File size: 21,582 Bytes
4ba564c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import inspect

import numpy as np

import triton
import triton.language as tl
from .._C.libtriton.triton import interpreter as _interpreter


# TODO: duplicate
def str_to_ty(name):
    language = tl
    if name[0] == "*":
        ty = str_to_ty(name[1:])
        return language.pointer_type(ty)
    tys = {
        "fp8e4nv": language.float8e4nv,
        "fp8e5": language.float8e5,
        "fp8e4b15": language.float8e4b15,
        "fp8e4b15x4": language.float8e4b15x4,
        "fp16": language.float16,
        "bf16": language.bfloat16,
        "fp32": language.float32,
        "fp64": language.float64,
        "i1": language.int1,
        "i8": language.int8,
        "i16": language.int16,
        "i32": language.int32,
        "i64": language.int64,
        "u8": language.uint8,
        "u16": language.uint16,
        "u32": language.uint32,
        "u64": language.uint64,
        "B": language.int1,
    }
    return tys[name]


class TensorHandle:

    def __init__(self, data, dtype):
        self.data = data
        self.dtype = dtype

    def __bool__(self):
        return bool(self.data.all())


class BlockPointerHandle:

    def __init__(self, base, shape, strides, offsets, tensor_shape, order):
        self.base = base
        self.shape = shape
        self.strides = strides
        self.offsets = offsets
        self.tensor_shape = tensor_shape
        self.order = order

    def materialize_pointers(self, boundary_check):
        dtype_tt = self.base.dtype.element_ty
        n_bytes = dtype_tt.primitive_bitwidth // 8
        tensor_shape = self.tensor_shape
        ptrs = np.broadcast_to(self.base.data, self.tensor_shape)
        masks = np.ones(self.tensor_shape, dtype=bool)
        for dim in range(len(tensor_shape)):
            bcast_dims = [1] * len(tensor_shape)
            bcast_dims[dim] = tensor_shape[dim]
            off = (self.offsets[dim].data + np.arange(tensor_shape[dim])).reshape(bcast_dims)
            ptrs = ptrs + (n_bytes * off * self.strides[dim].data).astype(np.uint64)
            if dim in boundary_check:
                masks = np.logical_and(masks, off < self.shape[dim].data)
        ptrs = TensorHandle(ptrs, self.base.dtype)
        return ptrs, masks


def wrap_ret(compute_ret_ty):

    def wrapper(fn):

        def wrapped(*args, **kwargs):
            ret = fn(*args, **kwargs)
            return TensorHandle(ret.data, compute_ret_ty(*args, **kwargs))

        return wrapped

    return wrapper


class Builder:

    def __init__(self) -> None:
        self.arch = None
        # pass

    def set_grid_idx(self, x, y, z):
        assert x < self.grid_dim[0]
        assert y < self.grid_dim[1]
        assert z < self.grid_dim[2]
        self.grid_idx = (x, y, z)

    def set_grid_dim(self, nx, ny, nz):
        self.grid_dim = (nx, ny, nz)

    def np_dtype(self, tt_dtype):
        if isinstance(tt_dtype, tl.pointer_type):
            return np.dtype(np.uint64)
        np_types = {
            tl.float16: np.dtype(np.float16),
            tl.float32: np.dtype(np.float32),
            tl.float64: np.dtype(np.float64),
            tl.int8: np.dtype(np.int8),
            tl.uint8: np.dtype(np.uint8),
            tl.int16: np.dtype(np.int16),
            tl.uint16: np.dtype(np.uint16),
            tl.int32: np.dtype(np.int32),
            tl.uint32: np.dtype(np.uint32),
            tl.int64: np.dtype(np.int64),
            tl.uint64: np.dtype(np.uint64),
        }
        return np_types[tt_dtype]

    # constants
    def get_half_ty(self):
        return tl.float16

    def get_float_ty(self):
        return tl.float32

    def get_int64_ty(self):
        return tl.int64

    def get_ptr_ty(self, elt_ty, addr_space):
        return tl.pointer_type(elt_ty, addr_space)

    def get_block_ty(self, dtype, shape):
        return tl.tensor(shape, dtype)

    def get_int32(self, value):
        return TensorHandle(np.array([value], dtype=np.int32), tl.int32)

    def get_int64(self, value):
        return TensorHandle(np.array([value], dtype=np.int64), tl.int64)

    def get_fp16(self, value):
        return TensorHandle(np.array([value], dtype=np.float16), tl.float16)

    def get_fp32(self, value):
        return TensorHandle(np.array([value], dtype=np.float32), tl.float32)

    def get_null_value(self, type):
        return TensorHandle(np.array([0], dtype=self.np_dtype(type)), type)

    # programming model
    def create_get_program_id(self, axis):
        assert self.grid_idx is not None
        return TensorHandle(np.array([self.grid_idx[axis]], dtype=np.int32), tl.int32)

    def create_get_num_programs(self, axis):
        return TensorHandle(np.array([self.grid_dim[axis]], dtype=np.int32), tl.int32)

    # memory ops
    def create_load(self, ptr, _0, _1, is_volatile):
        mask = TensorHandle(np.ones_like(ptr.data, dtype=bool), tl.int1)
        other = None
        return self.create_masked_load(ptr, mask, other, _0, _1, is_volatile)

    def create_store(self, ptr, val, _0, _1):
        mask = TensorHandle(np.ones_like(ptr.data, dtype=bool), tl.int1)
        return self.create_masked_store(ptr, val, mask, None, None)

    def create_masked_load(self, ptrs, mask, other, cache_modifier, eviction_policy, is_volatile):
        dtype_tt = ptrs.dtype.element_ty
        dtype_np = self.np_dtype(dtype_tt)
        if other is None:
            other = TensorHandle(np.ones_like(ptrs.data, dtype=dtype_np), dtype_tt)
        ret = _interpreter.load(ptrs.data, mask.data, other.data, dtype_np)
        return TensorHandle(ret, dtype_tt)

    def create_masked_store(self, ptrs, value, mask, cache_modifier, eviction_policy):
        return _interpreter.store(ptrs.data, value.data, mask.data)

    # casting ops
    def cast_impl(self, src, dst_type):
        if isinstance(dst_type, tl.tensor):
            dst_type = dst_type.dtype
        return TensorHandle(src.data.astype(self.np_dtype(dst_type)), dst_type)

    create_si_to_fp = lambda self, src, dst_type: self.cast_impl(src, dst_type)
    create_ui_to_fp = lambda self, src, dst_type: self.cast_impl(src, dst_type)
    create_fp_to_si = lambda self, src, dst_type: self.cast_impl(src, dst_type)
    create_fp_to_ui = lambda self, src, dst_type: self.cast_impl(src, dst_type)
    create_fp_ext = lambda self, src, dst_type: self.cast_impl(src, dst_type)
    create_fp_trunc = lambda self, src, dst_type: self.cast_impl(src, dst_type)
    create_int_cast = lambda self, src, dst_type, is_signed: self.cast_impl(src, dst_type)

    def create_fp_to_fp(self, src, dst_type):
        assert "float8 not NotImplemented yet"

    def create_bitcast(self, src, dst_type):
        return TensorHandle(src.data.view(self.np_dtype(dst_type)), dst_type)

    # binary operators
    def binary_op(self, lhs, rhs, op):
        return TensorHandle(op(lhs.data, rhs.data), lhs.dtype)

    create_fadd = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.add)
    create_fmul = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.multiply)
    create_fdiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.divide)
    create_frem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
    create_fsub = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.subtract)
    create_mul = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.multiply)
    create_sdiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.floor_divide)
    create_udiv = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.floor_divide)
    create_srem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
    create_urem = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.remainder)
    create_add = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.add)
    create_sub = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.subtract)
    create_shl = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.left_shift)
    create_lshr = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.right_shift)
    create_ashr = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.right_shift)
    create_minsi = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
    create_minui = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
    create_minf = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.minimum)
    create_maxsi = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
    create_maxui = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
    create_maxf = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.maximum)
    create_icmpSLE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
    create_icmpSLT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
    create_icmpSGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
    create_icmpSGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
    create_icmpULE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
    create_icmpULT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
    create_icmpUGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
    create_icmpUGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
    create_icmpEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
    create_icmpNE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
    create_fcmpOLT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
    create_fcmpOGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
    create_fcmpOLE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
    create_fcmpOGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
    create_fcmpOEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
    create_fcmpONE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
    create_fcmpULT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less)
    create_fcmpUGT = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater)
    create_fcmpULE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.less_equal)
    create_fcmpUGE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.greater_equal)
    create_fcmpUEQ = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.equal)
    create_fcmpUNE = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.not_equal)
    create_and = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_and)
    create_xor = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_xor)
    create_or = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.bitwise_or)

    # ternary functions
    def ternary_op(self, lhs, rhs, other, op):
        return TensorHandle(op(lhs.data, rhs.data, other.data), other.dtype)

    create_select = lambda self, cond, lhs, rhs: self.ternary_op(cond, lhs, rhs, np.where)

    # unary functions
    def unary_op(self, arg, op):
        return TensorHandle(op(arg.data), arg.dtype)

    create_exp = lambda self, arg: self.unary_op(arg, np.exp)
    create_cos = lambda self, arg: self.unary_op(arg, np.cos)
    create_sin = lambda self, arg: self.unary_op(arg, np.sin)
    create_log = lambda self, arg: self.unary_op(arg, np.log)
    create_sqrt = lambda self, arg: self.unary_op(arg, np.sqrt)
    create_fabs = lambda self, arg: self.unary_op(arg, np.abs)
    create_iabs = lambda self, arg: self.unary_op(arg, np.abs)

    # tensor operators
    create_dot = lambda self, lhs, rhs: self.binary_op(lhs, rhs, np.dot)
    create_reshape = lambda self, arg, shape, allowReorder: TensorHandle(arg.data.reshape(shape), arg.dtype)
    create_trans = lambda self, arg: self.unary_op(arg, np.transpose)

    def create_dot(self, a, b, d, allow_tf32, maxNumImpreciseAcc):
        return TensorHandle(np.dot(a.data, b.data) + d.data, a.dtype)

    def create_make_range(self, start, stop):
        return TensorHandle(np.arange(start, stop, dtype=np.int32), tl.int32)

    # pointer arithmetic

    def create_addptr(self, ptr, offset):
        dtype_tt = ptr.dtype.element_ty
        return TensorHandle(ptr.data + (dtype_tt.primitive_bitwidth // 8) * offset.data.astype(np.uint64), ptr.dtype)

    def create_tensor_pointer_load(self, ptr, boundary_check, padding_option, cache_modifier, eviction_policy,
                                   is_volatile):
        ptrs, masks = ptr.materialize_pointers(boundary_check)
        assert padding_option is None
        other = None
        return self.create_masked_load(ptrs, masks, other, cache_modifier, eviction_policy, is_volatile)

    def create_tensor_pointer_store(self, ptr, value, boundary_check, cache_modifier, eviction_policy):
        ptrs, masks = ptr.materialize_pointers(boundary_check)
        return self.create_masked_store(ptrs, value, masks, cache_modifier, eviction_policy)

    def create_expand_dims(self, arg, axis):
        return TensorHandle(np.expand_dims(arg.data, axis), arg.dtype)

    def create_broadcast(self, arg, shape):
        return TensorHandle(np.broadcast_to(arg.data, shape), arg.dtype)

    def create_int_to_ptr(self, val, dst_ty):
        return TensorHandle(val.data.astype(np.uint64), dst_ty)

    # def create_cat(self, lhs, rhs):
    #     pass

    # def create_broadcast(self, arg, shape):
    #     pass

    def create_splat(self, arg, shape):
        return TensorHandle(np.full(shape, arg.data[0], dtype=self.np_dtype(arg.dtype)), arg.dtype)

    # def create_atomic_cas(self, ptr, cmp, val, sem):
    #     pass

    # def create_atomic_rmw(self, rmwOp, ptr, val, mask, sem):
    #     pass

    # def create_extern_elementwise(self, libName, libPath, symbol, argList, retType, isPure):
    #     pass

    # def create_reduce(self, operands, axis):
    #     pass

    # def create_reduce_ret(self, args):
    #     pass

    # def create_scan(self, operands, axis):
    #     pass

    # def create_scan_ret(self, args):
    #     pass

    # def create_ptr_to_int(self, val, type):
    #     pass

    # def create_int_to_ptr(self, val, type):
    #     pass

    # def create_inline_asm(self, inlineAsm, constraints, values, type, isPure, pack):
    #     pass

    # def create_print(self, prefix, values):
    #     pass

    # def create_assert(self, condition, message, fileName, funcName, lineNo):
    #     pass

    # def create_undef(self, type):
    #     pass

    # def create_barrier(self):
    #     pass

    def create_make_block_ptr(self, base, shape, strides, offsets, tensor_shape, order):
        return BlockPointerHandle(base, shape, strides, np.array(offsets), tensor_shape, order)

    def create_advance(self, ptr, offsets):
        assert len(ptr.offsets) == len(offsets)
        ret = BlockPointerHandle(ptr.base, ptr.shape, ptr.strides, ptr.offsets, ptr.tensor_shape, ptr.order)
        for i in range(len(offsets)):
            ret.offsets[i].data += offsets[i].data
        return ret


def patch_attr(obj, name, member, builder):
    new_member = lambda *args, member=member, **kwargs: (member(*args, **
                                                                {k: v
                                                                 for k, v in kwargs.items()
                                                                 if k != "_builder"}, _builder=builder))
    setattr(obj, name, new_member)


def _patch_lang_tensor(tensor, builder):
    for name, member in inspect.getmembers(tensor):
        if tl.core.is_builtin(member):
            patch_attr(tensor, name, member, builder)
    tensor.__index__ = lambda self: int(self.handle.data)
    tensor.__bool__ = lambda self: True
    tensor.__str__ = lambda self: str(self.handle.data)
    tensor.__getitem__ = lambda self, slices: self.handle.data.__getitem__(slices)


def _patch_lang_core(lang, builder):
    for name, member in inspect.getmembers(lang):
        if tl.core.is_builtin(member):
            patch_attr(lang, name, member, builder)
    # reduce is better off with a separate patch due to how
    # the builder currently interfaces with custom functions

    def _new_reduce(input, axis, combine_fn):
        fn = combine_fn.fn.__name__
        mapping = {
            "maximum": np.max,
            "_sum_combine": np.sum,
        }
        ret = mapping[fn](input.handle.data, axis=axis)
        ret_type = tl.block_type(input.dtype, ret.shape)
        return tl.core.tensor(TensorHandle(ret, input.dtype), ret_type)

    lang.reduce = _new_reduce


def _patch_lang_math(lang, builder):
    math = lang.math
    mapping = {
        "abs": "abs",
        "acos": "arccos",
        "asin": "arcsin",
        "exp2": "exp2",
        "log2": "log2",
        "max": "maximum",
    }

    def make_numpy(name):

        def impl(*args, **kwargs):
            ret_type = args[0].type  # TODO: incorrect
            ret_dtype = args[0].dtype  # TODO: incorrect
            args = [arg.handle.data for arg in args]
            kwargs = {k: v.handle.data for k, v in kwargs.items()}
            ret = getattr(np, mapping[name])(*args, **kwargs)
            ret = tl.core.tensor(TensorHandle(ret, ret_dtype), ret_type)
            return ret

        return impl

    def make_fallback(name):

        def fallback(*args, **kwargs):
            raise NotImplementedError(f"""
{name} not supported in interpreter mode: no known numpy implementation.
If you think that {name} in fact does have a numpy implementation, please add it
to the mapping in python/triton/interpreter/new_interpreter.py:_patch_lang_math.
""")

        return fallback

    for name, member in inspect.getmembers(math):
        if name in mapping:
            setattr(math, name, make_numpy(name))
        else:
            setattr(math, name, make_fallback(name))


# TODO: wrap everything in triton tensors
def _implicit_cvt(arg):
    if isinstance(arg, int):
        ty = str_to_ty(triton.runtime.jit.JITFunction._type_of(triton.runtime.jit.JITFunction._key_of(arg)))
        handle = TensorHandle(np.array([arg], dtype=np.int32), ty)
        return tl.tensor(handle, ty)
    if hasattr(arg, "data_ptr"):
        ty = str_to_ty(triton.runtime.jit.JITFunction._type_of(triton.runtime.jit.JITFunction._key_of(arg)))
        handle = TensorHandle(np.array([arg.data_ptr()], dtype=np.uint64), ty)
        return tl.tensor(handle, ty)
    return arg


def _unwrap(tensor):
    if isinstance(tensor, triton.TensorWrapper):
        return tensor.base
    return tensor


builder = Builder()

RESERVED_KWS = ["num_warps", "num_stages", "num_ctas", "enable_warp_specialization", "enable_fp_fusion"]


class GridExecutor:

    def __init__(self, fn, arg_names, grid):
        from .jit import _normalize_ty  # TODO: modularize

        self.fn = fn
        self.arg_names = arg_names
        self.grid = grid
        __annotations__ = {name: _normalize_ty(ty) for name, ty in fn.__annotations__.items()}
        self.constexprs = [name for name in arg_names if __annotations__.get(name) == "constexpr"]

    def _patch_lang(self, builder):
        lang = [value for _, value in self.fn.__globals__.items() if value in [tl, tl.core]]
        assert len(lang) == 1, "triton.language must be visible from within jit'd function"
        _patch_lang_tensor(getattr(lang[0], "tensor"), builder)
        _patch_lang_core(lang[0], builder)
        _patch_lang_math(lang[0], builder)

    def __call__(self, *args_dev, **kwargs):
        args_hst = [_unwrap(arg).cpu() if hasattr(arg, "data_ptr") else arg for arg in args_dev]
        # removes reserved keywords from kwargs
        kwargs = {k: v for k, v in kwargs.items() if k not in RESERVED_KWS}
        # remaps core language functions to interpreted ones
        self._patch_lang(builder)
        # we need to copy arguments to the host for the interpreter
        # implicitly convert tensor arguments to their base pointers
        args = inspect.getcallargs(self.fn, *args_hst, **kwargs)
        args = {name: arg if name in self.constexprs else _implicit_cvt(arg) for name, arg in args.items()}
        # iterate through grid
        grid = self.grid(args) if callable(self.grid) else self.grid
        assert len(grid) <= 3
        grid = grid + (1, ) * (3 - len(grid))
        builder.set_grid_dim(*grid)
        for x in range(grid[0]):
            for y in range(grid[1]):
                for z in range(grid[2]):
                    builder.set_grid_idx(x, y, z)
                    self.fn(**args)
        # copy arguments back to propagate side-effects
        for arg_dev, arg_hst in zip(args_dev, args_hst):
            if hasattr(arg_dev, "data_ptr"):
                _unwrap(arg_dev).copy_(arg_hst.to(arg_dev.device))


class InterpretedFunction:

    def _patch_lang(self, builder):
        lang = [value for _, value in self.fn.__globals__.items() if value in [tl, tl.core]]
        assert len(lang) == 1, "triton.language must be visible from within jit'd function"
        _patch_lang_tensor(getattr(lang[0], "tensor"), builder)
        _patch_lang_core(lang[0], builder)

    def __init__(self, fn) -> None:
        self.fn = fn

        def run(*args, **kwargs):
            grid = kwargs["grid"]
            kwargs = {k: v for k, v in kwargs.items() if k not in RESERVED_KWS + ["grid"]}

            return GridExecutor(self.fn, self.arg_names, grid)(*args, **kwargs)

        self.run = run
        signature = inspect.signature(fn)
        self.arg_names = [v.name for v in signature.parameters.values()]

    def __getitem__(self, grid):
        return GridExecutor(self.fn, self.arg_names, grid)

    def __call__(self, *args, **kwargs):
        self._patch_lang(builder)
        return self.fn(*args, **kwargs)