File size: 22,730 Bytes
4ba564c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
#include "cuda.h"
#include <dlfcn.h>
#include <stdbool.h>
#define PY_SSIZE_T_CLEAN
#include <Python.h>
// Raises a Python exception and returns false if code is not CUDA_SUCCESS.
static bool gpuAssert(CUresult code, const char *file, int line) {
if (code == CUDA_SUCCESS)
return true;
const char *prefix = "Triton Error [CUDA]: ";
const char *str;
cuGetErrorString(code, &str);
char err[1024] = {0};
strcat(err, prefix);
strcat(err, str);
PyGILState_STATE gil_state;
gil_state = PyGILState_Ensure();
PyErr_SetString(PyExc_RuntimeError, err);
PyGILState_Release(gil_state);
return false;
}
// To be used only *outside* a Py_{BEGIN,END}_ALLOW_THREADS block.
#define CUDA_CHECK_AND_RETURN_NULL(ans) \
do { \
if (!gpuAssert((ans), __FILE__, __LINE__)) \
return NULL; \
} while (0)
// To be used inside a Py_{BEGIN,END}_ALLOW_THREADS block.
#define CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(ans) \
do { \
if (!gpuAssert((ans), __FILE__, __LINE__)) { \
PyEval_RestoreThread(_save); \
return NULL; \
} \
} while (0)
#define ADD_ENUM_ITEM(value) \
do { \
PyObject *py_value = PyLong_FromLong(value); \
PyDict_SetItemString(enum_dict, #value, py_value); \
} while (0)
#define ADD_ENUM_ITEM_0()
#define ADD_ENUM_ITEM_1(v1) ADD_ENUM_ITEM(v1)
#define ADD_ENUM_ITEM_2(v1, v2) \
ADD_ENUM_ITEM(v1); \
ADD_ENUM_ITEM(v2);
#define ADD_ENUM_ITEM_3(v1, v2, v3) \
ADD_ENUM_ITEM(v1); \
ADD_ENUM_ITEM(v2); \
ADD_ENUM_ITEM(v3);
#define ADD_ENUM_ITEM_4(v1, v2, v3, v4) \
ADD_ENUM_ITEM(v1); \
ADD_ENUM_ITEM(v2); \
ADD_ENUM_ITEM(v3); \
ADD_ENUM_ITEM(v4);
#define ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5) \
ADD_ENUM_ITEM_2(v1, v2); \
ADD_ENUM_ITEM_3(v3, v4, v5);
#define ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6) \
ADD_ENUM_ITEM_2(v1, v2); \
ADD_ENUM_ITEM_4(v3, v4, v5, v6);
#define ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7) \
ADD_ENUM_ITEM_3(v1, v2, v3); \
ADD_ENUM_ITEM_4(v4, v5, v6, v7);
#define ADD_ENUM_ITEM_8(v1, v2, v3, v4, v5, v6, v7, v8) \
ADD_ENUM_ITEM_4(v1, v2, v3, v4); \
ADD_ENUM_ITEM_4(v5, v6, v7, v8);
#define ADD_ENUM_ITEM_9(v1, v2, v3, v4, v5, v6, v7, v8, v9) \
ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5); \
ADD_ENUM_ITEM_4(v6, v7, v8, v9);
#define ADD_ENUM_ITEM_10(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10) \
ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5); \
ADD_ENUM_ITEM_5(v6, v7, v8, v9, v10);
#define ADD_ENUM_ITEM_11(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11) \
ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6); \
ADD_ENUM_ITEM_5(v7, v8, v9, v10, v11);
#define ADD_ENUM_ITEM_12(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12) \
ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6); \
ADD_ENUM_ITEM_6(v7, v8, v9, v10, v11, v12);
#define ADD_ENUM_ITEM_13(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, \
v13) \
ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7); \
ADD_ENUM_ITEM_6(v8, v9, v10, v11, v12, v13);
#define ADD_ENUM_ITEM_14(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, \
v13, v14) \
ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7); \
ADD_ENUM_ITEM_7(v8, v9, v10, v11, v12, v13, v14);
#define DISPATCH_ARGS_N(_14, _13, _12, _11, _10, _9, _8, _7, _6, _5, _4, _3, \
_2, _1, N, ...) \
ADD_ENUM_ITEM_##N
#define DISPATCH_ARGS(...) \
DISPATCH_ARGS_N(__VA_ARGS__, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, \
0) \
(__VA_ARGS__)
#define ADD_ENUM_TO_MODULE(module, enum_name, ...) \
do { \
PyObject *enum_dict = PyDict_New(); \
DISPATCH_ARGS(__VA_ARGS__) \
if (enum_dict != NULL) { \
PyObject_SetAttrString(module, #enum_name, enum_dict); \
} \
} while (0)
static void defineEnums(PyObject *self) {
ADD_ENUM_TO_MODULE(
self, CUtensorMapDataType, CU_TENSOR_MAP_DATA_TYPE_UINT8,
CU_TENSOR_MAP_DATA_TYPE_UINT16, CU_TENSOR_MAP_DATA_TYPE_UINT32,
CU_TENSOR_MAP_DATA_TYPE_INT32, CU_TENSOR_MAP_DATA_TYPE_UINT64,
CU_TENSOR_MAP_DATA_TYPE_INT64, CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32, CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
CU_TENSOR_MAP_DATA_TYPE_BFLOAT16, CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32, CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ);
ADD_ENUM_TO_MODULE(self, CUtensorMapInterleave, CU_TENSOR_MAP_INTERLEAVE_NONE,
CU_TENSOR_MAP_INTERLEAVE_16B,
CU_TENSOR_MAP_INTERLEAVE_32B);
ADD_ENUM_TO_MODULE(self, CUtensorMapSwizzle, CU_TENSOR_MAP_SWIZZLE_NONE,
CU_TENSOR_MAP_SWIZZLE_32B, CU_TENSOR_MAP_SWIZZLE_64B,
CU_TENSOR_MAP_SWIZZLE_128B);
ADD_ENUM_TO_MODULE(
self, CUtensorMapL2promotion, CU_TENSOR_MAP_L2_PROMOTION_NONE,
CU_TENSOR_MAP_L2_PROMOTION_L2_64B, CU_TENSOR_MAP_L2_PROMOTION_L2_128B,
CU_TENSOR_MAP_L2_PROMOTION_L2_256B);
ADD_ENUM_TO_MODULE(self, CUtensorMapFloatOOBfill,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NAN_REQUEST_ZERO_FMA);
}
typedef struct {
PyObject_HEAD cuuint32_t value;
} PyCUuint32;
typedef struct {
PyObject_HEAD cuuint64_t value;
} PyCUuint64;
#define DEFINE_CUUINT_CONSTRUCTOR(NAME, TYPE, FORMAT, VALUE_TYPE) \
static PyObject *Py##NAME##_New(PyTypeObject *type, PyObject *args, \
PyObject *kwds) { \
Py##NAME *self; \
VALUE_TYPE value; \
if (!PyArg_ParseTuple(args, FORMAT, &value)) \
return NULL; \
self = (Py##NAME *)type->tp_alloc(type, 0); \
if (self != NULL) { \
self->value = (TYPE)value; \
} \
return (PyObject *)self; \
}
DEFINE_CUUINT_CONSTRUCTOR(CUuint32, cuuint32_t, "l", long)
DEFINE_CUUINT_CONSTRUCTOR(CUuint64, cuuint64_t, "L", long long)
static PyTypeObject PyCUuint32_Type = {
PyVarObject_HEAD_INIT(NULL, 0).tp_name = "cuda_utils.cuuint32_t",
.tp_basicsize = sizeof(PyCUuint32),
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyCUuint32_New,
};
static PyTypeObject PyCUuint64_Type = {
PyVarObject_HEAD_INIT(NULL, 0).tp_name = "cuda_utils.cuuint64_t",
.tp_basicsize = sizeof(PyCUuint64),
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyCUuint64_New,
};
static void defineTypes(PyObject *self) {
if (PyType_Ready(&PyCUuint32_Type) < 0) {
PyErr_SetString(PyExc_TypeError, "Failed to ready cuuint32_t type");
return;
}
Py_INCREF(&PyCUuint32_Type);
if (PyModule_AddObject(self, "cuuint32_t", (PyObject *)&PyCUuint32_Type) <
0) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to add cuuint32_t type to module");
return;
}
if (PyType_Ready(&PyCUuint64_Type) < 0) {
PyErr_SetString(PyExc_TypeError, "Failed to ready cuuint64_t type");
return;
}
Py_INCREF(&PyCUuint64_Type);
if (PyModule_AddObject(self, "cuuint64_t", (PyObject *)&PyCUuint64_Type) <
0) {
PyErr_SetString(PyExc_RuntimeError,
"Failed to add cuuint64_t type to module");
return;
}
}
static PyObject *getDeviceProperties(PyObject *self, PyObject *args) {
int device_id;
if (!PyArg_ParseTuple(args, "i", &device_id))
return NULL;
// Get device handle
CUdevice device;
cuDeviceGet(&device, device_id);
// create a struct to hold device properties
int max_shared_mem;
int multiprocessor_count;
int sm_clock_rate;
int mem_clock_rate;
int mem_bus_width;
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&max_shared_mem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&multiprocessor_count, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&sm_clock_rate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&mem_clock_rate, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device));
CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
&mem_bus_width, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, device));
return Py_BuildValue("{s:i, s:i, s:i, s:i, s:i}", "max_shared_mem",
max_shared_mem, "multiprocessor_count",
multiprocessor_count, "sm_clock_rate", sm_clock_rate,
"mem_clock_rate", mem_clock_rate, "mem_bus_width",
mem_bus_width);
}
static PyObject *loadBinary(PyObject *self, PyObject *args) {
const char *name;
const char *data;
Py_ssize_t data_size;
int shared;
int device;
if (!PyArg_ParseTuple(args, "ss#ii", &name, &data, &data_size, &shared,
&device)) {
return NULL;
}
CUfunction fun;
CUmodule mod;
int32_t n_regs = 0;
int32_t n_spills = 0;
// create driver handles
CUcontext pctx = 0;
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuCtxGetCurrent(&pctx));
if (!pctx) {
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuDevicePrimaryCtxRetain(&pctx, device));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuCtxSetCurrent(pctx));
}
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuModuleLoadData(&mod, data));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuModuleGetFunction(&fun, mod, name));
// get allocated registers and spilled registers from the function
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncGetAttribute(&n_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, fun));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncGetAttribute(&n_spills, CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES, fun));
n_spills /= 4;
// set dynamic shared memory if necessary
int shared_optin;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuDeviceGetAttribute(
&shared_optin, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
device));
if (shared > 49152 && shared_optin > 49152) {
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncSetCacheConfig(fun, CU_FUNC_CACHE_PREFER_SHARED));
int shared_total, shared_static;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuDeviceGetAttribute(
&shared_total, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR,
device));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncGetAttribute(
&shared_static, CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES, fun));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuFuncSetAttribute(fun, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
shared_optin - shared_static));
}
Py_END_ALLOW_THREADS;
if (PyErr_Occurred()) {
return NULL;
}
return Py_BuildValue("(KKii)", (uint64_t)mod, (uint64_t)fun, n_regs,
n_spills);
}
static PyObject *memAlloc(PyObject *self, PyObject *args) {
size_t bytesize;
CUdeviceptr dptr;
CUresult result;
if (!PyArg_ParseTuple(args, "K", &bytesize)) {
return NULL; // Error parsing arguments
}
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuMemAlloc(&dptr, bytesize));
Py_END_ALLOW_THREADS;
return PyLong_FromUnsignedLongLong((unsigned long long)dptr);
}
static PyObject *memcpyHtoD(PyObject *self, PyObject *args) {
unsigned long long dstDevicePtr, srcHostPtr;
size_t byteCount;
CUdeviceptr dstDevice;
const void *srcHost;
CUresult result;
if (!PyArg_ParseTuple(args, "KKK", &dstDevicePtr, &srcHostPtr, &byteCount)) {
return NULL; // Error parsing arguments
}
dstDevice = (CUdeviceptr)dstDevicePtr;
srcHost = (const void *)srcHostPtr;
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuMemcpyHtoD(dstDevice, srcHost, byteCount));
Py_END_ALLOW_THREADS;
Py_RETURN_NONE;
}
static PyObject *memFree(PyObject *self, PyObject *args) {
CUdeviceptr dptr;
if (!PyArg_ParseTuple(args, "K", &dptr)) {
return NULL; // Error parsing arguments
}
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuMemFree(dptr));
Py_END_ALLOW_THREADS;
Py_RETURN_NONE;
}
// Helper function to convert a Python list to a cuuint64_t array
static cuuint64_t *list_to_cuuint64_array(PyObject *listObj) {
Py_ssize_t len = PyList_Size(listObj);
cuuint64_t *array = (cuuint64_t *)malloc(len * sizeof(cuuint64_t));
for (Py_ssize_t i = 0; i < len; i++) {
PyObject *item = PyList_GetItem(listObj, i);
array[i] = (cuuint64_t)PyLong_AsUnsignedLongLong(item);
}
return array;
}
// Helper function to convert a Python list to a cuuint32_t array
static cuuint32_t *list_to_cuuint32_array(PyObject *listObj) {
Py_ssize_t len = PyList_Size(listObj);
cuuint32_t *array = (cuuint32_t *)malloc(len * sizeof(cuuint32_t));
for (Py_ssize_t i = 0; i < len; i++) {
PyObject *item = PyList_GetItem(listObj, i);
array[i] = (cuuint32_t)PyLong_AsUnsignedLong(item);
}
return array;
}
typedef CUresult (*cuTensorMapEncodeTiled_t)(
CUtensorMap *tensorMap, CUtensorMapDataType tensorDataType,
cuuint32_t tensorRank, void *globalAddress, const cuuint64_t *globalDim,
const cuuint64_t *globalStrides, const cuuint32_t *boxDim,
const cuuint32_t *elementStrides, CUtensorMapInterleave interleave,
CUtensorMapSwizzle swizzle, CUtensorMapL2promotion l2Promotion,
CUtensorMapFloatOOBfill oobFill);
typedef CUresult (*cuOccupancyMaxActiveClusters_t)(
int *numClusters, CUfunction func, const CUlaunchConfig *config);
#define defineGetFunctionHandle(name, symbolName) \
static symbolName##_t name() { \
/* Open the shared library */ \
void *libHandle = dlopen("libcuda.so", RTLD_LAZY); \
if (!libHandle) { \
PyErr_SetString(PyExc_RuntimeError, "Failed to open libcuda.so"); \
return NULL; \
} \
/* Clear any existing error */ \
dlerror(); \
symbolName##_t funcHandle = (symbolName##_t)dlsym(libHandle, #symbolName); \
/* Check for errors */ \
const char *err = dlerror(); \
if (err) { \
PyErr_SetString(PyExc_RuntimeError, \
"Failed to retrieve " #symbolName " from libcuda.so"); \
dlclose(libHandle); \
return NULL; \
} \
return funcHandle; \
}
defineGetFunctionHandle(getCuTensorMapEncodeTiledHandle,
cuTensorMapEncodeTiled);
defineGetFunctionHandle(getCuOccupancyMaxActiveClustersHandle,
cuOccupancyMaxActiveClusters);
static PyObject *tensorMapEncodeTiled(PyObject *self, PyObject *args) {
CUtensorMap *tensorMap = (CUtensorMap *)malloc(sizeof(CUtensorMap));
CUtensorMapDataType tensorDataType;
cuuint32_t tensorRank;
void *globalAddress;
PyObject *globalDimObj, *globalStridesObj, *boxDimObj, *elementStridesObj;
CUtensorMapInterleave interleave;
CUtensorMapSwizzle swizzle;
CUtensorMapL2promotion l2Promotion;
CUtensorMapFloatOOBfill oobFill;
// Parse arguments
if (!PyArg_ParseTuple(args, "iiKO!O!O!O!iiii", &tensorDataType, &tensorRank,
&globalAddress, &PyList_Type, &globalDimObj,
&PyList_Type, &globalStridesObj, &PyList_Type,
&boxDimObj, &PyList_Type, &elementStridesObj,
&interleave, &swizzle, &l2Promotion, &oobFill)) {
return NULL; // Error parsing arguments
}
// Convert Python lists to C arrays
cuuint64_t *globalDim = list_to_cuuint64_array(globalDimObj);
cuuint64_t *globalStrides = list_to_cuuint64_array(globalStridesObj);
cuuint32_t *boxDim = list_to_cuuint32_array(boxDimObj);
cuuint32_t *elementStrides = list_to_cuuint32_array(elementStridesObj);
static cuTensorMapEncodeTiled_t cuTensorMapEncodeTiledHandle = NULL;
if (cuTensorMapEncodeTiledHandle == NULL) {
cuTensorMapEncodeTiledHandle = getCuTensorMapEncodeTiledHandle();
}
// Call the function
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuTensorMapEncodeTiledHandle(
tensorMap, tensorDataType, tensorRank, globalAddress, globalDim,
globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion,
oobFill));
Py_END_ALLOW_THREADS;
// Clean up
free(globalDim);
free(globalStrides);
free(boxDim);
free(elementStrides);
// Return the tensor map as a normal pointer
return PyLong_FromUnsignedLongLong((unsigned long long)tensorMap);
}
static PyObject *occupancyMaxActiveClusters(PyObject *self, PyObject *args) {
int clusterDimX = -1, clusterDimY = -1, clusterDimZ = -1,
maxActiveClusters = -1;
int shared = 0;
CUfunction func;
if (!PyArg_ParseTuple(args, "Kiiii", &func, &shared, &clusterDimX,
&clusterDimY, &clusterDimZ)) {
return NULL;
}
// Let each SM have one block
int maxActiveBlocks = 1;
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncSetAttribute(
func, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, shared));
Py_END_ALLOW_THREADS;
CUlaunchAttribute launchAttr[1];
launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION;
launchAttr[0].value.clusterDim.x = clusterDimX;
launchAttr[0].value.clusterDim.y = clusterDimY;
launchAttr[0].value.clusterDim.z = clusterDimZ;
CUlaunchConfig config;
config.gridDimX = clusterDimX;
config.gridDimY = maxActiveBlocks * clusterDimY;
config.gridDimZ = clusterDimZ;
config.blockDimX = 128;
config.blockDimY = 1;
config.blockDimZ = 1;
config.sharedMemBytes = shared;
config.hStream = 0;
config.numAttrs = 1;
config.attrs = launchAttr;
static cuOccupancyMaxActiveClusters_t cuOccupancyMaxActiveClusters = NULL;
if (cuOccupancyMaxActiveClusters == NULL) {
cuOccupancyMaxActiveClusters = getCuOccupancyMaxActiveClustersHandle();
}
Py_BEGIN_ALLOW_THREADS;
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncSetAttribute(
func, CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED, 1));
CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
cuOccupancyMaxActiveClusters(&maxActiveClusters, func, &config));
Py_END_ALLOW_THREADS;
return PyLong_FromLong(maxActiveClusters);
}
static PyMethodDef ModuleMethods[] = {
{"load_binary", loadBinary, METH_VARARGS,
"Load provided cubin into CUDA driver"},
{"get_device_properties", getDeviceProperties, METH_VARARGS,
"Get the properties for a given device"},
{"cuMemAlloc", memAlloc, METH_VARARGS},
{"cuMemcpyHtoD", memcpyHtoD, METH_VARARGS},
{"cuMemFree", memFree, METH_VARARGS},
{"cuTensorMapEncodeTiled", tensorMapEncodeTiled, METH_VARARGS,
"Python interface for cuTensorMapEncodeTiled function"},
{"cuOccupancyMaxActiveClusters", occupancyMaxActiveClusters, METH_VARARGS,
"Python interface for cuOccupancyMaxActiveClusters function"},
{NULL, NULL, 0, NULL} // sentinel
};
static struct PyModuleDef ModuleDef = {PyModuleDef_HEAD_INIT, "cuda_utils",
NULL, // documentation
-1, // size
ModuleMethods};
PyMODINIT_FUNC PyInit_cuda_utils(void) {
PyObject *m = PyModule_Create(&ModuleDef);
if (m == NULL) {
return NULL;
}
defineEnums(m);
defineTypes(m);
PyModule_AddFunctions(m, ModuleMethods);
return m;
}
|