File size: 16,456 Bytes
71a0112 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
from typing import List, Optional, Sequence, Set, Union
from torchgen import local
from torchgen.api.types import (
ArgName,
ArrayCType,
ArrayRefCType,
BaseCType,
BaseTypeToCppMapping,
Binding,
boolT,
ConstRefCType,
CType,
dimnameListT,
intArrayRefT,
iTensorListRefT,
ListCType,
longT,
MutRefCType,
NamedCType,
OptionalCType,
optionalIntArrayRefT,
optionalSymIntArrayRefT,
scalarT,
SpecialArgName,
symIntArrayRefT,
SymIntT,
tensorListT,
tensorOptionsT,
tensorT,
TupleCType,
VectorCType,
voidT,
)
from torchgen.model import (
Argument,
Arguments,
BaseTy,
BaseType,
FunctionSchema,
ListType,
NativeFunction,
OptionalType,
Return,
SelfArgument,
TensorOptionsArguments,
Type,
)
from torchgen.utils import assert_never
# This file describes the translation of JIT schema to the public C++
# API, which is what people use when they call functions like at::add.
#
# Prominent characteristics of the C++ API:
#
# - dtype, layout, device and pin_memory are collected into
# a single C++ type TensorOptions (the native functions API
# also has this, but tensor options is really most relevant
# for the C++ API; it makes calling kwarg factory functions
# pleasant)
#
# - defaulting lives here (in fact, the dispatcher is completely
# oblivious of defaults!)
#
# BTW: policy on name collisions: we try not to have types with
# collisions, but functions are fair game to collide
def name(
func: FunctionSchema,
*,
faithful_name_for_out_overloads: bool = False,
symint_overload: bool = False,
) -> str:
name = str(func.name.name)
if symint_overload:
name += "_symint"
if func.is_out_fn():
if faithful_name_for_out_overloads:
name += "_outf"
else:
name += "_out"
return name
# Translation of "value types" in JIT schema to C++ API type. Value
# types look the same no matter if they are argument types or return
# types. Returns None if the type in question is not a value type.
def valuetype_type(
t: Type,
*,
binds: ArgName,
remove_non_owning_ref_types: bool = False,
symint: bool = False,
) -> Optional[NamedCType]:
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar:
return None
elif str(t) == "SymInt":
if symint:
return NamedCType(binds, BaseCType(SymIntT))
else:
return NamedCType(binds, BaseCType(longT))
if remove_non_owning_ref_types:
if t.name == BaseTy.str:
raise AssertionError(
"string ref->value conversion: not implemented yet"
)
# All other BaseType currently map directly to BaseCppTypes.
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name]))
elif isinstance(t, OptionalType):
elem = valuetype_type(t.elem, binds=binds, symint=symint)
if elem is None:
return None
return NamedCType(binds, OptionalCType(elem.type))
elif isinstance(t, ListType):
if str(t.elem) == "bool":
assert t.size is not None
return NamedCType(binds, ArrayCType(BaseCType(boolT), t.size))
else:
return None
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translation of types occurring in JIT arguments to a C++ argument type.
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
# For example, we'll return std::vector<int> instead of IntArrayRef.
# See Note [translation from C++ reference to value types]
def argumenttype_type(
t: Type,
*,
mutable: bool,
binds: ArgName,
remove_non_owning_ref_types: bool = False,
symint: bool = False,
) -> NamedCType:
# If it's a value type, do the value type translation
r = valuetype_type(
t,
binds=binds,
symint=symint,
remove_non_owning_ref_types=remove_non_owning_ref_types,
)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable and not local.use_const_ref_for_mutable_tensors():
return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
else:
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
elif t.name == BaseTy.Scalar:
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
else:
raise AssertionError(f"base type should have been value type {t}")
elif isinstance(t, OptionalType):
if str(t.elem) == "Tensor":
if mutable and not local.use_const_ref_for_mutable_tensors():
return NamedCType(
binds, MutRefCType(BaseCType(tensorT))
) # TODO: fix this discrepancy
else:
return NamedCType(
binds, ConstRefCType(OptionalCType(BaseCType(tensorT)))
)
elif str(t.elem) == "Scalar":
return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
return NamedCType(binds, BaseCType(optionalIntArrayRefT))
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "SymInt":
if symint:
return NamedCType(binds, BaseCType(optionalSymIntArrayRefT))
else:
return NamedCType(binds, BaseCType(optionalIntArrayRefT))
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds, symint=symint)
return NamedCType(binds, OptionalCType(elem.type))
elif isinstance(t, ListType):
# TODO: remove these special cases, ArrayRef fallthrough works fine
if str(t.elem) == "int":
if remove_non_owning_ref_types:
return NamedCType(binds, VectorCType(BaseCType(longT)))
else:
return NamedCType(binds, BaseCType(intArrayRefT))
if str(t.elem) == "SymInt":
if remove_non_owning_ref_types:
if symint:
return NamedCType(binds, VectorCType(BaseCType(SymIntT)))
else:
return NamedCType(binds, VectorCType(BaseCType(longT)))
else:
if symint:
return NamedCType(binds, BaseCType(symIntArrayRefT))
else:
return NamedCType(binds, BaseCType(intArrayRefT))
if str(t.elem) == "Tensor":
if local.use_ilistref_for_tensor_lists():
return NamedCType(binds, ConstRefCType(BaseCType(iTensorListRefT)))
else:
return NamedCType(binds, BaseCType(tensorListT))
elif str(t.elem) == "Scalar":
return NamedCType(binds, ArrayRefCType(BaseCType(scalarT)))
elif str(t.elem) == "Dimname":
return NamedCType(binds, BaseCType(dimnameListT))
elif str(t.elem) == "Tensor?":
return NamedCType(
binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT))))
)
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds, symint=symint)
return NamedCType(binds, ArrayRefCType(elem.type))
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translate a JIT argument into its C++ type
def argument_type(a: Argument, *, binds: ArgName, symint: bool = False) -> NamedCType:
return argumenttype_type(a.type, mutable=a.is_write, symint=symint, binds=binds)
# Translation of a (non-multi) return type from JIT to C++
# N.B: returntype_type returns a CType, not a NamedCType.
# This is mostly because of the mismatch between return types and return names.
# e.g. a function with a return type of 'void' has 0 return names,
# and a function with a return type of 'std::tuple' has >1 return name.
def returntype_type(t: Type, *, mutable: bool, symint: bool = False) -> CType:
# placeholder is ignored
# NB: symint is ALWAYS respected for return types. So symint argument
# here is IGNORED
r = valuetype_type(t, binds="__placeholder__", symint=True)
if r is not None:
return r.type
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable:
if local.use_const_ref_for_mutable_tensors():
return ConstRefCType(BaseCType(tensorT))
else:
return MutRefCType(BaseCType(tensorT))
else:
# Note [Tensor Copy Returns]
# Currently, we use "Argument.is_write" to determine
# whether or not Tensor return types should be copies or references.
# If that ever changes, take a look at other locations of this note!
return BaseCType(tensorT)
elif t.name == BaseTy.Scalar:
return BaseCType(scalarT)
elif isinstance(t, ListType):
assert (
not mutable
), "Native functions should never return a mutable tensor list. They should return void."
elem = returntype_type(t.elem, mutable=False)
assert t.size is None, f"fixed size list returns not supported: {t}"
return VectorCType(elem)
elif isinstance(t, OptionalType):
elem = returntype_type(t.elem, mutable=mutable)
if str(t.elem) == "Tensor":
return OptionalCType(elem)
raise AssertionError(f"unrecognized return type {t}")
# Translation of a single return to its C++ type
def return_type(r: Return, *, symint: bool = False) -> CType:
return returntype_type(r.type, mutable=r.is_write, symint=symint)
# Translation of a full (possibly multi) return from JIT to its C++ type
def returns_type(rs: Sequence[Return], *, symint: bool = False) -> CType:
if len(rs) == 0:
return BaseCType(voidT)
elif len(rs) == 1:
return return_type(rs[0], symint=symint)
else:
return TupleCType([return_type(r, symint=symint) for r in rs])
def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]:
returns: List[str] = []
for i, r in enumerate(f.func.returns):
# If we have an inplace function, the return argument is
# implicitly named self.
# TODO: Consider incorporating this into the data model
if f.func.name.name.inplace:
assert i == 0, "illegal inplace function with multiple returns"
name = "self"
# If we are out function, the name is the name of the
# corresponding output function (r.name will get recorded
# in field_name later.)
elif f.func.is_out_fn():
name = f.func.arguments.out[i].name
# If the return argument is explicitly named...
elif r.name:
name_conflict = any(
r.name == a.name for a in f.func.schema_order_arguments()
)
if name_conflict and not f.func.is_out_fn():
name = f"{r.name}_return"
else:
name = r.name
# If there is no explicit name and no fallback name was passed in, we just name the output result,
# unless it's a multi-return, in which case it's result0,
# result1, etc (zero-indexed)
else:
name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}"
returns.append(name)
return returns
JIT_TO_CPP_DEFAULT = {
"False": "false",
"True": "true",
"None": "c10::nullopt", # UGH this one is type directed
"Mean": "at::Reduction::Mean",
"[]": "{}",
"contiguous_format": "MemoryFormat::Contiguous",
"long": "at::kLong",
}
# Convert a JIT default into C++ expression representing the default
def default_expr(d: str, t: Type, *, symint: bool) -> str:
if d == "None" and str(t) == "Tensor?":
return "{}"
if isinstance(t, BaseType) and t.name is BaseTy.str:
# Schema allows single quotes but C++ needs double
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
s = ""
i = 1
while i + 1 < len(d):
if d[i] != "\\":
if d[i] == '"':
s += '\\"'
else:
s += d[i]
i += 1
else:
if d[i + 1] == "'":
s += "'"
else:
s += d[i : i + 2]
i += 2
return f'"{s}"'
if isinstance(t, OptionalType):
if d == "None":
return "c10::nullopt"
return default_expr(d, t.elem, symint=symint)
if isinstance(t, ListType):
if d.startswith("[") and d.endswith("]"):
return "{" + d[1:-1] + "}"
elif symint and d.isdigit() and str(t.elem) == "SymInt":
return f"c10::SymInt({d})"
elif t.size is None:
# NOTE: Sized lists can have scalar defaults
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
return JIT_TO_CPP_DEFAULT.get(d, d)
# Convert an argument into its C++ API form
def argument(
a: Union[Argument, TensorOptionsArguments, SelfArgument],
*,
cpp_no_default_args: Set[str],
method: bool,
faithful: bool,
symint: bool = False,
has_tensor_options: bool,
) -> List[Binding]:
def sub_argument(
a: Union[Argument, TensorOptionsArguments, SelfArgument]
) -> List[Binding]:
return argument(
a,
cpp_no_default_args=cpp_no_default_args,
method=method,
faithful=faithful,
symint=symint,
has_tensor_options=has_tensor_options,
)
if isinstance(a, Argument):
binds: ArgName
if a.name == "memory_format" and has_tensor_options:
binds = SpecialArgName.possibly_redundant_memory_format
else:
binds = a.name
default: Optional[str] = None
if a.name not in cpp_no_default_args and a.default is not None:
default = default_expr(a.default, a.type, symint=symint)
return [
Binding(
nctype=argument_type(a, binds=binds, symint=symint),
name=a.name,
default=default,
argument=a,
)
]
elif isinstance(a, TensorOptionsArguments):
if faithful:
return (
sub_argument(a.dtype)
+ sub_argument(a.layout)
+ sub_argument(a.device)
+ sub_argument(a.pin_memory)
)
else:
default = None
# Enforced by NativeFunction.__post_init__
assert "options" not in cpp_no_default_args
if all(x.default == "None" for x in a.all()):
default = "{}"
elif a.dtype.default == "long":
default = "at::kLong" # TODO: this is wrong
return [
Binding(
nctype=NamedCType("options", BaseCType(tensorOptionsT)),
name="options",
default=default,
argument=a,
)
]
elif isinstance(a, SelfArgument):
if method:
# Caller is responsible for installing implicit this in context!
return []
else:
return sub_argument(a.argument)
else:
assert_never(a)
def arguments(
arguments: Arguments,
*,
faithful: bool,
symint: bool = False,
method: bool,
cpp_no_default_args: Set[str],
) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
if faithful:
args.extend(arguments.non_out)
args.extend(arguments.out)
else:
args.extend(arguments.out)
args.extend(arguments.non_out)
return [
r.no_default() if faithful else r
for a in args
for r in argument(
a,
faithful=faithful,
symint=symint,
method=method,
has_tensor_options=arguments.tensor_options is not None,
cpp_no_default_args=cpp_no_default_args,
)
]
|