File size: 15,920 Bytes
4ba564c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import torch

from ... import cdiv, heuristics, jit
from ... import language as tl

# ********************************************************
# --------------------------------------------------------
# Sparse = Dense x Dense (SDD)
# This operation uses super-blocking to make sure that
# it's done efficiently when small blocks can be grouped
# together
# --------------------------------------------------------
# ********************************************************


@heuristics({
    'EVEN_K': lambda nargs: nargs['K'] % nargs['TILE_K'] == 0,
})
@jit
def _sdd_kernel(A, B, C,  #
                stride_za, stride_ha, stride_ma, stride_ak,  #
                stride_zb, stride_hb, stride_bk, stride_nb,  #
                stride_zc, stride_hc, stride_mc, stride_nc,  #
                K, grid_offset, lut,  #
                TILE_M: tl.constexpr, TILE_N: tl.constexpr, TILE_K: tl.constexpr,  #
                BLOCK: tl.constexpr, EVEN_K: tl.constexpr  #
                ):
    # ------------ #
    # - Prologue - #
    # ------------ #
    block_id = tl.program_id(0) + grid_offset
    lut += block_id * 3
    # offsets
    off_z = tl.program_id(2)  # batch
    off_h = tl.load(lut + 0)  # head

    # initialize pointers to A
    start_am = tl.load(lut + 1)
    offs_am = start_am * BLOCK + (tl.arange(0, TILE_M) % BLOCK)
    offs_ak = tl.arange(0, TILE_K)
    a_ptrs = A \
        + off_z * stride_za \
        + off_h * stride_ha \
        + offs_am[:, None] * stride_ma \
        + offs_ak[None, :] * stride_ak
    # initialize pointers to B
    start_bn = tl.load(lut + 2)
    offs_bn = start_bn * BLOCK + (tl.arange(0, TILE_N) % BLOCK)
    offs_bk = tl.arange(0, TILE_K)
    b_ptrs = B \
        + off_z * stride_zb \
        + off_h * stride_hb \
        + offs_bn[None, :] * stride_nb \
        + offs_bk[:, None] * stride_bk
    # ---------------- #
    #    Inner Loop    #
    # ---------------- #
    acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32)
    for k in range(K, 0, -TILE_K):
        if EVEN_K:
            a = tl.load(a_ptrs)
            b = tl.load(b_ptrs)
        else:
            a = tl.load(a_ptrs, mask=offs_ak[None, :] < k, other=0.)
            b = tl.load(b_ptrs, mask=offs_bk[:, None] < k, other=0.)
        acc += tl.dot(a, b, out_dtype=tl.float32)
        a_ptrs += TILE_K * stride_ak
        b_ptrs += TILE_K * stride_bk
    c = acc.to(C.dtype.element_ty)
    # ---------------- #
    #    Epilogue      #
    # ---------------- #
    offs_cm = tl.arange(0, TILE_M) % BLOCK
    offs_cn = tl.arange(0, TILE_N) % BLOCK
    pc = C \
        + off_z * stride_zc \
        + block_id * stride_hc \
        + offs_cm[:, None] * stride_mc \
        + offs_cn[None, :] * stride_nc
    tl.store(pc, c, mask=True)


def sdd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, widths, out=None):
    if a.stride(2) != 1 and a.stride(3) != 1:
        a = a.contiguous()
    if b.stride(2) != 1 and b.stride(3) != 1:
        b = b.contiguous()
    # (A * B)^T = B^T * A^T
    if trans_c:
        a, b = b, a
        trans_a, trans_b = not trans_b, not trans_a
    # shape constraints
    a_dim = -2 if trans_a else -1
    b_dim = -1 if trans_b else -2
    Ka, Kb = a.shape[a_dim], b.shape[b_dim]
    if Ka != Kb:
        raise ValueError(f"Inner dimension mismatch (A: {Ka} vs B: {Kb})")
    # allocate output
    if out is None:
        c = torch.empty((a.shape[0], lut.shape[0], block, block), dtype=a.dtype, device=a.device)
    else:
        assert out.shape == (a.shape[0], lut.shape[0], block, block)
        c = out
    grid = [c.shape[1], 1, c.shape[0]]
    _sdd_kernel[grid](
        a, b, c,  #
        a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3),  #
        b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3),  #
        c.stride(0), c.stride(1), c.stride(2), c.stride(3),  #
        Ka, 0, lut,  #
        TILE_M=block, TILE_N=block, TILE_K=32, BLOCK=block, num_stages=4,  #
        num_warps=4  #
    )
    return c


def sdd_lut(layout, block, device):
    lut = layout.nonzero(as_tuple=False).to(device).int()
    lut = lut.contiguous()
    return lut, None


# -----------------------------
# Dense = Sparse x Dense (DSD)
# This operation uses a look-up table that contains pre-computed pointer increments
# in order to minimize computations in the inner loop of the matmul kernel.
# -----------------------------


@jit
def _dsd_kernel(A, B, C,  #
                stride_az, stride_ha, stride_am, stride_ak,  #
                stride_zb, stride_hb, stride_bk, stride_bn,  #
                stride_zc, stride_hc, stride_cm, stride_cn,  #
                DS0, DS1, lut,  #
                TILE_M: tl.constexpr, TILE_N: tl.constexpr, TILE_K: tl.constexpr,  #
                GROUP_SIZE_M: tl.constexpr, BLOCK: tl.constexpr  #
                ):
    # ------------ #
    # - Prologue - #
    # ------------ #
    pid_m = tl.program_id(0)
    pid_n = tl.program_id(1)
    num_pid_m = tl.num_programs(0)
    num_pid_n = tl.num_programs(1)
    pid_n, pid_m = tl.swizzle2d(pid_n, pid_m, num_pid_n, num_pid_m, GROUP_SIZE_M)
    pidz = tl.program_id(2)
    header = lut + pid_n * 4
    offset = tl.load(header + 0)
    K = tl.load(header + 1)
    column = tl.load(header + 2)
    off_h = tl.load(header + 3)
    pinc = lut + offset
    # initialize pointers to A (sparse)
    block_id = tl.load(pinc + 1)
    block_id = tl.multiple_of(block_id, 8)  # compiler hint
    offs_am = tl.arange(0, TILE_M)
    offs_ak = tl.arange(0, TILE_K)
    pa = A + pidz * stride_az \
        + block_id * stride_ha \
        + offs_am[:, None] * stride_am \
        + offs_ak[None, :] * stride_ak
    # initialize pointers to B (dense)
    offs_bn = pid_m * TILE_N + tl.arange(0, TILE_N)
    offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn % DS0, TILE_N), TILE_N)
    start_bk = tl.load(pinc)
    start_bk = tl.multiple_of(start_bk, 8)  # compiler hint
    offs_bk = start_bk + tl.arange(0, TILE_K)
    pb = B + pidz * stride_zb \
        + off_h * stride_hb \
        + offs_bn[None, :] * stride_bn \
        + offs_bk[:, None] * stride_bk
    # ---------------- #
    #    Inner Loop    #
    # ---------------- #
    acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32)
    pinc += 2
    inc_a = tl.load(pinc + 1)
    inc_a = tl.multiple_of(inc_a, 8)
    inc_b = tl.load(pinc)
    inc_b = tl.multiple_of(inc_b, 8)
    for k in range(K, 0, -TILE_K):
        a = tl.load(pa)
        b = tl.load(pb)
        acc += tl.dot(a, b, out_dtype=tl.float32)
        pa += inc_a
        pb += inc_b * stride_bk
        pinc += 2
        inc_a = tl.load(pinc + 1)
        inc_a = tl.multiple_of(inc_a, 8)
        inc_b = tl.load(pinc)
        inc_b = tl.multiple_of(inc_b, 8)
    c = acc.to(C.dtype.element_ty)
    # initialize pointers to C
    offs_cm = column * TILE_M + tl.arange(0, TILE_M)
    offs_cn = pid_m * TILE_N + tl.arange(0, TILE_N)
    pc = C \
        + off_h * stride_hc \
        + pidz * stride_zc \
        + offs_cm[:, None] * stride_cm \
        + offs_cn[None, :] * stride_cn
    tl.store(pc, c, mask=offs_cn[None, :] < DS0)


def dsd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out=None):
    if a.stride(2) != 1 and a.stride(3) != 1:
        a = a.contiguous()
    if b.stride(2) != 1 and b.stride(3) != 1:
        b = b.contiguous()
    # shapes / dtypes
    AS1 = block * spdims[2 if trans_a else 1]
    BS0 = b.size(0)
    BS1 = b.size(1)
    BS3 = b.size(2 if trans_b else 3)
    dtype = a.dtype
    # allocate output
    CS0 = BS0
    CS1 = BS1
    CS2 = BS3 if trans_c else AS1
    CS3 = AS1 if trans_c else BS3
    if out is None:
        c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device)
    else:
        assert out.shape == (CS0, CS1, CS2, CS3)
        c = out
    # meta-parameter heuristics
    TILE_N = 128
    # compute output
    grid = lambda meta: [cdiv(BS3, meta['TILE_N']), width, BS0]
    _dsd_kernel[grid](
        a, b, c,  #
        a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3),  #
        b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3),  #
        c.stride(0), c.stride(1), c.stride(3 if trans_c else 2), c.stride(2 if trans_c else 3),  #
        BS3, AS1, lut,  #
        TILE_M=block, TILE_N=TILE_N, TILE_K=min(block, 32), BLOCK=block, num_stages=4,  #
        num_warps=4, GROUP_SIZE_M=4  #
    )
    # exit()
    return c


def dsd_lut(layout, block, step, trans, device):
    """
    Generates the look-up table for incrementing pointers in the DSD/DDS matmul.
    Example (BLOCK=32, STEP=16)
    [[1, 0, 0, 1, 0],
     [0, 1, 1, 0, 1],
     [1, 0, 1, 0, 0]]

    Then the offsets for A are
     [0 , 16, 32, 48] <- row 0
      \\----/  \\----/
      col=0   col=3
     [64, 80, 96, 112, 128, 144] <- row 1
      \\----/   \\----/  \\------/
       col=1    col=2    col=3
     [160, 176, 192, 208]
    which leads to increments table
    [0, 16, 16, 16, || 64, 16, 16, 16, 16, 16, || 160, 16, 16, 16]

    Because B is dense, the offsets are
    [0, 16, 96, 112] <- row 0
    [32, 48, 64, 80]  <- row 1
    [0, 16, 64, 80]   <- row 2
    """
    sizes = torch.sum(layout, 2 if trans else 1)
    head_id, col_id = torch.ones_like(sizes).nonzero(as_tuple=True)
    sizes = sizes.flatten()
    segments = sizes * step
    # pointer increments
    if trans:
        nnz = layout.nonzero(as_tuple=False)
    else:
        nnz = layout.transpose(1, 2).nonzero(as_tuple=False)
    num_blocks = nnz.size(0)
    offsets = torch.zeros_like(sizes)
    offsets[1:] = torch.cumsum(sizes[:-1], dim=0)
    offsets = torch.min(offsets, (num_blocks - 1) * torch.ones_like(offsets))
    # -------------------------------
    # dense input pointer increments
    # -------------------------------
    # Note that the inner loop matmul kernel may have a fixed step size (e.g., TILE_K)
    # that is smaller than the block size, so we need to do a bit of extra work
    # to handle this case
    B_idx = nnz[:, 2] * block
    B_incs = B_idx.clone()
    B_incs[1:] -= B_idx[:-1]
    div = block // step
    B_incs = B_incs.view(-1, 1).repeat(1, div)
    B_incs[:, 1:] = step
    B_incs[:, 0] -= (div - 1) * step
    # first increment for each reduction is actually the offset
    B_incs[offsets[segments > 0], 0] = B_idx[offsets[segments > 0]]
    B_incs = B_incs.view(-1)
    # -------------------------------
    # sparse input pointer increments
    # -------------------------------
    # same as above, except that the increments are in the sparse memory layout
    if trans:
        A_idx = torch.arange(num_blocks, device=layout.device)
    else:
        A_idx = torch.tensor([], dtype=torch.int64, device=layout.device)
        current_offset = 0
        for z in range(layout.size(0)):
            layoutw = layout[z, :, :].clone().long()
            msum = layoutw.sum()
            layoutw[layoutw > 0] = 1 + torch.arange(msum, device=layout.device)
            A_idx = torch.cat((A_idx, current_offset + layoutw.T[layoutw.T > 0] - 1))
            current_offset += msum
    A_incs = A_idx * block * block
    A_incs[1:] -= A_idx[:-1] * block * block
    A_incs = A_incs.view(-1, 1).repeat(1, div)
    if trans:
        A_incs[:, 1:] = step
        A_incs[:, 0] -= (div - 1) * step
    else:
        A_incs[:, 1:] = step * block
        A_incs[:, 0] -= (div - 1) * step * block
    A_incs[offsets[segments > 0], 0] = A_idx[offsets[segments > 0]]
    A_incs = A_incs.view(-1)
    # create header
    width = col_id.size(0)
    offsets = offsets * 2 * div + 4 * width
    segments = segments * div
    header = torch.stack((offsets, segments, col_id, head_id), dim=1).view(-1).contiguous()
    # create increments
    incs = torch.stack((B_incs, A_incs), dim=1).view(-1).contiguous()
    # pad by a factor 2*MAX_NUM_STAGES
    # to accommodate pre-fetching inside the kernel
    pad = torch.zeros(20, device=incs.device, dtype=incs.dtype)
    incs = torch.cat((incs, pad))
    # create lut
    lut = torch.cat((header, incs))
    lut = lut.type(torch.int32).to(device)
    # create locks
    return lut, width


# -----------------------------
# Dense = Dense x Sparse (DDS)
# -----------------------------
# AB = (B^T A^T)^T


def dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out=None):
    return dsd_matmul(b, a, not trans_b, not trans_a, not trans_c, spdims, block, lut, width, out=out)


##############
#  MAIN API  #
##############


class _matmul(torch.autograd.Function):

    fn = {'sdd': sdd_matmul, 'dsd': dsd_matmul, 'dds': dds_matmul}

    @staticmethod
    def forward(ctx, a, b, trans_a, trans_b, trans_c, mode, spdims, block, c_lut, c_width, da_lut, da_width, db_lut,
                db_width, out):
        c = _matmul.fn[mode](a, b, trans_a, trans_b, trans_c, spdims, block, c_lut, c_width, out=out)
        # save for backward
        ctx.save_for_backward(a, b)
        ctx.da_lut = da_lut
        ctx.da_width = da_width
        ctx.db_lut = db_lut
        ctx.db_width = db_width
        ctx.mode = mode
        ctx.spdims = spdims
        ctx.block = block
        ctx.trans_a = trans_a
        ctx.trans_b = trans_b
        ctx.trans_c = trans_c
        ctx.has_out = out is not None
        return c

    @staticmethod
    def backward(ctx, dc):
        # saved for backward
        a, b = ctx.saved_tensors
        da, db = None, None
        mode = ctx.mode
        # gradients w.r.t. a
        if ctx.needs_input_grad[0]:
            mode_da = mode[1] + mode[0] + mode[2]
            da = _matmul.fn[mode_da](dc, b, ctx.trans_c, not ctx.trans_b, ctx.trans_a, ctx.spdims, ctx.block,
                                     ctx.da_lut, ctx.da_width)
        # gradients w.r.t. b
        if ctx.needs_input_grad[1]:
            mode_db = mode[2] + mode[1] + mode[0]
            db = _matmul.fn[mode_db](a, dc, not ctx.trans_a, ctx.trans_c, ctx.trans_b, ctx.spdims, ctx.block,
                                     ctx.db_lut, ctx.db_width)
        dout = dc if ctx.has_out else None
        return da, db, None, None, None, \
            None, None, None, None, \
            None, None, None, None, None, dout


class matmul:

    def __init__(self, layout, block, mode, device, trans_a=False, trans_b=False, trans_c=False):
        if mode not in ['sdd', 'dsd', 'dds']:
            raise NotImplementedError('Supported modes are: sdd, dsd, dds')
        self.block = block
        self.mode = mode
        self.trans_a = trans_a
        self.trans_b = trans_b
        self.trans_c = trans_c
        self.layout = layout
        self.spdims = layout.shape
        step = min(block, 32)
        if self.mode == 'sdd':
            self.c_lut, self.c_width = sdd_lut(layout, block, device)
            self.da_lut, self.da_width = dsd_lut(layout, block, step, True, device)
            self.db_lut, self.db_width = dsd_lut(layout, block, step, False, device)
        if self.mode == 'dsd':
            self.c_lut, self.c_width = dsd_lut(layout, block, step, not self.trans_a, device)
            self.da_lut, self.da_width = sdd_lut(layout, block, device)
            self.db_lut, self.db_width = dsd_lut(layout, block, step, self.trans_a, device)
        if self.mode == 'dds':
            self.c_lut, self.c_width = dsd_lut(layout, block, step, self.trans_b, device)
            self.da_lut, self.da_width = dsd_lut(layout, block, step, not self.trans_b, device)
            self.db_lut, self.db_width = sdd_lut(layout, block, device)

    def __call__(self, a, b, out=None):
        c = _matmul.apply(a, b, self.trans_a, self.trans_b, self.trans_c, self.mode, self.spdims, self.block,  #
                          self.c_lut, self.c_width,  #
                          self.da_lut, self.da_width,  #
                          self.db_lut, self.db_width,  #
                          out)
        return c