File size: 13,612 Bytes
4ba564c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
from __future__ import annotations
import builtins
import time
from typing import Dict
from ..testing import do_bench
from .jit import KernelInterface
class OutOfResources(Exception):
def __init__(self, required, limit, name):
self.message = (f"out of resource: {name}, Required: {required}, Hardware limit: {limit}. " +
"Reducing block sizes or `num_stages` may help.")
self.required = required
self.limit = limit
self.name = name
super().__init__(self.message)
def __reduce__(self):
# this is necessary to make CompilationError picklable
return (type(self), (self.required, self.limit, self.name))
class Autotuner(KernelInterface):
def __init__(
self,
fn,
arg_names,
configs,
key,
reset_to_zero,
restore_value,
prune_configs_by: Dict = None,
warmup=25,
rep=100,
):
"""
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'prune_num_stages_by'(optional): a function used to prune num_stages. It takes configs:List[Config] as its input, and returns pruned configs.
"""
if not configs:
self.configs = [Config({}, num_warps=4, num_stages=2, num_ctas=1)]
else:
self.configs = configs
self.key_idx = [arg_names.index(k) for k in key]
self.cache = {}
self.arg_names = arg_names
# Reset to zero or restore values
self.reset_idx = []
if reset_to_zero is not None:
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
self.restore_idx = []
if restore_value is not None:
self.restore_idx = [arg_names.index(k) for k in restore_value]
# Hook to reset or restore for required tensors
self.pre_hook = lambda args, reset_only=False: 0
self.post_hook = lambda args: 0
if len(self.reset_idx) > 0 or len(self.restore_idx) > 0:
def _pre_hook(args, reset_only=False):
for i in self.reset_idx:
args[i].zero_()
if not reset_only:
self.restore_copies = [args[i].clone() for i in self.restore_idx]
self.pre_hook = _pre_hook
if len(self.restore_idx) > 0:
def _post_hook(args):
for i, j in enumerate(self.restore_idx):
args[j].copy_(self.restore_copies[i])
self.restore_copies = []
self.post_hook = _post_hook
self.perf_model = None
self.configs_top_k = 1.0
self.early_config_prune = None
if prune_configs_by:
self.perf_model = prune_configs_by.get("perf_model", self.perf_model)
self.configs_top_k = prune_configs_by.get("top_k", self.configs_top_k)
self.early_config_prune = prune_configs_by.get("early_config_prune", self.early_config_prune)
self.fn = fn
self.warmup = warmup
self.rep = rep
def _bench(self, *args, config, **meta):
# check for conflicts, i.e. meta-parameters both provided
# as kwargs and by the autotuner
conflicts = meta.keys() & config.kwargs.keys()
if conflicts:
raise ValueError(f"Conflicting meta-parameters: {', '.join(conflicts)}."
" Make sure that you don't re-define auto-tuned symbols.")
# augment meta-parameters with tunable ones
current = dict(meta, **config.kwargs)
full_nargs = {**self.nargs, **current}
def kernel_call():
if config.pre_hook:
config.pre_hook(full_nargs)
self.pre_hook(args)
self.fn.run(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
num_ctas=config.num_ctas,
enable_warp_specialization=config.enable_warp_specialization,
# enable_persistent=False,
**current,
)
self.post_hook(args)
try:
return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
except OutOfResources:
return [float("inf"), float("inf"), float("inf")]
def run(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
if len(self.configs) > 1:
all_args = {**self.nargs, **kwargs}
_args = []
for name in self.arg_names:
if name in all_args:
_args.append(all_args[name])
key = [_args[i] for i in self.key_idx]
for arg in _args:
if hasattr(arg, "dtype"):
key.append(str(arg.dtype))
key = tuple(key)
if key not in self.cache:
# prune configs
pruned_configs = self.prune_configs(kwargs)
bench_start = time.time()
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
bench_end = time.time()
self.bench_time = bench_end - bench_start
self.cache[key] = builtins.min(timings, key=timings.get)
self.pre_hook(args, reset_only=True)
self.configs_timings = timings
config = self.cache[key]
else:
config = self.configs[0]
self.best_config = config
full_nargs = {**self.nargs, **kwargs, **self.best_config.kwargs}
if config.pre_hook is not None:
config.pre_hook(full_nargs)
ret = self.fn.run(
*args,
num_warps=config.num_warps,
num_stages=config.num_stages,
num_ctas=config.num_ctas,
enable_warp_specialization=config.enable_warp_specialization,
**kwargs,
**config.kwargs,
)
self.nargs = None
return ret
def prune_configs(self, kwargs):
pruned_configs = self.configs
if self.early_config_prune:
pruned_configs = self.early_config_prune(self.configs, self.nargs)
if self.perf_model:
top_k = self.configs_top_k
if isinstance(top_k, float) and top_k <= 1.0:
top_k = int(len(self.configs) * top_k)
if len(pruned_configs) > top_k:
est_timing = {
config:
self.perf_model(
**self.nargs,
**kwargs,
**config.kwargs,
num_stages=config.num_stages,
num_warps=config.num_warps,
num_ctas=config.num_ctas,
enable_warp_specialization=config.enable_warp_specialization,
enable_persistent=config.enable_persistent,
)
for config in pruned_configs
}
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
return pruned_configs
def warmup(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
for config in self.prune_configs(kwargs):
self.fn.warmup(
*args,
num_warps=config.num_warps,
num_ctas=config.num_ctas,
num_stages=config.num_stages,
enable_warp_specialization=config.enable_warp_specialization,
enable_persistent=config.enable_persistent,
**kwargs,
**config.kwargs,
)
self.nargs = None
class Config:
"""
An object that represents a possible kernel configuration for the auto-tuner to try.
:ivar meta: a dictionary of meta-parameters to pass to the kernel as keyword arguments.
:type meta: dict[Str, Any]
:ivar num_warps: the number of warps to use for the kernel when compiled for GPUs. For example, if
`num_warps=8`, then each kernel instance will be automatically parallelized to
cooperatively execute using `8 * 32 = 256` threads.
:type num_warps: int
:ivar num_stages: the number of stages that the compiler should use when software-pipelining loops.
Mostly useful for matrix multiplication workloads on SM80+ GPUs.
:type enable_warp_specialization: bool
:ivar enable_warp_specialization: enable specialization (spatial partitioning) or not. See https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#spatial-partitioning-also-known-as-warp-specialization
:ivar pre_hook: a function that will be called before the kernel is called. Parameters of this
function are args.
"""
def __init__(self, kwargs, num_warps=4, num_stages=2, num_ctas=1, enable_warp_specialization=False, pre_hook=None):
self.kwargs = kwargs
self.num_warps = num_warps
self.num_ctas = num_ctas
self.num_stages = num_stages
self.enable_warp_specialization = enable_warp_specialization
# TODO[shuhaoj]: May make enable_persistent configurable in future if necessary.
self.enable_persistent = False
self.pre_hook = pre_hook
def __str__(self):
res = []
for k, v in self.kwargs.items():
res.append(f"{k}: {v}")
res.append(f"num_warps: {self.num_warps}")
res.append(f"num_ctas: {self.num_ctas}")
res.append(f"num_stages: {self.num_stages}")
res.append(f"enable_warp_specialization: {self.enable_warp_specialization}")
res.append(f"enable_persistent: {self.enable_persistent}")
return ", ".join(res)
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, restore_value=None, warmup=25, rep=100):
"""
Decorator for auto-tuning a :code:`triton.jit`'d function.
.. highlight:: python
.. code-block:: python
@triton.autotune(configs=[
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
],
key=['x_size'] # the two above configs will be evaluated anytime
# the value of x_size changes
)
@triton.jit
def kernel(x_ptr, x_size, **META):
BLOCK_SIZE = META['BLOCK_SIZE']
:note: When all the configurations are evaluated, the kernel will run multiple times.
This means that whatever value the kernel updates will be updated multiple times.
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
resets the value of the provided tensor to `zero` before running any configuration.
:param configs: a list of :code:`triton.Config` objects
:type configs: list[triton.Config]
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
:type key: list[str]
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It takes configs:List[Config] as its input, and returns pruned configs.
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
:type reset_to_zero: list[str]
:param restore_value: a list of argument names whose value will be restored after evaluating any configs.
:type restore_value: list[str]
:param warmup: Warmup time (in ms) to pass to benchmarking, defaults to 25.
:type warmup: int
:param rep: Repetition time (in ms) to pass to benchmarking, defaults to 100.
:type rep: int
"""
def decorator(fn):
return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, restore_value, prune_configs_by, warmup, rep)
return decorator
class Heuristics(KernelInterface):
def __init__(self, fn, arg_names, values) -> None:
self.fn = fn
self.values = values
self.arg_names = arg_names
def run(self, *args, **kwargs):
for v, heur in self.values.items():
kwargs[v] = heur({**dict(zip(self.arg_names, args)), **kwargs})
return self.fn.run(*args, **kwargs)
def heuristics(values):
"""
Decorator for specifying how the values of certain meta-parameters may be computed.
This is useful for cases where auto-tuning is prohibitevely expensive, or just not applicable.
.. highlight:: python
.. code-block:: python
@triton.heuristics(values={'BLOCK_SIZE': lambda args: 2 ** int(math.ceil(math.log2(args[1])))})
@triton.jit
def kernel(x_ptr, x_size, **META):
BLOCK_SIZE = META['BLOCK_SIZE'] # smallest power-of-two >= x_size
:param values: a dictionary of meta-parameter names and functions that compute the value of the meta-parameter.
each such function takes a list of positional arguments as input.
:type values: dict[str, Callable[[list[Any]], Any]]
"""
def decorator(fn):
return Heuristics(fn, fn.arg_names, values)
return decorator
|