File size: 17,003 Bytes
7a1062e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from typing import Any, Dict, List, Optional, Tuple, Union

from torchgen.api.types import (
    BaseCppType,
    BaseCType,
    boolT,
    CType,
    deviceT,
    doubleT,
    generatorT,
    layoutT,
    ListCType,
    longT,
    memoryFormatT,
    NamedCType,
    OptionalCType,
    scalarT,
    scalarTypeT,
    stringT,
    SymIntT,
    VectorCType,
)

from torchgen.model import (
    Argument,
    BaseTy,
    BaseType,
    FunctionSchema,
    ListType,
    OperatorName,
    OptionalType,
    Return,
    TensorOptionsArguments,
    Type,
)


_valueT = None


# A ValueT is an IR type which represents the computation of a Tensor.  In other
# words, a PyTorch user will do operations on lazy tensors, and each output lazy
# tensor internally tracks a ValueT representing the IR node that would have
# actually produced the value of this tensor for real.
#
# This is configurable because different lazy tensor backends (LTC vs XLA) will
# have different IR representations.  (Though, arguably, after unification they
# shouldn't!)
def getValueT() -> BaseCppType:
    global _valueT
    if not _valueT:
        raise NotImplementedError(
            "The value type needs to be set with setValueT() in run_gen_lazy_tensor()"
        )

    return _valueT


def setValueT(val: BaseCppType) -> None:
    global _valueT
    _valueT = val


# this is a bad hack. I need to refactor the data model to represent each arg in the schema as an object,
# making it easier to represent special properties of an arg.
tensorListValueT = BaseCppType("torch::lazy", "Value")


def process_ir_type(
    typ: Type, properties: "LazyIrProperties", *, symint: bool
) -> Union[BaseCType, VectorCType, OptionalCType, ListCType]:
    """
    This function takes a type from NativeFunctions and converts it for use with
    lazy tensor codegen.

    Type conversion for lazy currently consists of
     (1) changing at::Tensors into lazy::Values
     (2) wrapping everything in a BaseCType
     (3) making cpp-reference types into cpp-value types (e.g. vector instead of IntArrayRef)

    (1) converts at::Tensors to lazy::Values (which wrap lazy::Nodes, with which Lazy IR represents tensors.)
    There is special handling for Optional[Tensor] or List[Tensor], etc- hence 'tensor-like'

    This is incomplete- there are assertions in places that it's expected to need to add
    more types as the codegen is used with more operators.
    """
    if isinstance(typ, BaseType):
        if typ.name == BaseTy.Tensor:
            return BaseCType(getValueT())
        elif typ.name == BaseTy.Scalar:
            if properties.TreatScalarsAsConstants:
                return BaseCType(scalarT)
            # at::scalar has special handling,
            # and is wrapped in an lazy::Value just like at::tensor
            return BaseCType(getValueT())
        elif typ.name == BaseTy.ScalarType:
            return BaseCType(scalarTypeT)
        elif typ.name == BaseTy.int:
            return BaseCType(longT)
        elif typ.name == BaseTy.SymInt:
            if symint:
                return BaseCType(getValueT())
            else:
                return BaseCType(longT)
        elif typ.name == BaseTy.bool:
            return BaseCType(boolT)
        elif typ.name == BaseTy.float:
            return BaseCType(doubleT)
        elif typ.name == BaseTy.str:
            return BaseCType(stringT)
        elif typ.name == BaseTy.Device:
            return BaseCType(deviceT)
        elif typ.name == BaseTy.Generator:
            return BaseCType(generatorT)
        elif typ.name == BaseTy.Layout:
            return BaseCType(layoutT)
        elif typ.name == BaseTy.MemoryFormat:
            return BaseCType(memoryFormatT)
        else:
            raise AssertionError(f"TODO add support for type {repr(typ)}")
    elif isinstance(typ, OptionalType):
        return OptionalCType(process_ir_type(typ.elem, properties, symint=symint))
    elif isinstance(typ, ListType):
        if str(typ.elem) == "Tensor?":
            # TODO(whc) is this actually correct? or should it use a Vector like above
            return ListCType(OptionalCType(BaseCType(getValueT())))
        elif str(typ.elem) == "Tensor":
            # this is a TensorList which comes in from GetTensorList as a Value
            return BaseCType(tensorListValueT)
        elif typ.elem == BaseType(BaseTy.SymInt):
            # TODO: return a value type.  The problem here is analogous to
            # the problem with tensorListValueT: if you have SymInt[] you
            # cannot conveniently save the list of Value directly, as nodes
            # expect to save values as a vector for ALL arguments.  So you
            # need a separate IR node that represents all of the size nodes
            # assembled into a list.  I'm not an LTC dev so I don't want to
            # figure it out right now.  Y'all figure it out...
            return VectorCType(BaseCType(longT))

        else:
            return VectorCType(process_ir_type(typ.elem, properties, symint=symint))
    else:
        raise AssertionError(f"unrecognized type {repr(typ)}")


# TODO: Determining this based off of CType is bad; this should be computed
# from Type directly; then the same logic as process_ir_type can be used
#
# Invariant: passed typ should be an *owning* CType (e.g., we will report
# that ArrayRef<Value> is NOT a value type)
def isValueType(typ: CType, properties: "Optional[LazyIrProperties]" = None) -> bool:
    """
    Given a type, determine if it is a Value-like type.  This is equivalent to
    being Tensor-like, but assumes the type has already been transformed.
    """
    if isinstance(typ, BaseCType):
        # I am regretting my naming conventions, but now we are wrapping at::scalar in
        # lazy value, while preserving other 'scalar' types as scalars in the IR
        treat_scalars_as_constants = properties and properties.TreatScalarsAsConstants
        return (
            typ.type == getValueT()
            or (typ.type == scalarT and not treat_scalars_as_constants)
            or typ.type == SymIntT
        )
    elif typ == VectorCType(BaseCType(SymIntT)):
        # TODO: report True for this
        return False
    elif isinstance(typ, (OptionalCType, ListCType, VectorCType)):
        return isValueType(typ.elem, properties)
    return False


def isSymIntType(typ: Type) -> bool:
    return isinstance(typ, BaseType) and typ.name == BaseTy.SymInt


def isWrappedScalarType(typ: Type) -> bool:
    """
    Given a type, determine if it is a c10::scalar which we will wrap in a lazy Value.
    Since we literally change the type from scalarT to valueT, information is lost.
    This function helps build a list of wrapped scalars to save that information
    """
    if isinstance(typ, BaseType):
        # I am regretting my naming conventions, but now we are wrapping at::scalar in
        # lazy value, while preserving other 'scalar' types as scalars in the IR
        return typ.name == BaseTy.Scalar
    elif isinstance(typ, (OptionalType, ListType)):
        return isWrappedScalarType(typ.elem)
    return False


# TODO: dedupe with Type.is_generator_like
def isGeneratorType(typ: Type) -> bool:
    if isinstance(typ, BaseType):
        return typ.name == BaseTy.Generator
    elif isinstance(typ, (OptionalType)):
        return isGeneratorType(typ.elem)
    return False


# This class caches a few derived properties computed from an Argument
# and LazyIrProperties
class LazyArgument:
    name: str
    orig_type: Type
    lazy_type_: Optional[CType]
    is_wrapped_scalar: bool
    is_generator: bool
    # TODO: this is lies, it is false for symint list
    is_symint_or_list: bool

    # Whether or not we are treating this as symint or not
    symint: bool

    # true if this argument is or contains a lazy IR value
    is_lazy_value: bool

    def __init__(self, arg: Argument, properties: "LazyIrProperties", *, symint: bool):
        self.name = arg.name
        self.orig_type = arg.type
        self.symint = symint
        self.is_optional = isinstance(arg.type, OptionalType)
        self.is_generator = isGeneratorType(arg.type)
        self.lazy_type_ = process_ir_type(arg.type, properties, symint=symint)
        self.is_wrapped_scalar = isWrappedScalarType(arg.type)
        self.is_symint_or_list = symint and (
            isSymIntType(arg.type)
            or (isinstance(arg.type, OptionalType) and isSymIntType(arg.type.elem))
            # TODO: lists of symints are not currently treated as value types
            # or (isinstance(arg.type, ListType) and isSymIntType(arg.type.elem))
        )

        self.is_lazy_value = isValueType(self.lazy_type, properties)

    @property
    def lazy_type(self) -> CType:
        assert (
            self.lazy_type_ is not None
        ), f"Attempted to access lazy_type for invalid argument {self.name}"
        return self.lazy_type_


class LazyIrProperties:
    """Collection of properties for an IR node

    The property groups are listed below. Each group is mutually
    exclusive, meaning that only one property from each group can be True
    at any one time. The properties can be accessed as if they were normal
    attributes. The mutual exclusivity is automatically handled.
    """

    Properties: Tuple[Tuple[str, ...], ...] = (
        (
            "ShapePrecompute",  # Assume shape has been precomputed
            "ShapeCompute",  # Need to compute the shape on construction
            "ShapeCache",  # Utilize the shape cache to defer computation
        ),
        (
            "Lower",  # Codegen full lower function
            "LowerDeclOnly",  # Codegen only lower function declaration
        ),
        (
            "CanBeReused",  # Codegen full reuse function
            "CanBeReusedDeclOnly",  # Codegen only reuse function declaration
        ),
        (
            "CreateFn",  # Codegen full create function
            "CreateFnDeclOnly",  # Codegen only create function declaration
        ),
        (
            "TreatScalarsAsConstants",  # Treat Scalars as constants instead of handling like values
        ),
    )

    def __init__(self, *default_properties: str):
        properties: Dict[Tuple[str, ...], Optional[str]] = {
            p: None for p in LazyIrProperties.Properties
        }
        self.__dict__["properties"] = properties
        for p in default_properties:
            setattr(self, p, True)

    def __getattr__(self, key: str) -> Any:
        properties = self.__dict__["properties"]
        for values in LazyIrProperties.Properties:
            if key in values:
                return properties[values] == key

        return self.__getattribute__(key)

    def __setattr__(self, key: str, value: Any) -> Any:
        properties = self.__dict__["properties"]
        for values in LazyIrProperties.Properties:
            if key in values:
                properties[values] = key if value else None
                return value

        raise KeyError(f"Invalid property: {key}")


# Inspired by a FunctionSchema object, a LazyIrSchema holds the schema of a Lazy IR node.
# Unlike a FunctionSchema, it has no round-trippable string form (relating to the YAML),
# but carries type information from a native FunctionSchema modified for use with IR nodes,
# and preserving original argument names.
#
# TODO: This is not idiomatic with how other torchgen APIs transform on schema.
class LazyIrSchema:
    # The name of the operator this function schema describes.
    name: "OperatorName"

    positional_args: Tuple[LazyArgument, ...]
    keyword_args: Tuple[LazyArgument, ...]

    # TODO: Need to handle collisions with argument names at some point
    returns: Tuple["Return", ...]

    # if this schema has a Generator arg, list its orig ctype/name but don't
    # build a LazyArgument since lazy IR doesn't support it
    generator_arg: Optional[NamedCType] = None

    # original function schema
    func: FunctionSchema

    # Whether or not we are code-genning for SymInt or not
    symint: bool

    properties: LazyIrProperties = LazyIrProperties(
        # default properties
        "ShapePrecompute",
        "Lower",
        "CanBeReused",
    )
    opkind: Optional[str] = None

    def __init__(
        self,
        func: FunctionSchema,
        properties: Optional[LazyIrProperties] = None,
        *,
        symint: bool,
    ):
        if properties:
            self.properties = properties

        self.func = func
        self.symint = symint
        positional_args: List[LazyArgument] = []
        for arg_field in ["pre_self_positional", "self_arg", "post_self_positional"]:
            if arg_field == "self_arg" and func.arguments.self_arg is not None:
                arg = func.arguments.self_arg.argument
                positional_args.append(
                    LazyArgument(arg, self.properties, symint=symint)
                )
            elif getattr(func.arguments, arg_field) is not None:
                positional_args.extend(
                    LazyArgument(arg, self.properties, symint=symint)
                    for arg in getattr(func.arguments, arg_field)
                )
        self.positional_args = tuple(positional_args)

        keyword_args: List[LazyArgument] = []
        for arg_field in [
            "pre_tensor_options_kwarg_only",
            "tensor_options",
            "post_tensor_options_kwarg_only",
            "out",
        ]:
            curr_args = getattr(func.arguments, arg_field)
            if curr_args is not None:
                if isinstance(curr_args, TensorOptionsArguments):
                    curr_args = curr_args.all()
                for arg in curr_args:
                    if isGeneratorType(arg.type):
                        assert (
                            self.generator_arg is None
                        ), "We expect there is only one generator arg"
                        self.generator_arg = NamedCType(
                            arg.name, arg.type  # type:ignore[arg-type]
                        )
                keyword_args.extend(
                    LazyArgument(arg, self.properties, symint=symint)
                    for arg in curr_args
                )
        self.keyword_args = tuple(keyword_args)
        self.name = func.name
        self.returns = func.returns

    @property
    def node_name(self) -> str:
        """
        Return camel-case version of op in node.

        Note: This function also appends any `overload_name` in the operation.
        For example, if the op is `bitwise_and.Tensor`, the returned name
        will be `BitwiseAndTensor`.
        """
        op_name = f"{self.name.name}_{self.name.overload_name}".lower()
        return "".join(word.capitalize() or "" for word in op_name.split("_"))

    @property
    def aten_name(self) -> str:
        return str(self.name.name)

    @property
    def base_name(self) -> str:
        return f"{self.name.name.base}"

    def filtered_args(
        self,
        positional: bool = True,
        keyword: bool = True,
        values: bool = True,
        scalars: bool = True,
        generator: bool = True,
    ) -> List[LazyArgument]:
        # This function maintains the sorted order of arguments but provides different filtered views.
        # Some parts of the code care about kwargs vs args (TS lowerings),
        # other parts care about whether they need to wrap the arg in a lazy value or leave it alone.
        # Generators are special cased, as they are needed for fallback/shape-inference but not supported
        # in TS lowerings and therefore also omitted from lazy IR.
        args: List[LazyArgument] = []
        if positional:
            args.extend(self.positional_args)
        if keyword:
            args.extend(self.keyword_args)

        if values and scalars and generator:
            return args
        elif values and scalars:
            return [a for a in args if not a.is_generator]
        elif values:
            return [a for a in args if a.is_lazy_value]
        elif scalars:
            return [
                a
                for a in args
                if not a.is_lazy_value and (generator or not a.is_generator)
            ]

        return []

    @property
    def positional_values(self) -> List[LazyArgument]:
        return self.filtered_args(
            positional=True, keyword=False, values=True, scalars=False
        )

    @property
    def positional_scalars(self) -> List[LazyArgument]:
        return self.filtered_args(
            positional=True, keyword=False, values=False, scalars=True
        )

    @property
    def keyword_values(self) -> List[LazyArgument]:
        return self.filtered_args(
            positional=False, keyword=True, values=True, scalars=False
        )

    @property
    def keyword_scalars(self) -> List[LazyArgument]:
        return self.filtered_args(
            positional=False, keyword=True, values=False, scalars=True
        )