File size: 19,174 Bytes
71a0112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from typing import Dict, List, NoReturn, Sequence, Union

from torchgen.api.types import (
    ArrayRefCType,
    BaseCType,
    Binding,
    boolT,
    ConstRefCType,
    deviceT,
    Expr,
    intArrayRefT,
    iOptTensorListRefT,
    layoutT,
    ListCType,
    longT,
    memoryFormatT,
    MutRefCType,
    NamedCType,
    opmath_t,
    OptionalCType,
    optionalIntArrayRefT,
    optionalScalarRefT,
    optionalSymIntArrayRefT,
    optionalTensorRefT,
    scalar_t,
    scalarT,
    scalarTypeT,
    SpecialArgName,
    symIntArrayRefT,
    SymIntT,
    tensorOptionsT,
    tensorT,
    VectorCType,
)

# This file implements a small program synthesis engine that implements
# conversions between one API to another.
#
# The key data type in this file in NamedCType, short for Named C++ semantic type.  A NamedCType
# represents a C++ type, plus semantic information about what it represents.
# For example, consider the argument "bool pin_memory"; its normal C++ type is
# "bool", but its C++ semantic type also keeps track that this represents a
# "pin_memory"; you can't just use a random other boolean in a context where you
# need a "pin_memory"!
#
# The translator takes a list of needed NamedCTypes, and then figures out how
# to construct expressions with these NamedCTypes from the given bindings.  Many
# of these expressions are trivial (I need a Tensor other; there's a Tensor
# other scope); others are more nontrivial and may require packing/unpacking.
# Some examples of non-trivial action:
#
#   - Need the "dtype" binding?  Well, maybe "dtype" isn't available
#     in the context, instead, "options" is, and you need to extract
#     it from there.  (Gather)
#
#   - Need the "context" binding?  Well, maybe "context" isn't available
#     in the context, and you need to construct it from "dtype", "device",
#     etc.  (Scatter)
#
#   - Need the "memory_format" binding?  Well, actually, it's available
#     from both "memory_format" and "options", so you had better make sure
#     they are consistent.  (Join)

options_ctype = NamedCType("options", ConstRefCType(BaseCType(tensorOptionsT)))

out_tensor_ctype = NamedCType("out", ConstRefCType(BaseCType(tensorT)))

longVec_ctype = VectorCType(BaseCType(longT))
longSymVec_ctype = VectorCType(BaseCType(SymIntT))
optionalLongVec_ctype = OptionalCType(VectorCType(BaseCType(longT)))
optionalScalar_ctype = OptionalCType(BaseCType(scalarT))
optionalTensor_ctype = OptionalCType(BaseCType(tensorT))


class UnsatError(RuntimeError):
    pass


# Given a set of in-scope bindings and a set of target bindings, synthesize
# a list of expressions that uses only the in-scope bindings (bindings) that
# have all of the types of goals.  You may want to use this function if
# you're generating code for a function like:
#
#   void f({args}) {
#     g({exprs}); // g is a different API
#   }
#
# and you need to generate "exprs".
#
# Typically, a list of Bindings is convenient to get (you usually call something
# like arguments() to get them); but technically you only need less information:
# for 'bindings' an (un-ordered) list of Exprs is sufficient; similarly, for
# 'goals', an (ordered) list of NamedCType goals is sufficient.  If you are doing
# something more complicated, e.g., tracking the set of bindings in a context,
# you may find using these smaller types more convenient.
def translate(
    bindings: Sequence[Union[Expr, Binding]],
    goals: Sequence[Union[NamedCType, Binding]],
    *,
    method: bool = False,
    allow_expensive_conversions: bool = False,
) -> List[Expr]:
    binding_exprs: List[Expr] = []
    for b in bindings:
        if isinstance(b, Binding):
            binding_exprs.append(
                Expr(
                    expr=b.name,
                    type=b.nctype,
                )
            )
        else:
            binding_exprs.append(b)

    goal_ctypes: List[NamedCType] = []
    for g in goals:
        if isinstance(g, Binding):
            goal_ctypes.append(g.nctype)
        else:
            goal_ctypes.append(g)

    # Add all the bindings to the context
    ctx: Dict[NamedCType, str] = {}
    for b in binding_exprs:
        ctx[b.type] = b.expr

        # While we're at it, do some simple forward inference, looking through
        # constructors.
        #
        # NB: When should you do forward inference versus backward inference?
        # The general idea:
        #
        #   - Backward inference WHEN the goal gets smaller
        #   - Forward inference WHEN the hypothesis gets smaller
        #
        # This helps ensure termination: backward inference starts with a goal
        # and tries to make it simpler and simpler until it's trivial; if the
        # goal can grow in size, we blow up to a really huge goal size.
        # Similarly, with forward inference we take hypotheses and decompose
        # them into simpler hypotheses; if hypotheses could expand in size,
        # we also have potential nontermination.  (In the code below, forward
        # inference is only ever carried out at a single step, but you could
        # imagine repeated application of forward inference being profitable.)
        #
        # A good starting point in the literature for exploring more about proof
        # search are these lecture notes
        # https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf
        #
        # TODO: My kingdom for a pattern matcher
        # https://www.python.org/dev/peps/pep-0634/
        #
        # TODO: This could get us in recomputation trouble if b.expr is nontrivial.
        # Fix this by implementing some sort of sharing so that if multiple
        # goals share the same expression, we only compute it once.  This seems
        # to matter in practice as compiler is often unwilling to CSE nontrivial
        # expressions like scalar.to<scalar_t>()
        t = b.type
        if (
            isinstance(t, ConstRefCType)
            and isinstance(t.elem, OptionalCType)
            and isinstance(t.elem.elem, BaseCType)
            and str(t.elem.elem.type) == "at::Tensor"
        ):
            ctx[
                NamedCType(t.elem.elem.name, ConstRefCType(BaseCType(tensorT)))
            ] = f"({b.expr}.has_value() ? *{b.expr} : at::Tensor())"

        if t.type == ConstRefCType(OptionalCType(BaseCType(tensorT))):
            ctx[
                NamedCType(t.name, BaseCType(optionalTensorRefT))
            ] = f"(({b.expr}.has_value() && (*{b.expr}).defined()) ? at::OptionalTensorRef(*{b.expr}) : at::OptionalTensorRef())"

        if t.type == ConstRefCType(BaseCType(scalarT)):
            ctx[NamedCType(t.name, BaseCType(opmath_t))] = f"({b.expr}).to<opmath_t>()"

        if t.type == ConstRefCType(OptionalCType(BaseCType(scalarT))):
            ctx[
                NamedCType(t.name, BaseCType(optionalScalarRefT))
            ] = f"({b.expr}.has_value() ? at::OptionalScalarRef(&({b.expr}.value())) : at::OptionalScalarRef())"

        if t.type == BaseCType(scalar_t):
            ctx[
                NamedCType(t.name, BaseCType(opmath_t))
            ] = f"static_cast<opmath_t>({b.expr})"

        # [Note: IOptTensorListRef]
        if t.type == ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))):
            ctx[
                NamedCType(t.name, BaseCType(iOptTensorListRefT))
            ] = f"at::IOptTensorListRef({b.expr})"

    # Add implicit bindings if the generated code is inside a Tensor method
    if method:
        ctx[
            NamedCType("self", MutRefCType(BaseCType(tensorT)))
        ] = "const_cast<Tensor&>(*this)"
        ctx[
            NamedCType("self", ConstRefCType(BaseCType(tensorT)))
        ] = "const_cast<Tensor&>(*this)"
        # This is better!  Byte-for-byte compat
        # ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = "*this"

    def unsat(goal: NamedCType) -> NoReturn:
        ctx_desc = "\n".join(
            f"  {t.cpp_type()} {t.name}; // {e}" for t, e in ctx.items()
        )
        raise UnsatError(
            f"""
Failed to synthesize the expression "{goal.cpp_type()} {goal.name}".
When I failed, the following bindings were available in the context:

{ctx_desc}

This probably means there is a missing rule in the rules of torchgen.api.translate.
Check this module for more information.
"""
        )

    # A shitty backtracking search implementation.  It's shitty because it
    # does backtracking via stack (bad idea!) and for the most part tries to
    # avoid backtracking.  In particular, if
    # direct=True, we won't try to do any fancy synthesis, just trivial
    # conversions (e.g., "T a" is OK for "const T& a").  So all of the
    # existing rules in this function simply try to solve immediately,
    # and bail if things don't work out.
    def solve(goal: NamedCType, *, direct: bool) -> str:
        def direct_solve(goal: NamedCType) -> str:
            return solve(goal, direct=True)

        if goal in ctx:
            # Trivial
            return ctx[goal]

        # const & is satisfied with mutable &
        if isinstance(goal.type, ConstRefCType):
            try:
                # WARNING: not strictly decreasing; be careful not
                # to add a direct conversion that goes satisfies
                # mutable& with const&
                return solve(
                    NamedCType(goal.name, MutRefCType(goal.type.elem)), direct=direct
                )
            except UnsatError:
                pass

        # mutable & is satisfied with value
        if isinstance(goal.type, MutRefCType):
            try:
                return solve(NamedCType(goal.name, goal.type.elem), direct=direct)
            except UnsatError:
                pass

        # TODO: These are referentially equal, shouldn't have to do this;
        # ensuring we don't use type synonym IntArrayRef in codegen would
        # help
        if goal.type == ArrayRefCType(BaseCType(longT)):
            return solve(NamedCType(goal.name, BaseCType(intArrayRefT)), direct=direct)

        if direct:
            unsat(goal)

        # For now, all of these rules are mutually exclusive.
        if goal == NamedCType("memory_format", OptionalCType(BaseCType(memoryFormatT))):
            memory_format = direct_solve(
                NamedCType(
                    SpecialArgName.possibly_redundant_memory_format,
                    OptionalCType(BaseCType(memoryFormatT)),
                )
            )
            # No need to join "memory_format" and "options" if the target API takes "options" directly.
            # Otherwise it will cause the redundant memory_format error.
            if options_ctype in goal_ctypes:
                return memory_format
            try:
                options = direct_solve(options_ctype)
                return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})"
            except UnsatError:
                return memory_format
        elif goal == NamedCType("options", BaseCType(tensorOptionsT)):
            dtype = direct_solve(
                NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT)))
            )
            pin_memory = direct_solve(
                NamedCType("pin_memory", OptionalCType(BaseCType(boolT)))
            )
            device = direct_solve(
                NamedCType("device", OptionalCType(BaseCType(deviceT)))
            )
            layout = direct_solve(
                NamedCType("layout", OptionalCType(BaseCType(layoutT)))
            )
            return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})"

        elif goal == NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))):
            try:
                options = direct_solve(options_ctype)
                return f"optTypeMetaToScalarType({options}.dtype_opt())"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.scalar_type()"

        elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.layout_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.layout()"

        elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.device_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.device()"

        elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.pinned_memory_opt()"
            except UnsatError:
                # If we're calling a factory op from its out= variant,
                # We don't actually care about the value of pin_memory.
                out_tensor = direct_solve(out_tensor_ctype)
                return "c10::nullopt"

        # We can always do translations from value types to reference types, like vector<int> -> IntArrayRef
        elif goal.type == BaseCType(intArrayRefT):
            try:
                return direct_solve(NamedCType(goal.name, longVec_ctype))
            except UnsatError:
                # We can also go SymIntArrayRef -> IntArrayRef
                symIntArrayRef_type = direct_solve(
                    NamedCType(goal.name, BaseCType(symIntArrayRefT))
                )
                return f"C10_AS_INTARRAYREF_SLOW({symIntArrayRef_type})"
        elif goal.type == BaseCType(symIntArrayRefT):
            try:
                r = direct_solve(NamedCType(goal.name, BaseCType(intArrayRefT)))
                return f"c10::fromIntArrayRefSlow({r})"
            except UnsatError:
                return direct_solve(NamedCType(goal.name, longSymVec_ctype))
        elif goal.type == BaseCType(SymIntT):
            return direct_solve(NamedCType(goal.name, BaseCType(longT)))
        elif goal.type == OptionalCType(BaseCType(SymIntT)):
            argname = direct_solve(
                NamedCType(goal.name, OptionalCType(BaseCType(longT)))
            )
            return f"{argname}.has_value() ? c10::make_optional(c10::SymInt(*{argname})) : c10::nullopt"
        elif goal.type == BaseCType(longT):
            symInt_type = direct_solve(NamedCType(goal.name, BaseCType(SymIntT)))
            return f"{symInt_type}.guard_int(__FILE__, __LINE__)"
        elif goal.type == OptionalCType(BaseCType(longT)):
            argname = direct_solve(
                NamedCType(goal.name, OptionalCType(BaseCType(SymIntT)))
            )
            return f"{argname}.has_value() ? c10::make_optional({argname}->guard_int(__FILE__, __LINE__)) : c10::nullopt"
        elif goal.type == BaseCType(optionalIntArrayRefT):
            try:
                return direct_solve(NamedCType(goal.name, optionalLongVec_ctype))
            except UnsatError:
                argname = direct_solve(
                    NamedCType(goal.name, BaseCType(optionalSymIntArrayRefT))
                )
                return f"{argname}.has_value() ? c10::make_optional(C10_AS_INTARRAYREF_SLOW(*{argname})) : c10::nullopt"
        elif goal.type == BaseCType(optionalSymIntArrayRefT):
            # TODO: You might also want to solve this from longSymVec_ctype or
            # an optional version of it
            argname = direct_solve(
                NamedCType(goal.name, BaseCType(optionalIntArrayRefT))
            )
            return f"{argname}.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*{argname})) : c10::nullopt"
        elif goal.type == BaseCType(optionalScalarRefT):
            return direct_solve(NamedCType(goal.name, optionalScalar_ctype))
        elif goal.type == BaseCType(optionalTensorRefT):
            return direct_solve(NamedCType(goal.name, optionalTensor_ctype))

        # Note [translation from C++ reference to value types]
        # The below cases are all for when we have an argument with a reference type,
        # and a corresponding goal with a value type.
        # These are needed when we populate the inputs to a lambda capture and we need
        # to guarantee the lifetime of each captured argument.
        # We guard it with an explicit kwarg because converting to a value type is expensive
        # (O(n)) to convert from IntArrayRef to vector<int>),
        # so the caller of translate() should be explicit that they need it.
        if allow_expensive_conversions:
            if goal.type == VectorCType(BaseCType(longT)):
                intArrayRef_ctype = NamedCType(goal.name, BaseCType(intArrayRefT))
                argname = direct_solve(intArrayRef_ctype)
                return f"{argname}.vec()"
            if goal.type == VectorCType(BaseCType(SymIntT)):
                symIntArrayRef_ctype = NamedCType(goal.name, BaseCType(symIntArrayRefT))
                argname = direct_solve(symIntArrayRef_ctype)
                return f"{argname}.vec()"
            elif goal.type == OptionalCType(VectorCType(BaseCType(longT))):
                optionalIntArrayRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalIntArrayRefT)
                )
                argname = direct_solve(optionalIntArrayRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}->vec()) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalScalarRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalScalarRefT)
                )
                argname = direct_solve(optionalScalarRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalTensorRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalTensorRefT)
                )
                argname = direct_solve(optionalTensorRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            # Technically, we also need to handle cases of C++ containers holding reference types.
            # But there currently aren't any ops that require lambda capture codegen
            # With arguments like std::vector<IntArrayRef>.
            # If that changes, we'll have to add the translation here.

        # We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor.
        # We could probably generalize this to non-tensor types too.
        if goal.type == MutRefCType(BaseCType(tensorT)):
            const_ref_tensor_ctype = NamedCType(
                goal.name, ConstRefCType(BaseCType(tensorT))
            )
            argname = direct_solve(const_ref_tensor_ctype)
            return f"const_cast<Tensor&>({argname})"

        unsat(goal)

    return [Expr(solve(g, direct=False), g) for g in goal_ctypes]