File size: 21,582 Bytes
4ba564c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import inspect
import numpy as np
import triton
import triton.language as tl
from .._C.libtriton.triton import interpreter as _interpreter
# TODO: duplicate
def str_to_ty(name):
language = tl
if name[0] == "*":
ty = str_to_ty(name[1:])
return language.pointer_type(ty)
tys = {
"fp8e4nv": language.float8e4nv,
"fp8e5": language.float8e5,
"fp8e4b15": language.float8e4b15,
"fp8e4b15x4": language.float8e4b15x4,
"fp16": language.float16,
"bf16": language.bfloat16,
"fp32": language.float32,
"fp64": language.float64,
"i1": language.int1,
"i8": language.int8,
"i16": language.int16,
"i32": language.int32,
"i64": language.int64,
"u8": language.uint8,
"u16": language.uint16,
"u32": language.uint32,
"u64": language.uint64,
"B": language.int1,
}
return tys[name]
class TensorHandle:
def __init__(self, data, dtype):
self.data = data
self.dtype = dtype
def __bool__(self):
return bool(self.data.all())
class BlockPointerHandle:
def __init__(self, base, shape, strides, offsets, tensor_shape, order):
self.base = base
self.shape = shape
self.strides = strides
self.offsets = offsets
self.tensor_shape = tensor_shape
self.order = order
def materialize_pointers(self, boundary_check):
dtype_tt = self.base.dtype.element_ty
n_bytes = dtype_tt.primitive_bitwidth // 8
tensor_shape = self.tensor_shape
ptrs = np.broadcast_to(self.base.data, self.tensor_shape)
masks = np.ones(self.tensor_shape, dtype=bool)
for dim in range(len(tensor_shape)):
bcast_dims = [1] * len(tensor_shape)
bcast_dims[dim] = tensor_shape[dim]
off = (self.offsets[dim].data + np.arange(tensor_shape[dim])).reshape(bcast_dims)
ptrs = ptrs + (n_bytes * off * self.strides[dim].data).astype(np.uint64)
if dim in boundary_check:
masks = np.logical_and(masks, off < self.shape[dim].data)
ptrs = TensorHandle(ptrs, self.base.dtype)
return ptrs, masks
def wrap_ret(compute_ret_ty):
def wrapper(fn):
def wrapped(*args, **kwargs):
ret = fn(*args, **kwargs)
return TensorHandle(ret.data, compute_ret_ty(*args, **kwargs))
return wrapped
return wrapper
class Builder:
def __init__(self) -> None:
self.arch = None
# pass
def set_grid_idx(self, x, y, z):
assert x < self.grid_dim[0]
assert y < self.grid_dim[1]
assert z < self.grid_dim[2]
self.grid_idx = (x, y, z)
def set_grid_dim(self, nx, ny, nz):
self.grid_dim = (nx, ny, nz)
def np_dtype(self, tt_dtype):
if isinstance(tt_dtype, tl.pointer_type):
return np.dtype(np.uint64)
np_types = {
tl.float16: np.dtype(np.float16),
tl.float32: np.dtype(np.float32),
tl.float64: np.dtype(np.float64),
tl.int8: np.dtype(np.int8),
tl.uint8: np.dtype(np.uint8),
tl.int16: np.dtype(np.int16),
tl.uint16: np.dtype(np.uint16),
tl.int32: np.dtype(np.int32),
tl.uint32: np.dtype(np.uint32),
tl.int64: np.dtype(np.int64),
tl.uint64: np.dtype(np.uint64),
}
return np_types[tt_dtype]
# constants
def get_half_ty(self):
return tl.float16
def get_float_ty(self):
return tl.float32
def get_int64_ty(self):
return tl.int64
def get_ptr_ty(self, elt_ty, addr_space):
return tl.pointer_type(elt_ty, addr_space)
def get_block_ty(self, dtype, shape):
return tl.tensor(shape, dtype)
def get_int32(self, value):
return TensorHandle(np.array([value], dtype=np.int32), tl.int32)
def get_int64(self, value):
return TensorHandle(np.array([value], dtype=np.int64), tl.int64)
def get_fp16(self, value):
return TensorHandle(np.array([value], dtype=np.float16), tl.float16)
def get_fp32(self, value):
return TensorHandle(np.array([value], dtype=np.float32), tl.float32)
def get_null_value(self, type):
return TensorHandle(np.array([0], dtype=self.np_dtype(type)), type)
# programming model
def create_get_program_id(self, axis):
assert self.grid_idx is not None
return TensorHandle(np.array([self.grid_idx[axis]], dtype=np.int32), tl.int32)
def create_get_num_programs(self, axis):
return TensorHandle(np.array([self.grid_dim[axis]], dtype=np.int32), tl.int32)
# memory ops
def create_load(self, ptr, _0, _1, is_volatile):
mask = TensorHandle(np.ones_like(ptr.data, dtype=bool), tl.int1)
other = None
return self.create_masked_load(ptr, mask, other, _0, _1, is_volatile)
def create_store(self, ptr, val, _0, _1):
mask = TensorHandle(np.ones_like(ptr.data, dtype=bool), tl.int1)
return self.create_masked_store(ptr, val, mask, None, None)
def create_masked_load(self, ptrs, mask, other, cache_modifier, eviction_policy, is_volatile):
dtype_tt = ptrs.dtype.element_ty
dtype_np = self.np_dtype(dtype_tt)
if other is None:
other = TensorHandle(np.ones_like(ptrs.data, dtype=dtype_np), dtype_tt)
ret = _interpreter.load(ptrs.data, mask.data, other.data, dtype_np)
return TensorHandle(ret, dtype_tt)
def create_masked_store(self, ptrs, value, mask, cache_modifier, eviction_policy):
return _interpreter.store(ptrs.data, value.data, mask.data)
# casting ops
def cast_impl(self, src, dst_type):
if isinstance(dst_type, tl.tensor):
dst_type = dst_type.dtype
return TensorHandle(src.data.astype(self.np_dtype(dst_type)), dst_type)
create_si_to_fp = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_ui_to_fp = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_to_si = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_to_ui = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_ext = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_fp_trunc = lambda self, src, dst_type: self.cast_impl(src, dst_type)
create_int_cast = lambda self, src, dst_type, is_signed: self.cast_impl(src, dst_type)
def create_fp_to_fp(self, src, dst_type):
assert "float8 not NotImplemented yet"
def create_bitcast(self, src, dst_type):
return TensorHandle(src.data.view(self.np_dtype(dst_type)), dst_type)
# binary operators
def binary_op(self, lhs, rhs, op):
return TensorHandle(op(lhs.data, rhs.data), lhs.dtype)
create_fadd = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.add)
create_fmul = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.multiply)
create_fdiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.divide)
create_frem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
create_fsub = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.subtract)
create_mul = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.multiply)
create_sdiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.floor_divide)
create_udiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.floor_divide)
create_srem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
create_urem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
create_add = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.add)
create_sub = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.subtract)
create_shl = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.left_shift)
create_lshr = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.right_shift)
create_ashr = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.right_shift)
create_minsi = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
create_minui = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
create_minf = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
create_maxsi = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
create_maxui = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
create_maxf = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
create_icmpSLE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_icmpSLT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_icmpSGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_icmpSGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_icmpULE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_icmpULT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_icmpUGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_icmpUGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_icmpEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
create_icmpNE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
create_fcmpOLT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_fcmpOGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_fcmpOLE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_fcmpOGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_fcmpOEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
create_fcmpONE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
create_fcmpULT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
create_fcmpUGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
create_fcmpULE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
create_fcmpUGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
create_fcmpUEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
create_fcmpUNE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
create_and = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_and)
create_xor = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_xor)
create_or = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_or)
# ternary functions
def ternary_op(self, lhs, rhs, other, op):
return TensorHandle(op(lhs.data, rhs.data, other.data), other.dtype)
create_select = lambda self, cond, lhs, rhs: self.ternary_op(cond, lhs, rhs, np.where)
# unary functions
def unary_op(self, arg, op):
return TensorHandle(op(arg.data), arg.dtype)
create_exp = lambda self, arg: self.unary_op(arg, np.exp)
create_cos = lambda self, arg: self.unary_op(arg, np.cos)
create_sin = lambda self, arg: self.unary_op(arg, np.sin)
create_log = lambda self, arg: self.unary_op(arg, np.log)
create_sqrt = lambda self, arg: self.unary_op(arg, np.sqrt)
create_fabs = lambda self, arg: self.unary_op(arg, np.abs)
create_iabs = lambda self, arg: self.unary_op(arg, np.abs)
# tensor operators
create_dot = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.dot)
create_reshape = lambda self, arg, shape, allowReorder: TensorHandle(arg.data.reshape(shape), arg.dtype)
create_trans = lambda self, arg: self.unary_op(arg, np.transpose)
def create_dot(self, a, b, d, allow_tf32, maxNumImpreciseAcc):
return TensorHandle(np.dot(a.data, b.data) + d.data, a.dtype)
def create_make_range(self, start, stop):
return TensorHandle(np.arange(start, stop, dtype=np.int32), tl.int32)
# pointer arithmetic
def create_addptr(self, ptr, offset):
dtype_tt = ptr.dtype.element_ty
return TensorHandle(ptr.data + (dtype_tt.primitive_bitwidth // 8) * offset.data.astype(np.uint64), ptr.dtype)
def create_tensor_pointer_load(self, ptr, boundary_check, padding_option, cache_modifier, eviction_policy,
is_volatile):
ptrs, masks = ptr.materialize_pointers(boundary_check)
assert padding_option is None
other = None
return self.create_masked_load(ptrs, masks, other, cache_modifier, eviction_policy, is_volatile)
def create_tensor_pointer_store(self, ptr, value, boundary_check, cache_modifier, eviction_policy):
ptrs, masks = ptr.materialize_pointers(boundary_check)
return self.create_masked_store(ptrs, value, masks, cache_modifier, eviction_policy)
def create_expand_dims(self, arg, axis):
return TensorHandle(np.expand_dims(arg.data, axis), arg.dtype)
def create_broadcast(self, arg, shape):
return TensorHandle(np.broadcast_to(arg.data, shape), arg.dtype)
def create_int_to_ptr(self, val, dst_ty):
return TensorHandle(val.data.astype(np.uint64), dst_ty)
# def create_cat(self, lhs, rhs):
# pass
# def create_broadcast(self, arg, shape):
# pass
def create_splat(self, arg, shape):
return TensorHandle(np.full(shape, arg.data[0], dtype=self.np_dtype(arg.dtype)), arg.dtype)
# def create_atomic_cas(self, ptr, cmp, val, sem):
# pass
# def create_atomic_rmw(self, rmwOp, ptr, val, mask, sem):
# pass
# def create_extern_elementwise(self, libName, libPath, symbol, argList, retType, isPure):
# pass
# def create_reduce(self, operands, axis):
# pass
# def create_reduce_ret(self, args):
# pass
# def create_scan(self, operands, axis):
# pass
# def create_scan_ret(self, args):
# pass
# def create_ptr_to_int(self, val, type):
# pass
# def create_int_to_ptr(self, val, type):
# pass
# def create_inline_asm(self, inlineAsm, constraints, values, type, isPure, pack):
# pass
# def create_print(self, prefix, values):
# pass
# def create_assert(self, condition, message, fileName, funcName, lineNo):
# pass
# def create_undef(self, type):
# pass
# def create_barrier(self):
# pass
def create_make_block_ptr(self, base, shape, strides, offsets, tensor_shape, order):
return BlockPointerHandle(base, shape, strides, np.array(offsets), tensor_shape, order)
def create_advance(self, ptr, offsets):
assert len(ptr.offsets) == len(offsets)
ret = BlockPointerHandle(ptr.base, ptr.shape, ptr.strides, ptr.offsets, ptr.tensor_shape, ptr.order)
for i in range(len(offsets)):
ret.offsets[i].data += offsets[i].data
return ret
def patch_attr(obj, name, member, builder):
new_member = lambda *args, member=member, **kwargs: (member(*args, **
{k: v
for k, v in kwargs.items()
if k != "_builder"}, _builder=builder))
setattr(obj, name, new_member)
def _patch_lang_tensor(tensor, builder):
for name, member in inspect.getmembers(tensor):
if tl.core.is_builtin(member):
patch_attr(tensor, name, member, builder)
tensor.__index__ = lambda self: int(self.handle.data)
tensor.__bool__ = lambda self: True
tensor.__str__ = lambda self: str(self.handle.data)
tensor.__getitem__ = lambda self, slices: self.handle.data.__getitem__(slices)
def _patch_lang_core(lang, builder):
for name, member in inspect.getmembers(lang):
if tl.core.is_builtin(member):
patch_attr(lang, name, member, builder)
# reduce is better off with a separate patch due to how
# the builder currently interfaces with custom functions
def _new_reduce(input, axis, combine_fn):
fn = combine_fn.fn.__name__
mapping = {
"maximum": np.max,
"_sum_combine": np.sum,
}
ret = mapping[fn](input.handle.data, axis=axis)
ret_type = tl.block_type(input.dtype, ret.shape)
return tl.core.tensor(TensorHandle(ret, input.dtype), ret_type)
lang.reduce = _new_reduce
def _patch_lang_math(lang, builder):
math = lang.math
mapping = {
"abs": "abs",
"acos": "arccos",
"asin": "arcsin",
"exp2": "exp2",
"log2": "log2",
"max": "maximum",
}
def make_numpy(name):
def impl(*args, **kwargs):
ret_type = args[0].type # TODO: incorrect
ret_dtype = args[0].dtype # TODO: incorrect
args = [arg.handle.data for arg in args]
kwargs = {k: v.handle.data for k, v in kwargs.items()}
ret = getattr(np, mapping[name])(*args, **kwargs)
ret = tl.core.tensor(TensorHandle(ret, ret_dtype), ret_type)
return ret
return impl
def make_fallback(name):
def fallback(*args, **kwargs):
raise NotImplementedError(f"""
{name} not supported in interpreter mode: no known numpy implementation.
If you think that {name} in fact does have a numpy implementation, please add it
to the mapping in python/triton/interpreter/new_interpreter.py:_patch_lang_math.
""")
return fallback
for name, member in inspect.getmembers(math):
if name in mapping:
setattr(math, name, make_numpy(name))
else:
setattr(math, name, make_fallback(name))
# TODO: wrap everything in triton tensors
def _implicit_cvt(arg):
if isinstance(arg, int):
ty = str_to_ty(triton.runtime.jit.JITFunction._type_of(triton.runtime.jit.JITFunction._key_of(arg)))
handle = TensorHandle(np.array([arg], dtype=np.int32), ty)
return tl.tensor(handle, ty)
if hasattr(arg, "data_ptr"):
ty = str_to_ty(triton.runtime.jit.JITFunction._type_of(triton.runtime.jit.JITFunction._key_of(arg)))
handle = TensorHandle(np.array([arg.data_ptr()], dtype=np.uint64), ty)
return tl.tensor(handle, ty)
return arg
def _unwrap(tensor):
if isinstance(tensor, triton.TensorWrapper):
return tensor.base
return tensor
builder = Builder()
RESERVED_KWS = ["num_warps", "num_stages", "num_ctas", "enable_warp_specialization", "enable_fp_fusion"]
class GridExecutor:
def __init__(self, fn, arg_names, grid):
from .jit import _normalize_ty # TODO: modularize
self.fn = fn
self.arg_names = arg_names
self.grid = grid
__annotations__ = {name: _normalize_ty(ty) for name, ty in fn.__annotations__.items()}
self.constexprs = [name for name in arg_names if __annotations__.get(name) == "constexpr"]
def _patch_lang(self, builder):
lang = [value for _, value in self.fn.__globals__.items() if value in [tl, tl.core]]
assert len(lang) == 1, "triton.language must be visible from within jit'd function"
_patch_lang_tensor(getattr(lang[0], "tensor"), builder)
_patch_lang_core(lang[0], builder)
_patch_lang_math(lang[0], builder)
def __call__(self, *args_dev, **kwargs):
args_hst = [_unwrap(arg).cpu() if hasattr(arg, "data_ptr") else arg for arg in args_dev]
# removes reserved keywords from kwargs
kwargs = {k: v for k, v in kwargs.items() if k not in RESERVED_KWS}
# remaps core language functions to interpreted ones
self._patch_lang(builder)
# we need to copy arguments to the host for the interpreter
# implicitly convert tensor arguments to their base pointers
args = inspect.getcallargs(self.fn, *args_hst, **kwargs)
args = {name: arg if name in self.constexprs else _implicit_cvt(arg) for name, arg in args.items()}
# iterate through grid
grid = self.grid(args) if callable(self.grid) else self.grid
assert len(grid) <= 3
grid = grid + (1, ) * (3 - len(grid))
builder.set_grid_dim(*grid)
for x in range(grid[0]):
for y in range(grid[1]):
for z in range(grid[2]):
builder.set_grid_idx(x, y, z)
self.fn(**args)
# copy arguments back to propagate side-effects
for arg_dev, arg_hst in zip(args_dev, args_hst):
if hasattr(arg_dev, "data_ptr"):
_unwrap(arg_dev).copy_(arg_hst.to(arg_dev.device))
class InterpretedFunction:
def _patch_lang(self, builder):
lang = [value for _, value in self.fn.__globals__.items() if value in [tl, tl.core]]
assert len(lang) == 1, "triton.language must be visible from within jit'd function"
_patch_lang_tensor(getattr(lang[0], "tensor"), builder)
_patch_lang_core(lang[0], builder)
def __init__(self, fn) -> None:
self.fn = fn
def run(*args, **kwargs):
grid = kwargs["grid"]
kwargs = {k: v for k, v in kwargs.items() if k not in RESERVED_KWS + ["grid"]}
return GridExecutor(self.fn, self.arg_names, grid)(*args, **kwargs)
self.run = run
signature = inspect.signature(fn)
self.arg_names = [v.name for v in signature.parameters.values()]
def __getitem__(self, grid):
return GridExecutor(self.fn, self.arg_names, grid)
def __call__(self, *args, **kwargs):
self._patch_lang(builder)
return self.fn(*args, **kwargs)
|