File size: 47,889 Bytes
ac5fea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
"""

Module for the DomainMatrix class.

A DomainMatrix represents a matrix with elements that are in a particular
Domain. Each DomainMatrix internally wraps a DDM which is used for the
lower-level operations. The idea is that the DomainMatrix class provides the
convenience routines for converting between Expr and the poly domains as well
as unifying matrices with different domains.

"""
from functools import reduce
from typing import Union as tUnion, Tuple as tTuple

from sympy.core.sympify import _sympify

from ..domains import Domain

from ..constructor import construct_domain

from .exceptions import (DMNonSquareMatrixError, DMShapeError,
                         DMDomainError, DMFormatError, DMBadInputError,
                         DMNotAField)

from .ddm import DDM

from .sdm import SDM

from .domainscalar import DomainScalar

from sympy.polys.domains import ZZ, EXRAW, QQ


def DM(rows, domain):
    """Convenient alias for DomainMatrix.from_list

    Examples
    =======

    >>> from sympy import ZZ
    >>> from sympy.polys.matrices import DM
    >>> DM([[1, 2], [3, 4]], ZZ)
    DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)

    See also
    =======

    DomainMatrix.from_list
    """
    return DomainMatrix.from_list(rows, domain)


class DomainMatrix:
    r"""
    Associate Matrix with :py:class:`~.Domain`

    Explanation
    ===========

    DomainMatrix uses :py:class:`~.Domain` for its internal representation
    which makes it faster than the SymPy Matrix class (currently) for many
    common operations, but this advantage makes it not entirely compatible
    with Matrix. DomainMatrix are analogous to numpy arrays with "dtype".
    In the DomainMatrix, each element has a domain such as :ref:`ZZ`
    or  :ref:`QQ(a)`.


    Examples
    ========

    Creating a DomainMatrix from the existing Matrix class:

    >>> from sympy import Matrix
    >>> from sympy.polys.matrices import DomainMatrix
    >>> Matrix1 = Matrix([
    ...    [1, 2],
    ...    [3, 4]])
    >>> A = DomainMatrix.from_Matrix(Matrix1)
    >>> A
    DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)

    Directly forming a DomainMatrix:

    >>> from sympy import ZZ
    >>> from sympy.polys.matrices import DomainMatrix
    >>> A = DomainMatrix([
    ...    [ZZ(1), ZZ(2)],
    ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
    >>> A
    DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)

    See Also
    ========

    DDM
    SDM
    Domain
    Poly

    """
    rep: tUnion[SDM, DDM]
    shape: tTuple[int, int]
    domain: Domain

    def __new__(cls, rows, shape, domain, *, fmt=None):
        """
        Creates a :py:class:`~.DomainMatrix`.

        Parameters
        ==========

        rows : Represents elements of DomainMatrix as list of lists
        shape : Represents dimension of DomainMatrix
        domain : Represents :py:class:`~.Domain` of DomainMatrix

        Raises
        ======

        TypeError
            If any of rows, shape and domain are not provided

        """
        if isinstance(rows, (DDM, SDM)):
            raise TypeError("Use from_rep to initialise from SDM/DDM")
        elif isinstance(rows, list):
            rep = DDM(rows, shape, domain)
        elif isinstance(rows, dict):
            rep = SDM(rows, shape, domain)
        else:
            msg = "Input should be list-of-lists or dict-of-dicts"
            raise TypeError(msg)

        if fmt is not None:
            if fmt == 'sparse':
                rep = rep.to_sdm()
            elif fmt == 'dense':
                rep = rep.to_ddm()
            else:
                raise ValueError("fmt should be 'sparse' or 'dense'")

        return cls.from_rep(rep)

    def __getnewargs__(self):
        rep = self.rep
        if isinstance(rep, DDM):
            arg = list(rep)
        elif isinstance(rep, SDM):
            arg = dict(rep)
        else:
            raise RuntimeError # pragma: no cover
        return arg, self.shape, self.domain

    def __getitem__(self, key):
        i, j = key
        m, n = self.shape
        if not (isinstance(i, slice) or isinstance(j, slice)):
            return DomainScalar(self.rep.getitem(i, j), self.domain)

        if not isinstance(i, slice):
            if not -m <= i < m:
                raise IndexError("Row index out of range")
            i = i % m
            i = slice(i, i+1)
        if not isinstance(j, slice):
            if not -n <= j < n:
                raise IndexError("Column index out of range")
            j = j % n
            j = slice(j, j+1)

        return self.from_rep(self.rep.extract_slice(i, j))

    def getitem_sympy(self, i, j):
        return self.domain.to_sympy(self.rep.getitem(i, j))

    def extract(self, rowslist, colslist):
        return self.from_rep(self.rep.extract(rowslist, colslist))

    def __setitem__(self, key, value):
        i, j = key
        if not self.domain.of_type(value):
            raise TypeError
        if isinstance(i, int) and isinstance(j, int):
            self.rep.setitem(i, j, value)
        else:
            raise NotImplementedError

    @classmethod
    def from_rep(cls, rep):
        """Create a new DomainMatrix efficiently from DDM/SDM.

        Examples
        ========

        Create a :py:class:`~.DomainMatrix` with an dense internal
        representation as :py:class:`~.DDM`:

        >>> from sympy.polys.domains import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.polys.matrices.ddm import DDM
        >>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> dM = DomainMatrix.from_rep(drep)
        >>> dM
        DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)

        Create a :py:class:`~.DomainMatrix` with a sparse internal
        representation as :py:class:`~.SDM`:

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.polys.matrices.sdm import SDM
        >>> from sympy import ZZ
        >>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ)
        >>> dM = DomainMatrix.from_rep(drep)
        >>> dM
        DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)

        Parameters
        ==========

        rep: SDM or DDM
            The internal sparse or dense representation of the matrix.

        Returns
        =======

        DomainMatrix
            A :py:class:`~.DomainMatrix` wrapping *rep*.

        Notes
        =====

        This takes ownership of rep as its internal representation. If rep is
        being mutated elsewhere then a copy should be provided to
        ``from_rep``. Only minimal verification or checking is done on *rep*
        as this is supposed to be an efficient internal routine.

        """
        if not isinstance(rep, (DDM, SDM)):
            raise TypeError("rep should be of type DDM or SDM")
        self = super().__new__(cls)
        self.rep = rep
        self.shape = rep.shape
        self.domain = rep.domain
        return self


    @classmethod
    def from_list(cls, rows, domain):
        r"""
        Convert a list of lists into a DomainMatrix

        Parameters
        ==========

        rows: list of lists
            Each element of the inner lists should be either the single arg,
            or tuple of args, that would be passed to the domain constructor
            in order to form an element of the domain. See examples.

        Returns
        =======

        DomainMatrix containing elements defined in rows

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import FF, QQ, ZZ
        >>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ)
        >>> A
        DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ)
        >>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7))
        >>> B
        DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7))
        >>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
        >>> C
        DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)

        See Also
        ========

        from_list_sympy

        """
        nrows = len(rows)
        ncols = 0 if not nrows else len(rows[0])
        conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e)
        domain_rows = [[conv(e) for e in row] for row in rows]
        return DomainMatrix(domain_rows, (nrows, ncols), domain)


    @classmethod
    def from_list_sympy(cls, nrows, ncols, rows, **kwargs):
        r"""
        Convert a list of lists of Expr into a DomainMatrix using construct_domain

        Parameters
        ==========

        nrows: number of rows
        ncols: number of columns
        rows: list of lists

        Returns
        =======

        DomainMatrix containing elements of rows

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.abc import x, y, z
        >>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]])
        >>> A
        DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])

        See Also
        ========

        sympy.polys.constructor.construct_domain, from_dict_sympy

        """
        assert len(rows) == nrows
        assert all(len(row) == ncols for row in rows)

        items_sympy = [_sympify(item) for row in rows for item in row]

        domain, items_domain = cls.get_domain(items_sympy, **kwargs)

        domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)]

        return DomainMatrix(domain_rows, (nrows, ncols), domain)

    @classmethod
    def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs):
        """

        Parameters
        ==========

        nrows: number of rows
        ncols: number of cols
        elemsdict: dict of dicts containing non-zero elements of the DomainMatrix

        Returns
        =======

        DomainMatrix containing elements of elemsdict

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy.abc import x,y,z
        >>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}}
        >>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict)
        >>> A
        DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])

        See Also
        ========

        from_list_sympy

        """
        if not all(0 <= r < nrows for r in elemsdict):
            raise DMBadInputError("Row out of range")
        if not all(0 <= c < ncols for row in elemsdict.values() for c in row):
            raise DMBadInputError("Column out of range")

        items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()]
        domain, items_domain = cls.get_domain(items_sympy, **kwargs)

        idx = 0
        items_dict = {}
        for i, row in elemsdict.items():
            items_dict[i] = {}
            for j in row:
                items_dict[i][j] = items_domain[idx]
                idx += 1

        return DomainMatrix(items_dict, (nrows, ncols), domain)

    @classmethod
    def from_Matrix(cls, M, fmt='sparse',**kwargs):
        r"""
        Convert Matrix to DomainMatrix

        Parameters
        ==========

        M: Matrix

        Returns
        =======

        Returns DomainMatrix with identical elements as M

        Examples
        ========

        >>> from sympy import Matrix
        >>> from sympy.polys.matrices import DomainMatrix
        >>> M = Matrix([
        ...    [1.0, 3.4],
        ...    [2.4, 1]])
        >>> A = DomainMatrix.from_Matrix(M)
        >>> A
        DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)

        We can keep internal representation as ddm using fmt='dense'
        >>> from sympy import Matrix, QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
        >>> A.rep
        [[1/2, 3/4], [0, 0]]

        See Also
        ========

        Matrix

        """
        if fmt == 'dense':
            return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs)

        return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs)

    @classmethod
    def get_domain(cls, items_sympy, **kwargs):
        K, items_K = construct_domain(items_sympy, **kwargs)
        return K, items_K

    def copy(self):
        return self.from_rep(self.rep.copy())

    def convert_to(self, K):
        r"""
        Change the domain of DomainMatrix to desired domain or field

        Parameters
        ==========

        K : Represents the desired domain or field.
            Alternatively, ``None`` may be passed, in which case this method
            just returns a copy of this DomainMatrix.

        Returns
        =======

        DomainMatrix
            DomainMatrix with the desired domain or field

        Examples
        ========

        >>> from sympy import ZZ, ZZ_I
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.convert_to(ZZ_I)
        DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)

        """
        if K is None:
            return self.copy()
        return self.from_rep(self.rep.convert_to(K))

    def to_sympy(self):
        return self.convert_to(EXRAW)

    def to_field(self):
        r"""
        Returns a DomainMatrix with the appropriate field

        Returns
        =======

        DomainMatrix
            DomainMatrix with the appropriate field

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.to_field()
        DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)

        """
        K = self.domain.get_field()
        return self.convert_to(K)

    def to_sparse(self):
        """
        Return a sparse DomainMatrix representation of *self*.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
        >>> A.rep
        [[1, 0], [0, 2]]
        >>> B = A.to_sparse()
        >>> B.rep
        {0: {0: 1}, 1: {1: 2}}
        """
        if self.rep.fmt == 'sparse':
            return self

        return self.from_rep(SDM.from_ddm(self.rep))

    def to_dense(self):
        """
        Return a dense DomainMatrix representation of *self*.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)
        >>> A.rep
        {0: {0: 1}, 1: {1: 2}}
        >>> B = A.to_dense()
        >>> B.rep
        [[1, 0], [0, 2]]

        """
        if self.rep.fmt == 'dense':
            return self

        return self.from_rep(SDM.to_ddm(self.rep))

    @classmethod
    def _unify_domain(cls, *matrices):
        """Convert matrices to a common domain"""
        domains = {matrix.domain for matrix in matrices}
        if len(domains) == 1:
            return matrices
        domain = reduce(lambda x, y: x.unify(y), domains)
        return tuple(matrix.convert_to(domain) for matrix in matrices)

    @classmethod
    def _unify_fmt(cls, *matrices, fmt=None):
        """Convert matrices to the same format.

        If all matrices have the same format, then return unmodified.
        Otherwise convert both to the preferred format given as *fmt* which
        should be 'dense' or 'sparse'.
        """
        formats = {matrix.rep.fmt for matrix in matrices}
        if len(formats) == 1:
            return matrices
        if fmt == 'sparse':
            return tuple(matrix.to_sparse() for matrix in matrices)
        elif fmt == 'dense':
            return tuple(matrix.to_dense() for matrix in matrices)
        else:
            raise ValueError("fmt should be 'sparse' or 'dense'")

    def unify(self, *others, fmt=None):
        """
        Unifies the domains and the format of self and other
        matrices.

        Parameters
        ==========

        others : DomainMatrix

        fmt: string 'dense', 'sparse' or `None` (default)
            The preferred format to convert to if self and other are not
            already in the same format. If `None` or not specified then no
            conversion if performed.

        Returns
        =======

        Tuple[DomainMatrix]
            Matrices with unified domain and format

        Examples
        ========

        Unify the domain of DomainMatrix that have different domains:

        >>> from sympy import ZZ, QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
        >>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ)
        >>> Aq, Bq = A.unify(B)
        >>> Aq
        DomainMatrix([[1, 2]], (1, 2), QQ)
        >>> Bq
        DomainMatrix([[1/2, 2]], (1, 2), QQ)

        Unify the format (dense or sparse):

        >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
        >>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ)
        >>> B.rep
        {0: {0: 1}}

        >>> A2, B2 = A.unify(B, fmt='dense')
        >>> B2.rep
        [[1, 0], [0, 0]]

        See Also
        ========

        convert_to, to_dense, to_sparse

        """
        matrices = (self,) + others
        matrices = DomainMatrix._unify_domain(*matrices)
        if fmt is not None:
            matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt)
        return matrices

    def to_Matrix(self):
        r"""
        Convert DomainMatrix to Matrix

        Returns
        =======

        Matrix
            MutableDenseMatrix for the DomainMatrix

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.to_Matrix()
        Matrix([
            [1, 2],
            [3, 4]])

        See Also
        ========

        from_Matrix

        """
        from sympy.matrices.dense import MutableDenseMatrix
        elemlist = self.rep.to_list()
        elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row]
        return MutableDenseMatrix(*self.shape, elements_sympy)

    def to_list(self):
        return self.rep.to_list()

    def to_list_flat(self):
        return self.rep.to_list_flat()

    def to_dok(self):
        return self.rep.to_dok()

    def __repr__(self):
        return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain)

    def transpose(self):
        """Matrix transpose of ``self``"""
        return self.from_rep(self.rep.transpose())

    def flat(self):
        rows, cols = self.shape
        return [self[i,j].element for i in range(rows) for j in range(cols)]

    @property
    def is_zero_matrix(self):
        return self.rep.is_zero_matrix()

    @property
    def is_upper(self):
        """
        Says whether this matrix is upper-triangular. True can be returned
        even if the matrix is not square.
        """
        return self.rep.is_upper()

    @property
    def is_lower(self):
        """
        Says whether this matrix is lower-triangular. True can be returned
        even if the matrix is not square.
        """
        return self.rep.is_lower()

    @property
    def is_square(self):
        return self.shape[0] == self.shape[1]

    def rank(self):
        rref, pivots = self.rref()
        return len(pivots)

    def hstack(A, *B):
        r"""Horizontally stack the given matrices.

        Parameters
        ==========

        B: DomainMatrix
            Matrices to stack horizontally.

        Returns
        =======

        DomainMatrix
            DomainMatrix by stacking horizontally.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix

        >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
        >>> A.hstack(B)
        DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)

        >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
        >>> A.hstack(B, C)
        DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)

        See Also
        ========

        unify
        """
        A, *B = A.unify(*B, fmt='dense')
        return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B)))

    def vstack(A, *B):
        r"""Vertically stack the given matrices.

        Parameters
        ==========

        B: DomainMatrix
            Matrices to stack vertically.

        Returns
        =======

        DomainMatrix
            DomainMatrix by stacking vertically.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix

        >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
        >>> A.vstack(B)
        DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)

        >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
        >>> A.vstack(B, C)
        DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)

        See Also
        ========

        unify
        """
        A, *B = A.unify(*B, fmt='dense')
        return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B)))

    def applyfunc(self, func, domain=None):
        if domain is None:
            domain = self.domain
        return self.from_rep(self.rep.applyfunc(func, domain))

    def __add__(A, B):
        if not isinstance(B, DomainMatrix):
            return NotImplemented
        A, B = A.unify(B, fmt='dense')
        return A.add(B)

    def __sub__(A, B):
        if not isinstance(B, DomainMatrix):
            return NotImplemented
        A, B = A.unify(B, fmt='dense')
        return A.sub(B)

    def __neg__(A):
        return A.neg()

    def __mul__(A, B):
        """A * B"""
        if isinstance(B, DomainMatrix):
            A, B = A.unify(B, fmt='dense')
            return A.matmul(B)
        elif B in A.domain:
            return A.scalarmul(B)
        elif isinstance(B, DomainScalar):
            A, B = A.unify(B)
            return A.scalarmul(B.element)
        else:
            return NotImplemented

    def __rmul__(A, B):
        if B in A.domain:
            return A.rscalarmul(B)
        elif isinstance(B, DomainScalar):
            A, B = A.unify(B)
            return A.rscalarmul(B.element)
        else:
            return NotImplemented

    def __pow__(A, n):
        """A ** n"""
        if not isinstance(n, int):
            return NotImplemented
        return A.pow(n)

    def _check(a, op, b, ashape, bshape):
        if a.domain != b.domain:
            msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
            raise DMDomainError(msg)
        if ashape != bshape:
            msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
            raise DMShapeError(msg)
        if a.rep.fmt != b.rep.fmt:
            msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt)
            raise DMFormatError(msg)

    def add(A, B):
        r"""
        Adds two DomainMatrix matrices of the same Domain

        Parameters
        ==========

        A, B: DomainMatrix
            matrices to add

        Returns
        =======

        DomainMatrix
            DomainMatrix after Addition

        Raises
        ======

        DMShapeError
            If the dimensions of the two DomainMatrix are not equal

        ValueError
            If the domain of the two DomainMatrix are not same

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(4), ZZ(3)],
        ...    [ZZ(2), ZZ(1)]], (2, 2), ZZ)

        >>> A.add(B)
        DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)

        See Also
        ========

        sub, matmul

        """
        A._check('+', B, A.shape, B.shape)
        return A.from_rep(A.rep.add(B.rep))


    def sub(A, B):
        r"""
        Subtracts two DomainMatrix matrices of the same Domain

        Parameters
        ==========

        A, B: DomainMatrix
            matrices to subtract

        Returns
        =======

        DomainMatrix
            DomainMatrix after Subtraction

        Raises
        ======

        DMShapeError
            If the dimensions of the two DomainMatrix are not equal

        ValueError
            If the domain of the two DomainMatrix are not same

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(4), ZZ(3)],
        ...    [ZZ(2), ZZ(1)]], (2, 2), ZZ)

        >>> A.sub(B)
        DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)

        See Also
        ========

        add, matmul

        """
        A._check('-', B, A.shape, B.shape)
        return A.from_rep(A.rep.sub(B.rep))

    def neg(A):
        r"""
        Returns the negative of DomainMatrix

        Parameters
        ==========

        A : Represents a DomainMatrix

        Returns
        =======

        DomainMatrix
            DomainMatrix after Negation

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.neg()
        DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)

        """
        return A.from_rep(A.rep.neg())

    def mul(A, b):
        r"""
        Performs term by term multiplication for the second DomainMatrix
        w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are
        list of DomainMatrix matrices created after term by term multiplication.

        Parameters
        ==========

        A, B: DomainMatrix
            matrices to multiply term-wise

        Returns
        =======

        DomainMatrix
            DomainMatrix after term by term multiplication

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(1), ZZ(1)],
        ...    [ZZ(0), ZZ(1)]], (2, 2), ZZ)

        >>> A.mul(B)
        DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ),
        DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)],
        [DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ),
        DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ)

        See Also
        ========

        matmul

        """
        return A.from_rep(A.rep.mul(b))

    def rmul(A, b):
        return A.from_rep(A.rep.rmul(b))

    def matmul(A, B):
        r"""
        Performs matrix multiplication of two DomainMatrix matrices

        Parameters
        ==========

        A, B: DomainMatrix
            to multiply

        Returns
        =======

        DomainMatrix
            DomainMatrix after multiplication

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(1), ZZ(1)],
        ...    [ZZ(0), ZZ(1)]], (2, 2), ZZ)

        >>> A.matmul(B)
        DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)

        See Also
        ========

        mul, pow, add, sub

        """

        A._check('*', B, A.shape[1], B.shape[0])
        return A.from_rep(A.rep.matmul(B.rep))

    def _scalarmul(A, lamda, reverse):
        if lamda == A.domain.zero:
            return DomainMatrix.zeros(A.shape, A.domain)
        elif lamda == A.domain.one:
            return A.copy()
        elif reverse:
            return A.rmul(lamda)
        else:
            return A.mul(lamda)

    def scalarmul(A, lamda):
        return A._scalarmul(lamda, reverse=False)

    def rscalarmul(A, lamda):
        return A._scalarmul(lamda, reverse=True)

    def mul_elementwise(A, B):
        assert A.domain == B.domain
        return A.from_rep(A.rep.mul_elementwise(B.rep))

    def __truediv__(A, lamda):
        """ Method for Scalar Division"""
        if isinstance(lamda, int) or ZZ.of_type(lamda):
            lamda = DomainScalar(ZZ(lamda), ZZ)

        if not isinstance(lamda, DomainScalar):
            return NotImplemented

        A, lamda = A.to_field().unify(lamda)
        if lamda.element == lamda.domain.zero:
            raise ZeroDivisionError
        if lamda.element == lamda.domain.one:
            return A.to_field()

        return A.mul(1 / lamda.element)

    def pow(A, n):
        r"""
        Computes A**n

        Parameters
        ==========

        A : DomainMatrix

        n : exponent for A

        Returns
        =======

        DomainMatrix
            DomainMatrix on computing A**n

        Raises
        ======

        NotImplementedError
            if n is negative.

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(1)],
        ...    [ZZ(0), ZZ(1)]], (2, 2), ZZ)

        >>> A.pow(2)
        DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)

        See Also
        ========

        matmul

        """
        nrows, ncols = A.shape
        if nrows != ncols:
            raise DMNonSquareMatrixError('Power of a nonsquare matrix')
        if n < 0:
            raise NotImplementedError('Negative powers')
        elif n == 0:
            return A.eye(nrows, A.domain)
        elif n == 1:
            return A
        elif n % 2 == 1:
            return A * A**(n - 1)
        else:
            sqrtAn = A ** (n // 2)
            return sqrtAn * sqrtAn

    def scc(self):
        """Compute the strongly connected components of a DomainMatrix

        Explanation
        ===========

        A square matrix can be considered as the adjacency matrix for a
        directed graph where the row and column indices are the vertices. In
        this graph if there is an edge from vertex ``i`` to vertex ``j`` if
        ``M[i, j]`` is nonzero. This routine computes the strongly connected
        components of that graph which are subsets of the rows and columns that
        are connected by some nonzero element of the matrix. The strongly
        connected components are useful because many operations such as the
        determinant can be computed by working with the submatrices
        corresponding to each component.

        Examples
        ========

        Find the strongly connected components of a matrix:

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)],
        ...                   [ZZ(0), ZZ(3), ZZ(0)],
        ...                   [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ)
        >>> M.scc()
        [[1], [0, 2]]

        Compute the determinant from the components:

        >>> MM = M.to_Matrix()
        >>> MM
        Matrix([
        [1, 0, 2],
        [0, 3, 0],
        [4, 6, 5]])
        >>> MM[[1], [1]]
        Matrix([[3]])
        >>> MM[[0, 2], [0, 2]]
        Matrix([
        [1, 2],
        [4, 5]])
        >>> MM.det()
        -9
        >>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det()
        -9

        The components are given in reverse topological order and represent a
        permutation of the rows and columns that will bring the matrix into
        block lower-triangular form:

        >>> MM[[1, 0, 2], [1, 0, 2]]
        Matrix([
        [3, 0, 0],
        [0, 1, 2],
        [6, 4, 5]])

        Returns
        =======

        List of lists of integers
            Each list represents a strongly connected component.

        See also
        ========

        sympy.matrices.matrices.MatrixBase.strongly_connected_components
        sympy.utilities.iterables.strongly_connected_components

        """
        rows, cols = self.shape
        assert rows == cols
        return self.rep.scc()

    def rref(self):
        r"""
        Returns reduced-row echelon form and list of pivots for the DomainMatrix

        Returns
        =======

        (DomainMatrix, list)
            reduced-row echelon form and list of pivots for the DomainMatrix

        Raises
        ======

        ValueError
            If the domain of DomainMatrix not a Field

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...     [QQ(2), QQ(-1), QQ(0)],
        ...     [QQ(-1), QQ(2), QQ(-1)],
        ...     [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)

        >>> rref_matrix, rref_pivots = A.rref()
        >>> rref_matrix
        DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
        >>> rref_pivots
        (0, 1, 2)

        See Also
        ========

        convert_to, lu

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        rref_ddm, pivots = self.rep.rref()
        return self.from_rep(rref_ddm), tuple(pivots)

    def columnspace(self):
        r"""
        Returns the columnspace for the DomainMatrix

        Returns
        =======

        DomainMatrix
            The columns of this matrix form a basis for the columnspace.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(-1)],
        ...    [QQ(2), QQ(-2)]], (2, 2), QQ)
        >>> A.columnspace()
        DomainMatrix([[1], [2]], (2, 1), QQ)

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        rref, pivots = self.rref()
        rows, cols = self.shape
        return self.extract(range(rows), pivots)

    def rowspace(self):
        r"""
        Returns the rowspace for the DomainMatrix

        Returns
        =======

        DomainMatrix
            The rows of this matrix form a basis for the rowspace.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(-1)],
        ...    [QQ(2), QQ(-2)]], (2, 2), QQ)
        >>> A.rowspace()
        DomainMatrix([[1, -1]], (1, 2), QQ)

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        rref, pivots = self.rref()
        rows, cols = self.shape
        return self.extract(range(len(pivots)), range(cols))

    def nullspace(self):
        r"""
        Returns the nullspace for the DomainMatrix

        Returns
        =======

        DomainMatrix
            The rows of this matrix form a basis for the nullspace.

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(-1)],
        ...    [QQ(2), QQ(-2)]], (2, 2), QQ)
        >>> A.nullspace()
        DomainMatrix([[1, 1]], (1, 2), QQ)

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        return self.from_rep(self.rep.nullspace()[0])

    def inv(self):
        r"""
        Finds the inverse of the DomainMatrix if exists

        Returns
        =======

        DomainMatrix
            DomainMatrix after inverse

        Raises
        ======

        ValueError
            If the domain of DomainMatrix not a Field

        DMNonSquareMatrixError
            If the DomainMatrix is not a not Square DomainMatrix

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...     [QQ(2), QQ(-1), QQ(0)],
        ...     [QQ(-1), QQ(2), QQ(-1)],
        ...     [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
        >>> A.inv()
        DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)

        See Also
        ========

        neg

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        m, n = self.shape
        if m != n:
            raise DMNonSquareMatrixError
        inv = self.rep.inv()
        return self.from_rep(inv)

    def det(self):
        r"""
        Returns the determinant of a Square DomainMatrix

        Returns
        =======

        S.Complexes
            determinant of Square DomainMatrix

        Raises
        ======

        ValueError
            If the domain of DomainMatrix not a Field

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.det()
        -2

        """
        m, n = self.shape
        if m != n:
            raise DMNonSquareMatrixError
        return self.rep.det()

    def lu(self):
        r"""
        Returns Lower and Upper decomposition of the DomainMatrix

        Returns
        =======

        (L, U, exchange)
            L, U are Lower and Upper decomposition of the DomainMatrix,
            exchange is the list of indices of rows exchanged in the decomposition.

        Raises
        ======

        ValueError
            If the domain of DomainMatrix not a Field

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(-1)],
        ...    [QQ(2), QQ(-2)]], (2, 2), QQ)
        >>> A.lu()
        (DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), [])

        See Also
        ========

        lu_solve

        """
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        L, U, swaps = self.rep.lu()
        return self.from_rep(L), self.from_rep(U), swaps

    def lu_solve(self, rhs):
        r"""
        Solver for DomainMatrix x in the A*x = B

        Parameters
        ==========

        rhs : DomainMatrix B

        Returns
        =======

        DomainMatrix
            x in A*x = B

        Raises
        ======

        DMShapeError
            If the DomainMatrix A and rhs have different number of rows

        ValueError
            If the domain of DomainMatrix A not a Field

        Examples
        ========

        >>> from sympy import QQ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [QQ(1), QQ(2)],
        ...    [QQ(3), QQ(4)]], (2, 2), QQ)
        >>> B = DomainMatrix([
        ...    [QQ(1), QQ(1)],
        ...    [QQ(0), QQ(1)]], (2, 2), QQ)

        >>> A.lu_solve(B)
        DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)

        See Also
        ========

        lu

        """
        if self.shape[0] != rhs.shape[0]:
            raise DMShapeError("Shape")
        if not self.domain.is_Field:
            raise DMNotAField('Not a field')
        sol = self.rep.lu_solve(rhs.rep)
        return self.from_rep(sol)

    def _solve(A, b):
        # XXX: Not sure about this method or its signature. It is just created
        # because it is needed by the holonomic module.
        if A.shape[0] != b.shape[0]:
            raise DMShapeError("Shape")
        if A.domain != b.domain or not A.domain.is_Field:
            raise DMNotAField('Not a field')
        Aaug = A.hstack(b)
        Arref, pivots = Aaug.rref()
        particular = Arref.from_rep(Arref.rep.particular())
        nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace()
        nullspace = Arref.from_rep(nullspace_rep)
        return particular, nullspace

    def charpoly(self):
        r"""
        Returns the coefficients of the characteristic polynomial
        of the DomainMatrix. These elements will be domain elements.
        The domain of the elements will be same as domain of the DomainMatrix.

        Returns
        =======

        list
            coefficients of the characteristic polynomial

        Raises
        ======

        DMNonSquareMatrixError
            If the DomainMatrix is not a not Square DomainMatrix

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)

        >>> A.charpoly()
        [1, -5, -2]

        """
        m, n = self.shape
        if m != n:
            raise DMNonSquareMatrixError("not square")
        return self.rep.charpoly()

    @classmethod
    def eye(cls, shape, domain):
        r"""
        Return identity matrix of size n

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> DomainMatrix.eye(3, QQ)
        DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)

        """
        if isinstance(shape, int):
            shape = (shape, shape)
        return cls.from_rep(SDM.eye(shape, domain))

    @classmethod
    def diag(cls, diagonal, domain, shape=None):
        r"""
        Return diagonal matrix with entries from ``diagonal``.

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import ZZ
        >>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ)
        DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)

        """
        if shape is None:
            N = len(diagonal)
            shape = (N, N)
        return cls.from_rep(SDM.diag(diagonal, domain, shape))

    @classmethod
    def zeros(cls, shape, domain, *, fmt='sparse'):
        """Returns a zero DomainMatrix of size shape, belonging to the specified domain

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> DomainMatrix.zeros((2, 3), QQ)
        DomainMatrix({}, (2, 3), QQ)

        """
        return cls.from_rep(SDM.zeros(shape, domain))

    @classmethod
    def ones(cls, shape, domain):
        """Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain

        Examples
        ========

        >>> from sympy.polys.matrices import DomainMatrix
        >>> from sympy import QQ
        >>> DomainMatrix.ones((2,3), QQ)
        DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)

        """
        return cls.from_rep(DDM.ones(shape, domain))

    def __eq__(A, B):
        r"""
        Checks for two DomainMatrix matrices to be equal or not

        Parameters
        ==========

        A, B: DomainMatrix
            to check equality

        Returns
        =======

        Boolean
            True for equal, else False

        Raises
        ======

        NotImplementedError
            If B is not a DomainMatrix

        Examples
        ========

        >>> from sympy import ZZ
        >>> from sympy.polys.matrices import DomainMatrix
        >>> A = DomainMatrix([
        ...    [ZZ(1), ZZ(2)],
        ...    [ZZ(3), ZZ(4)]], (2, 2), ZZ)
        >>> B = DomainMatrix([
        ...    [ZZ(1), ZZ(1)],
        ...    [ZZ(0), ZZ(1)]], (2, 2), ZZ)
        >>> A.__eq__(A)
        True
        >>> A.__eq__(B)
        False

        """
        if not isinstance(A, type(B)):
            return NotImplemented
        return A.domain == B.domain and A.rep == B.rep

    def unify_eq(A, B):
        if A.shape != B.shape:
            return False
        if A.domain != B.domain:
            A, B = A.unify(B)
        return A == B

    def lll(A, delta=QQ(3, 4)):
        """
        Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm.
        See [1]_ and [2]_.

        Parameters
        ==========

        delta : QQ, optional
            The Lovász parameter. Must be in the interval (0.25, 1), with larger
            values producing a more reduced basis. The default is 0.75 for
            historical reasons.

        Returns
        =======

        The reduced basis as a DomainMatrix over ZZ.

        Throws
        ======

        DMValueError: if delta is not in the range (0.25, 1)
        DMShapeError: if the matrix is not of shape (m, n) with m <= n
        DMDomainError: if the matrix domain is not ZZ
        DMRankError: if the matrix contains linearly dependent rows

        Examples
        ========

        >>> from sympy.polys.domains import ZZ, QQ
        >>> from sympy.polys.matrices import DM
        >>> x = DM([[1, 0, 0, 0, -20160],
        ...         [0, 1, 0, 0, 33768],
        ...         [0, 0, 1, 0, 39578],
        ...         [0, 0, 0, 1, 47757]], ZZ)
        >>> y = DM([[10, -3, -2, 8, -4],
        ...         [3, -9, 8, 1, -11],
        ...         [-3, 13, -9, -3, -9],
        ...         [-12, -7, -11, 9, -1]], ZZ)
        >>> assert x.lll(delta=QQ(5, 6)) == y

        Notes
        =====

        The implementation is derived from the Maple code given in Figures 4.3
        and 4.4 of [3]_ (pp.68-69). It uses the efficient method of only calculating
        state updates as they are required.

        See also
        ========

        lll_transform

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm
        .. [2] https://web.archive.org/web/20221029115428/https://web.cs.elte.hu/~lovasz/scans/lll.pdf
        .. [3] Murray R. Bremner, "Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications"

        """
        return DomainMatrix.from_rep(A.rep.lll(delta=delta))

    def lll_transform(A, delta=QQ(3, 4)):
        """
        Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm
        and returns the reduced basis and transformation matrix.

        Explanation
        ===========

        Parameters, algorithm and basis are the same as for :meth:`lll` except that
        the return value is a tuple `(B, T)` with `B` the reduced basis and
        `T` a transformation matrix. The original basis `A` is transformed to
        `B` with `T*A == B`. If only `B` is needed then :meth:`lll` should be
        used as it is a little faster.

        Examples
        ========

        >>> from sympy.polys.domains import ZZ, QQ
        >>> from sympy.polys.matrices import DM
        >>> X = DM([[1, 0, 0, 0, -20160],
        ...         [0, 1, 0, 0, 33768],
        ...         [0, 0, 1, 0, 39578],
        ...         [0, 0, 0, 1, 47757]], ZZ)
        >>> B, T = X.lll_transform(delta=QQ(5, 6))
        >>> T * X == B
        True

        See also
        ========

        lll

        """
        reduced, transform = A.rep.lll_transform(delta=delta)
        return DomainMatrix.from_rep(reduced), DomainMatrix.from_rep(transform)