File size: 57,203 Bytes
71a0112 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 |
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence, Set, Tuple, Union
from torchgen.api import cpp
from torchgen.api.types import Binding, CppSignature, CppSignatureGroup
from torchgen.gen import pythonify_default
from torchgen.model import (
Argument,
BaseTy,
BaseType,
FunctionSchema,
ListType,
NativeFunction,
OptionalType,
Return,
Type,
Variant,
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Data Models
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# [Notes] python binding codegen
#
# The Python binding codegen produces code that takes the input list of
# PyObjects, finds the matching ATen C++ function using PythonArgParser,
# converts the PyObjects into C++ types and calls the ATen C++ function:
#
# +--------+ parsing +------------------------+ binding +-----------------------+
# | PyObjs | ---------> | PythonArgParser Output | ---------> | Cpp Function Dispatch |
# +--------+ +------------------------+ +-----------------------+
#
# The following examples demonstrate the data models the Python binding
# codegen needs to deal with and the tasks it needs to accomplish. It
# helps understand the purpose of the new data types we introduced below.
#
# - Function Schema (source of truth)
#
# aten::empty.names(int[] size, *, Dimname[]? names,
# ScalarType? dtype=None, Layout? layout=None,
# Device? device=None, bool? pin_memory=None,
# MemoryFormat? memory_format=None) -> Tensor
#
# - Python Signature
#
# It's used to generate input schema string for PythonArgParser.
# Note: TensorOptions fields are reordered and the additional
# 'requires_grad' field is added:
#
# empty(IntArrayRef size, *, DimnameList? names,
# MemoryFormat? memory_format=None, ScalarType dtype=None,
# Layout layout=torch.strided, Device device=None,
# bool pin_memory=False, bool requires_grad=False)
#
# - C++ Signature
#
# It's used to generate C++ lambda formals & dispatch call.
# Note: the scattered TensorOptions fields are packed into 'options'.
#
# auto dispatch_empty =
# [](IntArrayRef size, c10::optional<DimnameList> names,
# const TensorOptions & options,
# c10::optional<MemoryFormat> memory_format) -> Tensor {
# pybind11::gil_scoped_release no_gil;
# return torch::empty(size, names, options, memory_format);
# };
#
# - Binding between Python Arguments and C++ Arguments
#
# Given a set of Python Arguments in scope, we need produce the
# binding expressions that translate the Python API into C++ API:
#
# Python Args Cpp Args Binding Exprs
# -----------------------------------------------------------------
# 0: size size '_r.intlist(0)'
# 1: names names 'names' [special init]
# 2: memory_format -------+
# 3: dtype -----+-|--> options 'options' [special packing]
# 4: layout / |
# 5: device / +--> memory_format '_r.memoryformatOptional(2)'
# 6: pin_memory /
# 7: requires_grad -+
#
# So the full dispatch expression would look like:
#
# dispatch_empty(_r.intlist(0), names, options,
# _r.memoryformatOptional(2))
#
# Where does 'names' come from? It involves special local init:
#
# auto __names = _r.toDimnameListOptional(1);
# c10::optional<DimnameList> names =
# __names ? c10::make_optional(DimnameList(__names.value()))
# : c10::nullopt;
#
# Where does 'options' come from? It involves special local init
# for TensorOptions. Note that Python side has the additional
# 'requires_grad' field:
#
# const auto options = TensorOptions()
# .dtype(_r.scalartype(3))
# .device(_r.device(5))
# .layout(_r.layoutOptional(4))
# .requires_grad(_r.toBool(7))
# .pinned_memory(_r.toBool(6));
#
# In some other cases one Python Argument can map to multiple C++
# Arguments. For example:
#
# aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False)
# -> (Tensor values, Tensor indices)
#
# Python Args Cpp Args Binding Exprs
# ---------------------------------------------------------------------
# +----> max 'out[0]'
# /-----> max_values 'out[1]
# 0: input / self '_r.tensor(0)'
# 1: dim / dim '_r.dimname(1)'
# 2: keepdim / keepdim '_r.toBool(2)'
# 3: out -----+ [local init] out '_r.tensorlist_n<2>(3)'
#
# As demonstrated above, the binding can involve reordering,
# packing, unpacking and special local inits.
#
#
# Let's look at a concrete example:
#
# static PythonArgParser parser({
# "abs(Tensor input, *, Tensor out=None)",
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- Python Schema, represented by PythonSignature and PythonArgument
#
# }, /*traceable=*/true);
#
# ParsedArgs<2> parsed_args;
# auto _r = parser.parse(nullptr, args, kwargs, parsed_args);
#
# ...
#
# if (_r.isNone(1)) {
# ~~~~~~~~~~~~ <--- Scattered PythonArgParser output (arg name = 'out')
# represented by PythonArgParserOutputExpr
#
# // aten::abs(Tensor self) -> Tensor
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- NativeFunction schema, base version
#
# auto dispatch_abs = [](const Tensor & self) -> Tensor {
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- dispatch_lambda_args / dispatch_lambda_return_str
# generated from NativeFunction / CppSignature
# (deprecated PythonSignature is special)
# arguments are represented by DispatchLambdaArgument
#
# pybind11::gil_scoped_release no_gil;
# return self.abs();
# ~~~~~~~~~~~ <--- cpp_dispatch_target / cpp_dispatch_exprs
# generated from NativeFunction / CppSignature
# };
# return wrap(dispatch_abs(_r.tensor(0)));
# ~~~~~~~~~~~~~
# ^
# +--- dispatch_lambda_exprs
# binding PythonArgParserOutputExpr (python args)
# and DispatchLambdaArgument (c++ args)
#
# } else {
# // aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- NativeFunction schema, out-variant
#
# auto dispatch_abs_out = [](Tensor out, const Tensor & self) -> Tensor {
# pybind11::gil_scoped_release no_gil;
# return at::abs_out(out, self);
# };
# return wrap(dispatch_abs_out(_r.tensor(1), _r.tensor(0)));
# }
#
#
# [Notes] python interface codegen
# The python dataclasses below are used used to generate both python binding code
# and pyi type hint signatures.
# In theory these two should look very similar, but there are number of differences
# in how pyi signatures vs. python_arg_parser signatures are generated.
# These differences have been encapsulated in signature_str() vs. signature_str_pyi()
# to display the full signatures, and argument_str() vs argument_str_pyi() to display arguments.
# For examples, only pyi signatures include return types.
@dataclass(frozen=True)
class PythonReturns:
returns: Tuple[Return, ...]
@dataclass(frozen=True)
class PythonArgument:
name: str
type: Type
default: Optional[str]
# Used to generate the default init expr for some PythonArgParser outputs, e.g.:
#
# _r.layoutWithDefault(3, layout_from_backend(self.options().backend())))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- default_init str
default_init: Optional[str]
# Compute argument formal for python argument parsing.
# Needs to be consistent with torch/csrc/utils/python_arg_parser.h.
def argument_str(self, *, method: bool = False, symint: bool = True) -> str:
type_str = (
argument_type_str(self.type, symint=symint)
.replace("const ", "")
.replace(" &", "")
)
name = self.name
# s/self/input/ outside method bindings
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just
# for the parse string
if name == "self" and type_str in ["Tensor", "Number"] and not method:
name = "input"
# add default
if self.default is not None:
default = {
"nullptr": "None",
"c10::nullopt": "None",
"{}": "None",
}.get(self.default, self.default)
return f"{type_str} {name}={default}"
else:
return f"{type_str} {name}"
def argument_str_pyi(
self, *, method: bool = False, deprecated: bool = False
) -> str:
type_str = argument_type_str_pyi(self.type)
name = self.name
# s/self/input/ outside method bindings
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just
# for the parse string
if name == "self" and type_str == "Tensor" and not method and not deprecated:
name = "input"
if name == "from": # from is a Python keyword...
name += "_"
# pyi merges the _out and functional variants into the same signature, with an optional out arg
if name == "out" and type_str == "Tensor" and not deprecated:
type_str = "Optional[" + type_str + "]"
# pyi deprecated signatures don't get defaults for their out arg
treat_as_no_default = (
deprecated
and isinstance(self, PythonOutArgument)
and self.default == "None"
)
# add default
if self.default is not None and not treat_as_no_default:
if (
isinstance(self.type, ListType)
and self.type.elem == BaseType(BaseTy.int)
and self.default.startswith("{")
and self.default.endswith("}")
):
default = "(" + self.default[1:-1] + ")"
else:
default = {
"nullptr": "None",
"c10::nullopt": "None",
"{}": "None",
"MemoryFormat::Contiguous": "contiguous_format",
"QScheme::PER_TENSOR_AFFINE": "per_tensor_affine",
}.get(self.default, self.default)
return f"{name}: {type_str} = {default}"
else:
return f"{name}: {type_str}"
@dataclass(frozen=True)
class PythonOutArgument(PythonArgument):
# In Python signature multiple output fields are packed into one 'out' argument.
# When binding to C++, it's first binded to a local 'out' variable:
# 'auto out = _r.tensorlist_n<2>(2);',
# then binded to scattered C++ output arguments as 'out[0]', 'out[1]', and etc.
# TODO: maybe don't need keep scattered out fields for python signature?
outputs: Tuple[PythonArgument, ...]
@staticmethod
def from_outputs(
outputs: Tuple[PythonArgument, ...]
) -> Optional["PythonOutArgument"]:
if not outputs:
return None
size = len(outputs)
if size == 1:
return PythonOutArgument(
name=outputs[0].name,
type=outputs[0].type,
default="None",
default_init=None,
outputs=outputs,
)
elif size > 1:
if any(not a.type.is_tensor_like() for a in outputs):
raise RuntimeError(f"Unsupported output type: {outputs}")
return PythonOutArgument(
name="out",
# TODO: shouldn't this be OptionalType[ListType[...]], since it defaults to None?
type=ListType(BaseType(BaseTy.Tensor), size),
default="None",
default_init=None,
outputs=outputs,
)
raise AssertionError(r"Unexpected PythonOutArgument size")
@dataclass(frozen=True)
class PythonSignature:
# Base operator name, without inplace/outplace suffix.
name: str
# Positional arguments.
# TODO: create a dedicated SelfArgument type for 'self'?
input_args: Tuple[PythonArgument, ...]
# Keyword arguments excluding the 'out' argument and scattered kwargs belonging
# to TensorOptions (dtype, layout, device, pin_memory, requires_grad, etc).
input_kwargs: Tuple[PythonArgument, ...]
output_args: Optional[PythonOutArgument]
# Return types, which are only used by pyi
returns: PythonReturns
# These are scattered kwargs arguments belonging to TensorOptions.
# When binding to C++, they are packed into a TensorOptions object 'options'.
# It's possible that the C++ signature doesn't take TensorOptions object (e.g.
# for out variant), in which case they will be used as scattered fields without
# being packed into 'options'.
# TODO: maybe create a PythonTensorOptionsArgument?
tensor_options_args: Tuple[PythonArgument, ...]
# method or function signature?
method: bool
@property
def deprecated(self) -> bool:
return False
def arguments(
self, *, skip_outputs: bool = False, skip_tensor_options: bool = False
) -> Tuple[Union[PythonArgument, PythonOutArgument], ...]:
result: List[Union[PythonArgument, PythonOutArgument]] = []
result.extend(self.input_args)
result.extend(self.input_kwargs)
if self.output_args is not None and not skip_outputs:
result.append(self.output_args)
if not skip_tensor_options:
result.extend(self.tensor_options_args)
return tuple(result)
def arguments_count(self) -> int:
return len(self.arguments())
def output_idx(self) -> int:
return len(self.input_args) + len(self.input_kwargs)
# [old codegen] Compute the Python function signature for argument parsing,
# as specified in torch/csrc/utils/python_arg_parser.h. WARNING:
# this is NOT the same type signature as specified by PEP 484
# as understood by mypy; our format was independently developed
# and has some quirks to make it more suitable specifically
# for error parsing.
#
# For a translation to mypy-valid type signatures, see
# signature_str_pyi().
def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str:
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = [
a.argument_str(method=self.method, symint=symint) for a in args
]
positional_argc = len(self.input_args)
if len(schema_formals) > positional_argc:
schema_formals.insert(positional_argc, "*")
return f'{self.name}({", ".join(schema_formals)})'
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = [
a.argument_str_pyi(method=self.method) for a in args
]
positional_argc = len(self.input_args)
if len(schema_formals) > positional_argc:
schema_formals.insert(positional_argc, "*")
# only pyi signatures include returns
returns_str = returns_str_pyi(self)
# pyi also includes self (with no typing/defaults) for methods
if self.method:
schema_formals.insert(0, "self")
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]:
# only pyi uses vararg signatures
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = [
a.argument_str_pyi(method=self.method) for a in args
]
# vararg only applies to pyi signatures. vararg variants are not generated for all signatures
num_args = self.arguments_count()
num_positionalargs = len(self.input_args)
have_vararg_version = False
if num_args > 0:
vararg_type = args[0].type
if (
isinstance(vararg_type, ListType)
and str(vararg_type.elem) in ["int", "SymInt"]
and num_positionalargs == 1
):
have_vararg_version = True
if not have_vararg_version:
return None
# Below are the major changes in vararg vs. regular pyi signatures
# vararg signatures also omit the asterix
schema_formals[0] = "*" + args[0].name + ": _int"
returns_str = returns_str_pyi(self)
# pyi also includes self (with no typing/defaults) for methods
if self.method:
schema_formals.insert(0, "self")
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
# The deprecated python signature involves some special logic, so create a
# dedicated data model to store these extra properties.
@dataclass(frozen=True)
class PythonSignatureDeprecated(PythonSignature):
# Schema for the deprecated function
deprecated_schema: FunctionSchema
# The deprecated signature might miss some arguments that the corresponding
# C++ signature expects. We need store the constant default values to pass in.
# For example:
# [deprecate signature]: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2)
# [func schema]: aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
# [func call]: self.addmm(mat1, mat2, beta, 1)
# We store ['self', 'mat1', 'mat2', 'beta', '1'] in this case.
deprecated_args_exprs: Tuple[str, ...]
@property
def deprecated(self) -> bool:
return True
def signature_str(self, *, skip_outputs: bool = False, symint: bool = True) -> str:
return (
PythonSignature.signature_str(
self, skip_outputs=skip_outputs, symint=symint
)
+ "|deprecated"
)
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = [
a.argument_str_pyi(method=self.method, deprecated=True) for a in args
]
positional_argc = len(self.input_args)
if len(schema_formals) > positional_argc:
schema_formals.insert(positional_argc, "*")
returns_str = returns_str_pyi(self)
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]:
# the codegen doesn't include vararg variants for deprecated signatures
return None
# This struct is used to hold the PythonSignature and its corresponding
# NativeFunction BEFORE grouping base and out-variant functions.
# Why not store NativeFunction in PythonSignature or construct PythonSignature
# from NativeFunction? Because they are not 1-1 mapped.
# One native function could have both deprecated and non-deprecated python
# signatures - NativeFunction doesn't contain information to construct the
# deprecated python signature.
# One python signature is used to handle both the base and the out-variant
# function - see 'PythonSignatureGroup'.
@dataclass(frozen=True)
class PythonSignatureNativeFunctionPair:
signature: PythonSignature
function: NativeFunction
# We merge pairs of functions with signatures that are equivalent mod
# output arguments, and use a single entry in the python_arg_parser sig
# list for both (output arguments become optional).
@dataclass(frozen=True)
class PythonSignatureGroup:
# The signature used for Python argument parsing. The outplace signature
# is preferred if exists, because it can be used to parse inputs for both
# the out-place variant and the base version (with output omitted).
signature: PythonSignature
# The regular ATen declaration (e.g. conv2d)
base: NativeFunction
# The out variant (e.g. conv2d_out)
outplace: Optional[NativeFunction]
@classmethod
def from_pairs(
cls,
functional: PythonSignatureNativeFunctionPair,
out: Optional[PythonSignatureNativeFunctionPair],
) -> "PythonSignatureGroup":
if out is None:
return PythonSignatureGroup(
signature=functional.signature,
base=functional.function,
outplace=None,
)
# prefer the signature with optional out=... arguments because it's the
# superset that can be used to parse input for both base and outplace.
signature_kwargs = out.signature.__dict__.copy()
# Out overloads in C++ don't have TensorOptions arguments,
# so take these from the functional variant
signature_kwargs[
"tensor_options_args"
] = functional.signature.tensor_options_args
return PythonSignatureGroup(
signature=type(out.signature)(**signature_kwargs),
base=functional.function,
outplace=out.function,
)
# C++ function dispatch is wrapped in a lambda function. The lambda function
# has almost the same signature as the C++ function, only with some small
# variants - see details below.
# This data model is used to represent arguments of the lambda function
# signature.
@dataclass(frozen=True)
class DispatchLambdaArgument:
name: str
type_str: str
is_out_arg: bool
# To pass PyObjects arguments to C++ function (via the lambda wrapper),
# we need first convert PyObjects into simple C++ objects. This work
# is done by PythonArgParser.
# This data model is used to represent the output of PythonArgParser.
# It has 1-1 mapping with PythonArgument in PythonSignature.
@dataclass(frozen=True)
class PythonArgParserOutputExpr:
# argument name
name: str
# RHS expression to reference PythonArgParser output.
expr: str
# In some special cases we need create different expr, e.g.:
# '_r.isNone(1)' instead of '_r.tensor(1)'.
index: int
# The python argument it maps to.
argument: PythonArgument
@property
def is_none_expr(self) -> str:
return f"_r.isNone({self.index})"
# To pass PythonArgParser output to the lambda wrapper, we need bind
# PythonArgParserOutputExpr to DispatchLambdaArgument.
# They are not always 1-1 mapped, e.g. scattered TensorOptions fields
# need be packed into a TensorOptions object, which is the argument
# that the lambda function wrapper takes.
@dataclass(frozen=True)
class DispatchLambdaArgumentExprs:
# The exprs that provide the binding for lambda arguments, e.g.:
#
# 'self' -> '_r.tensor(0)'
# 'min' -> 'out[0]' / 'min_indices' -> 'out[1]'
# 'options' -> 'options'
#
# It has 1-1 mapping with DispatchLambdaArgument.
exprs: Sequence[str]
# Special local inits, which might introduce new variables that
# the 'exprs' above reference, e.g.:
#
# 'auto out = _r.tensorlist_n<2>(2);'
#
inits: Sequence[str]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Helper Functions
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def _cpp_signature(f: NativeFunction, *, method: bool = False) -> CppSignature:
return CppSignatureGroup.from_native_function(f, method=method).signature
def has_tensor_options(f: NativeFunction) -> bool:
return f.func.arguments.tensor_options is not None
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Python Signature
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# 'simple_type' was introduced by the old codegen, which is slightly
# different from the python schema type, e.g.: doesn't have '?' suffix
# for optional Tensor/TensorList; doesn't have '[size]' suffix for list type.
def argument_type_str(
t: Type, *, simple_type: bool = False, symint: bool = True
) -> str:
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
return "Tensor"
elif t.name == BaseTy.int:
return "int64_t"
elif t.name == BaseTy.float:
return "double"
elif t.name == BaseTy.str:
return "c10::string_view"
elif t.name in [
BaseTy.bool,
BaseTy.QScheme,
BaseTy.Scalar,
BaseTy.ScalarType,
BaseTy.Generator,
BaseTy.Storage,
BaseTy.Layout,
BaseTy.Device,
BaseTy.DeviceIndex,
BaseTy.MemoryFormat,
BaseTy.Dimname,
BaseTy.Stream,
BaseTy.ConstQuantizerPtr,
BaseTy.SymInt,
]:
# These python schema type names line up with their function schema names
return t.name.name
elif isinstance(t, OptionalType):
if str(t.elem) == "Tensor":
# Is it desired to keep '?' for simple_type with new style dispatcher?
return "Tensor?"
elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint)
return f"{elem}?"
elif isinstance(t, ListType):
size = t.size if not simple_type else None
if str(t.elem) == "bool":
assert t.size is not None
return f"::std::array<bool,{t.size}>"
elif str(t.elem) == "int":
return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef"
elif str(t.elem) == "SymInt":
if symint:
return (
f"SymIntArrayRef[{size}]" if size is not None else "SymIntArrayRef"
)
else:
return f"IntArrayRef[{size}]" if size is not None else "IntArrayRef"
elif str(t.elem) == "Tensor":
return f"TensorList[{size}]" if size is not None else "TensorList"
elif str(t.elem) == "Scalar":
return f"ScalarList[{size}]" if size is not None else "ScalarList"
elif str(t.elem) == "Tensor?":
if simple_type:
return "c10::List<c10::optional<Tensor>>"
else:
return "const c10::List<c10::optional<Tensor>> &"
elif str(t.elem) == "Dimname":
return f"DimnameList[{size}]" if size is not None else "DimnameList"
elem = argument_type_str(t.elem, simple_type=simple_type, symint=symint)
return f"ArrayRef<{elem}>"
raise RuntimeError(f"unrecognized type {repr(t)}")
def argument_type_size(t: Type) -> Optional[int]:
l = t.is_list_like()
if l is not None and str(l.elem) != "bool":
return l.size
else:
return None
def argument(a: Argument) -> PythonArgument:
return PythonArgument(
name=a.name,
type=a.type,
# TODO: directly translate a.default to python default
default=str(
pythonify_default(cpp.default_expr(a.default, a.type, symint=False))
)
if a.default is not None
else None,
default_init=None,
)
# Generates a PythonSignature that can be used for either .pyi or PythonArgParser codegen
def signature(
f: NativeFunction, *, method: bool = False, pyi: bool = False
) -> PythonSignature:
return signature_from_schema(
f.func, category_override=f.category_override, method=method, pyi=pyi
)
def signature_from_schema(
func: FunctionSchema,
*,
category_override: Optional[str],
method: bool = False,
pyi: bool = False,
) -> PythonSignature:
args: List[Argument] = []
args.extend(func.arguments.pre_self_positional)
# Skip SelfArgument if this is method.
if not method and func.arguments.self_arg is not None:
args.append(func.arguments.self_arg.argument)
args.extend(func.arguments.post_self_positional)
args.extend(func.arguments.pre_tensor_options_kwarg_only)
# Skip TensorOptionsArguments. Python side TensorOptions
# arguments are created based on different rules - see below.
args.extend(func.arguments.post_tensor_options_kwarg_only)
args.extend(func.arguments.out)
input_arg_set = {a.name for a in func.arguments.flat_positional}
kwarg_only_set = {a.name for a in func.arguments.flat_kwarg_only}
out_arg_set = {a.name for a in func.arguments.out}
input_args = tuple(map(argument, filter(lambda a: a.name in input_arg_set, args)))
input_kwargs = tuple(
map(argument, filter(lambda a: a.name in kwarg_only_set, args))
)
outputs = tuple(map(argument, filter(lambda a: a.name in out_arg_set, args)))
# Reintroduce the scattered fields of TensorOptions for Python.
# Compared to the cpp counterpart, the python arguments have new property
# (default_init) and a new argument 'requires_grad', which require some
# special handlings.
# [old codegen] TODO: because these aren't guaranteed to be 100% faithful
# to the original versions in the yaml, this recreation is a potential
# source of drift between eager and JIT. Pull this logic out to a shared place.
has_tensor_input_arg = any(
a.type.is_tensor_like() for a in func.arguments.flat_non_out
)
if any(a.name == "requires_grad" for a in func.schema_order_arguments()):
raise ValueError(
"argument named requires_grad is reserved, should not explicitly add it in the schema"
)
# [old codegen] this probably won't work if one of the returns is not a tensor,
# but it will produce a compile-time error that is obvious.
has_tensor_return = any(r.type.is_tensor_like() for r in func.returns)
name: str = cpp.name(func)
is_factory_function = category_override == "factory" or (
has_tensor_return and not has_tensor_input_arg
)
is_like_or_new_function = (
category_override in ("new", "like")
or name.startswith("new_")
or name.endswith("_like")
)
tensor_options_args: List[PythonArgument] = []
if is_factory_function or is_like_or_new_function:
def topt_default_init(name: str) -> Optional[str]:
topt_args = func.arguments.tensor_options
if topt_args is None:
return None
a = getattr(topt_args, name)
if a.default is None or a.default == "None":
return None
return cpp.default_expr(a.default, a.type, symint=False)
tensor_options_args.append(
PythonArgument(
name="dtype",
type=OptionalType(BaseType(BaseTy.ScalarType)),
default="None",
default_init=(
None if is_like_or_new_function else topt_default_init("dtype")
),
)
)
tensor_options_args.append(
PythonArgument(
name="layout",
type=OptionalType(BaseType(BaseTy.Layout)),
default="None",
default_init=(
None if is_like_or_new_function else topt_default_init("layout")
),
)
)
tensor_options_args.append(
PythonArgument(
name="device",
type=OptionalType(BaseType(BaseTy.Device)),
default="None",
default_init=(
None
if is_like_or_new_function
else (
topt_default_init("device")
or "torch::tensors::get_default_device()"
)
),
)
)
tensor_options_args.append(
PythonArgument(
name="pin_memory",
type=OptionalType(BaseType(BaseTy.bool)),
default="False",
default_init=None,
)
)
tensor_options_args.append(
PythonArgument(
name="requires_grad",
type=OptionalType(BaseType(BaseTy.bool)),
default="False",
default_init=None,
)
)
returns = PythonReturns(returns=func.returns)
return PythonSignature(
name=str(func.name.name),
input_args=input_args,
input_kwargs=input_kwargs,
output_args=PythonOutArgument.from_outputs(outputs),
tensor_options_args=tuple(tensor_options_args),
returns=returns,
method=method,
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Python Interface
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def namedtuple_fieldnames(returns: Tuple[Return, ...]) -> List[str]:
if len(returns) <= 1 or all(r.name is None for r in returns):
return []
else:
if any(r.name is None for r in returns):
# When building on Windows, `PyStructSequence_UnnamedField` could not be
# resolved by the linker for some reason, which cause error in building:
#
# python_nn_functions.cpp.obj : error LNK2001: unresolved external symbol
# PyStructSequence_UnnamedField
#
# Thus, at this point in time, we do not support unnamed
# fields in namedtuple; you must either name all fields,
# or none of them.
raise ValueError("Unnamed field is not supported by codegen")
return [str(r.name) for r in returns]
def argument_type_str_pyi(t: Type) -> str:
add_optional = False
if isinstance(t, OptionalType):
t = t.elem
add_optional = True
if isinstance(t, BaseType):
if t.name in [BaseTy.int, BaseTy.DeviceIndex]:
ret = "_int"
if t.name == BaseTy.SymInt:
ret = "Union[_int, SymInt]"
elif t.name == BaseTy.float:
ret = "_float"
elif t.name == BaseTy.str:
ret = "str"
elif t.name == BaseTy.Scalar:
ret = "Union[Number, _complex]"
elif t.name == BaseTy.ScalarType:
ret = "_dtype"
elif t.name == BaseTy.bool:
ret = "_bool"
elif t.name == BaseTy.QScheme:
ret = "_qscheme"
elif t.name == BaseTy.Layout:
ret = "_layout"
elif t.name == BaseTy.Device:
ret = "Optional[DeviceLikeType]"
elif t.name == BaseTy.MemoryFormat:
ret = "memory_format"
elif t.name == BaseTy.Dimname:
ret = "Union[str, ellipsis, None]"
elif t.name == BaseTy.Storage:
ret = "Union[Storage, UntypedStorage]"
elif t.name in [BaseTy.Tensor, BaseTy.Generator, BaseTy.Stream]:
# These python schema type names line up with their function schema names
ret = t.name.name
elif isinstance(t, ListType):
if str(t.elem) == "int":
ret = "Union[_int, _size]" if t.size is not None else "_size"
elif t.is_tensor_like():
# TODO: this doesn't seem right...
# Tensor?[] currently translates to Optional[Union[Tuple[Tensor, ...], List[Tensor]]]
# It should probably translate to Union[Tuple[Optional[Tensor], ...], List[Optional[Tensor]]]
if isinstance(t.elem, OptionalType):
add_optional = True
ret = (
"Union[Tensor, Tuple[Tensor, ...], List[Tensor]]"
if t.size is not None
else "Union[Tuple[Tensor, ...], List[Tensor]]"
)
elif str(t.elem) == "float":
ret = "Sequence[_float]"
elif str(t.elem) == "SymInt" and t.size is not None:
elem = argument_type_str_pyi(t.elem)
ret = f"Union[{elem}, Sequence[{elem}]]"
else:
elem = argument_type_str_pyi(t.elem)
ret = f"Sequence[{elem}]"
else:
raise RuntimeError(f"unrecognized type {repr(t)}")
if add_optional:
ret = "Optional[" + ret + "]"
return ret
def return_type_str_pyi(t: Type) -> str:
# Where arguments are open to accepting Union, return types should return
# concrete types
if isinstance(t, OptionalType):
inner = return_type_str_pyi(t.elem)
return f"Optional[{inner}]"
if isinstance(t, BaseType):
if t.name == BaseTy.Device:
return "_device"
elif t.name == BaseTy.Dimname:
ret = "Optional[str]"
else:
return argument_type_str_pyi(t)
if isinstance(t, ListType):
inner = return_type_str_pyi(t.elem)
return f"List[{inner}]"
return argument_type_str_pyi(t)
def returns_named_tuple_pyi(signature: PythonSignature) -> Optional[Tuple[str, str]]:
python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns]
namedtuple_name = signature.name
field_names = namedtuple_fieldnames(signature.returns.returns)
if field_names:
namedtuple_def_lines = [f"class {namedtuple_name}(NamedTuple):"]
namedtuple_def_lines.extend(
f" {name}: {typ}" for name, typ in zip(field_names, python_returns)
)
namedtuple_def_lines.append("") # add an extra newline
namedtuple_def = "\n".join(namedtuple_def_lines)
# Example:
# namedtuple_def = (
# "class max(NamedTuple):\n"
# " values: Tensor\n"
# " indices: Tensor\n"
# )
return namedtuple_name, namedtuple_def
return None
def returns_str_pyi(signature: PythonSignature) -> str:
field_names = namedtuple_fieldnames(signature.returns.returns)
if field_names:
return f"torch.return_types.{signature.name}"
python_returns = [return_type_str_pyi(r.type) for r in signature.returns.returns]
if len(python_returns) > 1:
return "Tuple[" + ", ".join(python_returns) + "]"
if len(python_returns) == 1:
return python_returns[0]
return "None"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# C++ Function Dispatch
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# This section provides APIs to generate the code that does C++ function
# dispatch. The C++ function call is wrapped by a lambda function.
# For example:
#
# // aten::selu_(Tensor(a!) self) -> Tensor(a!)
# auto dispatch_selu_ = [](Tensor self) -> Tensor {
# pybind11::gil_scoped_release no_gil;
# return at::selu_(self);
# };
#
# The lambda function's signature follows the C++ signature in common
# cases, e.g.:
#
# // aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
# [](const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
#
# For out variant the 'out' argument's type is changed from 'Tensor &'
# to 'Tensor'. It's because when calling the lambda it passes in the
# PythonArgParser output '_r.tensor(3)', which is stack allocated object
# and needs to pass by value. Also see comments in 'dispatch_lambda_return_str()'.
#
# // aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
# [](Tensor out, const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
#
# For multi-output case it can keep using reference type because the
# PythonArgParser output has been unpacked to local variables, e.g.:
#
# // aten::max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *,
# // Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
# [](Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim) -> std::tuple<Tensor,Tensor>
#
# For deprecated python signature, it should follow deprecated python arg order.
# TODO: This is to keep same byte-for-byte result as the old codegen - maybe unnecessary?
def dispatch_lambda_args(
ps: PythonSignature, f: NativeFunction, symint: bool = True
) -> Tuple[DispatchLambdaArgument, ...]:
if isinstance(ps, PythonSignatureDeprecated):
schema = ps.deprecated_schema
else:
schema = f.func
# Start with cpp arguments - dispatch lambda signature always include 'self'
cpp_args = cpp.arguments(
arguments=schema.arguments,
faithful=False,
symint=symint,
method=False,
cpp_no_default_args=f.cpp_no_default_args,
)
out_args: Set[str] = {a.name for a in schema.arguments.out}
# Convert from cpp argument to lambda argument
def dispatch_lambda_arg(cpp_arg: Binding) -> DispatchLambdaArgument:
type_str = cpp_arg.type
is_out_arg = cpp_arg.name in out_args
if ps.method and cpp_arg.name == "self":
# For method's 'self', we can use 'const Tensor &' and simply ignore mutability!
type_str = "const at::Tensor &"
else:
# For other cases we need prevent dangling refs to temps (unless it's
# unpacked scattered output)
# The reason is explained in the comments above and in 'dispatch_lambda_return_str()'.
# TODO: avoid this special handling?
ensure_temp_safe = len(out_args) <= 1 or not is_out_arg
if ensure_temp_safe:
type_str = {
"at::Tensor &": "at::Tensor",
}.get(type_str, type_str)
return DispatchLambdaArgument(
name=cpp_arg.name,
type_str=type_str,
is_out_arg=is_out_arg,
)
return tuple(map(dispatch_lambda_arg, cpp_args))
# [old codegen] XXX: if you got here because of an assertion failure, it doesn't mean
# it's enough to just extend the list here. Before you do this, make sure
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
SUPPORTED_RETURN_TYPES = {
"at::Tensor",
"::std::tuple<at::Tensor,at::Tensor>",
"::std::tuple<at::Tensor,at::Tensor,at::Tensor>",
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor>",
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,int64_t>",
"::std::tuple<at::Tensor,at::Tensor,double,int64_t>",
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,int64_t>",
"::std::tuple<at::Tensor,at::Tensor,double,at::Tensor,int64_t>",
"::std::tuple<double,int64_t>",
"::std::tuple<at::Tensor,::std::vector<at::Tensor>>",
"::std::vector<at::Tensor>",
# Needed for flash attention forw/backward
"::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor>",
"at::Scalar",
"bool",
"int64_t",
"void*",
"void",
"at::QScheme",
"double",
"at::IntArrayRef",
"at::ScalarType",
"at::Stream",
}
def dispatch_lambda_return_str(f: NativeFunction) -> str:
# [old codegen] Remove type annotation (e.g. 'Tensor' rather than 'Tensor &')
# because the dispatch lambdas take mutable arguments *by value*, not
# by reference. If you then return a reference to such an argument, you
# will now have a pointer to a dangling stack entry. Not good.
#
# You want:
#
# auto dispatch_selu_ = [](Tensor self) -> Tensor { ...; return at::selu_(self); };
# ^^^^^^
#
# *not*
#
# auto dispatch_selu_ = [](Tensor self) -> Tensor& { ...; return at::selu_(self); };
# ^^^^^^^
#
# (NB: We can't make dispatch_selu_ take Tensor&, because the enclosing
# codegen looks like dispatch_selu_(_r.tensor(0)), and you can't take a
# mutable reference to temporary. Maybe we could assign it to a
# variable itself.)
returns_without_annotation = tuple(
Return(r.name, r.type, None) for r in f.func.returns
)
return_str = cpp.returns_type(returns_without_annotation, symint=True).cpp_type()
if return_str not in SUPPORTED_RETURN_TYPES:
raise RuntimeError(f"{f.func.name} returns unsupported type {return_str}")
return return_str
def cpp_dispatch_target(f: NativeFunction) -> str:
symint = f.func.has_symint()
name = cpp.name(f.func, symint_overload=symint)
if Variant.method in f.variants:
return f"self.{name}"
if Variant.function in f.variants:
if has_tensor_options(f) or f.func.name.name.base.endswith("_like"):
namespace = "torch"
else:
namespace = "at"
return f"{namespace}::{name}"
raise RuntimeError(f"could not dispatch, neither function nor method: {f.func}")
def cpp_dispatch_exprs(
f: NativeFunction,
*,
python_signature: Optional[PythonSignature] = None,
) -> Tuple[str, ...]:
cpp_args: Sequence[Binding] = _cpp_signature(f, method=False).arguments()
exprs: Tuple[str, ...] = tuple()
if not isinstance(python_signature, PythonSignatureDeprecated):
# By default the exprs are consistent with the C++ signature.
exprs = tuple(a.name for a in cpp_args)
else:
# For deprecated python signature we may need fill in some constants.
exprs = tuple(
filter(
lambda n: n != "out" or f.func.is_out_fn(),
python_signature.deprecated_args_exprs,
)
)
if Variant.method in f.variants:
exprs = tuple(filter("self".__ne__, exprs))
return exprs
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Python / C++ Args Binding
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# We explicitly enumerate the PythonArgParser unpacking methods for all
# supported types. This might be more verbose than necessary, partially
# because of the irregularity of unpacking method naming, partially
# because we want to mimic the old codegen behavior - to reject
# unexpected and/or unsupported cases which the old codegen rejects.
# For certain cases it is intentionally more restrictive than necessary,
# e.g.: it doesn't accepts doublelist with definite size.
def arg_parser_unpack_method(
t: Type, default: Optional[str], default_init: Optional[str], *, symint: bool = True
) -> str:
has_default_init = default_init is not None
if has_default_init and str(t) not in (
"ScalarType?",
"ScalarType",
"Device",
"Device?",
"Layout",
"Layout?",
"bool",
"bool?",
):
raise RuntimeError(f"type '{t}' does not supported unpacking with default")
if isinstance(t, BaseType):
if t.name in [
BaseTy.Tensor,
BaseTy.Stream,
BaseTy.Storage,
BaseTy.Scalar,
BaseTy.Dimname,
]:
# These unpack methods line up with their schema names
return t.name.name.lower()
elif t.name == BaseTy.ScalarType:
return "scalartypeWithDefault" if has_default_init else "scalartype"
elif t.name == BaseTy.Device:
return "deviceWithDefault" if has_default_init else "device"
elif t.name == BaseTy.DeviceIndex:
return "toInt64"
elif t.name == BaseTy.int:
return "toInt64"
elif t.name == BaseTy.SymInt:
return "toSymInt" if symint else "toInt64"
elif t.name == BaseTy.bool:
return "toBoolWithDefault" if has_default_init else "toBool"
elif t.name == BaseTy.float:
return "toDouble"
elif t.name == BaseTy.str:
return "stringView"
elif t.name == BaseTy.Layout:
return "layoutWithDefault" if has_default_init else "layout"
elif t.name == BaseTy.MemoryFormat:
return "memoryformat"
elif isinstance(t, OptionalType):
if str(t.elem) == "Tensor":
return "optionalTensor"
elif str(t.elem) == "Generator":
return "generator"
elif str(t.elem) == "Dimname[]":
return "toDimnameListOptional"
elif not has_default_init and default in (None, "None", "c10::nullopt"):
# If default is None: append 'Optional' to elem's unpacking method
return (
arg_parser_unpack_method(t.elem, None, None, symint=symint) + "Optional"
)
else:
# Otherwise, load as underlying type with default
return arg_parser_unpack_method(
t.elem, default, default_init, symint=symint
)
elif isinstance(t, ListType):
if str(t.elem) == "Tensor":
# accept and use definite size
return f"tensorlist_n<{t.size}>" if t.size is not None else "tensorlist"
elif str(t.elem) == "Tensor?":
return "list_of_optional_tensors"
elif str(t.elem) == "Dimname":
# accept definite size
return "dimnamelist"
elif str(t.elem) == "int":
# accept definite size
return "intlist"
elif str(t.elem) == "float":
return "doublelist"
elif str(t.elem) == "SymInt":
# accept definite size
return "symintlist" if symint else "intlist"
elif str(t.elem) == "Scalar":
return "scalarlist"
raise RuntimeError(f"type '{t}' is not supported by PythonArgParser")
# Return RHS expression for python argument using PythonArgParser output.
# e.g. for arg name 'foo', arg type 'bool', arg_index = 2, returns '_r.toBool(2)'
def arg_parser_output_expr(
arg_index: int, a: PythonArgument, *, symint: bool = True
) -> PythonArgParserOutputExpr:
has_default = a.default_init is not None
unpack_method = arg_parser_unpack_method(
t=a.type, default=a.default, default_init=a.default_init, symint=symint
)
default = f", {a.default_init}" if has_default else ""
expr = f"_r.{unpack_method}({arg_index}{default})"
return PythonArgParserOutputExpr(
name=a.name,
expr=expr,
index=arg_index,
argument=a,
)
# Returns a map with key = arg_name and value = PythonArgParserOutputExpr.
def arg_parser_output_exprs(
ps: PythonSignature, f: NativeFunction, *, symint: bool = True
) -> Dict[str, PythonArgParserOutputExpr]:
return {
e.name: e
for i, a in enumerate(ps.arguments())
for e in (arg_parser_output_expr(i, a, symint=symint),)
}
# argument name to type for scattered tensor options fields
TENSOR_OPTIONS_FIELDS = {
"dtype": "ScalarType?",
"device": "Device?",
"layout": "Layout?",
"pin_memory": "bool?",
"requires_grad": "bool?",
}
# bind arg parser outputs (python args) with dispatch lambda arguments (c++ args).
def dispatch_lambda_exprs(
ps: PythonSignature, f: NativeFunction, *, symint: bool = True
) -> DispatchLambdaArgumentExprs:
# This method is to bind 'arg_parser_outputs' and 'lambda_args' by producing
# 'inits' and 'lambda_args_exprs' for each lambda argument using arg parser
# outputs.
arg_parser_outputs = arg_parser_output_exprs(ps, f, symint=symint)
lambda_args = dispatch_lambda_args(ps, f, symint=symint)
inits: List[str] = []
lambda_args_exprs: Dict[str, str] = {}
has_toptions = has_tensor_options(f)
# 1. special inits/unpacking to provide binding exprs for lambda arguments.
for a in ps.arguments(skip_tensor_options=True):
name = a.name
arg_parser_expr = arg_parser_outputs[a.name].expr
if has_toptions and name == "self":
# TODO: why this needs to be special case?
inits.extend(
[
f"auto self = {arg_parser_expr};",
]
)
lambda_args_exprs[name] = name
elif (
isinstance(a, PythonOutArgument)
and len(a.outputs) > 1
and f.func.is_out_fn()
):
inits.extend(
[
f"auto out = {arg_parser_expr};",
]
)
for i, out_arg in enumerate(a.outputs):
lambda_args_exprs[out_arg.name] = f"out[{i}]"
elif str(a.type) == "Dimname[]?":
# [old codegen]
# TODO: make this part of something more general, or get rid of it.
# optional<ArrayRef<T>> are special. The PythonArgParser returns an
# optional<vector<T>>, which cannot be implicitly converted to
# optional<ArrayRef<T>>. One needs to unwrap the optional and rewrap.
inits.extend(
[
f"auto __{name} = {arg_parser_expr};",
f"c10::optional<DimnameList> {name} = __{name} ? c10::make_optional(DimnameList(__{name}.value())) : c10::nullopt;", # noqa: B950
]
)
lambda_args_exprs[name] = name
else:
# default case - directly using PythonArgParser output expr
lambda_args_exprs[name] = arg_parser_expr
# method's self is passed directly to python binding, rather than parsed
if ps.method:
lambda_args_exprs["self"] = "self"
# 2. special packing/checking for TensorOptions.
tensor_options_args_names = [a.name for a in ps.tensor_options_args]
if has_toptions:
if f.func.is_out_fn():
raise RuntimeError(f"{f.func}: tensor options with output arg")
for a in ps.tensor_options_args:
if a.name not in TENSOR_OPTIONS_FIELDS:
raise RuntimeError(
f"{f.func}: unrecognized tensor options field '{a.name}' in python binding arguments"
)
if str(a.type) != TENSOR_OPTIONS_FIELDS.get(a.name):
raise RuntimeError(
f"{f.func}: unrecognized type '{str(a.type)}' for tensor options field '{a.name}'"
)
if not all(
a in tensor_options_args_names for a in TENSOR_OPTIONS_FIELDS.keys()
):
raise RuntimeError(
f"{f.func}: incomplete tensor options args: {tensor_options_args_names}"
)
inits.append(
f"""\
const auto options = TensorOptions()
.dtype({arg_parser_outputs['dtype'].expr})
.device({arg_parser_outputs['device'].expr})
.layout({arg_parser_outputs['layout'].expr})
.requires_grad({arg_parser_outputs['requires_grad'].expr})
.pinned_memory({arg_parser_outputs['pin_memory'].expr});
torch::utils::maybe_initialize_cuda(options);
"""
)
lambda_args_exprs["options"] = "options"
# 3. special case - access scattered TensorOptions fields without packing
# TODO: maybe move to the generator side as it's not related to binding.
if not has_toptions and tensor_options_args_names:
if "dtype" in tensor_options_args_names:
# we're an output-arg variant, check these args against output tensor
if not f.func.is_out_fn():
raise RuntimeError(
f"{f.func}: dtype in tensor_options_args without output arg"
)
if not all(a in tensor_options_args_names for a in ("layout", "device")):
raise RuntimeError(
f"{f.func}: incomplete tensor options for output check"
)
inits.append(
f"""\
check_out_type_matches({arg_parser_outputs['out'].expr}, {arg_parser_outputs['dtype'].expr},
{arg_parser_outputs['dtype'].is_none_expr}, {arg_parser_outputs['layout'].expr},
{arg_parser_outputs['device'].expr}, {arg_parser_outputs['device'].is_none_expr});
"""
)
# we'll set requires_grad on outgoing tensor
if "requires_grad" not in tensor_options_args_names:
raise RuntimeError(
f'{f.func}: expected "requires_grad" in tensor_options_args absent, but found [{tensor_options_args_names}]'
)
return DispatchLambdaArgumentExprs(
exprs=tuple(lambda_args_exprs[a.name] for a in lambda_args),
inits=inits,
)
|