File size: 22,730 Bytes
4ba564c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#include "cuda.h"
#include <dlfcn.h>
#include <stdbool.h>
#define PY_SSIZE_T_CLEAN
#include <Python.h>

// Raises a Python exception and returns false if code is not CUDA_SUCCESS.
static bool gpuAssert(CUresult code, const char *file, int line) {
  if (code == CUDA_SUCCESS)
    return true;

  const char *prefix = "Triton Error [CUDA]: ";
  const char *str;
  cuGetErrorString(code, &str);
  char err[1024] = {0};
  strcat(err, prefix);
  strcat(err, str);
  PyGILState_STATE gil_state;
  gil_state = PyGILState_Ensure();
  PyErr_SetString(PyExc_RuntimeError, err);
  PyGILState_Release(gil_state);
  return false;
}

// To be used only *outside* a Py_{BEGIN,END}_ALLOW_THREADS block.
#define CUDA_CHECK_AND_RETURN_NULL(ans)                                        \
  do {                                                                         \
    if (!gpuAssert((ans), __FILE__, __LINE__))                                 \
      return NULL;                                                             \
  } while (0)

// To be used inside a Py_{BEGIN,END}_ALLOW_THREADS block.
#define CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(ans)                          \
  do {                                                                         \
    if (!gpuAssert((ans), __FILE__, __LINE__)) {                               \
      PyEval_RestoreThread(_save);                                             \
      return NULL;                                                             \
    }                                                                          \
  } while (0)

#define ADD_ENUM_ITEM(value)                                                   \
  do {                                                                         \
    PyObject *py_value = PyLong_FromLong(value);                               \
    PyDict_SetItemString(enum_dict, #value, py_value);                         \
  } while (0)

#define ADD_ENUM_ITEM_0()
#define ADD_ENUM_ITEM_1(v1) ADD_ENUM_ITEM(v1)
#define ADD_ENUM_ITEM_2(v1, v2)                                                \
  ADD_ENUM_ITEM(v1);                                                           \
  ADD_ENUM_ITEM(v2);
#define ADD_ENUM_ITEM_3(v1, v2, v3)                                            \
  ADD_ENUM_ITEM(v1);                                                           \
  ADD_ENUM_ITEM(v2);                                                           \
  ADD_ENUM_ITEM(v3);
#define ADD_ENUM_ITEM_4(v1, v2, v3, v4)                                        \
  ADD_ENUM_ITEM(v1);                                                           \
  ADD_ENUM_ITEM(v2);                                                           \
  ADD_ENUM_ITEM(v3);                                                           \
  ADD_ENUM_ITEM(v4);
#define ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5)                                    \
  ADD_ENUM_ITEM_2(v1, v2);                                                     \
  ADD_ENUM_ITEM_3(v3, v4, v5);
#define ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6)                                \
  ADD_ENUM_ITEM_2(v1, v2);                                                     \
  ADD_ENUM_ITEM_4(v3, v4, v5, v6);
#define ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7)                            \
  ADD_ENUM_ITEM_3(v1, v2, v3);                                                 \
  ADD_ENUM_ITEM_4(v4, v5, v6, v7);
#define ADD_ENUM_ITEM_8(v1, v2, v3, v4, v5, v6, v7, v8)                        \
  ADD_ENUM_ITEM_4(v1, v2, v3, v4);                                             \
  ADD_ENUM_ITEM_4(v5, v6, v7, v8);
#define ADD_ENUM_ITEM_9(v1, v2, v3, v4, v5, v6, v7, v8, v9)                    \
  ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5);                                         \
  ADD_ENUM_ITEM_4(v6, v7, v8, v9);
#define ADD_ENUM_ITEM_10(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)              \
  ADD_ENUM_ITEM_5(v1, v2, v3, v4, v5);                                         \
  ADD_ENUM_ITEM_5(v6, v7, v8, v9, v10);
#define ADD_ENUM_ITEM_11(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11)         \
  ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6);                                     \
  ADD_ENUM_ITEM_5(v7, v8, v9, v10, v11);
#define ADD_ENUM_ITEM_12(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12)    \
  ADD_ENUM_ITEM_6(v1, v2, v3, v4, v5, v6);                                     \
  ADD_ENUM_ITEM_6(v7, v8, v9, v10, v11, v12);
#define ADD_ENUM_ITEM_13(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12,    \
                         v13)                                                  \
  ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7);                                 \
  ADD_ENUM_ITEM_6(v8, v9, v10, v11, v12, v13);
#define ADD_ENUM_ITEM_14(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12,    \
                         v13, v14)                                             \
  ADD_ENUM_ITEM_7(v1, v2, v3, v4, v5, v6, v7);                                 \
  ADD_ENUM_ITEM_7(v8, v9, v10, v11, v12, v13, v14);

#define DISPATCH_ARGS_N(_14, _13, _12, _11, _10, _9, _8, _7, _6, _5, _4, _3,   \
                        _2, _1, N, ...)                                        \
  ADD_ENUM_ITEM_##N
#define DISPATCH_ARGS(...)                                                     \
  DISPATCH_ARGS_N(__VA_ARGS__, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,  \
                  0)                                                           \
  (__VA_ARGS__)

#define ADD_ENUM_TO_MODULE(module, enum_name, ...)                             \
  do {                                                                         \
    PyObject *enum_dict = PyDict_New();                                        \
    DISPATCH_ARGS(__VA_ARGS__)                                                 \
    if (enum_dict != NULL) {                                                   \
      PyObject_SetAttrString(module, #enum_name, enum_dict);                   \
    }                                                                          \
  } while (0)

static void defineEnums(PyObject *self) {
  ADD_ENUM_TO_MODULE(
      self, CUtensorMapDataType, CU_TENSOR_MAP_DATA_TYPE_UINT8,
      CU_TENSOR_MAP_DATA_TYPE_UINT16, CU_TENSOR_MAP_DATA_TYPE_UINT32,
      CU_TENSOR_MAP_DATA_TYPE_INT32, CU_TENSOR_MAP_DATA_TYPE_UINT64,
      CU_TENSOR_MAP_DATA_TYPE_INT64, CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
      CU_TENSOR_MAP_DATA_TYPE_FLOAT32, CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
      CU_TENSOR_MAP_DATA_TYPE_BFLOAT16, CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
      CU_TENSOR_MAP_DATA_TYPE_TFLOAT32, CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ);

  ADD_ENUM_TO_MODULE(self, CUtensorMapInterleave, CU_TENSOR_MAP_INTERLEAVE_NONE,
                     CU_TENSOR_MAP_INTERLEAVE_16B,
                     CU_TENSOR_MAP_INTERLEAVE_32B);

  ADD_ENUM_TO_MODULE(self, CUtensorMapSwizzle, CU_TENSOR_MAP_SWIZZLE_NONE,
                     CU_TENSOR_MAP_SWIZZLE_32B, CU_TENSOR_MAP_SWIZZLE_64B,
                     CU_TENSOR_MAP_SWIZZLE_128B);

  ADD_ENUM_TO_MODULE(
      self, CUtensorMapL2promotion, CU_TENSOR_MAP_L2_PROMOTION_NONE,
      CU_TENSOR_MAP_L2_PROMOTION_L2_64B, CU_TENSOR_MAP_L2_PROMOTION_L2_128B,
      CU_TENSOR_MAP_L2_PROMOTION_L2_256B);

  ADD_ENUM_TO_MODULE(self, CUtensorMapFloatOOBfill,
                     CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE,
                     CU_TENSOR_MAP_FLOAT_OOB_FILL_NAN_REQUEST_ZERO_FMA);
}

typedef struct {
  PyObject_HEAD cuuint32_t value;
} PyCUuint32;

typedef struct {
  PyObject_HEAD cuuint64_t value;
} PyCUuint64;

#define DEFINE_CUUINT_CONSTRUCTOR(NAME, TYPE, FORMAT, VALUE_TYPE)              \
  static PyObject *Py##NAME##_New(PyTypeObject *type, PyObject *args,          \
                                  PyObject *kwds) {                            \
    Py##NAME *self;                                                            \
    VALUE_TYPE value;                                                          \
    if (!PyArg_ParseTuple(args, FORMAT, &value))                               \
      return NULL;                                                             \
    self = (Py##NAME *)type->tp_alloc(type, 0);                                \
    if (self != NULL) {                                                        \
      self->value = (TYPE)value;                                               \
    }                                                                          \
    return (PyObject *)self;                                                   \
  }

DEFINE_CUUINT_CONSTRUCTOR(CUuint32, cuuint32_t, "l", long)
DEFINE_CUUINT_CONSTRUCTOR(CUuint64, cuuint64_t, "L", long long)

static PyTypeObject PyCUuint32_Type = {
    PyVarObject_HEAD_INIT(NULL, 0).tp_name = "cuda_utils.cuuint32_t",
    .tp_basicsize = sizeof(PyCUuint32),
    .tp_flags = Py_TPFLAGS_DEFAULT,
    .tp_new = PyCUuint32_New,
};

static PyTypeObject PyCUuint64_Type = {
    PyVarObject_HEAD_INIT(NULL, 0).tp_name = "cuda_utils.cuuint64_t",
    .tp_basicsize = sizeof(PyCUuint64),
    .tp_flags = Py_TPFLAGS_DEFAULT,
    .tp_new = PyCUuint64_New,
};

static void defineTypes(PyObject *self) {
  if (PyType_Ready(&PyCUuint32_Type) < 0) {
    PyErr_SetString(PyExc_TypeError, "Failed to ready cuuint32_t type");
    return;
  }
  Py_INCREF(&PyCUuint32_Type);
  if (PyModule_AddObject(self, "cuuint32_t", (PyObject *)&PyCUuint32_Type) <
      0) {
    PyErr_SetString(PyExc_RuntimeError,
                    "Failed to add cuuint32_t type to module");
    return;
  }

  if (PyType_Ready(&PyCUuint64_Type) < 0) {
    PyErr_SetString(PyExc_TypeError, "Failed to ready cuuint64_t type");
    return;
  }
  Py_INCREF(&PyCUuint64_Type);
  if (PyModule_AddObject(self, "cuuint64_t", (PyObject *)&PyCUuint64_Type) <
      0) {
    PyErr_SetString(PyExc_RuntimeError,
                    "Failed to add cuuint64_t type to module");
    return;
  }
}

static PyObject *getDeviceProperties(PyObject *self, PyObject *args) {
  int device_id;
  if (!PyArg_ParseTuple(args, "i", &device_id))
    return NULL;
  // Get device handle
  CUdevice device;
  cuDeviceGet(&device, device_id);

  // create a struct to hold device properties
  int max_shared_mem;
  int multiprocessor_count;
  int sm_clock_rate;
  int mem_clock_rate;
  int mem_bus_width;
  CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
      &max_shared_mem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
      device));
  CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
      &multiprocessor_count, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device));
  CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
      &sm_clock_rate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device));
  CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
      &mem_clock_rate, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device));
  CUDA_CHECK_AND_RETURN_NULL(cuDeviceGetAttribute(
      &mem_bus_width, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, device));

  return Py_BuildValue("{s:i, s:i, s:i, s:i, s:i}", "max_shared_mem",
                       max_shared_mem, "multiprocessor_count",
                       multiprocessor_count, "sm_clock_rate", sm_clock_rate,
                       "mem_clock_rate", mem_clock_rate, "mem_bus_width",
                       mem_bus_width);
}

static PyObject *loadBinary(PyObject *self, PyObject *args) {
  const char *name;
  const char *data;
  Py_ssize_t data_size;
  int shared;
  int device;
  if (!PyArg_ParseTuple(args, "ss#ii", &name, &data, &data_size, &shared,
                        &device)) {
    return NULL;
  }
  CUfunction fun;
  CUmodule mod;
  int32_t n_regs = 0;
  int32_t n_spills = 0;
  // create driver handles
  CUcontext pctx = 0;

  Py_BEGIN_ALLOW_THREADS;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuCtxGetCurrent(&pctx));
  if (!pctx) {
    CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
        cuDevicePrimaryCtxRetain(&pctx, device));
    CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuCtxSetCurrent(pctx));
  }

  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuModuleLoadData(&mod, data));
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
      cuModuleGetFunction(&fun, mod, name));
  // get allocated registers and spilled registers from the function
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
      cuFuncGetAttribute(&n_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, fun));
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
      cuFuncGetAttribute(&n_spills, CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES, fun));
  n_spills /= 4;
  // set dynamic shared memory if necessary
  int shared_optin;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuDeviceGetAttribute(
      &shared_optin, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
      device));
  if (shared > 49152 && shared_optin > 49152) {
    CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
        cuFuncSetCacheConfig(fun, CU_FUNC_CACHE_PREFER_SHARED));
    int shared_total, shared_static;
    CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuDeviceGetAttribute(
        &shared_total, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR,
        device));
    CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncGetAttribute(
        &shared_static, CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES, fun));
    CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
        cuFuncSetAttribute(fun, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
                           shared_optin - shared_static));
  }
  Py_END_ALLOW_THREADS;

  if (PyErr_Occurred()) {
    return NULL;
  }
  return Py_BuildValue("(KKii)", (uint64_t)mod, (uint64_t)fun, n_regs,
                       n_spills);
}

static PyObject *memAlloc(PyObject *self, PyObject *args) {
  size_t bytesize;
  CUdeviceptr dptr;
  CUresult result;

  if (!PyArg_ParseTuple(args, "K", &bytesize)) {
    return NULL; // Error parsing arguments
  }

  Py_BEGIN_ALLOW_THREADS;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuMemAlloc(&dptr, bytesize));
  Py_END_ALLOW_THREADS;

  return PyLong_FromUnsignedLongLong((unsigned long long)dptr);
}

static PyObject *memcpyHtoD(PyObject *self, PyObject *args) {
  unsigned long long dstDevicePtr, srcHostPtr;
  size_t byteCount;
  CUdeviceptr dstDevice;
  const void *srcHost;
  CUresult result;

  if (!PyArg_ParseTuple(args, "KKK", &dstDevicePtr, &srcHostPtr, &byteCount)) {
    return NULL; // Error parsing arguments
  }

  dstDevice = (CUdeviceptr)dstDevicePtr;
  srcHost = (const void *)srcHostPtr;

  Py_BEGIN_ALLOW_THREADS;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
      cuMemcpyHtoD(dstDevice, srcHost, byteCount));
  Py_END_ALLOW_THREADS;

  Py_RETURN_NONE;
}

static PyObject *memFree(PyObject *self, PyObject *args) {
  CUdeviceptr dptr;

  if (!PyArg_ParseTuple(args, "K", &dptr)) {
    return NULL; // Error parsing arguments
  }

  Py_BEGIN_ALLOW_THREADS;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuMemFree(dptr));
  Py_END_ALLOW_THREADS;

  Py_RETURN_NONE;
}

// Helper function to convert a Python list to a cuuint64_t array
static cuuint64_t *list_to_cuuint64_array(PyObject *listObj) {
  Py_ssize_t len = PyList_Size(listObj);
  cuuint64_t *array = (cuuint64_t *)malloc(len * sizeof(cuuint64_t));
  for (Py_ssize_t i = 0; i < len; i++) {
    PyObject *item = PyList_GetItem(listObj, i);
    array[i] = (cuuint64_t)PyLong_AsUnsignedLongLong(item);
  }
  return array;
}

// Helper function to convert a Python list to a cuuint32_t array
static cuuint32_t *list_to_cuuint32_array(PyObject *listObj) {
  Py_ssize_t len = PyList_Size(listObj);
  cuuint32_t *array = (cuuint32_t *)malloc(len * sizeof(cuuint32_t));
  for (Py_ssize_t i = 0; i < len; i++) {
    PyObject *item = PyList_GetItem(listObj, i);
    array[i] = (cuuint32_t)PyLong_AsUnsignedLong(item);
  }
  return array;
}

typedef CUresult (*cuTensorMapEncodeTiled_t)(
    CUtensorMap *tensorMap, CUtensorMapDataType tensorDataType,
    cuuint32_t tensorRank, void *globalAddress, const cuuint64_t *globalDim,
    const cuuint64_t *globalStrides, const cuuint32_t *boxDim,
    const cuuint32_t *elementStrides, CUtensorMapInterleave interleave,
    CUtensorMapSwizzle swizzle, CUtensorMapL2promotion l2Promotion,
    CUtensorMapFloatOOBfill oobFill);

typedef CUresult (*cuOccupancyMaxActiveClusters_t)(
    int *numClusters, CUfunction func, const CUlaunchConfig *config);

#define defineGetFunctionHandle(name, symbolName)                              \
  static symbolName##_t name() {                                               \
    /* Open the shared library */                                              \
    void *libHandle = dlopen("libcuda.so", RTLD_LAZY);                         \
    if (!libHandle) {                                                          \
      PyErr_SetString(PyExc_RuntimeError, "Failed to open libcuda.so");        \
      return NULL;                                                             \
    }                                                                          \
    /* Clear any existing error */                                             \
    dlerror();                                                                 \
    symbolName##_t funcHandle = (symbolName##_t)dlsym(libHandle, #symbolName); \
    /* Check for errors */                                                     \
    const char *err = dlerror();                                               \
    if (err) {                                                                 \
      PyErr_SetString(PyExc_RuntimeError,                                      \
                      "Failed to retrieve " #symbolName " from libcuda.so");   \
      dlclose(libHandle);                                                      \
      return NULL;                                                             \
    }                                                                          \
    return funcHandle;                                                         \
  }

defineGetFunctionHandle(getCuTensorMapEncodeTiledHandle,
                        cuTensorMapEncodeTiled);
defineGetFunctionHandle(getCuOccupancyMaxActiveClustersHandle,
                        cuOccupancyMaxActiveClusters);

static PyObject *tensorMapEncodeTiled(PyObject *self, PyObject *args) {
  CUtensorMap *tensorMap = (CUtensorMap *)malloc(sizeof(CUtensorMap));
  CUtensorMapDataType tensorDataType;
  cuuint32_t tensorRank;
  void *globalAddress;
  PyObject *globalDimObj, *globalStridesObj, *boxDimObj, *elementStridesObj;
  CUtensorMapInterleave interleave;
  CUtensorMapSwizzle swizzle;
  CUtensorMapL2promotion l2Promotion;
  CUtensorMapFloatOOBfill oobFill;

  // Parse arguments
  if (!PyArg_ParseTuple(args, "iiKO!O!O!O!iiii", &tensorDataType, &tensorRank,
                        &globalAddress, &PyList_Type, &globalDimObj,
                        &PyList_Type, &globalStridesObj, &PyList_Type,
                        &boxDimObj, &PyList_Type, &elementStridesObj,
                        &interleave, &swizzle, &l2Promotion, &oobFill)) {
    return NULL; // Error parsing arguments
  }

  // Convert Python lists to C arrays
  cuuint64_t *globalDim = list_to_cuuint64_array(globalDimObj);
  cuuint64_t *globalStrides = list_to_cuuint64_array(globalStridesObj);
  cuuint32_t *boxDim = list_to_cuuint32_array(boxDimObj);
  cuuint32_t *elementStrides = list_to_cuuint32_array(elementStridesObj);

  static cuTensorMapEncodeTiled_t cuTensorMapEncodeTiledHandle = NULL;
  if (cuTensorMapEncodeTiledHandle == NULL) {
    cuTensorMapEncodeTiledHandle = getCuTensorMapEncodeTiledHandle();
  }
  // Call the function
  Py_BEGIN_ALLOW_THREADS;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuTensorMapEncodeTiledHandle(
      tensorMap, tensorDataType, tensorRank, globalAddress, globalDim,
      globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion,
      oobFill));
  Py_END_ALLOW_THREADS;

  // Clean up
  free(globalDim);
  free(globalStrides);
  free(boxDim);
  free(elementStrides);
  // Return the tensor map as a normal pointer
  return PyLong_FromUnsignedLongLong((unsigned long long)tensorMap);
}

static PyObject *occupancyMaxActiveClusters(PyObject *self, PyObject *args) {
  int clusterDimX = -1, clusterDimY = -1, clusterDimZ = -1,
      maxActiveClusters = -1;
  int shared = 0;
  CUfunction func;

  if (!PyArg_ParseTuple(args, "Kiiii", &func, &shared, &clusterDimX,
                        &clusterDimY, &clusterDimZ)) {
    return NULL;
  }

  // Let each SM have one block
  int maxActiveBlocks = 1;
  Py_BEGIN_ALLOW_THREADS;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncSetAttribute(
      func, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, shared));
  Py_END_ALLOW_THREADS;

  CUlaunchAttribute launchAttr[1];
  launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION;
  launchAttr[0].value.clusterDim.x = clusterDimX;
  launchAttr[0].value.clusterDim.y = clusterDimY;
  launchAttr[0].value.clusterDim.z = clusterDimZ;
  CUlaunchConfig config;
  config.gridDimX = clusterDimX;
  config.gridDimY = maxActiveBlocks * clusterDimY;
  config.gridDimZ = clusterDimZ;
  config.blockDimX = 128;
  config.blockDimY = 1;
  config.blockDimZ = 1;
  config.sharedMemBytes = shared;
  config.hStream = 0;
  config.numAttrs = 1;
  config.attrs = launchAttr;

  static cuOccupancyMaxActiveClusters_t cuOccupancyMaxActiveClusters = NULL;
  if (cuOccupancyMaxActiveClusters == NULL) {
    cuOccupancyMaxActiveClusters = getCuOccupancyMaxActiveClustersHandle();
  }

  Py_BEGIN_ALLOW_THREADS;
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(cuFuncSetAttribute(
      func, CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED, 1));
  CUDA_CHECK_AND_RETURN_NULL_ALLOW_THREADS(
      cuOccupancyMaxActiveClusters(&maxActiveClusters, func, &config));
  Py_END_ALLOW_THREADS;
  return PyLong_FromLong(maxActiveClusters);
}

static PyMethodDef ModuleMethods[] = {
    {"load_binary", loadBinary, METH_VARARGS,
     "Load provided cubin into CUDA driver"},
    {"get_device_properties", getDeviceProperties, METH_VARARGS,
     "Get the properties for a given device"},
    {"cuMemAlloc", memAlloc, METH_VARARGS},
    {"cuMemcpyHtoD", memcpyHtoD, METH_VARARGS},
    {"cuMemFree", memFree, METH_VARARGS},
    {"cuTensorMapEncodeTiled", tensorMapEncodeTiled, METH_VARARGS,
     "Python interface for cuTensorMapEncodeTiled function"},
    {"cuOccupancyMaxActiveClusters", occupancyMaxActiveClusters, METH_VARARGS,
     "Python interface for cuOccupancyMaxActiveClusters function"},
    {NULL, NULL, 0, NULL} // sentinel
};

static struct PyModuleDef ModuleDef = {PyModuleDef_HEAD_INIT, "cuda_utils",
                                       NULL, // documentation
                                       -1,   // size
                                       ModuleMethods};

PyMODINIT_FUNC PyInit_cuda_utils(void) {
  PyObject *m = PyModule_Create(&ModuleDef);
  if (m == NULL) {
    return NULL;
  }

  defineEnums(m);
  defineTypes(m);
  PyModule_AddFunctions(m, ModuleMethods);

  return m;
}