File size: 17,294 Bytes
3008566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import os
import sys
from collections import defaultdict
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
from safetensors import deserialize, safe_open, serialize, serialize_file
def storage_ptr(tensor: torch.Tensor) -> int:
try:
return tensor.untyped_storage().data_ptr()
except Exception:
# Fallback for torch==1.10
try:
return tensor.storage().data_ptr()
except NotImplementedError:
# Fallback for meta storage
return 0
def _end_ptr(tensor: torch.Tensor) -> int:
if tensor.nelement():
stop = tensor.view(-1)[-1].data_ptr() + _SIZE[tensor.dtype]
else:
stop = tensor.data_ptr()
return stop
def storage_size(tensor: torch.Tensor) -> int:
try:
return tensor.untyped_storage().nbytes()
except AttributeError:
# Fallback for torch==1.10
try:
return tensor.storage().size() * _SIZE[tensor.dtype]
except NotImplementedError:
# Fallback for meta storage
# On torch >=2.0 this is the tensor size
return tensor.nelement() * _SIZE[tensor.dtype]
def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]:
filtered_tensors = []
for shared in tensors:
if len(shared) < 2:
filtered_tensors.append(shared)
continue
areas = []
for name in shared:
tensor = state_dict[name]
areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
areas.sort()
_, last_stop, last_name = areas[0]
filtered_tensors.append({last_name})
for start, stop, name in areas[1:]:
if start >= last_stop:
filtered_tensors.append({name})
else:
filtered_tensors[-1].add(name)
last_stop = stop
return filtered_tensors
def _find_shared_tensors(state_dict: Dict[str, torch.Tensor]) -> List[Set[str]]:
tensors = defaultdict(set)
for k, v in state_dict.items():
if v.device != torch.device("meta") and storage_ptr(v) != 0 and storage_size(v) != 0:
# Need to add device as key because of multiple GPU.
tensors[(v.device, storage_ptr(v), storage_size(v))].add(k)
tensors = list(sorted(tensors.values()))
tensors = _filter_shared_not_shared(tensors, state_dict)
return tensors
def _is_complete(tensor: torch.Tensor) -> bool:
return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _SIZE[tensor.dtype] == storage_size(tensor)
def _remove_duplicate_names(
state_dict: Dict[str, torch.Tensor],
*,
preferred_names: Optional[List[str]] = None,
discard_names: Optional[List[str]] = None,
) -> Dict[str, List[str]]:
if preferred_names is None:
preferred_names = []
preferred_names = set(preferred_names)
if discard_names is None:
discard_names = []
discard_names = set(discard_names)
shareds = _find_shared_tensors(state_dict)
to_remove = defaultdict(list)
for shared in shareds:
complete_names = set([name for name in shared if _is_complete(state_dict[name])])
if not complete_names:
raise RuntimeError(
"Error while trying to find names to remove to save state dict, but found no suitable name to keep"
f" for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model"
" since you could be storing much more memory than needed. Please refer to"
" https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an"
" issue."
)
keep_name = sorted(list(complete_names))[0]
# Mechanism to preferentially select keys to keep
# coming from the on-disk file to allow
# loading models saved with a different choice
# of keep_name
preferred = complete_names.difference(discard_names)
if preferred:
keep_name = sorted(list(preferred))[0]
if preferred_names:
preferred = preferred_names.intersection(complete_names)
if preferred:
keep_name = sorted(list(preferred))[0]
for name in sorted(shared):
if name != keep_name:
to_remove[keep_name].append(name)
return to_remove
def save_model(
model: torch.nn.Module, filename: str, metadata: Optional[Dict[str, str]] = None, force_contiguous: bool = True
):
"""
Saves a given torch model to specified filename.
This method exists specifically to avoid tensor sharing issues which are
not allowed in `safetensors`. [More information on tensor sharing](../torch_shared_tensors)
Args:
model (`torch.nn.Module`):
The model to save on disk.
filename (`str`):
The filename location to save the file
metadata (`Dict[str, str]`, *optional*):
Extra information to save along with the file.
Some metadata will be added for each dropped tensors.
This information will not be enough to recover the entire
shared structure but might help understanding things
force_contiguous (`boolean`, *optional*, defaults to True):
Forcing the state_dict to be saved as contiguous tensors.
This has no effect on the correctness of the model, but it
could potentially change performance if the layout of the tensor
was chosen specifically for that reason.
"""
state_dict = model.state_dict()
to_removes = _remove_duplicate_names(state_dict)
for kept_name, to_remove_group in to_removes.items():
for to_remove in to_remove_group:
if metadata is None:
metadata = {}
if to_remove not in metadata:
# Do not override user data
metadata[to_remove] = kept_name
del state_dict[to_remove]
if force_contiguous:
state_dict = {k: v.contiguous() for k, v in state_dict.items()}
try:
save_file(state_dict, filename, metadata=metadata)
except ValueError as e:
msg = str(e)
msg += " Or use save_model(..., force_contiguous=True), read the docs for potential caveats."
raise ValueError(msg)
def load_model(model: torch.nn.Module, filename: Union[str, os.PathLike], strict=True) -> Tuple[List[str], List[str]]:
"""
Loads a given filename onto a torch model.
This method exists specifically to avoid tensor sharing issues which are
not allowed in `safetensors`. [More information on tensor sharing](../torch_shared_tensors)
Args:
model (`torch.nn.Module`):
The model to load onto.
filename (`str`, or `os.PathLike`):
The filename location to load the file from.
strict (`bool`, *optional*, defaults to True):
Wether to fail if you're missing keys or having unexpected ones
When false, the function simply returns missing and unexpected names.
Returns:
`(missing, unexpected): (List[str], List[str])`
`missing` are names in the model which were not modified during loading
`unexpected` are names that are on the file, but weren't used during
the load.
"""
state_dict = load_file(filename)
model_state_dict = model.state_dict()
to_removes = _remove_duplicate_names(model_state_dict, preferred_names=state_dict.keys())
missing, unexpected = model.load_state_dict(state_dict, strict=False)
missing = set(missing)
for to_remove_group in to_removes.values():
for to_remove in to_remove_group:
if to_remove not in missing:
unexpected.append(to_remove)
else:
missing.remove(to_remove)
if strict and (missing or unexpected):
missing_keys = ", ".join([f'"{k}"' for k in sorted(missing)])
unexpected_keys = ", ".join([f'"{k}"' for k in sorted(unexpected)])
error = f"Error(s) in loading state_dict for {model.__class__.__name__}:"
if missing:
error += f"\n Missing key(s) in state_dict: {missing_keys}"
if unexpected:
error += f"\n Unexpected key(s) in state_dict: {unexpected_keys}"
raise RuntimeError(error)
return missing, unexpected
def save(tensors: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None) -> bytes:
"""
Saves a dictionary of tensors into raw bytes in safetensors format.
Args:
tensors (`Dict[str, torch.Tensor]`):
The incoming tensors. Tensors need to be contiguous and dense.
metadata (`Dict[str, str]`, *optional*, defaults to `None`):
Optional text only metadata you might want to save in your header.
For instance it can be useful to specify more about the underlying
tensors. This is purely informative and does not affect tensor loading.
Returns:
`bytes`: The raw bytes representing the format
Example:
```python
from safetensors.torch import save
import torch
tensors = {"embedding": torch.zeros((512, 1024)), "attention": torch.zeros((256, 256))}
byte_data = save(tensors)
```
"""
serialized = serialize(_flatten(tensors), metadata=metadata)
result = bytes(serialized)
return result
def save_file(
tensors: Dict[str, torch.Tensor],
filename: Union[str, os.PathLike],
metadata: Optional[Dict[str, str]] = None,
):
"""
Saves a dictionary of tensors into raw bytes in safetensors format.
Args:
tensors (`Dict[str, torch.Tensor]`):
The incoming tensors. Tensors need to be contiguous and dense.
filename (`str`, or `os.PathLike`)):
The filename we're saving into.
metadata (`Dict[str, str]`, *optional*, defaults to `None`):
Optional text only metadata you might want to save in your header.
For instance it can be useful to specify more about the underlying
tensors. This is purely informative and does not affect tensor loading.
Returns:
`None`
Example:
```python
from safetensors.torch import save_file
import torch
tensors = {"embedding": torch.zeros((512, 1024)), "attention": torch.zeros((256, 256))}
save_file(tensors, "model.safetensors")
```
"""
serialize_file(_flatten(tensors), filename, metadata=metadata)
def load_file(filename: Union[str, os.PathLike], device="cpu") -> Dict[str, torch.Tensor]:
"""
Loads a safetensors file into torch format.
Args:
filename (`str`, or `os.PathLike`):
The name of the file which contains the tensors
device (`Dict[str, any]`, *optional*, defaults to `cpu`):
The device where the tensors need to be located after load.
available options are all regular torch device locations
Returns:
`Dict[str, torch.Tensor]`: dictionary that contains name as key, value as `torch.Tensor`
Example:
```python
from safetensors.torch import load_file
file_path = "./my_folder/bert.safetensors"
loaded = load_file(file_path)
```
"""
result = {}
with safe_open(filename, framework="pt", device=device) as f:
for k in f.keys():
result[k] = f.get_tensor(k)
return result
def load(data: bytes) -> Dict[str, torch.Tensor]:
"""
Loads a safetensors file into torch format from pure bytes.
Args:
data (`bytes`):
The content of a safetensors file
Returns:
`Dict[str, torch.Tensor]`: dictionary that contains name as key, value as `torch.Tensor` on cpu
Example:
```python
from safetensors.torch import load
file_path = "./my_folder/bert.safetensors"
with open(file_path, "rb") as f:
data = f.read()
loaded = load(data)
```
"""
flat = deserialize(data)
return _view2torch(flat)
# torch.float8 formats require 2.1; we do not support these dtypes on earlier versions
_float8_e4m3fn = getattr(torch, "float8_e4m3fn", None)
_float8_e5m2 = getattr(torch, "float8_e5m2", None)
_SIZE = {
torch.int64: 8,
torch.float32: 4,
torch.int32: 4,
torch.bfloat16: 2,
torch.float16: 2,
torch.int16: 2,
torch.uint8: 1,
torch.int8: 1,
torch.bool: 1,
torch.float64: 8,
_float8_e4m3fn: 1,
_float8_e5m2: 1,
}
_TYPES = {
"F64": torch.float64,
"F32": torch.float32,
"F16": torch.float16,
"BF16": torch.bfloat16,
"I64": torch.int64,
# "U64": torch.uint64,
"I32": torch.int32,
# "U32": torch.uint32,
"I16": torch.int16,
# "U16": torch.uint16,
"I8": torch.int8,
"U8": torch.uint8,
"BOOL": torch.bool,
"F8_E4M3": _float8_e4m3fn,
"F8_E5M2": _float8_e5m2,
}
def _getdtype(dtype_str: str) -> torch.dtype:
return _TYPES[dtype_str]
def _view2torch(safeview) -> Dict[str, torch.Tensor]:
result = {}
for k, v in safeview:
dtype = _getdtype(v["dtype"])
arr = torch.frombuffer(v["data"], dtype=dtype).reshape(v["shape"])
if sys.byteorder == "big":
arr = torch.from_numpy(arr.numpy().byteswap(inplace=False))
result[k] = arr
return result
def _tobytes(tensor: torch.Tensor, name: str) -> bytes:
if tensor.layout != torch.strided:
raise ValueError(
f"You are trying to save a sparse tensor: `{name}` which this library does not support."
" You can make it a dense tensor before saving with `.to_dense()` but be aware this might"
" make a much larger file than needed."
)
if not tensor.is_contiguous():
raise ValueError(
f"You are trying to save a non contiguous tensor: `{name}` which is not allowed. It either means you"
" are trying to save tensors which are reference of each other in which case it's recommended to save"
" only the full tensors, and reslice at load time, or simply call `.contiguous()` on your tensor to"
" pack it before saving."
)
if tensor.device.type != "cpu":
# Moving tensor to cpu before saving
tensor = tensor.to("cpu")
import ctypes
import numpy as np
# When shape is empty (scalar), np.prod returns a float
# we need a int for the following calculations
length = int(np.prod(tensor.shape).item())
bytes_per_item = _SIZE[tensor.dtype]
total_bytes = length * bytes_per_item
ptr = tensor.data_ptr()
if ptr == 0:
return b""
newptr = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_ubyte))
data = np.ctypeslib.as_array(newptr, (total_bytes,)) # no internal copy
if sys.byteorder == "big":
NPDTYPES = {
torch.int64: np.int64,
torch.float32: np.float32,
torch.int32: np.int32,
# XXX: This is ok because both have the same width
torch.bfloat16: np.float16,
torch.float16: np.float16,
torch.int16: np.int16,
torch.uint8: np.uint8,
torch.int8: np.int8,
torch.bool: bool,
torch.float64: np.float64,
# XXX: This is ok because both have the same width and byteswap is a no-op anyway
_float8_e4m3fn: np.uint8,
_float8_e5m2: np.uint8,
}
npdtype = NPDTYPES[tensor.dtype]
# Not in place as that would potentially modify a live running model
data = data.view(npdtype).byteswap(inplace=False)
return data.tobytes()
def _flatten(tensors: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, Any]]:
if not isinstance(tensors, dict):
raise ValueError(f"Expected a dict of [str, torch.Tensor] but received {type(tensors)}")
invalid_tensors = []
for k, v in tensors.items():
if not isinstance(v, torch.Tensor):
raise ValueError(f"Key `{k}` is invalid, expected torch.Tensor but received {type(v)}")
if v.layout != torch.strided:
invalid_tensors.append(k)
if invalid_tensors:
raise ValueError(
f"You are trying to save a sparse tensors: `{invalid_tensors}` which this library does not support."
" You can make it a dense tensor before saving with `.to_dense()` but be aware this might"
" make a much larger file than needed."
)
shared_pointers = _find_shared_tensors(tensors)
failing = []
for names in shared_pointers:
if len(names) > 1:
failing.append(names)
if failing:
raise RuntimeError(
f"""
Some tensors share memory, this will lead to duplicate memory on disk and potential differences when loading them again: {failing}.
A potential way to correctly save your model is to use `save_model`.
More information at https://huggingface.co/docs/safetensors/torch_shared_tensors
"""
)
return {
k: {
"dtype": str(v.dtype).split(".")[-1],
"shape": v.shape,
"data": _tobytes(v, k),
}
for k, v in tensors.items()
}
|