File size: 10,986 Bytes
4ba564c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
from __future__ import annotations
from ..runtime.jit import jit
from . import core, math
# -----------------------
# Standard library
# -----------------------
@jit
def cdiv(x, div):
"""
Computes the ceiling division of :code:`x` by :code:`div`
:param x: the input number
:type x: Block
:param div: the divisor
:param div: Block
"""
return (x + div - 1) // div
@jit
@core._add_math_1arg_docstr("sigmoid")
def sigmoid(x):
return 1 / (1 + core.exp(-x))
@jit
@core._add_math_1arg_docstr("softmax")
def softmax(x, ieee_rounding=False):
z = x - max(x, 0)
num = core.exp(z)
den = sum(num, 0)
return core.fdiv(num, den, ieee_rounding)
@jit
def ravel(x):
"""
Returns a contiguous flattened view of :code:`x`.
:param x: the input tensor
:type x: Block
"""
return core.view(x, [x.numel])
@jit
def swizzle2d(i, j, size_i, size_j, size_g):
"""
Transforms indices of a row-major size_i*size_j matrix into those
of one where indices are row major for each group of size_j rows.
For example, for size_i = size_j = 4 and size_g = 2, it will transform
[[0 , 1 , 2 , 3 ],
[4 , 5 , 6 , 7 ],
[8 , 9 , 10, 11],
[12, 13, 14, 15]]
into
[[0, 2, 4 , 6 ],
[1, 3, 5 , 7 ],
[8, 10, 12, 14],
[9, 11, 13, 15]]
"""
# "unrolled index in array"
ij = i * size_j + j
# number of elements in `size_g` groups
# of `size_j` columns
size_gj = size_g * size_j
# index of the group in which (i,j) is
group_id = ij // size_gj
# row-index of the first element of this group
off_i = group_id * size_g
# last group may have fewer rows
size_g = minimum(size_i - off_i, size_g)
# new row and column indices
new_i = off_i + (ij % size_g)
new_j = (ij % size_gj) // size_g
return new_i, new_j
@jit
def zeros(shape, dtype):
"""
Returns a tensor filled with the scalar value 0 for the given :code:`shape` and :code:`dtype`.
:param shape: Shape of the new array, e.g., (8, 16) or (8, )
:type shape: tuple of ints
:param dtype: Data-type of the new array, e.g., :code:`tl.float16`
:type dtype: DType
"""
return core.full(shape, 0, dtype)
@jit
def zeros_like(input):
return zeros(input.shape, input.dtype)
@jit
def minimum(x, y):
"""
Computes the element-wise minimum of :code:`x` and :code:`y`.
:param input: the first input tensor
:type input: Block
:param other: the second input tensor
:type other: Block
"""
return math.min(x, y)
@jit
def maximum(x, y):
"""
Computes the element-wise maximum of :code:`x` and :code:`y`.
:param input: the first input tensor
:type input: Block
:param other: the second input tensor
:type other: Block
"""
return math.max(x, y)
# max and argmax
@jit
def _argmax_combine(value1, index1, value2, index2, tie_break_left):
if tie_break_left:
tie = value1 == value2 and index1 < index2
else:
tie = False
gt = value1 > value2 or tie
v_ret = core.where(gt, value1, value2)
i_ret = core.where(gt, index1, index2)
return v_ret, i_ret
@jit
def _argmax_combine_tie_break_left(value1, index1, value2, index2):
return _argmax_combine(value1, index1, value2, index2, True)
@jit
def _argmax_combine_tie_break_fast(value1, index1, value2, index2):
return _argmax_combine(value1, index1, value2, index2, False)
@jit
@core._add_reduction_docstr("maximum", return_indices_arg="return_indices",
tie_break_arg="return_indices_tie_break_left")
def max(input, axis=None, return_indices=False, return_indices_tie_break_left=True):
input = core._promote_reduction_input(input)
if return_indices:
if return_indices_tie_break_left:
return core._reduce_with_indices(input, axis, _argmax_combine_tie_break_left)
else:
return core._reduce_with_indices(input, axis, _argmax_combine_tie_break_fast)
else:
if core.constexpr(input.dtype.primitive_bitwidth) < core.constexpr(32):
if core.constexpr(input.dtype.is_floating()):
input = input.to(core.float32)
else:
assert input.dtype.is_integer_type()
input = input.to(core.int32)
return core.reduce(input, axis, maximum)
@jit
@core._add_reduction_docstr("maximum index", tie_break_arg="tie_break_left")
def argmax(input, axis, tie_break_left=True):
(_, ret) = max(input, axis, return_indices=True, return_indices_tie_break_left=tie_break_left)
return ret
# min and argmin
@jit
def _argmin_combine(value1, index1, value2, index2, tie_break_left):
if tie_break_left:
tie = value1 == value2 and index1 < index2
else:
tie = False
lt = value1 < value2 or tie
value_ret = core.where(lt, value1, value2)
index_ret = core.where(lt, index1, index2)
return value_ret, index_ret
@jit
def _argmin_combine_tie_break_left(value1, index1, value2, index2):
return _argmin_combine(value1, index1, value2, index2, True)
@jit
def _argmin_combine_tie_break_fast(value1, index1, value2, index2):
return _argmin_combine(value1, index1, value2, index2, False)
@jit
@core._add_reduction_docstr("minimum", return_indices_arg="return_indices",
tie_break_arg="return_indices_tie_break_left")
def min(input, axis=None, return_indices=False, return_indices_tie_break_left=True):
input = core._promote_reduction_input(input)
if return_indices:
if return_indices_tie_break_left:
return core._reduce_with_indices(input, axis, _argmin_combine_tie_break_left)
else:
return core._reduce_with_indices(input, axis, _argmin_combine_tie_break_fast)
else:
if core.constexpr(input.dtype.primitive_bitwidth) < 32:
if core.constexpr(input.dtype.is_floating()):
input = input.to(core.float32)
else:
assert input.dtype.is_integer_type()
input = input.to(core.int32)
return core.reduce(input, axis, minimum)
@jit
@core._add_reduction_docstr("minimum index", tie_break_arg="tie_break_left")
def argmin(input, axis, tie_break_left=True):
_, ret = min(input, axis, return_indices=True, return_indices_tie_break_left=tie_break_left)
return ret
@jit
def _sum_combine(a, b):
return a + b
# sum
@jit
@core._add_reduction_docstr("sum")
def sum(input, axis=None):
input = core._promote_reduction_input(input)
return core.reduce(input, axis, _sum_combine)
@jit
def _xor_combine(a, b):
return a ^ b
# xor sum
@core.builtin
@core._add_reduction_docstr("xor sum")
def xor_sum(input, axis=None, _builder=None, _generator=None):
scalar_ty = input.type.scalar
if not scalar_ty.is_int():
raise ValueError("xor_sum only supported for integers")
input = core._promote_reduction_input(input, _builder=_builder)
return core.reduce(input, axis, _xor_combine, _builder=_builder, _generator=_generator)
# cumsum
@jit
@core._add_scan_docstr("cumsum")
def cumsum(input, axis=0):
# todo rename this to a generic function name
input = core._promote_reduction_input(input)
return core.associative_scan(input, axis, _sum_combine)
# cumprod
@jit
def _prod_combine(a, b):
return a * b
@jit
@core._add_scan_docstr("cumprod")
def cumprod(input, axis=0):
# todo rename this to a generic function name
input = core._promote_reduction_input(input)
return core.associative_scan(input, axis, _prod_combine)
# sort
@jit
def _indicator(n_dims: core.constexpr, idx: core.constexpr, pos: core.constexpr):
core.static_assert(idx < n_dims)
core.static_assert((pos == 0) or (pos == 1))
y = core.arange(0, 2)
if pos == 0:
y = 1 - y
for n in core.static_range(0, n_dims):
if n != n_dims - 1 - idx:
y = core.expand_dims(y, n)
return y
@jit
def _take_slice(x, n_dims: core.constexpr, idx: core.constexpr, pos: core.constexpr, keep_dim: core.constexpr = True):
y = sum(x * _indicator(n_dims, idx, pos), n_dims - 1 - idx)
if keep_dim:
y = core.expand_dims(y, n_dims - 1 - idx)
return y
@jit
def _compare_and_swap(x, desc_mask, n_dims: core.constexpr, idx: core.constexpr):
l = _take_slice(x, n_dims, idx, 0)
r = _take_slice(x, n_dims, idx, 1)
x_int = x
l_int = l
r_int = r
if x.dtype.is_floating():
if core.constexpr(x.dtype.primitive_bitwidth) == 16:
dtype_int = core.int16
elif core.constexpr(x.dtype.primitive_bitwidth) == 32:
dtype_int = core.int32
elif core.constexpr(x.dtype.primitive_bitwidth) == 64:
dtype_int = core.int64
else:
raise ValueError("Unsupported dtype")
x_int = x.to(dtype_int, bitcast=True)
l_int = l.to(dtype_int, bitcast=True)
r_int = r.to(dtype_int, bitcast=True)
desc_mask = desc_mask.to(x_int.dtype)
zero = zeros_like(x_int)
y = x_int ^ core.where((l > r) ^ desc_mask, l_int ^ r_int, zero)
y = y.to(x.dtype, bitcast=True)
return y
@jit
def _bitonic_merge(x, n_dims: core.constexpr, active_dims: core.constexpr, order_type: core.constexpr):
'''
order_type 0 == ascending
order_type 1 == descending
order_type 2 == alternating
'''
core.static_assert(active_dims <= n_dims)
if order_type == 2:
desc_mask = _indicator(n_dims, active_dims, 1)
else:
desc_mask = order_type
for i in core.static_range(active_dims):
x = _compare_and_swap(x, desc_mask, n_dims, active_dims - 1 - i)
return x
def _log2(i: core.constexpr):
log2 = 0
n = i.value
while n > 1:
n >>= 1
log2 += 1
return core.constexpr(log2)
def _is_power_of_two(i: core.constexpr):
n = i.value
return core.constexpr((n & (n - 1)) == 0 and n != 0)
def _unwrap_if_constexpr(o):
return o.value if isinstance(o, core.constexpr) else o
def _get_sort_dim(dim, shape):
dim = _unwrap_if_constexpr(dim)
shape = _unwrap_if_constexpr(shape)
if dim is None:
dim = len(shape) - 1
assert dim == len(shape) - 1, "Currently only support sorting on the last dimension"
return core.constexpr(dim)
@jit
def sort(x, dim=None, descending: core.constexpr = 0):
core.static_assert(_is_power_of_two(x.shape[_get_sort_dim(dim, x.shape)]))
core.static_assert(_is_power_of_two(x.numel))
# reshape the tensor to have all dimensions be 2.
# TODO: We shouldn't have to change the dimensions not sorted.
y = core.reshape(x, [2] * _log2(x.numel))
for i in core.static_range(1, _log2(x.shape[_get_sort_dim(dim, x.shape)]) + 1):
y = _bitonic_merge(y, _log2(x.numel), i, (descending if
(i == _log2(x.shape[_get_sort_dim(dim, x.shape)])) else 2))
x = core.reshape(y, x.shape)
return x
|