File size: 25,699 Bytes
4ba564c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
from __future__ import annotations, division

import ast
import functools
import hashlib
import inspect
import os
import textwrap
from collections import defaultdict, namedtuple
from functools import cached_property
from typing import Callable, Generic, Iterable, List, Optional, TypeVar, Union, cast, overload

from .._C.libtriton.triton import TMAInfos
from ..common.backend import get_backend, get_cuda_version_key
from .interpreter import InterpretedFunction


def get_cuda_stream(idx=None):
    if idx is None:
        idx = get_current_device()
    try:
        from torch._C import _cuda_getCurrentRawStream

        return _cuda_getCurrentRawStream(idx)
    except ImportError:
        import torch

        return torch.cuda.current_stream(idx).cuda_stream


def get_current_device():
    import torch

    return torch.cuda.current_device()


def set_current_device(idx):
    import torch

    torch.cuda.set_device(idx)


def get_device_capability(idx):
    import torch

    return torch.cuda.get_device_capability(idx)


T = TypeVar("T")

# -----------------------------------------------------------------------------
# Dependencies Finder
# -----------------------------------------------------------------------------


class DependenciesFinder(ast.NodeVisitor):
    """
    This AST visitor is used to find dependencies of a JITFunction. This can
    be used to invalidate a JITFunction's hash when its source code -- or
    that of its dependencies -- changes.
    """

    def __init__(self, globals, src) -> None:
        super().__init__()
        self.ret = hashlib.sha1(src.encode("utf-8")).hexdigest()
        self.globals = globals

    def visit_Name(self, node):
        return self.globals.get(node.id, None)

    def visit_Attribute(self, node):
        lhs = self.visit(node.value)
        while isinstance(lhs, ast.Attribute):
            lhs = self.visit(lhs.value)
        if lhs is None or (getattr(lhs, "__name__", "") == "triton"
                           or getattr(lhs, "__name__", "").endswith(".triton")):
            return None
        return getattr(lhs, node.attr)

    def visit_Call(self, node):
        func = self.visit(node.func)
        if func is None:
            return
        if inspect.isbuiltin(func):
            return
        if func.__module__ and (func.__module__.startswith("triton.") or ".triton." in func.__module__):
            return
        assert isinstance(
            func, JITFunction
        ), f'Function "{func.__name__}" is being called from a Triton function but is not a Triton function itself. Decorate it with @triton.jit to fix this'
        func_cache_key = func.cache_key
        noinline = str(getattr(func, "noinline", False))
        self.ret = (self.ret + func_cache_key + noinline).encode("utf-8")
        self.ret = hashlib.sha1(self.ret).hexdigest()


# -----------------------------------------------------------------------------
# JITFunction
# -----------------------------------------------------------------------------


def _normalize_ty(ty) -> str:
    if isinstance(ty, type):
        return ty.__name__
    elif isinstance(ty, str):
        return ty
    return repr(ty)


class KernelParam:
    """Represents a parameter to a @jit'ed function.

    A parameter is just the name plus metadata; a parameter plus a value is a
    KernelArg.
    """

    def __init__(self, num: int, param: inspect.Parameter, do_not_specialize: bool):
        self.num = num
        self._param = param
        self.do_not_specialize = do_not_specialize

    @cached_property
    def name(self):
        return self._param.name

    @cached_property
    def annotation(self):
        if not self._param.annotation or self._param.annotation == inspect.Parameter.empty:
            return ""
        return _normalize_ty(self._param.annotation)

    @cached_property
    def is_constexpr(self):
        return "constexpr" in self.annotation

    @property
    def default(self):
        return self._param.default

    @property
    def has_default(self):
        return self._param.default != inspect.Parameter.empty


class KernelArg:
    """Represents an argument to a @jit'ed function.

    An argument is a parameter plus a value.
    """

    def __init__(self, value, param):
        self.value = value
        self.param = param

    @property
    def name(self):
        return self.param.name

    def signature_key(self):
        annotation = self.param.annotation
        if "Tensor" in annotation:
            return self.value.dtype
        elif annotation == "bool":
            return "i1"
        elif annotation == "float":
            return "fp32"
        else:
            return JITFunction._key_of(self.value)

    def specialization_key(self):
        assert not self.param.do_not_specialize

        try:
            return (self.value.data_ptr() % JITFunction.divisibility == 0, )
        except AttributeError:
            pass

        if isinstance(self.value, int):
            # bool is a subclass of int, so we don't check explicitly above.
            return (
                self.value % JITFunction.divisibility == 0,
                self.value % JITFunction.divisibility_8 == 0,
                self.value == 1,
            )

        return (False, )


class KernelInterface(Generic[T]):
    run: T

    def __getitem__(self, grid) -> T:
        """
        A JIT function is launched with: fn[grid](*args, **kwargs).
        Hence JITFunction.__getitem__ returns a callable proxy that
        memorizes the grid.
        """
        return cast(T, functools.partial(cast(Callable, self.run), grid=grid))


class JITFunction(KernelInterface[T]):
    # Hook for inspecting compiled functions and modules
    cache_hook = None
    divisibility = 16
    # As Hopper TMA load and store primitive requires the tensor stride to be 16-byte aligned.
    # And we only support WGMMA with float16 dtype on Hopper for now.
    # So whether the LoadOp and StoreOp will lowering into TMA copy depend on whether the tensor stride is divisible by 8.
    # TODO: Make it more reasonable to handle multiple dtypes.
    divisibility_8 = 8

    @staticmethod
    def _key_of(arg):
        if hasattr(arg, "dtype"):
            return arg.dtype
        elif isinstance(arg, bool):
            return "i1"
        elif isinstance(arg, int):
            if -(2**31) <= arg and arg <= 2**31 - 1:
                return "i32"
            elif 2**63 <= arg and arg <= 2**64 - 1:
                return "u64"
            else:
                return "i64"
        elif isinstance(arg, float):
            return "fp32"
        elif arg is None:
            return None
        else:
            raise TypeError(f"Unsupported type {type(arg)} for {arg}")

    @staticmethod
    def _device_of(arg):
        try:
            return arg.device.type
        except AttributeError:
            return ""

    @staticmethod
    def _pinned_memory_of(arg):
        try:
            return arg.is_pinned()
        except (AttributeError, TypeError):
            return False

    @staticmethod
    def _spec_of(arg):
        if hasattr(arg, "data_ptr"):
            return arg.data_ptr() % JITFunction.divisibility == 0
        elif isinstance(arg, int):
            return (arg % 16 == 0, arg == 1)
        return (arg is None, )

    # TODO(jlebar): Fold this into the KernelArg class.
    def _get_config(self, *args):

        def is_divisible_by_16(x):
            if hasattr(x, "data_ptr"):
                return x.data_ptr() % JITFunction.divisibility == 0
            elif isinstance(x, int):
                return x % JITFunction.divisibility == 0
            if x is None:
                return True
            return False

        def is_divisible_by_8(x):
            if isinstance(x, int):
                return x % JITFunction.divisibility_8 == 0
            if x is None:
                return True
            return False

        divisible_by_16 = {
            param.num
            for param, arg in zip(self.params, args)
            if is_divisible_by_16(arg) and not param.do_not_specialize
        }
        divisible_by_8 = {
            param.num
            for param, arg in zip(self.params, args)
            if is_divisible_by_8(arg) and not param.do_not_specialize
        }
        equal_to_1 = {
            param.num
            for param, arg in zip(self.params, args)
            if isinstance(arg, int) and not isinstance(arg, bool) and arg == 1 and not param.do_not_specialize
        }
        # folded equal_to_1 and None
        # TODO: method to collect all folded args
        none_args = {param.num for param, arg in zip(self.params, args) if arg is None and not param.do_not_specialize}
        ids_of_folded_args = equal_to_1 | none_args
        return namedtuple("instance_descriptor",
                          ["divisible_by_16", "equal_to_1", "ids_of_folded_args", "divisible_by_8"])(  #
                              tuple(divisible_by_16), tuple(equal_to_1), tuple(ids_of_folded_args),
                              tuple(divisible_by_8))
        # return _triton.code_gen.instance_descriptor(divisible_by_16,
        # equal_to_1)

    @staticmethod
    def _type_of(key):
        # `None` is nullptr.  Implicitly convert to *i8.
        if key is None:
            return "*i8"
        dtype_str = str(key).split(".")[-1]
        tys = {
            "bool": "i1",
            "float8e4nv": "fp8e4nv",
            "float8e5": "fp8e5",
            "float8e4b15": "fp8e4b15",
            "float8e4b15x4": "fp8e4b15x4",
            "float8_e4m3fn": "fp8e4nv",
            "float8_e5m2": "fp8e5",
            "float16": "fp16",
            "bfloat16": "bf16",
            "float32": "fp32",
            "float64": "fp64",
            "int8": "i8",
            "int16": "i16",
            "int32": "i32",
            "int64": "i64",
            "uint8": "u8",
            "uint16": "u16",
            "uint32": "u32",
            "uint64": "u64",
        }
        # reinterpret can create triton type
        for v in list(tys.values()):
            tys[v] = v
        return key if isinstance(key, str) else f"*{tys[dtype_str]}"

    def _make_constants(self, constexpr_key):
        constants = dict(zip(self.constexprs, constexpr_key))
        return constants

    def _call_hook(
        self,
        key,
        signature,
        device,
        constants,
        num_warps,
        num_ctas,
        num_stages,
        enable_warp_specialization,
        enable_fp_fusion,
        extern_libs,
        configs,
    ):
        if JITFunction.cache_hook is None:
            return False

        name = self.fn.__name__
        module = self.fn.__module__
        arg_reprs = ", ".join([f"{param.name}: {ty}" for param, ty in zip(self.params, key[1])])
        repr = f"{name}[num_warps={num_warps}, num_ctas={num_ctas}, num_stages={num_stages}, enable_warp_specialization={enable_warp_specialization}, enable_fp_fusion={enable_fp_fusion}]({arg_reprs})"
        key = str(key)

        class LegacyCompiler:

            def __init__(self, module, name):
                self.module = module
                self.name = name
                pass

        kwargs = dict(
            signature=signature,
            device=device,
            constants=constants,
            num_warps=num_warps,
            num_ctas=num_ctas,
            num_stages=num_stages,
            enable_warp_specialization=enable_warp_specialization,
            enable_fp_fusion=enable_fp_fusion,
            extern_libs=extern_libs,
            configs=configs,
        )

        return JITFunction.cache_hook(
            key=key,
            repr=repr,
            fn=LegacyCompiler(module, name),
            compile={"key": key, **kwargs},
            is_manual_warmup=False,
            already_compiled=False,
        )

    def _conclude_device_type(self, device_types: List[str], pinned_memory_flags: List[bool]) -> str:
        device_types = [device_type for device_type in device_types if device_type != ""]
        # Return cuda if one of the input tensors is cuda
        if "cuda" in device_types:
            import torch

            return "hip" if torch.version.hip else "cuda"

        is_cpu = all(device_type == "cpu" for device_type in device_types)
        is_pinned_memory = any(pinned_memory_flag for pinned_memory_flag in pinned_memory_flags)
        # Return cuda if all the input tensors are cpu while the memory is pinned
        if is_cpu and is_pinned_memory:
            return "cuda"

        return device_types[0] if len(device_types) > 0 else "cuda"

    def run(self, *args, **kwargs):
        from ..compiler import CompiledKernel, compile, get_arch_default_num_stages, get_arch_default_num_warps

        # Get a compiler-flags arg like `num_warps` and remove it from kwargs.
        def get_special_arg(name: str, default=None):
            if name not in kwargs:
                return default
            ret = kwargs[name]
            del kwargs[name]
            return ret

        grid = get_special_arg("grid")
        num_warps = get_special_arg("num_warps")
        num_ctas = get_special_arg("num_ctas", 1)
        num_stages = get_special_arg("num_stages")
        enable_warp_specialization = get_special_arg("enable_warp_specialization", False)
        enable_fp_fusion = get_special_arg("enable_fp_fusion", True)
        extern_libs = get_special_arg("extern_libs")
        stream = get_special_arg("stream")
        warmup = get_special_arg("warmup", False)
        device = get_special_arg("device")
        device_type = get_special_arg("device_type")

        # Bind the remaining arguments to `fn`.
        bound_args = self.signature.bind(*args, **kwargs)
        bound_args.apply_defaults()

        assert len(bound_args.arguments) == len(self.params)
        args = [KernelArg(arg_value, param) for (_, arg_value), param in zip(bound_args.arguments.items(), self.params)]

        non_constexpr_arg_values = [arg.value for arg in args if not arg.param.is_constexpr]

        sig_key = tuple(arg.signature_key() for arg in args if not arg.param.is_constexpr)
        spec_key = tuple(arg.specialization_key() for arg in args if not arg.param.do_not_specialize)
        constexpr_key = tuple(arg.value for arg in args if arg.param.is_constexpr)

        assert num_ctas > 0
        assert grid is not None
        if callable(grid):
            # Arguments are passed as a dict to `grid`, by contract.
            # TODO(jlebar): In the new launch API, pass the compiler flags as a
            # second parameter to `grid`.
            grid = grid(dict(bound_args.arguments))
        grid_size = len(grid)
        grid_0 = grid[0]
        grid_1 = grid[1] if grid_size > 1 else 1
        grid_2 = grid[2] if grid_size > 2 else 1
        if device_type is None:
            device_types = [self._device_of(arg) for arg in non_constexpr_arg_values]
            device_types = [_device_type for _device_type in device_types if _device_type != ""]
            device_type = self._conclude_device_type(device_types,
                                                     [self._pinned_memory_of(arg) for arg in non_constexpr_arg_values])

        device_backend = None
        if device_type not in ["cuda"]:
            device_backend = get_backend(device_type)
            if device_backend is None:
                raise ValueError("Cannot find backend for " + device_type)

        if device is None:
            if device_type in ["cuda"]:
                device = get_current_device()
                set_current_device(device)
            else:
                device = device_backend.get_current_device()
                device_backend.set_current_device(device)
        if stream is None and not warmup:
            if device_type in ["cuda"]:
                stream = get_cuda_stream(device)
            else:
                stream = device_backend.get_stream()

        if num_warps is None:
            num_warps = get_arch_default_num_warps(device_type)
        if num_stages is None:
            num_stages = get_arch_default_num_stages(device_type)

        if device_type in ["cuda"]:
            version_key = get_cuda_version_key()
        else:
            version_key = device_backend.get_version_key()
        key = (
            version_key,
            sig_key,
            constexpr_key,
            spec_key,
            num_warps,
            num_ctas,
            num_stages,
            enable_warp_specialization,
            enable_fp_fusion,
            self.debug,
        )
        if extern_libs is not None:
            key = (key, tuple(extern_libs.items()))

        # Kernel is not cached; we have to compile.
        if key not in self.cache[device]:
            configs = (self._get_config(*[arg.value for arg in args]), )
            constants = {
                arg.param.num: arg.value
                for arg in args
                if arg.param.is_constexpr or arg.param.num in configs[0].equal_to_1 or arg.value is None
            }
            for i, arg in constants.items():
                if callable(arg):
                    raise TypeError(f"Callable constexpr at index {i} is not supported")

            # Build kernel signature -- doesn't include constexpr arguments.
            signature = {
                arg.param.num: self._type_of(self._key_of(arg.value))
                for arg in args
                if not arg.param.is_constexpr
            }

            if self._call_hook(
                    key,
                    signature,
                    device,
                    constants,
                    num_warps,
                    num_ctas,
                    num_stages,
                    enable_warp_specialization,
                    enable_fp_fusion,
                    extern_libs,
                    configs,
            ):
                return None

            self.cache[device][key] = compile(
                self,
                signature=signature,
                device=device,
                constants=constants,
                num_warps=num_warps,
                num_ctas=num_ctas,
                num_stages=num_stages,
                enable_warp_specialization=enable_warp_specialization,
                enable_fp_fusion=enable_fp_fusion,
                extern_libs=extern_libs,
                configs=configs,
                debug=self.debug,
                device_type=device_type,
            )

        bin = self.cache[device][key]
        if not warmup:
            bin.c_wrapper(
                grid_0,
                grid_1,
                grid_2,
                bin.num_warps,
                bin.num_ctas,
                bin.clusterDims[0],
                bin.clusterDims[1],
                bin.clusterDims[2],
                bin.shared,
                stream,
                bin.cu_function,
                CompiledKernel.launch_enter_hook,
                CompiledKernel.launch_exit_hook,
                bin,
                *bin.assemble_tensormap_to_arg(non_constexpr_arg_values),
            )
        return bin

    def __init__(self, fn, version=None, do_not_specialize=None, debug=None, noinline=None):
        do_not_specialize = do_not_specialize if do_not_specialize else []

        self.fn = fn
        self.module = fn.__module__
        self.version = version
        self.signature = inspect.signature(fn)
        self.do_not_specialize = do_not_specialize
        self.starting_line_number = inspect.getsourcelines(fn)[1]

        self.params = []
        for i, param in enumerate(self.signature.parameters.values()):
            dns = do_not_specialize and (i in do_not_specialize or param.name in do_not_specialize)
            self.params.append(KernelParam(i, param, dns))

        # function source code (without decorators)
        self.src = textwrap.dedent(inspect.getsource(fn))
        self.src = self.src[self.src.find("def"):]
        # cache of just-in-time compiled kernels
        self.cache = defaultdict(dict)
        self.hash = None
        # JITFunction can be instantiated as kernel
        # when called with a grid using __getitem__
        self.kernel = None
        self.debug = True if os.environ.get("TRITON_DEBUG", "0") == "1" else debug
        self.noinline = noinline

        # tma info
        self.tensormaps_info = TMAInfos()

        # TODO(jlebar): Remove uses of these fields outside this file, then
        # remove the fields here.
        self.arg_names = [p.name for p in self.params]
        self.constexprs = [p.num for p in self.params if p.is_constexpr]

        # re-use docs of wrapped function
        self.__doc__ = fn.__doc__
        self.__name__ = fn.__name__
        self.__globals__ = fn.__globals__
        self.__module__ = fn.__module__

    @property
    def cache_key(self):
        # TODO : hash should be attribute of `self`
        if self.hash is None:
            dependencies_finder = DependenciesFinder(globals=self.__globals__, src=self.src)
            dependencies_finder.visit(self.parse())
            self.hash = dependencies_finder.ret + str(self.starting_line_number)
        return self.hash

    def warmup(self, *args, **kwargs):
        return self.run(*map(MockTensor.wrap_dtype, args), **kwargs, warmup=True)

    # we do not parse `src` in the constructor because
    # the user might want to monkey-patch self.src dynamically.
    # Our unit tests do this, for example.
    def parse(self):
        tree = ast.parse(self.src)
        assert isinstance(tree, ast.Module)
        assert len(tree.body) == 1
        assert isinstance(tree.body[0], ast.FunctionDef)
        return tree

    def __call__(self, *args, **kwargs):
        raise RuntimeError("Cannot call @triton.jit'd outside of the scope of a kernel")

    def __setattr__(self, name, value):
        super(JITFunction, self).__setattr__(name, value)
        # - when `.src` attribute is set, cache path needs
        #   to be reinitialized
        if name == "src":
            self.hash = None

    def __repr__(self):
        return f"JITFunction({self.module}:{self.fn.__name__})"


# -----------------------------------------------------------------------------
# `jit` decorator
# -----------------------------------------------------------------------------


@overload
def jit(fn: T) -> JITFunction[T]:
    ...


@overload
def jit(
    *,
    version=None,
    do_not_specialize: Optional[Iterable[int]] = None,
    debug: Optional[bool] = None,
    noinline: Optional[bool] = None,
) -> Callable[[T], JITFunction[T]]:
    ...


def jit(
    fn: Optional[T] = None,
    *,
    version=None,
    do_not_specialize: Optional[Iterable[int]] = None,
    debug: Optional[bool] = None,
    noinline: Optional[bool] = None,
) -> Union[JITFunction[T], Callable[[T], JITFunction[T]]]:
    """
    Decorator for JIT-compiling a function using the Triton compiler.

    :note: When a jit'd function is called, arguments are
        implicitly converted to pointers if they have a :code:`.data_ptr()` method
        and a `.dtype` attribute.

    :note: This function will be compiled and run on the GPU. It will only have access to:

           * python primitives,
           * builtins within the triton package,
           * arguments to this function,
           * other jit'd functions

    :param fn: the function to be jit-compiled
    :type fn: Callable
    """

    def decorator(fn: T) -> JITFunction[T]:
        assert callable(fn)
        if os.getenv("TRITON_INTERPRET", "0") == "1":
            return InterpretedFunction(fn)
        else:
            return JITFunction(
                fn,
                version=version,
                do_not_specialize=do_not_specialize,
                debug=debug,
                noinline=noinline,
            )

    if fn is not None:
        return decorator(fn)

    else:
        return decorator


# -----------------------------------------------------------------------------
# Utilities for mocking tensors
# -----------------------------------------------------------------------------


class MockTensor:
    """
    Can be used in place of real tensors when calling:
        kernel.warmup(MockTensor(torch.float32), ...)
    """

    @staticmethod
    def wrap_dtype(arg):
        if arg.__class__.__name__ == "dtype" and arg.__module__ == "torch":
            return MockTensor(arg)
        return arg

    def __init__(self, dtype):
        self.dtype = dtype

    @staticmethod
    def data_ptr():
        return 0  # optimistically assumes multiple of 16


class TensorWrapper:

    def __init__(self, base, dtype):
        self.dtype = dtype
        self.base = base
        self.is_cuda = base.is_cuda
        self.device = base.device
        self.shape = self.base.shape

    def data_ptr(self):
        return self.base.data_ptr()

    def stride(self, i):
        return self.base.stride(i)

    def __str__(self) -> str:
        return f"TensorWrapper[{self.dtype}]({self.base})"

    def element_size(self):
        return self.base.element_size()


def reinterpret(tensor, dtype):
    if isinstance(tensor, TensorWrapper):
        if dtype == tensor.base.dtype:
            # Reinterpreting to the original interpretation; return the base.
            return tensor.base
        else:
            # Reinterpreting a wrapped tensor to a different type.
            return TensorWrapper(tensor.base, dtype)
    elif hasattr(tensor, "data_ptr"):
        # A new wrapper is needed around an unwrapped tensor.
        return TensorWrapper(tensor, dtype)
    else:
        raise TypeError(f"Cannot reinterpret a {type(tensor)}.")