File size: 13,848 Bytes
068e5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import itertools

import numpy as np
import pytest
import torch

from lm_eval.api.metrics import (
    aggregate_subtask_metrics,
    mean,
    pooled_sample_stderr,
    stderr_for_metric,
)
from lm_eval.models.utils import Collator
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
)


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v1():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        (
            [9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
            [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
        ),
        (
            [19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
            [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        ),
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [30, 31, 32, 33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
        output.append((input_tokens, pred_tokens))
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v2():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [10, 11, 12]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [13, 14, 15]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [16, 17, 18]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [19, 20, 21]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [22, 23, 24]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [25, 26, 27]),
        ([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [28, 29, 30]),
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [31, 32, 33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=8,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
        output.append((input_tokens, pred_tokens))
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v3():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
        ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
        ([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
        ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
        ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
        ([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
        ([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
        ([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
        ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
        ([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
        ([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
        ([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
        ([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
        ([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
        ([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30]),
        ([21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [31]),
        ([22, 23, 24, 25, 26, 27, 28, 29, 30, 31], [32]),
        ([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [33]),
    ]
    x = list(range(34))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=10,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
        output.append((input_tokens, pred_tokens))
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v4():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
        ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
        ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
        ([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
        ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
        ([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
        ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
        ([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
        ([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
        ([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
        ([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
        ([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
        ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
        ([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
        ([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
        ([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
        ([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
        ([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
        ([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
        ([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
    ]
    x = list(range(30))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=10,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
        output.append((input_tokens, pred_tokens))
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v5():
    gold = [
        ([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
        (
            [9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
            [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
        ),
        (
            [19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
            [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        ),
    ]
    x = list(range(30))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=10,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
        output.append((input_tokens, pred_tokens))
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


# noinspection DuplicatedCode
def test_get_rolling_token_windows_v6():
    gold = [
        ([-100, 0], [0, 1]),
        ([1, 2], [2, 3]),
        ([3, 4], [4, 5]),
        ([5, 6], [6, 7]),
        ([6, 7], [8]),
    ]
    x = list(range(9))
    generator = get_rolling_token_windows(
        token_list=x,
        prefix_token=-100,
        max_seq_len=2,
        context_len=1,
    )
    pred_length = 0
    output = []
    for input_tokens, pred_tokens in generator:
        output.append((input_tokens, pred_tokens))
        pred_length += len(pred_tokens)
    assert pred_length == len(x)
    assert gold == output


def test_get_rolling_token_windows_empty():
    generator = get_rolling_token_windows(
        token_list=[],
        prefix_token=-100,
        max_seq_len=2,
        context_len=1,
    )
    n = 0
    for _ in generator:
        n += 1
    assert n == 0


def test_make_disjoint_window():
    assert make_disjoint_window(([1, 2, 3, 4, 5], [2, 3, 4, 5, 6])) == (
        [1],
        [2, 3, 4, 5, 6],
    )
    assert make_disjoint_window(([1, 2, 3, 4, 5], [4, 5, 6])) == ([1, 2, 3], [4, 5, 6])
    assert make_disjoint_window(([1, 2, 3, 4, 5], [6])) == ([1, 2, 3, 4, 5], [6])


class TestCollator:
    def make_generate_sample(self, end=10):
        strings = ["x" * i for i in range(1, end + 1)]
        gen_kwargs1, gen_kwargs2 = (
            {"temperature": 0},
            {"temperature": 0, "until": ["nn", "\n\n"]},
        )
        args = [
            (string, gen_kwargs1 if i < len(strings) // 2 else gen_kwargs2)
            for i, string in enumerate(strings)
        ]

        return args

    def make_loglikelihood_sample(self, end=11):
        samples = [
            (("x", "x"), list(range(1, total_length + 1)))
            for total_length in range(1, end + 1)
        ]
        return samples

    def make_loglikelihood_sample_group(self, end=11):
        a = [(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x]) for x in range(9)]
        b = [
            (("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x, y, z])
            for x, y, z in zip(range(9), range(9, 18), range(18, 27))
        ]
        return a + b

    @pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 9)])
    def test_generations(self, batch_size, end):
        _collate_gen = lambda x: (-len(x[0]), x[0])  # noqa: E731

        generation_samples = self.make_generate_sample(int(end))
        gens = Collator(generation_samples, _collate_gen, group_by="gen_kwargs")
        chunks = gens.get_batched(n=int(batch_size), batch_fn=None)
        output = []
        for chunks in chunks:
            # check batching
            group_one = end // 2
            group_two = end - end // 2
            assert (
                len(chunks) <= batch_size
                if batch_size != 0
                else len(chunks) in [group_one, group_two]
            )
            # check if reorder-er is working correctly
            assert all(
                len(chunks[i][0]) <= len(chunks[i - 1][0])
                for i in range(1, len(chunks))
            )
            # check if grouping correctly
            assert all(x[1] == chunks[0][1] for x in chunks)
            for x in chunks:
                output.append(x)
        reordered_output = gens.get_original(output)
        # check get original
        assert reordered_output == generation_samples

    @pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 3)])
    def test_loglikelihood(self, batch_size, end):
        _collate_log = lambda x: (-len(x[1]), tuple(x[1]))  # noqa: E731
        loglikelihood_samples = self.make_loglikelihood_sample(int(end))
        loglikelihoods = Collator(
            loglikelihood_samples,
            _collate_log,
        )
        chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
        output = []
        for chunks in chunks:
            # check batching
            assert len(chunks) <= batch_size if batch_size != 0 else len(chunks) == end
            # check reorder
            assert all(
                len(chunks[i][1]) <= len(chunks[i - 1][1])
                for i in range(1, len(chunks))
            )
            for x in chunks:
                output.append(x[1])
        # check indices
        reordered_output = loglikelihoods.get_original(output)
        assert reordered_output == [x[1] for x in loglikelihood_samples]

    @pytest.mark.parametrize("batch_size", [17, 8, 12, 0])
    def test_context_grouping(self, batch_size):
        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        _collate_log = _collate  # noqa: E731
        loglikelihood_samples = self.make_loglikelihood_sample_group()
        loglikelihoods = Collator(
            loglikelihood_samples,
            _collate_log,
            group_fn=lambda a: a[-2] + a[-1][:-1],
            group_by="contexts",
        )
        chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
        output = []
        outputs_ = []
        for chunks in chunks:
            # check batching
            if batch_size != 0:
                assert len(chunks) <= batch_size
            # check reorder
            assert all(
                len(chunks[i][1]) <= len(chunks[i - 1][1])
                for i in range(1, len(chunks))
            )
            for x in chunks:
                for request_str, cont_toks, logits in loglikelihoods.get_cache(
                    req_str="".join(x[0]),
                    cxt_toks=x[1],
                    cont_toks=x[2],
                    logits=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
                    .unsqueeze(0)
                    .unsqueeze(0),
                ):
                    output.append(x[1])
                    outputs_.append(cont_toks)
        assert len(output) == len(outputs_)
        # check indices
        reordered_output = loglikelihoods.get_original(output)
        assert reordered_output == [x[1] for x in loglikelihood_samples]


def test_aggregate_mean():
    # test weight_by_size is respected
    assert (
        aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=False)
        == 0.3
    )
    assert (
        aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=True)
        == 0.3375
    )


@pytest.mark.parametrize(
    "samples",
    [
        [40 * [1.0] + 60 * [0.0], 30 * [1.0] + 30 * [0.0], 20 * [1.0] + 60 * [0.0]],
        [35 * [1.0] + 65 * [0.0], 20 * [1.0] + 20 * [0.0]],
    ],
)
def test_aggregate_stderrs(samples):
    # check that aggregating subtasks' bootstrap stderrs with our formula
    # (using weight_by_size) is ~equiv.
    # to just getting bootstrap stderr of the whole set of samples
    mean_stderr = stderr_for_metric(metric=mean, bootstrap_iters=100000)

    stderrs = [mean_stderr(subtask) for subtask in samples]

    sizes = [len(subtask) for subtask in samples]

    assert np.allclose(
        pooled_sample_stderr(stderrs, sizes),
        mean_stderr(list(itertools.chain.from_iterable(samples))),
        atol=1.0e-3,
    )