File size: 108,668 Bytes
7a1062e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 |
import argparse
import functools
import json
import os
import pathlib
from collections import defaultdict, namedtuple, OrderedDict
from dataclasses import dataclass, field
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
TypeVar,
Union,
)
import yaml
import torchgen.api.dispatcher as dispatcher
import torchgen.api.meta as meta
import torchgen.api.native as native
import torchgen.api.structured as structured
import torchgen.dest as dest
from torchgen.api import cpp
from torchgen.api.translate import translate
from torchgen.api.types import (
Binding,
CppSignature,
CppSignatureGroup,
DispatcherSignature,
NamedCType,
NativeSignature,
SpecialArgName,
)
from torchgen.context import (
method_with_native_function,
native_function_manager,
with_native_function,
with_native_function_and_indices,
)
from torchgen.gen_functionalization_type import (
gen_functionalization_definition,
gen_functionalization_registration,
gen_functionalization_view_inverse_declaration,
GenCompositeViewCopyKernel,
)
from torchgen.gen_vmap_plumbing import gen_all_vmap_plumbing
from torchgen.model import (
Argument,
BackendIndex,
BackendMetadata,
BaseOperatorName,
DEFAULT_KERNEL_NAMESPACE,
DispatchKey,
FRAGMENT_NAMESPACES,
FunctionSchema,
is_cuda_dispatch_key,
is_generic_dispatch_key,
is_ufunc_dispatch_key,
Location,
NativeFunction,
NativeFunctionsGroup,
NativeFunctionsViewGroup,
OperatorName,
OptionalType,
SchemaKind,
SelfArgument,
STRUCTURED_DISPATCH_KEYS,
TensorOptionsArguments,
Type,
Variant,
ViewSchemaKind,
)
from torchgen.native_function_generation import (
add_generated_native_functions,
gen_composite_functional_kernel,
gen_composite_out_kernel,
pre_group_native_functions,
)
from torchgen.selective_build.selector import SelectiveBuilder
from torchgen.utils import (
assert_never,
concatMap,
context,
FileManager,
make_file_manager,
mapMaybe,
NamespaceHelper,
Target,
)
from torchgen.yaml_utils import YamlDumper, YamlLoader
T = TypeVar("T")
# Welcome to the ATen code generator v2! The ATen code generator is
# responsible for parsing native_functions.yaml and then generating
# various generated files (e.g., TypeDefault.cpp) based on the operators
# defined in this file. This means that the code generator knows how to
# parse function schema, and then translate this into various C++ types
# and boilerplate code.
#
# Some things to know about this file when you modify it:
#
# - This file has STRICT mypy typechecking. Typecheck it with
# `mypy --config mypy-strict.ini` in the root source directory
#
# - Most of the heavy lifting lives in external modules:
# - 'model' has the data model for native_functions.yaml. The classes
# in those file represent what you see when you look at
# a native_functions.yaml
# - 'api' has conversions for how to translate JIT schema into
# the various C++ APIs that the codegen interacts with. There
# are in fact THREE different C++ APIs: the public C++ API,
# the dispatcher API, and the legacy dispatcher API. See each
# of these respective files for more information
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# HELPER FUNCTIONS
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# A custom loader for YAML to let us also keep track of line numbers
# of each entry in the YAML file
class LineLoader(YamlLoader):
def construct_mapping(self, node, deep=False): # type: ignore[no-untyped-def]
mapping = super().construct_mapping(node, deep=deep) # type: ignore[no-untyped-call]
# Add 1 so line numbering starts at 1
mapping["__line__"] = node.start_mark.line + 1
return mapping
_GLOBAL_PARSE_NATIVE_YAML_CACHE = {}
_GLOBAL_PARSE_TAGS_YAML_CACHE = {}
# Parse native_functions.yaml into a sequence of NativeFunctions and Backend Indices.
ParsedYaml = namedtuple("ParsedYaml", ["native_functions", "backend_indices"])
def parse_native_yaml_struct(
es: object,
valid_tags: Set[str],
ignore_keys: Optional[Set[DispatchKey]] = None,
path: str = "<stdin>",
skip_native_fns_gen: bool = False,
) -> ParsedYaml:
assert isinstance(es, list)
rs: List[NativeFunction] = []
bs: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]] = defaultdict(dict)
for e in es:
assert isinstance(e.get("__line__"), int), e
loc = Location(path, e["__line__"])
funcs = e.get("func")
with context(lambda: f"in {loc}:\n {funcs}"):
func, m = NativeFunction.from_yaml(e, loc, valid_tags, ignore_keys)
rs.append(func)
BackendIndex.grow_index(bs, m)
error_check_native_functions(rs)
# Default dict is to prevent the codegen from barfing when we have a dispatch key that has no kernels yet.
indices: Dict[DispatchKey, BackendIndex] = defaultdict(
lambda: BackendIndex(
dispatch_key=DispatchKey.Undefined,
use_out_as_primary=True,
external=False,
device_guard=False,
# I'm actually not sure about this; undefined could be hit on
# empty TensorList, hypothetically that could have sizes in it
index={},
)
)
if not skip_native_fns_gen:
add_generated_native_functions(rs, bs)
for k, v in bs.items():
# All structured in-tree operators are implemented in terms of their out operator.
indices[k] = BackendIndex(
dispatch_key=k,
use_out_as_primary=True,
external=False,
# Only cuda-like devices in tree require device guards
device_guard=is_cuda_dispatch_key(k),
index=v,
)
return ParsedYaml(rs, indices)
def parse_tags_yaml_struct(es: object, path: str = "<stdin>") -> Set[str]:
assert isinstance(es, list)
rs: Set[str] = set()
for e in es:
assert isinstance(e.get("__line__"), int), e
loc = Location(path, e["__line__"])
tags = e.get("tag")
with context(lambda: f"in {loc}:\n {tags}"):
e_i = e.copy()
name = e_i.pop("tag")
desc = e_i.pop("desc", "")
# ensure that each tag has a non-empty description
assert desc != ""
rs.add(name)
return rs
@functools.lru_cache(maxsize=None)
def parse_tags_yaml(path: str) -> Set[str]:
global _GLOBAL_PARSE_TAGS_YAML_CACHE
if path not in _GLOBAL_PARSE_TAGS_YAML_CACHE:
with open(path) as f:
es = yaml.load(f, Loader=LineLoader)
_GLOBAL_PARSE_TAGS_YAML_CACHE[path] = parse_tags_yaml_struct(es, path=path)
return _GLOBAL_PARSE_TAGS_YAML_CACHE[path]
def parse_native_yaml(
path: str,
tags_yaml_path: str,
ignore_keys: Optional[Set[DispatchKey]] = None,
*,
skip_native_fns_gen: bool = False,
loaded_yaml: Optional[object] = None,
) -> ParsedYaml:
global _GLOBAL_PARSE_NATIVE_YAML_CACHE
if path not in _GLOBAL_PARSE_NATIVE_YAML_CACHE:
valid_tags = parse_tags_yaml(tags_yaml_path)
# if a loaded yaml is provided, use that instead of reading from path
if loaded_yaml is None:
with open(path) as f:
es = yaml.load(f, Loader=LineLoader)
else:
es = loaded_yaml
_GLOBAL_PARSE_NATIVE_YAML_CACHE[path] = parse_native_yaml_struct(
es,
valid_tags,
ignore_keys,
path=path,
skip_native_fns_gen=skip_native_fns_gen,
)
return _GLOBAL_PARSE_NATIVE_YAML_CACHE[path]
# Some assertions are already performed during parsing, but those are only within a single NativeFunction.
# Assertions here are meant to be performed across NativeFunctions.
def error_check_native_functions(funcs: Sequence[NativeFunction]) -> None:
func_map: Dict[OperatorName, NativeFunction] = {}
base_func_map: Dict[BaseOperatorName, List[NativeFunction]] = defaultdict(list)
for f in funcs:
func_map[f.func.name] = f
base_func_map[f.func.name.name].append(f)
for f in funcs:
if f.structured_delegate is not None:
delegate_func = func_map[f.structured_delegate]
assert delegate_func.structured, (
f"{f.func.name} is marked as a structured_delegate pointing to "
f"{f.structured_delegate}, but {f.structured_delegate} is not marked as structured. "
f"Consider adding 'structured=True' to the delegated operator"
)
# See Note [resize_ in Functionalization]
# resize_() is technically an inplace view op (and therefore needs the tag),
# but it would be overkill to add a true "view" variant of resize.
# Instead, resize_() gets special treatment in functionalization,
# and we have a resize() op that is non-aliasing + functional.
if (
"inplace_view" in f.tags
and str(f.func.name) != "resize_"
and str(f.func.name) != "resize_as_"
):
base_name = f.func.name.name
overload_name = f.func.name.overload_name
assert base_name.inplace, (
f"{f.func.name} is marked with tag: inplace_view, but it doesn't follow the naming "
"convention for inplace ops - the codegen expects the base name to have a trailing underscore. "
)
out_of_place_base_name = BaseOperatorName(
base_name.base, False, base_name.dunder_method
)
assert len(base_func_map[out_of_place_base_name]) > 0, (
f"{f.func.name} is marked with tag: inplace_view. The codegen expects there to be a corresponding "
f"out-of-place view op with the name '{base_name}' and matching schema, but it didn't find one. "
)
def cpp_string(s: str) -> str:
"""Convert a python string into a c++ string literal"""
s = s.replace("\\", "\\\\")
s = s.replace('"', '\\"')
s = s.replace("\a", "\\a")
s = s.replace("\b", "\\b")
s = s.replace("\f", "\\f")
s = s.replace("\n", "\\n")
s = s.replace("\v", "\\v")
s = s.replace("\t", "\\t")
return f'"{s}"'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# C++ CODE GENERATION
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# Most functions in this section are curried: they consist of a function
# that takes some parameters (e.g., what is to be generated) which itself
# returns a function that actually maps NativeFunction to the code
# to be generated. This pattern makes it convenient to use map, concatMap
# and similar functional combinators.
def static_dispatch_keys(backends: List[BackendIndex]) -> List[DispatchKey]:
if len(backends) == 0:
return []
else:
return [backend.dispatch_key for backend in backends] + [
DispatchKey.CompositeImplicitAutograd,
DispatchKey.CompositeImplicitAutogradNestedTensor,
DispatchKey.CompositeExplicitAutograd,
DispatchKey.CompositeExplicitAutogradNonFunctional,
]
def get_static_dispatch_backend(
f: NativeFunction, backend_index: BackendIndex
) -> Optional[DispatchKey]:
if f.structured_delegate is not None or backend_index.has_kernel(f):
# TODO: for ops with structured_delegate it should check the dispatch table of
# the out variant instead. For now, these structured ops all have CPU/CUDA kernels
# so we always dispatch to the `backend`, but this could be wrong when we
# migrate math/default_backend ops to use structured delegate.
return backend_index.dispatch_key
elif f.has_composite_explicit_autograd_kernel:
return DispatchKey.CompositeExplicitAutograd
elif f.has_composite_explicit_autograd_non_functional_kernel:
return DispatchKey.CompositeExplicitAutogradNonFunctional
elif f.has_composite_implicit_autograd_kernel:
return DispatchKey.CompositeImplicitAutograd
elif f.has_composite_implicit_autograd_nested_tensor_kernel:
return DispatchKey.CompositeImplicitAutogradNestedTensor
return None
def static_dispatch_ops_header(
f: NativeFunction, backend_index: List[BackendIndex]
) -> Optional[str]:
if backend_index is None or f.manual_kernel_registration:
return None
output = []
for index in backend_index:
dispatch_key = get_static_dispatch_backend(f, index)
if dispatch_key is not None:
output.append(
f"#include <ATen/ops/{f.root_name}_{dispatch_key.lower()}_dispatch.h>"
)
return "\n".join(output)
def static_dispatch_extra_headers(backends: List[BackendIndex]) -> List[str]:
return [
f"#include <ATen/{dispatch_key}Functions.h>"
for dispatch_key in static_dispatch_keys(backends)
]
# Translates arguments of `sig` to CppSignature bindings.
# Note that we have a special case for `memory_format` argument and this case is not covered by
# tools.codegen.api.translate() yet as its application is limited to static dispatch.
def translate_args(
sig: Union[CppSignature, DispatcherSignature],
cpp_sig: CppSignature,
) -> str:
# Adds SpecialArgName.possibly_redundant_memory_format NamedCType for memory_format bindings
def add_spl_memory_format_binding(input_bindings: List[Binding]) -> List[Binding]:
output_bindings: List[Binding] = []
for binding in input_bindings:
if binding.name == "memory_format":
spl_mem_format_binding = Binding(
nctype=NamedCType(
SpecialArgName.possibly_redundant_memory_format,
binding.nctype.type,
),
name=binding.name,
default=binding.default,
argument=binding.argument,
)
output_bindings.append(spl_mem_format_binding)
else:
output_bindings.append(binding)
return output_bindings
src_bindings = list(sig.arguments())
goal_bindings = list(cpp_sig.arguments())
# When last argument of CPP signature has SpecialArgName.possibly_redundant_memory_format NCType,
# get memory_format bindings of dispatcher signature to have the same NCType as well
for arg in goal_bindings:
if arg.nctype.name == SpecialArgName.possibly_redundant_memory_format:
src_bindings = add_spl_memory_format_binding(src_bindings)
break
exprs = translate(src_bindings, goal_bindings)
return ", ".join(a.expr for a in exprs)
def generate_static_dispatch_backend_call(
sig: Union[CppSignature, DispatcherSignature],
f: NativeFunction,
backend_index: BackendIndex,
) -> str:
cpp_sigs = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=False
)
if sig.symint and f.func.has_symint():
cpp_sig = cpp_sigs.symint_signature
else:
cpp_sig = cpp_sigs.signature
assert cpp_sig is not None
name = cpp_sig.name()
exprs = translate_args(sig, cpp_sig)
backend_metadata = backend_index.get_kernel(f)
kernel_ns = (
backend_metadata.cpp_namespace
if backend_metadata and backend_metadata.cpp_namespace
else DEFAULT_KERNEL_NAMESPACE
)
ns = kernel_ns.replace("::native", "")
return f"return {ns}::{backend_index.dispatch_key.lower()}::{name}({exprs});"
def generate_static_dispatch_fallback_call(
sig: Union[CppSignature, DispatcherSignature],
f: NativeFunction,
backend_indices: List[BackendIndex],
) -> str:
cpp_sigs = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=False
)
if sig.symint and f.func.has_symint():
cpp_sig = cpp_sigs.symint_signature
else:
cpp_sig = cpp_sigs.signature
assert cpp_sig is not None
name = cpp_sig.name()
exprs = translate_args(sig, cpp_sig)
ns = DEFAULT_KERNEL_NAMESPACE.replace("::native", "")
if f.has_composite_explicit_autograd_kernel:
return f"return {ns}::{DispatchKey.CompositeExplicitAutograd.lower()}::{name}({exprs});"
elif f.has_composite_explicit_autograd_non_functional_kernel:
return f"return {ns}::{DispatchKey.CompositeExplicitAutogradNonFunctional.lower()}::{name}({exprs});"
elif f.has_composite_implicit_autograd_kernel:
return f"return {ns}::{DispatchKey.CompositeImplicitAutograd.lower()}::{name}({exprs});"
elif f.has_composite_implicit_autograd_nested_tensor_kernel:
return f"return {ns}::{DispatchKey.CompositeImplicitAutogradNestedTensor.lower()}::{name}({exprs});"
else:
return f"""TORCH_CHECK(false, "Static dispatch does not support {name} for\
{', '.join([str(index.dispatch_key)for index in backend_indices])} ");"""
def static_dispatch(
sig: Union[CppSignature, DispatcherSignature],
f: NativeFunction,
backend_indices: List[BackendIndex],
) -> str:
"""
For a given `NativeFunction`, find out the corresponding backend and dispatch to it. If more than one
backends exsit, fallback to static dispatch by determining dispatch key from inputs.
Arguments:
sig: A CppSignature or DispatcherSignature for this native function we want to use.
f: NativeFunction to generate static dispatch.
backend_indices: All available backends.
Return:
C++ code to call backend-specific functions, e.g., "return at::cpu::add(self, other, scale);"
"""
if len(backend_indices) == 0 or f.manual_kernel_registration:
return ""
keys = [
b
for b in backend_indices
if b.has_kernel(f)
or (
f.structured_delegate is not None
and b.dispatch_key in STRUCTURED_DISPATCH_KEYS
)
]
if len(keys) == 1:
return generate_static_dispatch_backend_call(sig, f, keys[0])
elif len(keys) == 0:
return generate_static_dispatch_fallback_call(sig, f, backend_indices)
native_tensor_args = [
a.name
for a in sig.arguments()
if isinstance(a.argument, SelfArgument)
or isinstance(a.argument, Argument)
and a.argument.type.is_tensor_like()
]
tensor_args = ", ".join(native_tensor_args)
tensor_opts = f.func.arguments.tensor_options
stmts = []
subexprs: List[str] = []
if tensor_opts is not None:
subexprs.append(
"DispatchKeySet(c10::computeDispatchKey(dtype, layout, device))"
)
if tensor_args != "":
subexprs.append(f"c10::detail::multi_dispatch_key_set({tensor_args})")
stmts.append(f"""DispatchKeySet _dk_set = {' | '.join(subexprs)};""")
stmts.append("DispatchKey _dk = c10::highestPriorityBackendTypeId(_dk_set);")
dispatch_code = []
for index in keys:
dispatch_code.append(f"""case DispatchKey::{index.dispatch_key}:""")
dispatch_code.append(
f"""\t{generate_static_dispatch_backend_call(sig, f, index)};"""
)
fallback = generate_static_dispatch_fallback_call(sig, f, backend_indices)
connector = "\n\t\t"
return f"""
{connector.join(stmts)}
switch (_dk) {{
{connector.join(dispatch_code)}
default:
{fallback}
}}
"""
# Generates RegisterSchema.cpp. Depending on the selector, either
# all schemas are registered, or only some are (in the case of
# selective build)
@dataclass(frozen=True)
class RegisterSchema:
selector: SelectiveBuilder
known_tags: Dict[str, int] = field(default_factory=dict)
@method_with_native_function
def __call__(self, f: NativeFunction) -> Optional[str]:
if not self.selector.is_native_function_selected(f):
return None
tags = "{" + ", ".join(f"at::Tag::{tag}" for tag in sorted(f.tags)) + "}"
if tags == "{}":
return f"m.def({cpp_string(str(f.func))}, {{}});\n"
maybe_tags = ""
if tags not in self.known_tags:
idx = len(self.known_tags)
self.known_tags[tags] = idx
maybe_tags = f"const std::vector<at::Tag> tags_{idx} = {tags};\n"
return f"{maybe_tags}m.def({cpp_string(str(f.func))}, tags_{self.known_tags[tags]});\n"
# Generates Operators.h and Operators.cpp.
# These provide macros that, given an operator and overload name, allow users
# to access an "un-overloaded" function version of the operator. This
# is useful for extension writers who want to (1) want to decltype the operator
# and (2) don't want to worry about method-only operators.
@dataclass(frozen=True)
class ComputeOperators:
target: Literal[Target.DECLARATION, Target.DEFINITION]
static_dispatch_backend_indices: List[BackendIndex]
@method_with_native_function
def __call__(self, f: NativeFunction) -> str:
sig = DispatcherSignature.from_schema(f.func)
name = f.func.name.unambiguous_name()
if self.target is Target.DECLARATION:
# Note [The ATen Operators API]
# The ATen Operators API lives in the at::_ops namespace, and contains compile-time
# metadata about each operator + entry points into the Dispatcher.
# The C++ function, method, and redispatch API's are all implemented as wrappers
# into various bits of the structs defined here.
#
# Important characteristics about the Operators API:
# (1) It follows the Dispatcher API.
# This is kind of necessary to avoid overhead.
# For example: if it followed the C++ API, then all of the faithful C++ factory functions
# would need to wrap their arguments into TensorOptions only to unwrap them again.
# (2) Overload names are disambiguated.
# This is helpful for pytorch extenders who would like to decltype() an aten operator,
# that has overloads, e.g. decltype(at::_ops::mul_Tensor::call)
# (3) No argument defaulting is allowed.
# This is more of an implementation detail to avoid #include cycles,
# since TensorBody.h (which defines the Tensor class) needs to include this file.
# (4) manual_cpp_bindings and faithful names are not included in the API.
# This applies to stuff like __dispatch__is_complex(), and add_outf().
# These aren't "real aten ops", they're just additional functions provided by the C++ API.
# They're implemented as wrappers in Functions.h that call into the actual operators
# defined here, i.e. at::_ops::is_complex::call() and at::_ops::add_out::call().
# This means that ATEN_OP(is_complex) will not fastpath, and will go through the dispatcher.
return f"""
struct TORCH_API {name} {{
using schema = {sig.type()};
using ptr_schema = schema*;
// See Note [static constexpr char* members for windows NVCC]
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::{f.func.name.name}")
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "{f.func.name.overload_name}")
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, {cpp_string(str(f.func))})
static {sig.defn(name="call", is_redispatching_fn=False)};
static {sig.defn(name="redispatch", is_redispatching_fn=True)};
}};"""
elif self.target is Target.DEFINITION:
defns = f"""
STATIC_CONST_STR_OUT_OF_LINE_FOR_WIN_CUDA({name}, name, "aten::{f.func.name.name}")
STATIC_CONST_STR_OUT_OF_LINE_FOR_WIN_CUDA({name}, overload_name, "{f.func.name.overload_name}")
STATIC_CONST_STR_OUT_OF_LINE_FOR_WIN_CUDA({name}, schema_str, {cpp_string(str(f.func))})
// aten::{f.func}
static C10_NOINLINE c10::TypedOperatorHandle<{name}::schema> create_{name}_typed_handle() {{
return c10::Dispatcher::singleton()
.findSchemaOrThrow({name}::name, {name}::overload_name)
.typed<{name}::schema>();
}}
"""
for is_redispatching_fn in [False, True]:
if is_redispatching_fn:
dispatcher_exprs_str = ", ".join(
["dispatchKeySet"] + [a.name for a in sig.arguments()]
)
method_base = "redispatch"
else:
dispatcher_exprs_str = ", ".join([a.name for a in sig.arguments()])
method_base = "call"
dispatcher_call = method_base
method_name = f"{name}::{method_base}"
fn_body = f"""
static auto op = create_{name}_typed_handle();
return op.{dispatcher_call}({dispatcher_exprs_str});"""
if (
not is_redispatching_fn
and len(self.static_dispatch_backend_indices) > 0
):
# call() should go through static dispatch
fn_body = static_dispatch(
sig, f, backend_indices=self.static_dispatch_backend_indices
)
defns += f"""
// aten::{f.func}
{sig.defn(name=method_name, is_redispatching_fn=is_redispatching_fn)} {{
{fn_body}
}}
"""
return defns
else:
assert_never(self.target)
# Generates Functions.h, which provides the functional public C++ API,
# and the scaffolding to call into the dispatcher from these functions.
@dataclass(frozen=True)
class ComputeFunction:
@method_with_native_function
def __call__(self, f: NativeFunction) -> Optional[str]:
sig_group = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=f.manual_cpp_binding
)
has_symint = f.func.has_symint()
result = ""
for sig in sig_group.signatures():
# See Note [The ATen Operators API]
target_sig = DispatcherSignature.from_schema(f.func)
exprs = translate(sig.arguments(), target_sig.arguments())
exprs_str = ", ".join([e.expr for e in exprs])
if sig.symint:
intlike_t = "c10::SymInt"
else:
intlike_t = "int64_t"
if Variant.function in f.variants:
result += f"""
// aten::{f.func}
inline {sig.decl()} {{
return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str});
}}"""
# The template function can be used from template situations
# where you want to switch between the symint or not version
# depending on a template argument
#
# NB: we ALWAYS generate this even for methods. But we put it in
# this header so it can take advantage of per-op headers
if has_symint:
result += f"""
namespace symint {{
template <typename T, typename = std::enable_if_t<std::is_same<T, {intlike_t}>::value>>
{sig.decl(suppress_symint_suffix=True)} {{
return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str});
}}
}}
"""
return result
# Generates TensorBody.h. This file provides the object-oriented (method-based)
# public C++ API, and the scaffolding to call into the dispatcher from these functions.
@dataclass(frozen=True)
class ComputeTensorMethod:
target: Literal[Target.DECLARATION, Target.DEFINITION]
static_dispatch_backend_indices: List[BackendIndex]
@method_with_native_function
def __call__(self, f: NativeFunction) -> Optional[str]:
if Variant.method not in f.variants:
return None
assert not f.func.is_out_fn()
assert f.func.arguments.self_arg is not None
sig_group = CppSignatureGroup.from_native_function(
f, method=True, fallback_binding=f.manual_cpp_binding
)
if self.target is Target.DECLARATION:
result = ""
for sig in sig_group.signatures():
result += f"{sig.decl()} const;\n"
return result
if self.target is not Target.DEFINITION:
assert_never(self.target)
result = ""
for sig in sig_group.signatures():
target_sig = DispatcherSignature.from_schema(f.func)
exprs = translate(sig.arguments(), target_sig.arguments(), method=True)
exprs_str = ", ".join([e.expr for e in exprs])
result += f"""
// aten::{f.func}
inline {sig.defn(prefix="Tensor::")} const {{
return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str});
}}
"""
return result
# Generates RedispatchFunctions.h.
# This is similar to the C++ API defined in Functions.h, but provides access
# to the dispatcher's redispatch API.
@dataclass(frozen=True)
class ComputeRedispatchFunction:
@method_with_native_function
def __call__(self, f: NativeFunction) -> Optional[str]:
# We unconditionally generate function variants of the redispatch API.
# This is mainly because we can namespace functions separately, but not methods,
sig_group = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=f.manual_cpp_binding
)
result = ""
for sig in sig_group.signatures():
target_sig = DispatcherSignature.from_schema(f.func)
exprs = translate(sig.arguments(), target_sig.arguments())
exprs_str = ", ".join(["dispatchKeySet"] + [a.expr for a in exprs])
result += f"""
// aten::{f.func}
inline {sig.decl(is_redispatching_fn=True)} {{
return at::_ops::{f.func.name.unambiguous_name()}::redispatch({exprs_str});
}}
"""
return result
# Generates ATenOpList.cpp, a runtime accessible list of all aten
# operators.
# TODO: This was historically used to help some JIT interop code
# figure out whether or not to treat aten namespace'd operators
# one way or another, we should reevaluate if this is actually needed.
@with_native_function
def compute_aten_op(f: NativeFunction) -> str:
return f'{{"aten::{f.func.name.name}", "{f.func.name.overload_name}"}},'
# Generates MetaFunctions.h
def compute_meta_function_declaration(g: NativeFunctionsGroup) -> Optional[str]:
if not g.structured:
return None
with native_function_manager(g.out):
name = meta.name(g)
args = structured.meta_arguments(g)
args_str = ", ".join(a.decl() for a in args)
parent_class = g.out.structured_inherits
if parent_class is None:
parent_class = "at::impl::MetaBase"
meta_return = "void"
precomputed = g.out.precomputed if g.structured else None
if precomputed:
# Generate the template declaration with one bool parameter for each
# precomputed element. Each parameter is true if the corresponding (in
# terms of position) precomputed element has been set.
precomputed_values = [*precomputed.replace.values(), precomputed.add]
precomputed_elements = [
elem for replace_list in precomputed_values for elem in replace_list
]
precomputed_template_parameters = [
elem.name.upper() for elem in precomputed_elements
]
precomputed_template_params_str = ", ".join(
f"bool {param} = false" for param in precomputed_template_parameters
)
precompute_template_decl = f"template <{precomputed_template_params_str}>"
# Generate a string containing declarations of all precomputed elements.
precomputed_elements_with_cpp_types = [
structured.argument_type(elem, binds=elem.name)
for elem in precomputed_elements
]
precomputed_elements_decl = ";\n".join(
f"{elem.cpp_type(strip_ref=True)} {elem.name}"
for elem in precomputed_elements_with_cpp_types
)
# Generate "setter" methods for each precomputed element. Each method will return
# a new instance of precompute_out with the template parameter that corresponds to
# the member set by the method to true (to indicate that it has been set).
setter_methods = []
for i, elem in enumerate(precomputed_elements):
# Generate the signature. The return type will be the same
# as the type of `this` but with the template parameter
# corresponding to the element set by this method set to true.
# The assert generated below will ensure that this template
# parameter is false on the type of `this`.
return_ty_templates = ", ".join(
precomputed_template_parameters[:i]
+ ["true"]
+ precomputed_template_parameters[i + 1 :]
)
return_ty = f"precompute_out<{return_ty_templates}>"
elem_cpp_ty = precomputed_elements_with_cpp_types[i].cpp_type(
strip_ref=True
)
signature = f"{return_ty} set_{elem.name}({elem_cpp_ty} value)"
# Generate an assert which checks that the
# template parameter corresponding to the precomputed
# element that is set by this method is false on the
# class corresponding to the object that `this` points to.
# This ensures that each element can be set only once.
assert_msg = f'"{precomputed_elements[i].name} already set"'
assert_stmt = f"static_assert({precomputed_template_parameters[i]} == false, {assert_msg});"
# Generate the new object construction block. All state
# except the element that this method sets is copied from the
# object that `this` points to. The value for the element that
# the method sets is taken from a method parameter.
construction_stmts = []
construction_stmts.append(f"{return_ty} ret;")
for j, elem in enumerate(precomputed_elements):
if i == j:
construction_stmts.append(f"ret.{elem.name} = value;")
else:
construction_stmts.append(
f"ret.{elem.name} = this->{elem.name};"
)
construction_stmts.append("return ret;")
construction_block = "\n".join(construction_stmts)
setter_methods.append(
f"""
{signature} {{
{assert_stmt}
{construction_block}
}}
"""
)
setter_methods_decl = "\n".join(setter_methods)
# Meta should return an instance of the struct containing the precomputed elements.
meta_return_template_params = ", ".join(
["true"] * len(precomputed_template_parameters)
)
# This typedef (actually a using statement) is needed so that TORCH_META_FUNC can reuse the return
# type (which has a variable number of template parameters).
meta_return_typedef = f"using meta_return_ty = precompute_out <{meta_return_template_params}>;"
meta_return = "meta_return_ty"
precomputed_decl = f"""
{precompute_template_decl}
struct TORCH_API precompute_out {{
{setter_methods_decl}
{precomputed_elements_decl};
}};"""
else:
meta_return_typedef = ""
precomputed_decl = ""
return f"""\
struct TORCH_API structured_{name} : public {parent_class} {{
{precomputed_decl}
{meta_return_typedef}
{meta_return} meta({args_str});
}};
"""
def needs_backend_select(f: NativeFunction, selector: SelectiveBuilder) -> bool:
name = str(f.func.name.name)
if name.endswith("_like") or name.startswith("new_"):
return False
if f.func.arguments.tensor_options is None:
return False
return selector.is_native_function_selected(f)
# Generates RegisterBackendSelect.cpp, a series of kernels which provide
# specialized computation of dispatch key for operator signatures which cannot
# be easily done automatically using templating.
@dataclass(frozen=True)
class ComputeBackendSelect:
target: Literal[Target.DEFINITION, Target.REGISTRATION]
# Selector object to determine which operators to generate
# registration code for.
selector: SelectiveBuilder
@method_with_native_function
def __call__(self, f: NativeFunction) -> Optional[str]:
if not needs_backend_select(f, self.selector):
return None
name = native.name(f.func)
# BackendSelect can go to Meta, so it must preserve symints
native_sig = NativeSignature(f.func, symint=True)
native_tensor_args = [
a
for a in native_sig.arguments()
if isinstance(a.argument, Argument) and a.argument.type.is_tensor_like()
]
dispatcher_sig = DispatcherSignature.from_schema(f.func)
sig: Union[NativeSignature, DispatcherSignature]
sig = dispatcher_sig
dispatcher_exprs = dispatcher_sig.exprs()
dispatch_key = "c10::computeDispatchKey(dtype, layout, device)"
if self.target is Target.DEFINITION:
# I don't think there's actually a good reason to generate
# these two cases differently
# The first case could probably be improved though- it calls computeDispatchKeySet(),
# which looks at TLS dispatch keys- there should not be any by the time we reach backend select.
if native_tensor_args:
assert f.func.arguments.has_tensor_arg()
tensor_args = ", ".join(a.name for a in native_tensor_args)
compute_dk = f"""\
DispatchKeySet _dk_set = c10::DispatchKeySet({dispatch_key}) | c10::detail::multi_dispatch_key_set({tensor_args});
DispatchKeySet _dk_mask = c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, DispatchKey::BackendSelect);
DispatchKeySet _dk = c10::impl::computeDispatchKeySet(_dk_set, _dk_mask);"""
else:
assert not f.func.arguments.has_tensor_arg()
compute_dk = (
f"DispatchKeySet _dk = c10::DispatchKeySet({dispatch_key});"
)
return f"""\
// aten::{f.func}
C10_ALWAYS_INLINE
{sig.defn(name)} {{
{compute_dk}
return at::_ops::{f.func.name.unambiguous_name()}::redispatch(
_dk, {', '.join(a.expr for a in dispatcher_exprs)});
}}
"""
elif self.target is Target.REGISTRATION:
return f"""m.impl("aten::{f.func.name}", TORCH_FN({name}));"""
else:
assert_never(self.target)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# YAML CODE GENERATION
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def format_yaml(data: object) -> str:
# Ignore alias in Dumper
YamlDumper.ignore_aliases = lambda self, data: True # type: ignore[assignment]
# Support serializing OrderedDict
def dict_representer(dumper: Any, data: Any) -> Any:
return dumper.represent_dict(data.items())
YamlDumper.add_representer(OrderedDict, dict_representer) # type: ignore[no-untyped-call]
# Some yaml parsers (e.g. Haskell's) don't understand line breaks.
# width=1e9 turns off optional line breaks and improves
# the portability of the outputted yaml.
return yaml.dump(data, default_flow_style=False, Dumper=YamlDumper, width=1e9) # type: ignore[no-any-return, call-overload]
# For some reason, some defaults we write to YAML are written as native
# YAML objects, rather than doing them uniformly as strings. This
# function detects those cases and converts them into native Python
# objects.
def pythonify_default(s: str) -> object:
if s == "true":
return True
elif s == "false":
return False
try:
return int(s)
except ValueError:
try:
return float(s)
except ValueError:
return s
# What is a dynamic type? Over time, the semantic meaning of
# dynamic type has degraded to meaninglessness (in the old days,
# it captured dtype-ness of types, but that has gone away with
# the removal of TH). These days, it's mostly the same thing as
# the C++ API argument type, except that Tensor and Tensor?
# arguments simply present as Tensor.
#
# TODO: Get rid of dynamic_type, after getting tools/autograd
# to use the new codegen framework
def dynamic_type(t: Type) -> str:
if isinstance(t, OptionalType):
return dynamic_type(t.elem)
# Note we don't use t.is_tensor_like() here because it would
# also include Tensor[]
if str(t) == "Tensor":
return "at::Tensor"
# This is a legacy concept, so never report SymInt
return cpp.argumenttype_type(
t, mutable=False, binds="__placeholder__", symint=False
).cpp_type()
def compute_method_of_yaml(variants: Set[Variant]) -> List[str]:
# This is written out explicitly to ensure that Tensor and
# namespace are put into the list in the right order
method_of = ["Type"]
if Variant.method in variants:
method_of.append("Tensor")
if Variant.function in variants:
method_of.append("namespace")
return method_of
def compute_returns_yaml(
f: NativeFunction,
) -> Tuple[List[Dict[str, str]], Dict[str, str]]:
# Note [name and field_name]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# To understand name_to_field_name, we must first talk about this
# schema:
#
# lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)
#
# There is something very odd about this schema: it is an out
# variant of the function (that is to say, it will convert into
# at::lstsq_out() in the C++ API), but the names of the output
# return arguments don't match the keyword argument names of
# the inputs. It TURNS OUT that in this situation, the historical
# Declarations.yaml we want to output is this (abbreviated to
# only show relevant fields):
#
# arguments:
# ...
# - field_name: solution
# name: X
# - field_name: QR
# name: qr
# ...
#
# returns:
# - field_name: solution
# name: X
# - field_name: QR
# name: qr
#
# The name of the return fields is stored in 'field_name', and the
# name of the arguments is stored in 'name'. So when we process
# arguments, we need a way to get at the corresponding return. At
# the moment, this is most conveniently done by constructing a
# mapping from name (the argument concept) to field_name (the
# return concept) while processing return arguments, since we don't
# directly maintain this correspondence in the modeling of function
# schema itself.
#
# See also https://github.com/pytorch/pytorch/issues/43114
name_to_field_name: Dict[str, str] = {}
# Compute the returns field of the YAML entry
names = cpp.return_names(f)
returns = []
for i, (r, name) in enumerate(zip(f.func.returns, names)):
ret = {
"dynamic_type": dynamic_type(r.type),
"name": name,
# legacy, report ints
"type": cpp.return_type(r, symint=False).cpp_type(),
}
if r.name:
# See Note [name and field_name]
ret["field_name"] = r.name
if f.func.is_out_fn():
name_to_field_name[f.func.arguments.out[i].name] = r.name
returns.append(ret)
return returns, name_to_field_name
# arguments in yaml roughly corresponds to the public C++ API
def compute_cpp_argument_yaml(
cpp_a: Binding,
*,
schema_order: bool,
kwarg_only_set: Set[str],
out_arg_set: Set[str],
name_to_field_name: Dict[str, str],
) -> object:
if isinstance(cpp_a.argument, TensorOptionsArguments):
arg: Dict[str, object] = {
"annotation": None,
"dynamic_type": "at::TensorOptions",
"is_nullable": False,
"name": cpp_a.name,
"type": cpp_a.type,
"kwarg_only": True,
}
if cpp_a.default is not None:
arg["default"] = cpp_a.default
return arg
elif isinstance(cpp_a.argument, SelfArgument):
raise AssertionError()
elif isinstance(cpp_a.argument, Argument):
return compute_argument_yaml(
cpp_a.argument,
schema_order=schema_order,
kwarg_only_set=kwarg_only_set,
out_arg_set=out_arg_set,
name_to_field_name=name_to_field_name,
)
def compute_argument_yaml(
a: Argument,
*,
schema_order: bool,
kwarg_only_set: Set[str],
out_arg_set: Set[str],
name_to_field_name: Dict[str, str],
) -> object:
arg: Dict[str, object] = {
"annotation": str(a.annotation) if a.annotation else None,
"dynamic_type": dynamic_type(a.type),
"is_nullable": a.type.is_nullable(),
"name": a.name,
# legacy, report ints
"type": cpp.argument_type(a, binds="__placeholder__", symint=False).cpp_type(),
}
if a.default is not None:
arg["default"] = pythonify_default(
cpp.default_expr(a.default, a.type, symint=False)
)
if a.name in kwarg_only_set:
arg["kwarg_only"] = True
if a.name in out_arg_set:
arg["output"] = True
arg["allocate"] = True
# See Note [name and field_name]
if a.name in name_to_field_name:
arg["field_name"] = name_to_field_name[a.name]
# Historically, booleans don't get their size recorded, because it
# is already built into the cpp type (e.g., std::array<bool, 4>)
l = a.type.is_list_like()
if l is not None and l.size is not None and str(l.elem) != "bool":
arg["size"] = l.size
return arg
@with_native_function
def compute_declaration_yaml(f: NativeFunction) -> object:
returns, name_to_field_name = compute_returns_yaml(f)
# These sets are used to conveniently test if an argument is a
# kwarg-only or out argument
kwarg_only_set = {a.name for a in f.func.arguments.flat_kwarg_only}
out_arg_set = {a.name for a in f.func.arguments.out}
sig_group = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=False
)
cpp_args = sig_group.signature.arguments()
arguments = [
compute_cpp_argument_yaml(
cpp_a,
schema_order=False,
kwarg_only_set=kwarg_only_set,
out_arg_set=out_arg_set,
name_to_field_name=name_to_field_name,
)
for cpp_a in cpp_args
]
schema_order_jit_arguments = list(f.func.schema_order_arguments())
schema_order_arguments = [
compute_argument_yaml(
a,
schema_order=True,
kwarg_only_set=kwarg_only_set,
out_arg_set=out_arg_set,
name_to_field_name=name_to_field_name,
)
for a in schema_order_jit_arguments
]
cpp_schema_order_types = [
# NB: method here doesn't matter
r.type
for a in schema_order_jit_arguments
for r in cpp.argument(
a,
method=False,
cpp_no_default_args=set(),
faithful=False,
symint=False,
has_tensor_options=False,
)
]
# legacy, report ints
cpp_returns = cpp.returns_type(f.func.returns, symint=False).cpp_type()
schema_order_cpp_signature = f"{cpp_returns} ({', '.join(cpp_schema_order_types)})"
is_factory_method = (
any(isinstance(a.argument, TensorOptionsArguments) for a in cpp_args)
and Variant.method not in f.variants
)
return OrderedDict(
[
("name", cpp.name(f.func)),
("operator_name", str(f.func.name.name)),
("overload_name", str(f.func.name.overload_name)),
("manual_kernel_registration", f.manual_kernel_registration),
(
"category_override",
f.category_override if f.category_override is not None else "",
),
("schema_string", f"aten::{f.func}"),
("arguments", arguments),
("schema_order_cpp_signature", schema_order_cpp_signature),
("schema_order_arguments", schema_order_arguments),
("method_of", compute_method_of_yaml(f.variants)),
("mode", "native"),
("python_module", "" if f.python_module is None else f.python_module),
("returns", returns),
("inplace", f.func.name.name.inplace),
("is_factory_method", is_factory_method),
("abstract", f.is_abstract),
("device_guard", f.device_guard),
("with_gil", False),
("deprecated", False),
("has_math_kernel", f.has_composite_implicit_autograd_kernel),
]
)
# See Note [Auto generated composite kernels]
def has_autogenerated_composite_kernel(f: NativeFunction) -> bool:
return (f.structured or f.structured_delegate is not None) and (
f.func.kind() == SchemaKind.functional or f.func.kind() == SchemaKind.inplace
)
@with_native_function_and_indices
def compute_registration_declarations(
f: NativeFunction, backend_indices: Dict[DispatchKey, BackendIndex]
) -> str:
name = dispatcher.name(f.func)
returns_type = dispatcher.returns_type(
f.func.returns
).cpp_type_registration_declarations()
args = dispatcher.arguments(f.func)
args_str = ", ".join(a.no_default().decl_registration_declarations() for a in args)
comment_data: Dict[str, str] = {
"schema": f"aten::{f.func}",
# TODO: What exactly is the semantics of the 'dispatch' field?
"dispatch": str(
{k for k, v in backend_indices.items() if v.has_kernel(f)}
!= {DispatchKey.CompositeImplicitAutograd}
and {k for k, v in backend_indices.items() if v.has_kernel(f)}
!= {
DispatchKey.CompositeImplicitAutograd,
DispatchKey.CompositeImplicitAutogradNestedTensor,
}
),
"default": str(f.has_composite_kernel or has_autogenerated_composite_kernel(f)),
}
return f"""{returns_type} {name}({args_str}); // {json.dumps(comment_data)}
"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# RUN IT ALL
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def get_custom_build_selector(
provided_op_registration_allowlist: Optional[List[str]],
op_selection_yaml_path: Optional[str],
) -> SelectiveBuilder:
assert not (
provided_op_registration_allowlist is not None
and op_selection_yaml_path is not None
), (
"Both provided_op_registration_allowlist and "
+ "op_selection_yaml_path can NOT be provided at the "
+ "same time."
)
op_registration_allowlist: Optional[Set[str]] = None
if provided_op_registration_allowlist is not None:
op_registration_allowlist = set(provided_op_registration_allowlist)
if op_registration_allowlist is not None:
selector = SelectiveBuilder.from_legacy_op_registration_allow_list(
op_registration_allowlist,
True,
False,
)
elif op_selection_yaml_path is not None:
selector = SelectiveBuilder.from_yaml_path(op_selection_yaml_path)
else:
selector = SelectiveBuilder.get_nop_selector()
return selector
def get_grouped_by_view_native_functions(
native_functions: Sequence[NativeFunction],
) -> Sequence[Union[NativeFunction, NativeFunctionsViewGroup]]:
def maybe_create_view_group(
d: Dict[Union[ViewSchemaKind, SchemaKind], NativeFunction]
) -> List[Union[NativeFunction, NativeFunctionsViewGroup]]:
funcs: List[Union[NativeFunction, NativeFunctionsViewGroup]] = []
if ViewSchemaKind.aliasing in d:
view = d.pop(ViewSchemaKind.aliasing)
view_inplace = d.pop(ViewSchemaKind.aliasing_inplace, None)
view_copy = d.pop(SchemaKind.functional, None)
funcs.append(
NativeFunctionsViewGroup(
view=view,
view_copy=view_copy,
view_inplace=view_inplace,
)
)
# Take the remaining functions that weren't part of the view group
# and emit them separately
for func in d.values():
funcs.append(func)
return funcs
grouped_by_views: Dict[
FunctionSchema, Dict[Union[SchemaKind, ViewSchemaKind], NativeFunction]
] = defaultdict(dict)
for f in native_functions:
schema = f.func.view_signature()
view_kind: ViewSchemaKind = f.view_schema_kind
# We need to group up ops relevant to the same "view", consisting of:
# view op (ViewSchemaKind.aliasing)
# view_inplace op (ViewSchemaKind.aliasing_inplace)
# view_copy op (SchemaKind.functional)
if view_kind == ViewSchemaKind.non_aliasing:
kind = f.func.kind()
assert kind not in grouped_by_views[schema]
grouped_by_views[schema][kind] = f
else:
assert view_kind not in grouped_by_views[schema]
grouped_by_views[schema][view_kind] = f
return list(concatMap(maybe_create_view_group, grouped_by_views.values()))
def get_grouped_native_functions(
native_functions: Sequence[NativeFunction],
) -> Sequence[Union[NativeFunction, NativeFunctionsGroup]]:
def flatten_pre_group(
d: Dict[SchemaKind, NativeFunction]
) -> Sequence[Union[NativeFunction, NativeFunctionsGroup]]:
r = NativeFunctionsGroup.from_dict(d)
if r is None:
# Invariant: any NativeFunctions that are code-generated
# should have been grouped into NativeFunctionsGroup objects
assert not any("generated" in f.tags for f in d.values())
return list(d.values())
else:
return [r]
# TODO: how come ValuesView isn't a Sequence lol
pre_grouped_native_functions = pre_group_native_functions(native_functions)
return list(
concatMap(flatten_pre_group, list(pre_grouped_native_functions.values()))
)
def get_ns_grouped_kernels(
*,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
backend_indices: Dict[DispatchKey, BackendIndex],
native_function_decl_gen: Callable[
[Union[NativeFunctionsGroup, NativeFunction], BackendIndex], List[str]
] = dest.compute_native_function_declaration,
) -> Dict[str, List[str]]:
ns_grouped_kernels: Dict[str, List[str]] = defaultdict(list)
for f in grouped_native_functions:
native_function_namespaces = set()
dispatch_keys = set()
for dispatch_key, backend_idx in backend_indices.items():
backend_metadata = backend_idx.get_kernel(f)
if backend_metadata:
namespace = backend_metadata.cpp_namespace
dispatch_keys.add(dispatch_key)
native_function_namespaces.add(namespace)
else:
namespace = DEFAULT_KERNEL_NAMESPACE
assert (
len(native_function_namespaces) <= 1
), f"Codegen only supports one namespace per operator, got {native_function_namespaces} from {dispatch_keys}"
ns_grouped_kernels[namespace].extend(
native_function_decl_gen(f, backend_idx)
)
return ns_grouped_kernels
def get_native_function_declarations_from_ns_grouped_kernels(
*,
ns_grouped_kernels: Dict[str, List[str]],
) -> List[str]:
declarations: List[str] = []
newline = "\n"
for namespace, kernels in ns_grouped_kernels.items():
ns_helper = NamespaceHelper(
namespace_str=namespace,
entity_name="",
max_level=4,
)
# Convert to a set first to remove duplicate kernel names. Backends are
# allowed to repeat kernel names; only generate the declaration once!
ordered_kernels = list(OrderedDict.fromkeys(kernels))
declarations.extend(
f"""
{ns_helper.prologue}
{newline.join(ordered_kernels)}
{ns_helper.epilogue}
""".split(
newline
)
)
return declarations
# Return native function declarations grouped by their namespaces.
def get_native_function_declarations(
*,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
backend_indices: Dict[DispatchKey, BackendIndex],
native_function_decl_gen: Callable[
[Union[NativeFunctionsGroup, NativeFunction], BackendIndex], List[str]
] = dest.compute_native_function_declaration,
) -> List[str]:
"""
Generate kernel declarations, in `NativeFunction(s).h`.
:param grouped_native_functions: a sequence of `NativeFunction` or `NativeFunctionGroup`.
:param backend_indices: kernel collections grouped by dispatch key.
:param native_function_decl_gen: callable to generate kernel declaration for each `NativeFunction`.
:return: a list of string, from the string with all declarations, grouped by namespaces, split by newline.
"""
ns_grouped_kernels = get_ns_grouped_kernels(
grouped_native_functions=grouped_native_functions,
backend_indices=backend_indices,
native_function_decl_gen=native_function_decl_gen,
)
return get_native_function_declarations_from_ns_grouped_kernels(
ns_grouped_kernels=ns_grouped_kernels
)
def get_kernel_namespace(
*, f: Union[NativeFunction, NativeFunctionsGroup], backend_idx: BackendIndex
) -> str:
backend_metadata = backend_idx.get_kernel(f)
assert not backend_metadata or "::native" in backend_metadata.cpp_namespace, (
f"The kernel for function {f.func.name if isinstance(f, NativeFunction) else f.functional.func.name} "
f"with dispatch key {backend_idx.dispatch_key}"
f" has a namespace {backend_metadata.cpp_namespace} and it's not ending with '::native'."
)
return (
backend_metadata.cpp_namespace if backend_metadata else DEFAULT_KERNEL_NAMESPACE
)
# Return native function definitions grouped by dispatch key and custom namespace.
# Used in RegisterDispatchKey.cpp and etc.
def get_native_function_definitions(
*,
fm: FileManager,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
dispatch_key: DispatchKey,
backend_idx: BackendIndex,
selector: SelectiveBuilder,
rocm: bool,
symint: bool,
skip_dispatcher_op_registration: bool,
gen_dispatch_helpers: bool,
) -> List[str]:
definitions: List[str] = []
ns_definitions: Dict[str, List[str]] = defaultdict(list)
anonymous_definitions: Dict[str, List[str]] = defaultdict(list)
registrations: Dict[str, Dict[str, List[str]]] = defaultdict(dict)
newline = "\n"
ns_gen = dest.RegisterDispatchKey(
backend_idx,
Target.NAMESPACED_DEFINITION,
selector,
rocm=rocm,
symint=symint,
class_method_name=None,
skip_dispatcher_op_registration=skip_dispatcher_op_registration,
)
anonymous_gen = dest.RegisterDispatchKey(
backend_idx,
Target.ANONYMOUS_DEFINITION,
selector,
rocm=rocm,
symint=symint,
class_method_name=None,
skip_dispatcher_op_registration=skip_dispatcher_op_registration,
)
reg_gen = dest.RegisterDispatchKey(
backend_idx,
Target.REGISTRATION,
selector,
rocm=rocm,
symint=symint,
class_method_name=None,
skip_dispatcher_op_registration=skip_dispatcher_op_registration,
)
for f in grouped_native_functions:
kernel_namespace = get_kernel_namespace(f=f, backend_idx=backend_idx).replace(
"::native", ""
)
ns_definitions[kernel_namespace].extend(
ns_gen(f),
)
anonymous_definitions[kernel_namespace].extend(
anonymous_gen(f),
)
namespace = (
f.namespace if isinstance(f, NativeFunction) else f.functional.namespace
)
if namespace not in registrations[kernel_namespace]:
registrations[kernel_namespace] = defaultdict(list)
registrations[kernel_namespace][namespace].extend(
reg_gen(f),
)
for kernel_namespace in ns_definitions:
if len(ns_definitions[kernel_namespace]) == 0:
continue
ns_helper = NamespaceHelper(namespace_str=kernel_namespace)
registration_body = ""
for namespace in registrations[kernel_namespace]:
if not registrations[kernel_namespace][namespace]:
continue
registration_body += f"""
TORCH_LIBRARY_IMPL({namespace}, {dispatch_key}, m) {{
{newline.join(registrations[kernel_namespace][namespace])}
}};"""
definitions.extend(
fm.substitute_with_template(
"RegisterDispatchDefinitions.ini",
lambda: {
"ns_prologue": ns_helper.prologue,
"ns_epilogue": ns_helper.epilogue,
"dispatch_helpers": dest.gen_registration_helpers(backend_idx)
if gen_dispatch_helpers
else [],
"dispatch_anonymous_definitions": anonymous_definitions[
kernel_namespace
],
"static_init_dispatch_registrations": ""
if skip_dispatcher_op_registration
else registration_body,
"deferred_dispatch_registrations": "",
"dispatch_namespace": dispatch_key.lower(),
"dispatch_namespaced_definitions": ns_definitions[kernel_namespace],
},
).split(newline)
)
return definitions
# Return native function declarations grouped by dispatch key and custom namespace.
# Used in CPUFunctions_inl.h and etc.
def get_namespaced_declaration(
*,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
dispatch_key: DispatchKey,
backend_idx: BackendIndex,
selector: SelectiveBuilder,
rocm: bool,
symint: bool,
) -> List[str]:
declarations: List[str] = []
ns_grouped_kernels: Dict[str, List[str]] = defaultdict(list)
newline = "\n"
func = dest.RegisterDispatchKey(
backend_idx,
Target.NAMESPACED_DECLARATION,
selector,
rocm=rocm,
class_method_name=None,
skip_dispatcher_op_registration=False,
symint=symint,
)
for f in grouped_native_functions:
namespace = get_kernel_namespace(f=f, backend_idx=backend_idx).replace(
"native", dispatch_key.lower()
)
ns_grouped_kernels[namespace].extend(
func(f),
)
for namespace, kernels in ns_grouped_kernels.items():
if len(kernels) == 0:
continue
ns_helper = NamespaceHelper(
namespace_str=namespace, entity_name="", max_level=3
)
ordered_kernels = list(OrderedDict.fromkeys(kernels))
declarations.extend(
f"""
{ns_helper.prologue}
{newline.join(ordered_kernels)}
{ns_helper.epilogue}
""".split(
newline
)
)
return declarations
# Return native function schema registration code for aten and other namespaces.
def get_native_function_schema_registrations(
*,
native_functions: Sequence[NativeFunction],
schema_selector: SelectiveBuilder,
) -> Tuple[List[str], str]:
ns_native_functions: Dict[str, List[NativeFunction]] = defaultdict(list)
for native_function in native_functions:
ns_native_functions[native_function.namespace].append(native_function)
schema_registrations = ""
aten_schema_registrations = []
custom_namespace = None
for namespace, funcs in ns_native_functions.items():
schema_registrations_body = list(
mapMaybe(RegisterSchema(schema_selector), funcs)
)
# NB: we have to separate aten namespace registration from other namespaces,
# because in the template we hardcoded an operator for ATen already.
if namespace == "aten":
aten_schema_registrations = schema_registrations_body
else:
custom_namespace = namespace
tab = "\t"
# if the namespace is predefined, we should use define a library fragment
# instead of a new library
torch_library_macro = (
"TORCH_LIBRARY_FRAGMENT"
if namespace in FRAGMENT_NAMESPACES
else "TORCH_LIBRARY"
)
schema_registrations += f"""
{torch_library_macro}({custom_namespace}, m) {{
{tab.join(schema_registrations_body)}
}};"""
return (aten_schema_registrations, schema_registrations)
def gen_aggregated_headers(
*,
native_functions: Sequence[NativeFunction],
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
structured_native_functions: Sequence[NativeFunctionsGroup],
static_dispatch_idx: List[BackendIndex],
selector: SelectiveBuilder,
backend_indices: Dict[DispatchKey, BackendIndex],
cpu_fm: FileManager,
cuda_fm: FileManager,
functions_keys: Set[DispatchKey],
dispatch_keys: Sequence[DispatchKey],
rocm: bool,
) -> None:
# Buck doesn't support dynamic output files, so we aggregate all operator
# headers into a single file
cpu_fm.write(
"NativeMetaFunctions.h",
lambda: {
"NativeMetaFunctions_includes": [],
"NativeMetaFunctions_declarations": list(
mapMaybe(compute_meta_function_declaration, structured_native_functions)
),
},
)
method_native_functions = [
fn for fn in native_functions if Variant.method in fn.variants
]
non_method_native_functions = [
fn for fn in native_functions if fn not in method_native_functions
]
cpu_fm.write(
"MethodOperators.h",
lambda: {
"MethodOperators_includes": [],
"MethodOperators_declarations": list(
mapMaybe(
ComputeOperators(
Target.DECLARATION,
static_dispatch_backend_indices=static_dispatch_idx,
),
method_native_functions,
)
),
},
)
cpu_fm.write(
"Operators.h",
lambda: {
"Operators_includes": ["#include <ATen/MethodOperators.h>"],
"Operators_declarations": list(
mapMaybe(
ComputeOperators(
Target.DECLARATION,
static_dispatch_backend_indices=static_dispatch_idx,
),
non_method_native_functions,
)
),
},
)
cpu_fm.write(
"Functions.h",
lambda: {
"static_dispatch_extra_headers": static_dispatch_extra_headers(
static_dispatch_idx
),
"Functions_includes": ["#include <ATen/Operators.h>"],
"Functions_declarations": list(
mapMaybe(
ComputeFunction(),
native_functions,
)
),
},
)
declarations = get_native_function_declarations(
grouped_native_functions=grouped_native_functions,
backend_indices=backend_indices,
)
cpu_fm.write(
"NativeFunctions.h",
lambda: {
"NativeFunctions_includes": ["#include <ATen/NativeMetaFunctions.h>"],
"NativeFunctions_declarations": declarations,
},
)
for dispatch_key in dispatch_keys:
fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm
if dispatch_key in functions_keys:
inl_headers = f"#include <ATen/{dispatch_key}Functions_inl.h>"
fm.write_with_template(
f"{dispatch_key}Functions.h",
"DispatchKeyFunctions.h",
lambda: {
"dispatch_key": str(dispatch_key),
"inline_headers": inl_headers,
},
)
fm.write_with_template(
f"{dispatch_key}Functions_inl.h",
"DispatchKeyFunctions_inl.h",
lambda: {
"DispatchKeyFunctions_inl_includes": [],
"dispatch_namespace": dispatch_key.lower(),
"dispatch_namespaced_declarations": get_namespaced_declaration(
grouped_native_functions=grouped_native_functions,
dispatch_key=dispatch_key,
backend_idx=backend_indices[dispatch_key],
selector=selector,
rocm=rocm,
symint=True,
),
},
)
del fm
def gen_per_operator_headers(
*,
native_functions: Sequence[NativeFunction],
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
static_dispatch_idx: List[BackendIndex],
selector: SelectiveBuilder,
backend_indices: Dict[DispatchKey, BackendIndex],
cpu_fm: FileManager,
cuda_fm: FileManager,
ops_fm: FileManager,
functions_keys: Set[DispatchKey],
dispatch_keys: Sequence[DispatchKey],
rocm: bool,
) -> None:
# For CMake builds, split operator declarations into separate headers in
# the ATen/ops folder to split up header dependencies
functions_by_root_name: Dict[str, List[NativeFunction]] = defaultdict(list)
for fn in native_functions:
functions_by_root_name[fn.root_name].append(fn)
grouped_functions_by_root_name: Dict[
str, List[Union[NativeFunction, NativeFunctionsGroup]]
] = defaultdict(list)
for group in grouped_native_functions:
name = group.root_name
grouped_functions_by_root_name[name].append(group)
for name, functions in functions_by_root_name.items():
ops_fm.write_with_template(
f"{name}_ops.h",
"Operator.h",
lambda: {
"declarations": list(
mapMaybe(
ComputeOperators(
Target.DECLARATION,
static_dispatch_backend_indices=static_dispatch_idx,
),
functions,
)
),
},
)
ops_fm.write_with_template(
f"{name}.h",
"Function.h",
lambda: {
"static_dispatch_ops_headers": list(
mapMaybe(
lambda fn: static_dispatch_ops_header(
fn, backend_index=static_dispatch_idx
),
functions,
)
),
"operator_includes": f"#include <ATen/ops/{name}_ops.h>",
"function_definitions": list(
mapMaybe(
ComputeFunction(),
functions,
)
),
},
)
grouped_functions = grouped_functions_by_root_name.get(name, [])
structured_functions = [
fn
for fn in grouped_functions
if isinstance(fn, NativeFunctionsGroup) and fn.structured
]
is_structured = len(structured_functions) > 0
if is_structured:
ops_fm.write_with_template(
f"{name}_meta.h",
"NativeMetaFunction.h",
lambda: {
"meta_function_declarations": list(
mapMaybe(
compute_meta_function_declaration, structured_functions
)
),
},
)
declarations = get_native_function_declarations(
grouped_native_functions=grouped_functions,
backend_indices=backend_indices,
native_function_decl_gen=dest.compute_native_function_declaration,
)
ops_fm.write_with_template(
f"{name}_native.h",
"NativeFunction.h",
lambda: {
"extra_includes": (
f"#include <ATen/ops/{name}_meta.h>" if is_structured else []
),
"native_function_declarations": declarations,
},
)
for category, suffix in [
("Functions", ""),
("Operators", "_ops"),
("NativeMetaFunctions", "_meta"),
("NativeFunctions", "_native"),
]:
cpu_fm.write(
f"{category}.h",
lambda: {
f"{category}_includes": [
f"#include <ATen/ops/{name}{suffix}.h>"
for name in sorted(functions_by_root_name.keys())
],
f"{category}_declarations": [],
},
)
for dispatch_key in dispatch_keys:
if dispatch_key not in functions_keys:
continue
dispatch_namespace = dispatch_key.lower()
dispatch_names = []
for name, functions in functions_by_root_name.items():
grouped_functions = grouped_functions_by_root_name.get(name, [])
declarations = list(
concatMap(
dest.RegisterDispatchKey(
backend_indices[dispatch_key],
Target.NAMESPACED_DECLARATION,
selector,
rocm=rocm,
symint=True,
class_method_name=None,
skip_dispatcher_op_registration=False,
),
grouped_functions,
)
)
if len(declarations) == 0:
continue
dispatch_names.append(name)
ops_fm.write_with_template(
f"{name}_{dispatch_namespace}_dispatch.h",
"DispatchKeyFunction.h",
lambda: {
"dispatch_namespace": dispatch_namespace,
"dispatch_namespaced_declarations": declarations,
},
)
fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm
inl_headers = f"#include <ATen/{dispatch_key}Functions_inl.h>"
fm.write_with_template(
f"{dispatch_key}Functions.h",
"DispatchKeyFunctions.h",
lambda: {
"dispatch_key": str(dispatch_key),
"inline_headers": inl_headers,
},
)
fm.write_with_template(
f"{dispatch_key}Functions_inl.h",
"DispatchKeyFunctions_inl.h",
lambda: {
"dispatch_namespace": dispatch_namespace,
"DispatchKeyFunctions_inl_includes": [
f"#include <ATen/ops/{name}_{dispatch_namespace}_dispatch.h>"
for name in sorted(dispatch_names)
],
"dispatch_namespaced_declarations": [],
},
)
del fm
cpu_fm.write(
"MethodOperators.h",
lambda: {
"MethodOperators_includes": sorted(
f"#include <ATen/ops/{name}_ops.h>"
for name, functions in functions_by_root_name.items()
if any(Variant.method in fn.variants for fn in functions)
),
"MethodOperators_declarations": [],
},
)
def gen_headers(
*,
native_functions: Sequence[NativeFunction],
valid_tags: Set[str],
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
structured_native_functions: Sequence[NativeFunctionsGroup],
static_dispatch_idx: List[BackendIndex],
selector: SelectiveBuilder,
backend_indices: Dict[DispatchKey, BackendIndex],
core_fm: FileManager,
cpu_fm: FileManager,
cuda_fm: FileManager,
ops_fm: FileManager,
dispatch_keys: Sequence[DispatchKey],
functions_keys: Set[DispatchKey],
rocm: bool,
per_operator_headers: bool,
) -> None:
if per_operator_headers:
gen_per_operator_headers(
native_functions=native_functions,
grouped_native_functions=grouped_native_functions,
static_dispatch_idx=static_dispatch_idx,
selector=selector,
backend_indices=backend_indices,
cpu_fm=cpu_fm,
cuda_fm=cuda_fm,
ops_fm=ops_fm,
dispatch_keys=dispatch_keys,
functions_keys=functions_keys,
rocm=rocm,
)
else:
gen_aggregated_headers(
native_functions=native_functions,
grouped_native_functions=grouped_native_functions,
structured_native_functions=structured_native_functions,
static_dispatch_idx=static_dispatch_idx,
selector=selector,
backend_indices=backend_indices,
cpu_fm=cpu_fm,
cuda_fm=cuda_fm,
dispatch_keys=dispatch_keys,
functions_keys=functions_keys,
rocm=rocm,
)
core_fm.write(
"TensorBody.h",
lambda: {
"tensor_method_declarations": list(
mapMaybe(
ComputeTensorMethod(
target=Target.DECLARATION,
static_dispatch_backend_indices=static_dispatch_idx,
),
native_functions,
)
),
"tensor_method_definitions": list(
mapMaybe(
ComputeTensorMethod(
target=Target.DEFINITION,
static_dispatch_backend_indices=static_dispatch_idx,
),
native_functions,
)
),
},
)
cpu_fm.write(
"RedispatchFunctions.h",
lambda: {
"function_redispatch_definitions": list(
mapMaybe(ComputeRedispatchFunction(), native_functions)
),
},
)
cpu_fm.write(
"RegistrationDeclarations.h",
lambda: {
"registration_declarations": [
compute_registration_declarations(f, backend_indices)
for f in native_functions
],
},
)
cpu_fm.write(
"VmapGeneratedPlumbing.h", lambda: gen_all_vmap_plumbing(native_functions)
)
def gen_aten_interned_strings() -> Dict[str, str]:
attrs = set() # All function argument names
names = set() # All ATen function names
for func in native_functions:
names.add(str(func.func.name.name))
# Some operators don't have a functional variant but we still create a
# symbol without the underscore
names.add(func.func.name.name.base)
for arg in func.func.schema_order_arguments():
attrs.add(arg.name)
# These are keywords in C++, so aren't valid symbol names
# https://en.cppreference.com/w/cpp/language/operator_alternative
names -= {
"and",
"and_eq",
"bitand",
"bitor",
"compl",
"not",
"not_eq",
"or",
"or_eq",
"xor",
"xor_eq",
}
return {
"aten_symbols": " \\\n".join(
[f"_(aten, {name})" for name in sorted(names)]
),
"attr_symbols": " \\\n".join(
[f"_(attr, {name})" for name in sorted(attrs)]
),
}
core_fm.write("aten_interned_strings.h", gen_aten_interned_strings)
def gen_tags_enum() -> Dict[str, str]:
return {"enum_of_valid_tags": (",\n".join(sorted(valid_tags)))}
core_fm.write("enum_tag.h", gen_tags_enum)
def gen_source_files(
*,
native_functions: Sequence[NativeFunction],
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
structured_native_functions: Sequence[NativeFunctionsGroup],
view_groups: Sequence[NativeFunctionsViewGroup],
selector: SelectiveBuilder,
static_dispatch_idx: List[BackendIndex],
backend_indices: Dict[DispatchKey, BackendIndex],
core_fm: FileManager,
cpu_fm: FileManager,
cpu_vec_fm: FileManager,
cuda_fm: FileManager,
dispatch_keys: Sequence[DispatchKey],
functions_keys: Set[DispatchKey],
rocm: bool,
force_schema_registration: bool,
per_operator_headers: bool,
skip_dispatcher_op_registration: bool,
) -> None:
extra_cuda_headers = """\
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/ATenCUDAGeneral.h>
#include <ATen/cuda/CUDADevice.h>
#include <ATen/cuda/CUDAContext.h>"""
if rocm:
extra_cuda_headers = """\
#include <ATen/hip/impl/HIPGuardImplMasqueradingAsCUDA.h>
#include <ATen/hip/ATenHIPGeneral.h>
#include <ATen/hip/HIPDevice.h>
#include <ATen/hip/HIPContext.h>"""
for dispatch_key in dispatch_keys:
fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm
if per_operator_headers:
def operator_headers() -> List[str]:
headers = []
for g in grouped_native_functions:
is_registered = False
if backend_index.has_kernel(g):
is_registered = True
# The above has_kernel test on a group will only test for
# the existence of out dispatch, because that's how
# structured kernels work. But sometimes functions can be
# grouped but not be structured, and then you need to check
# each individual piece, as they may have manual dispatch
# entries.
elif isinstance(g, NativeFunctionsGroup) and any(
backend_index.has_kernel(fn) for fn in g.functions()
):
is_registered = True
# TODO: this condition is a bit questionable
# (It has to do with the fact that structured kernels get generated kernels
# to the Meta + CompositeExplicitAutogradNonFunctional keys).
elif g.structured and dispatch_key in (
DispatchKey.Meta,
DispatchKey.CompositeExplicitAutogradNonFunctional,
):
is_registered = True
if not is_registered:
continue
headers.append(f"#include <ATen/ops/{g.root_name}_native.h>")
if (
dispatch_key
== DispatchKey.CompositeExplicitAutogradNonFunctional
):
headers.append(f"#include <ATen/ops/{g.root_name}.h>")
if dispatch_key in functions_keys:
headers.append(
f"#include <ATen/ops/{g.root_name}_{dispatch_namespace}_dispatch.h>"
)
return sorted(set(headers))
else:
def operator_headers() -> List[str]:
headers = ["#include <ATen/NativeFunctions.h>"]
if dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional:
headers.append("#include <ATen/Functions.h>")
if dispatch_key in functions_keys:
headers.append(f"#include <ATen/{dispatch_key!s}Functions.h>")
return headers
backend_index = backend_indices[dispatch_key]
ns_grouped_native_functions = defaultdict(list)
for grouped_native_function in grouped_native_functions:
namespace = (
grouped_native_function.namespace
if isinstance(grouped_native_function, NativeFunction)
else grouped_native_function.functional.namespace
)
ns_grouped_native_functions[namespace].append(grouped_native_function)
dispatch_namespace = str(dispatch_key).lower()
# CompositeImplicitAutogradNestdTensor does not currently user the helpers generated
# compilation will fail when `-Werror=unused-function` flag is set
gen_dispatch_helpers: bool = (
dispatch_key != DispatchKey.CompositeImplicitAutogradNestedTensor
)
dispatch_definitions = get_native_function_definitions(
fm=fm,
grouped_native_functions=grouped_native_functions,
dispatch_key=dispatch_key,
backend_idx=backend_index,
selector=selector,
rocm=rocm,
symint=True,
skip_dispatcher_op_registration=skip_dispatcher_op_registration,
gen_dispatch_helpers=gen_dispatch_helpers,
)
fm.write_with_template(
f"Register{dispatch_key}.cpp",
"RegisterDispatchKey.cpp",
lambda: {
"extra_cuda_headers": extra_cuda_headers
if is_cuda_dispatch_key(dispatch_key)
else "",
"external_backend_headers": "",
"dispatch_headers": dest.gen_registration_headers(
backend_index, per_operator_headers, rocm
),
"ops_headers": operator_headers(),
"dispatch_helpers": "",
"dispatch_definitions": dispatch_definitions,
},
)
for g in structured_native_functions:
if not g.out.ufunc_inner_loop or not is_ufunc_dispatch_key(dispatch_key):
continue
name = g.functional.func.name.name
if dispatch_key is DispatchKey.CPU:
assert fm is cpu_fm
fm.write_with_template(
f"UfuncCPU_{name}.cpp",
"UfuncCPU.cpp",
lambda: {
"meta_declaration": compute_meta_function_declaration(g),
"native_declaration": dest.compute_native_function_declaration(
g, backend_indices[dispatch_key]
),
"native_definitions": dest.compute_ufunc_cpu(g),
},
)
cpu_vec_fm.write_with_template(
f"UfuncCPUKernel_{name}.cpp",
"UfuncCPUKernel.cpp",
lambda: {
"name": name,
"native_definitions": dest.compute_ufunc_cpu_kernel(g),
},
)
elif dispatch_key is DispatchKey.CUDA:
cuda_headers = "#include <ATen/native/cuda/Loops.cuh>"
if rocm:
cuda_headers = "#include <ATen/native/hip/Loops.cuh>"
fm.write_with_template(
f"UfuncCUDA_{name}.cu",
"UfuncCUDA.cu",
lambda: {
"name": name,
"cuda_headers": cuda_headers,
"meta_declaration": compute_meta_function_declaration(g),
"native_declaration": dest.compute_native_function_declaration(
g, backend_indices[dispatch_key]
),
"native_definitions": dest.compute_ufunc_cuda(g),
},
)
else:
raise AssertionError(f"unrecognized {dispatch_key} for ufunc")
del fm
# BackendSelect is generated specially
def gen_backend_select() -> Dict[str, List[str]]:
relevant_fns = [
fn for fn in native_functions if needs_backend_select(fn, selector)
]
return {
"ops_headers": [
f"#include <ATen/ops/{fn.root_name}_ops.h>" for fn in relevant_fns
],
"backend_select_method_definitions": list(
mapMaybe(
ComputeBackendSelect(Target.DEFINITION, selector), relevant_fns
)
),
"backend_select_function_registrations": list(
mapMaybe(
ComputeBackendSelect(Target.REGISTRATION, selector), relevant_fns
)
),
}
cpu_fm.write("RegisterBackendSelect.cpp", gen_backend_select)
schema_selector = selector
if force_schema_registration:
schema_selector = SelectiveBuilder.get_nop_selector()
(
aten_schema_registrations,
schema_registrations,
) = get_native_function_schema_registrations(
native_functions=native_functions, schema_selector=schema_selector
)
cpu_fm.write(
"RegisterSchema.cpp",
lambda: {
"aten_schema_registrations": []
if skip_dispatcher_op_registration
else aten_schema_registrations,
"schema_registrations": []
if skip_dispatcher_op_registration
else schema_registrations,
},
)
def key_func(
fn: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup]
) -> str:
return fn.root_name
cpu_fm.write_sharded(
"Operators.cpp",
native_functions,
key_fn=key_func,
env_callable=lambda fn: {
"operator_headers": [f"#include <ATen/ops/{fn.root_name}.h>"],
"definitions": [
ComputeOperators(
Target.DEFINITION,
static_dispatch_backend_indices=static_dispatch_idx,
)(fn)
],
},
base_env={
"static_dispatch_extra_headers": static_dispatch_extra_headers(
static_dispatch_idx
),
},
num_shards=5,
sharded_keys={
"operator_headers",
"definitions",
"static_dispatch_extra_headers",
},
)
cpu_fm.write("Functions.cpp", lambda: {})
core_fm.write("TensorMethods.cpp", lambda: {})
core_fm.write(
"ATenOpList.cpp",
lambda: {
"aten_ops": list(mapMaybe(compute_aten_op, native_functions)),
},
)
def functionalization_env_callable(
g: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup]
) -> Dict[str, List[str]]:
def gen_op_headers(
g: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup]
) -> List[str]:
if isinstance(g, NativeFunctionsViewGroup):
# view ops always get a functionalization kernel
headers = [
f"#include <ATen/ops/{g.view.root_name}_native.h>",
f"#include <ATen/ops/{g.view.root_name}_ops.h>",
]
if g.view_copy is not None:
headers += [
f"#include <ATen/ops/{g.view_copy.root_name}_native.h>",
f"#include <ATen/ops/{g.view_copy.root_name}_ops.h>",
]
return headers
elif isinstance(g, NativeFunctionsGroup):
headers = [
f"#include <ATen/ops/{g.functional.root_name}_native.h>",
f"#include <ATen/ops/{g.functional.root_name}_ops.h>",
f"#include <ATen/ops/{g.out.root_name}_native.h>",
f"#include <ATen/ops/{g.out.root_name}_ops.h>",
]
if g.inplace is not None:
headers += [
f"#include <ATen/ops/{g.inplace.root_name}_native.h>",
f"#include <ATen/ops/{g.inplace.root_name}_ops.h>",
]
if g.mutable is not None:
headers += [
f"#include <ATen/ops/{g.mutable.root_name}_native.h>",
f"#include <ATen/ops/{g.mutable.root_name}_ops.h>",
]
return headers
else:
return [
f"#include <ATen/ops/{g.root_name}_native.h>",
f"#include <ATen/ops/{g.root_name}_ops.h>",
]
return {
"ops_headers": gen_op_headers(g),
"func_definitions": gen_functionalization_definition(
selector,
g,
),
"func_registrations": gen_functionalization_registration(
selector,
g,
backend_indices[DispatchKey.CompositeImplicitAutograd],
),
}
all_groups: List[
Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup]
] = list(structured_native_functions) + list(
view_groups # type: ignore[assignment, arg-type, operator]
)
# Note: all operators that functionalization needs to handle (mutable and aliasing ops) should be grouped properly.
# The only reason we really need to deal with direct NativeFunctions here (instead of the groups) is because:
# (1) We can provide better error checking (error out if someone introduces a mutable op that doesn't obey the grouping logic)
# (2) functionalization needs to manually register CompositeImplicitAutograd kernels, which might not be grouped.
# Although this could go away long-term if we add a dedicated dispatch key for decompositions.
structured_map: Dict[OperatorName, NativeFunction] = {
f.func.name: f
for f in concatMap(lambda g: list(g.functions()), structured_native_functions)
}
view_map: Dict[OperatorName, NativeFunction] = {
f.func.name: f for f in concatMap(lambda g: list(g.functions()), view_groups)
}
for f in native_functions:
if f.func.name not in structured_map and f.func.name not in view_map:
all_groups.append(f)
cpu_fm.write_sharded(
"RegisterFunctionalization.cpp",
all_groups,
key_fn=key_func,
env_callable=functionalization_env_callable,
num_shards=4,
sharded_keys={
"ops_headers",
"func_definitions",
"func_registrations",
"func_add_back_views_definitions",
"func_add_back_views_registrations",
},
)
cpu_fm.write(
"FunctionalInverses.h",
lambda: {
"view_inverse_declarations": list(
mapMaybe(
lambda g: gen_functionalization_view_inverse_declaration(
selector, g
),
view_groups,
)
)
},
)
# Note [view_copy NativeFunctions]
# Every view operator in native_functions.yaml that is not CompositeImplicitAutograd
# needs to have a corresponding non-aliasing {view}_copy variant.
# Backends that use functionalization and don't know how to handle aliasing ops
# are expected to implement kernels for these {view}_copy kernels instead.
# The code for {view}_copy operators in core is pretty boilerplate-heavy however,
# so we codegen the following:
# (1) A CompositeExplicitAutogradNonFunctional kernel for every {view}_copy operator.
# These are never explicitly invoked by the functionalization pass,
# but they could theoretically be called from user code (I added these kernels for completeness,
# since the ops are part of the public API).
# (2) A derivative formula for every {view}_copy operator
# {view}_copy operators can re-use the same derivative formulas as their {view} op counterparts,
# so rather than stamping all of the entries out in derivatives.yaml,
# we codegen them in.
# This is similar to how autograd codegen doesn't require inplace ops to have a derivatives.yaml entry.
cpu_fm.write(
"CompositeViewCopyKernels.cpp",
lambda: {
"ops_headers": [
"\n".join(
f"#include <ATen/ops/{f.root_name}_ops.h>\n"
# NB: this include is important as it ensures we
# set the visibility on generated view_copy kernels
# correctly
f"#include <ATen/ops/{f.root_name}_native.h>"
for f in (
[g.view] if g.view_copy is None else [g.view, g.view_copy]
)
)
for g in view_groups
]
+ [
"\n".join(
f"#include <ATen/ops/{f.root_name}_ops.h>"
for f in [g.inplace, g.mutable, g.functional]
if f is not None and "generated" not in f.tags
)
for g in structured_native_functions
],
"CompositeViewCopyKernel_Definitions": list(
mapMaybe(
GenCompositeViewCopyKernel(
backend_indices[
DispatchKey.CompositeExplicitAutogradNonFunctional
]
),
view_groups,
)
),
"GeneratedCompositeFunctional_Definitions": list(
mapMaybe(
gen_composite_functional_kernel,
structured_native_functions,
)
),
"GeneratedCompositeOut_Definitions": list(
mapMaybe(
gen_composite_out_kernel,
structured_native_functions,
)
),
},
)
def gen_declarations_yaml(
cpu_fm: FileManager, native_functions: Sequence[NativeFunction]
) -> None:
cpu_fm.write(
"Declarations.yaml",
lambda: format_yaml([compute_declaration_yaml(f) for f in native_functions]),
)
def get_torchgen_root() -> pathlib.Path:
"""
If you're depending on torchgen out-of-tree, you can use the root to figure
out the path to native_functions.yaml
"""
return pathlib.Path(__file__).parent.resolve()
def main() -> None:
parser = argparse.ArgumentParser(description="Generate ATen source files")
parser.add_argument(
"-s",
"--source-path",
help="path to source directory for ATen",
default="aten/src/ATen",
)
parser.add_argument(
"-o",
"--output-dependencies",
help="output a list of dependencies into the given file and exit",
)
parser.add_argument(
"--dry-run",
action="store_true",
help="run without writing any files (still updates outputs)",
)
parser.add_argument(
"--per-operator-headers",
action="store_true",
help="generate separate headers per operator in ATen/ops",
)
parser.add_argument(
"-d",
"--install-dir",
"--install_dir",
help="output directory",
default="build/aten/src/ATen",
)
parser.add_argument(
"--rocm",
action="store_true",
help="reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly",
)
parser.add_argument(
"--mps",
action="store_true",
help="Generate MPS registration code when set",
)
# TODO: --op-registration-whitelist will be removed when all call-sites
# for gen.py are moved over to using the operator YAML file for mobile
# custom build.
parser.add_argument(
"--op-registration-whitelist",
"--op_registration_whitelist",
nargs="*",
help="filter op registrations by the whitelist (if set); "
"each item is `namespace`::`operator name` without overload name; "
"e.g.: aten::empty aten::conv2d ...",
)
parser.add_argument(
"--op-selection-yaml-path",
"--op_selection_yaml_path",
help="Provide a path to the operator selection (for custom build) YAML "
"that contains the information about the set of selected operators "
"and their categories (training, ...). Each operator is either a "
"full operator name with overload or just a bare operator name. "
"The operator names also contain the namespace prefix (e.g. aten::)",
)
parser.add_argument(
"--backend-whitelist",
"--backend_whitelist",
nargs="*",
help="filter dispatch backend by the whitelist (if set), "
"e.g.: CPU CUDA QuantizedCPU ...",
)
parser.add_argument(
"--static-dispatch-backend",
"--static_dispatch_backend",
nargs="*",
help="generate static dispatch code for the specific backend (if set)",
)
parser.add_argument(
"--skip-dispatcher-op-registration",
"--skip_dispatcher_op_registration",
action="store_true",
help="Avoid registering operators into the dispatcher.",
)
parser.add_argument(
"--force-schema-registration",
"--force_schema_registration",
action="store_true",
help="force it to generate schema-only registrations for all ops, including"
"those that are not listed on --op-registration-whitelist",
)
parser.add_argument(
"--generate",
type=str,
nargs="*",
choices=["headers", "sources", "declarations_yaml"],
default=["headers", "sources", "declarations_yaml"],
help="Generate only a subset of files",
)
options = parser.parse_args()
selector = get_custom_build_selector(
options.op_registration_whitelist,
options.op_selection_yaml_path,
)
native_yaml_path = os.path.join(options.source_path, "native/native_functions.yaml")
tags_yaml_path = os.path.join(options.source_path, "native/tags.yaml")
from torchgen.model import dispatch_keys
# TODO: stop generating CUDA kernels for non-CUDA builds
ignore_keys = set()
if not options.mps:
ignore_keys.add(DispatchKey.MPS)
if DispatchKey.MPS in dispatch_keys:
del dispatch_keys[dispatch_keys.index(DispatchKey.MPS)]
parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path, ignore_keys)
valid_tags = _GLOBAL_PARSE_TAGS_YAML_CACHE[tags_yaml_path]
native_functions, backend_indices = (
parsed_yaml.native_functions,
parsed_yaml.backend_indices,
)
grouped_native_functions = get_grouped_native_functions(native_functions)
structured_native_functions = [
g for g in grouped_native_functions if isinstance(g, NativeFunctionsGroup)
]
native_functions_with_view_groups = get_grouped_by_view_native_functions(
native_functions
)
view_groups = [
g
for g in native_functions_with_view_groups
if isinstance(g, NativeFunctionsViewGroup)
]
# NB: It is mandatory to NOT use os.path.join here, as the install directory
# will eventually be ingested by cmake, which does not respect Windows style
# path slashes. If you switch this to use os.path.join, you'll get an error
# like:
#
# Syntax error in cmake code when parsing string
#
# C:/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-build/build/aten/src/ATen\core/TensorMethods.h
#
# Invalid character escape '\c'.
core_install_dir = f"{options.install_dir}/core"
pathlib.Path(core_install_dir).mkdir(parents=True, exist_ok=True)
ops_install_dir = f"{options.install_dir}/ops"
pathlib.Path(ops_install_dir).mkdir(parents=True, exist_ok=True)
core_fm = make_file_manager(options=options, install_dir=core_install_dir)
cpu_fm = make_file_manager(options=options)
cpu_vec_fm = make_file_manager(options=options)
cuda_fm = make_file_manager(options=options)
ops_fm = make_file_manager(options=options, install_dir=ops_install_dir)
# Only a limited set of dispatch keys get CPUFunctions.h headers generated
# for them; this is the set
functions_keys = {
DispatchKey.CPU,
DispatchKey.CUDA,
DispatchKey.CompositeImplicitAutograd,
DispatchKey.CompositeImplicitAutogradNestedTensor,
DispatchKey.CompositeExplicitAutograd,
DispatchKey.CompositeExplicitAutogradNonFunctional,
DispatchKey.Meta,
}
if options.mps:
functions_keys.add(DispatchKey.MPS)
if options.backend_whitelist:
dispatch_keys = [
k
for k in dispatch_keys
if is_generic_dispatch_key(k) or str(k) in options.backend_whitelist
]
static_dispatch_idx: List[BackendIndex] = []
if options.static_dispatch_backend:
static_dispatch_idx = [
backend_indices[DispatchKey.parse(key)]
for key in options.static_dispatch_backend
]
for key in options.static_dispatch_backend:
dp_key = DispatchKey.parse(key)
if dp_key not in functions_keys:
functions_keys.add(dp_key)
if "sources" in options.generate:
gen_source_files(
native_functions=native_functions,
grouped_native_functions=grouped_native_functions,
structured_native_functions=structured_native_functions,
view_groups=view_groups,
selector=selector,
static_dispatch_idx=static_dispatch_idx,
backend_indices=backend_indices,
core_fm=core_fm,
cpu_fm=cpu_fm,
cpu_vec_fm=cpu_vec_fm,
cuda_fm=cuda_fm,
dispatch_keys=dispatch_keys,
functions_keys=functions_keys,
rocm=options.rocm,
force_schema_registration=options.force_schema_registration,
per_operator_headers=options.per_operator_headers,
skip_dispatcher_op_registration=options.skip_dispatcher_op_registration,
)
if "headers" in options.generate:
gen_headers(
native_functions=native_functions,
valid_tags=valid_tags,
grouped_native_functions=grouped_native_functions,
structured_native_functions=structured_native_functions,
static_dispatch_idx=static_dispatch_idx,
selector=selector,
backend_indices=backend_indices,
core_fm=core_fm,
cpu_fm=cpu_fm,
cuda_fm=cuda_fm,
ops_fm=ops_fm,
dispatch_keys=dispatch_keys,
functions_keys=functions_keys,
rocm=options.rocm,
per_operator_headers=options.per_operator_headers,
)
if "declarations_yaml" in options.generate:
gen_declarations_yaml(native_functions=native_functions, cpu_fm=cpu_fm)
if options.output_dependencies:
depfile_path = pathlib.Path(options.output_dependencies).resolve()
depfile_name = depfile_path.name
depfile_stem = depfile_path.stem
for fm, prefix in [
(cpu_fm, ""),
(cpu_vec_fm, "cpu_vec_"),
(core_fm, "core_"),
(cuda_fm, "cuda_"),
(ops_fm, "ops_"),
]:
varname = prefix + depfile_stem
path = depfile_path.parent / (prefix + depfile_name)
fm.write_outputs(varname, str(path))
if __name__ == "__main__":
main()
|