element_type>>` in Python
# `tt.ptr<tensor<shape, element_type>>` in MLIR
handle = builder.create_make_block_ptr(base.handle, shape, strides, offsets, block_shape, order)
return tl.tensor(handle, tl.pointer_type(tl.block_type(base.type.element_ty, block_shape)))
def advance(base: tl.tensor, offsets, builder: ir.builder) -> tl.tensor:
# Convert dynamic offsets to IR values
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
# Advanced block pointer type is the same as before
return tl.tensor(builder.create_advance(base.handle, offsets), base.type)
|