File size: 52,797 Bytes
068e5e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
import copy
import os
from datetime import timedelta
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import transformers
from accelerate import (
Accelerator,
DistributedType,
InitProcessGroupKwargs,
find_executable_batch_size,
)
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
from transformers.models.auto.modeling_auto import (
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.model import TemplateLM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import (
Collator,
clear_torch_cache,
get_dtype,
pad_and_concat,
stop_sequences_criteria,
)
eval_logger = utils.eval_logger
def _get_accelerate_args(
device_map_option: Optional[str] = "auto",
max_memory_per_gpu: Optional[Union[int, str]] = None,
max_cpu_memory: Optional[Union[int, str]] = None,
offload_folder: Optional[str] = "./offload",
) -> dict:
"""Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
max_memory = {}
if max_memory_per_gpu is not None:
max_memory_per_gpu_map = {
device_idx: max_memory_per_gpu
for device_idx in range(torch.cuda.device_count())
}
max_memory.update(max_memory_per_gpu_map)
if max_cpu_memory is not None:
max_memory["cpu"] = max_cpu_memory
args = {}
if max_memory:
args["max_memory"] = max_memory
args["device_map"] = device_map_option
args["offload_folder"] = offload_folder
return args
@register_model("hf-auto", "hf", "huggingface")
class HFLM(TemplateLM):
"""
An abstracted Huggingface model class. Enables usage with both models of
`transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.
Supports data-parallel multi-GPU with HF Accelerate.
"""
AUTO_MODEL_CLASS = None
_DEFAULT_MAX_LENGTH = 2048
def __init__(
self,
pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2",
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
# override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
revision: Optional[str] = "main",
subfolder: Optional[str] = None,
tokenizer: Optional[
Union[
str,
transformers.PreTrainedTokenizer,
transformers.PreTrainedTokenizerFast,
]
] = None,
truncation: Optional[bool] = False,
logits_cache: bool = True,
max_length: Optional[int] = None,
device: Optional[str] = "cuda",
dtype: Optional[Union[str, torch.dtype]] = "auto",
batch_size: Optional[Union[int, str]] = 1,
max_batch_size: Optional[int] = 64,
trust_remote_code: Optional[bool] = False,
use_fast_tokenizer: Optional[bool] = True,
add_bos_token: Optional[bool] = False,
prefix_token_id: Optional[int] = None,
# arguments used for splitting a model across GPUs naively.
# only used if `parallelize=True`.
parallelize: Optional[bool] = False,
device_map_option: Optional[str] = "auto",
max_memory_per_gpu: Optional[Union[int, str]] = None,
max_cpu_memory: Optional[Union[int, str]] = None,
offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
# PEFT and quantization options
peft: Optional[str] = None,
autogptq: Optional[Union[bool, str]] = False,
**kwargs,
) -> None:
super().__init__()
# optionally: take in an already-initialized transformers.PreTrainedModel
if not isinstance(pretrained, str):
eval_logger.warning(
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
)
assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
self._model = pretrained
self._device = self._model.device
self._config = self._model.config
gpus = 0
if tokenizer:
assert isinstance(
tokenizer, transformers.PreTrainedTokenizer
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
self.tokenizer = tokenizer
else:
# Get tokenizer
model_name = self._model.name_or_path
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
)
else:
assert isinstance(device, str)
assert isinstance(pretrained, str)
assert isinstance(batch_size, (int, str))
gpus = torch.cuda.device_count()
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
if accelerator.num_processes > 1:
self.accelerator = accelerator
if not (parallelize or accelerator.num_processes > 1):
# use user-passed device
device_list = set(
["cuda", "cpu"]
+ [f"cuda:{i}" for i in range(torch.cuda.device_count())]
+ ["mps", "mps:0"]
)
if device and device in device_list:
self._device = torch.device(device)
eval_logger.info(f"Using device '{device}'")
if device in ("mps", "mps:0") and version.parse(
torch.__version__
) < version.parse("2.1"):
raise RuntimeError(
f"mps requires torch >= 2.1. You have {torch.__version__}"
)
else:
eval_logger.info("Device not specified")
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
self._device = (
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
)
else:
if device != "cuda":
eval_logger.info(
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
)
# TODO: include in warning that `load_in_8bit` etc. affect this too
self._device = torch.device(device)
# TODO: update this to be less of a hack once subfolder is fixed in HF
revision = revision + ("/" + subfolder if subfolder is not None else "")
self._get_config(
pretrained,
revision=revision,
trust_remote_code=trust_remote_code,
)
# determine which of 'causal' and 'seq2seq' backends to use
self._get_backend(
config=self.config, backend=backend, trust_remote_code=trust_remote_code
)
# if we passed `pretrained` as a string, initialize our model now
if isinstance(pretrained, str):
self._create_model(
pretrained=pretrained,
revision=revision,
dtype=dtype,
trust_remote_code=trust_remote_code,
parallelize=parallelize,
device_map_option=device_map_option,
max_memory_per_gpu=max_memory_per_gpu,
max_cpu_memory=max_cpu_memory,
offload_folder=offload_folder,
peft=peft,
autogptq=autogptq,
**kwargs,
)
# access self._model through self.model property outside this method
if isinstance(self.model, torch.nn.Module):
self.model.eval()
self.model.tie_weights()
if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
# TODO: can remove this whole snippet except in the mps case, perhaps?
if not (parallelize or autogptq or hasattr(self, "accelerator")):
# place model onto device requested manually,
# if not using HF Accelerate or device_map
# or any other option that preloads model onto device
try:
self.model.to(self.device)
except ValueError:
eval_logger.debug(
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
)
self._create_tokenizer(
pretrained,
tokenizer,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast_tokenizer=use_fast_tokenizer,
)
self.truncation = truncation
self.logits_cache = logits_cache
self.vocab_size = self.tokenizer.vocab_size
# select (or create) a pad token to use
if self.tokenizer.pad_token:
pass
elif self.tokenizer.unk_token:
self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
elif self.tokenizer.eos_token:
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
else:
if getattr(self.config, "model_type", None) == "qwen":
# Qwen's trust_remote_code tokenizer does not allow for adding special tokens
self.tokenizer.pad_token = "<|endoftext|>"
elif (
self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
):
# The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
# The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
# ---
# Note that the world tokenizer class name, might change in the future for the final huggingface merge
# https://github.com/huggingface/transformers/pull/26963
assert self.tokenizer.pad_token_id == 0
else:
self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
# TODO: override this for Gemma
self.add_bos_token = add_bos_token
if getattr(self.config, "model_type", None) == "gemma":
self.add_bos_token = True
eval_logger.info(
f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it."
)
self._max_length = max_length
self.batch_schedule = 1
self.batch_sizes = {}
self.max_batch_size = max_batch_size
if str(batch_size).startswith("auto"):
batch_size = batch_size.split(":")
self.batch_size_per_gpu = batch_size[0]
self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
else:
self.batch_size_per_gpu = int(batch_size)
if isinstance(pretrained, str):
# multigpu data-parallel support when launched with accelerate
if gpus > 1:
if parallelize:
if accelerator.num_processes > 1:
raise RuntimeError(
"Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
)
else:
pass
elif accelerator.num_processes == 1:
# if we aren't launching via accelerate, ditch
self._rank = 0
self._world_size = 1
else:
if gpus > accelerator.num_processes:
eval_logger.warning(
"WARNING: The number of total system GPUs does not match the number of spawned processes. "
"If you would like to use data parallelism, please launch the script "
"with 'accelerate launch *script*'. "
f"Current run will proceed with {accelerator.num_processes} devices."
)
assert (
accelerator.distributed_type
in [
DistributedType.FSDP,
DistributedType.MULTI_GPU,
]
), "Unsupported distributed type provided. Only DDP and FSDP are supported."
if accelerator.distributed_type == DistributedType.FSDP:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(
self.model, evaluation_mode=True
)
self._device = torch.device(
f"cuda:{accelerator.local_process_index}"
)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {gpus} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
else:
# if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
eval_logger.warning(
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
)
self._rank = 0
self._world_size = 1
self.custom_prefix_token_id = prefix_token_id
if prefix_token_id is not None:
eval_logger.info(
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
)
@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config
@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def prefix_token_id(self):
# it is used as prefix for loglikelihood
if self.custom_prefix_token_id is not None:
return self.custom_prefix_token_id
if self.tokenizer.bos_token_id is not None:
return self.tokenizer.bos_token_id
return self.tokenizer.eos_token_id
@property
def max_length(self):
if self._max_length: # if max length manually set, return it
return self._max_length
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
for attr in seqlen_config_attrs:
if hasattr(self.model.config, attr):
return getattr(self.model.config, attr)
if hasattr(self.tokenizer, "model_max_length"):
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
return self._DEFAULT_MAX_LENGTH
return self.tokenizer.model_max_length
return self._DEFAULT_MAX_LENGTH
@property
def max_gen_toks(self) -> int:
return 256
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def _get_backend(
self,
config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
trust_remote_code: Optional[bool] = False,
) -> None:
"""
Helper method during initialization.
Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
model type to be used.
"""
assert backend in ["default", "causal", "seq2seq"]
if backend != "default":
# if we've settled on non-default backend, use that manually
if backend == "causal":
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
elif backend == "seq2seq":
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
eval_logger.info(
f"Overrode HF model backend type, and using type '{backend}'"
)
else:
# determine and use the default HF backend for this model, based on its config + metadata.
if (
getattr(config, "model_type")
in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
):
# first check if model type is listed under seq2seq models, since some
# models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
# these special cases should be treated as seq2seq models.
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
elif (
getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
):
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
else:
if not trust_remote_code:
eval_logger.warning(
"HF model type is neither marked as CausalLM or Seq2SeqLM. \
This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
)
# if model type is neither in HF transformers causal or seq2seq model registries
# then we default to AutoModelForCausalLM
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
assert self.AUTO_MODEL_CLASS in [
transformers.AutoModelForCausalLM,
transformers.AutoModelForSeq2SeqLM,
]
return None
def _get_config(
self,
pretrained: str,
revision: str = "main",
trust_remote_code: bool = False,
) -> None:
self._config = transformers.AutoConfig.from_pretrained(
pretrained,
revision=revision,
trust_remote_code=trust_remote_code,
)
def _create_model(
self,
pretrained: str,
revision: Optional[str] = "main",
dtype: Optional[Union[str, torch.dtype]] = "auto",
trust_remote_code: Optional[bool] = False,
# arguments used for splitting a model across GPUs naively.
# only used if `parallelize=True`.
# (accelerate naive PP (device_map) options)
parallelize: Optional[bool] = False,
device_map_option: Optional[str] = "auto",
max_memory_per_gpu: Optional[Union[int, str]] = None,
max_cpu_memory: Optional[Union[int, str]] = None,
offload_folder: Optional[str] = "./offload",
# PEFT and quantization options
peft: Optional[str] = None,
autogptq: Optional[Union[bool, str]] = False,
**kwargs,
) -> None:
"""
Initializes an HF or HF-compatible PreTrainedModel from scratch
inside HFLM, using the kwargs passed into self.__init__().
Also handles functionality such as AutoGPTQ usage and PEFT wrapping.
For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
(such as PyTorch models that are nearly, but not quite, fully mirroring
HF's public interface relied on in this HFLM class)
please consider subclassing HFLM and overriding this and other methods as needed.
"""
model_kwargs = kwargs if kwargs else {}
if parallelize:
model_kwargs.update(
_get_accelerate_args(
device_map_option, # TODO: phase out device_map_option?
max_memory_per_gpu,
max_cpu_memory,
offload_folder,
)
)
elif "device_map" not in model_kwargs:
# set a device_map to initialize model on the right GPU.
# this is needed because it seems that the default behavior
# for quantized models now seems to be device_map="auto"
# which breaks data-parallel mode.
if hasattr(self, "accelerator"):
model_kwargs.update(
{"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}}
)
else:
model_kwargs.update({"device_map": {"": str(self.device)}})
if not autogptq:
if model_kwargs.get("load_in_4bit", None):
assert (
transformers.__version__ >= "4.30.0"
), "load_in_4bit requires transformers >= 4.30.0"
if transformers.__version__ >= "4.30.0":
if model_kwargs.get("load_in_4bit", None):
if model_kwargs.get("bnb_4bit_compute_dtype", None):
model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
model_kwargs["bnb_4bit_compute_dtype"]
)
self._model = self.AUTO_MODEL_CLASS.from_pretrained(
pretrained,
revision=revision,
torch_dtype=get_dtype(dtype),
trust_remote_code=trust_remote_code,
**model_kwargs,
)
else:
try:
from auto_gptq import AutoGPTQForCausalLM
except ModuleNotFoundError:
raise Exception(
"Tried to load auto_gptq, but auto-gptq is not installed ",
"please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
)
self._model = AutoGPTQForCausalLM.from_quantized(
pretrained,
trust_remote_code=trust_remote_code,
model_basename=None if autogptq is True else Path(autogptq).stem,
use_safetensors=True
if autogptq is True
else autogptq.endswith(".safetensors"),
**model_kwargs,
)
if peft:
if model_kwargs.get("load_in_4bit", None):
if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
raise AssertionError("load_in_4bit requires peft >= 0.4.0")
self._model = PeftModel.from_pretrained(
self._model, peft, revision=revision
)
return None
def _create_tokenizer(
self,
pretrained: Union[str, transformers.PreTrainedModel],
tokenizer: Optional[
Union[
str,
transformers.PreTrainedTokenizer,
transformers.PreTrainedTokenizerFast,
]
],
revision: Optional[str] = "main",
trust_remote_code: Optional[bool] = False,
use_fast_tokenizer: Optional[bool] = True,
) -> None:
"""
Helper method during initialization.
Create a tokenizer object corresponding to the correct
tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
"""
if tokenizer:
if isinstance(tokenizer, str):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
tokenizer,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
)
else:
assert isinstance(
tokenizer, transformers.PreTrainedTokenizer
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
self.tokenizer = tokenizer
else:
# Get tokenizer based on 'pretrained'
if isinstance(pretrained, str):
model_name = pretrained
else:
# get the HF hub name via accessor on model
model_name = self.model.name_or_path
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
)
return None
def _detect_batch_size(self, requests=None, pos: int = 0):
if requests:
_, context_enc, continuation_enc = requests[pos]
max_length = len(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
)
max_context_enc = len(context_enc[-(self.max_length + 1) :])
max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
else:
max_length = self.max_length
# if OOM, then halves batch_size and tries again
@find_executable_batch_size(starting_batch_size=self.max_batch_size)
def forward_batch(batch_size):
if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
length = max(max_context_enc, max_cont_enc)
batched_conts = torch.ones(
(batch_size, length), device=self.device
).long()
test_batch = torch.ones((batch_size, length), device=self.device).long()
call_kwargs = {
"attn_mask": test_batch,
"labels": batched_conts,
}
else:
call_kwargs = {}
test_batch = torch.ones(
(batch_size, max_length), device=self.device
).long()
for _ in range(5):
out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1) # noqa: F841
return batch_size
try:
batch_size = forward_batch()
except RuntimeError as e:
if "No executable batch size found" in str(e):
batch_size = 1
else:
raise
if self.world_size > 1:
# if multi-GPU, always take minimum over all selected batch sizes
max_rnk_bs = torch.tensor([batch_size], device=self.device)
gathered = (
self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
)
batch_size = min(gathered)
clear_torch_cache()
return batch_size
clear_torch_cache()
return batch_size
def tok_encode(
self, string: str, left_truncate_len=None, add_special_tokens=None
) -> List[int]:
""" """
# default for None - empty dict, use predefined tokenizer param
# used for all models except for CausalLM or predefined value
special_tokens_kwargs = {}
# by default for CausalLM - false or self.add_bos_token is set
if add_special_tokens is None:
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
special_tokens_kwargs = {
"add_special_tokens": False or self.add_bos_token
}
# otherwise the method explicitly defines the value
else:
special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding
def tok_batch_encode(
self,
strings: List[str],
padding_side: str = "left",
left_truncate_len: int = None,
truncation: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
add_special_tokens = {}
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
encoding = self.tokenizer(
strings,
truncation=truncation,
padding="longest",
return_tensors="pt",
**add_special_tokens,
)
if left_truncate_len:
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
encoding["attention_mask"] = encoding["attention_mask"][
:, -left_truncate_len:
]
self.tokenizer.padding_side = old_padding_side
return encoding["input_ids"], encoding["attention_mask"]
def tok_decode(self, tokens, skip_special_tokens=True):
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
def _model_call(self, inps, attn_mask=None, labels=None):
"""
:param inps: torch.Tensor
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
[batch, sequence_ctx]. the size of sequence may vary from call to call
:param attn_mask: torch.Tensor, optional
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
:param labels: torch.Tensor, optional
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
:return
A torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model's decoder
"""
with torch.no_grad():
if attn_mask is not None or labels is not None:
assert attn_mask is not None and labels is not None
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
return self.model(
input_ids=inps, attention_mask=attn_mask, labels=labels
).logits
else:
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
return self.model(inps).logits
def _model_generate(self, context, max_length, stop, **generation_kwargs):
# temperature = 0.0 if not set
# if do_sample is false and temp==0.0:
# remove temperature, as do_sample=False takes care of this
# and we don't want a warning from HF
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
do_sample = generation_kwargs.get("do_sample", None)
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
generation_kwargs["do_sample"] = do_sample = False
if do_sample is False and generation_kwargs.get("temperature") == 0.0:
generation_kwargs.pop("temperature")
# build stopping criteria
stopping_criteria = stop_sequences_criteria(
self.tokenizer, stop, context.shape[1], context.shape[0]
)
return self.model.generate(
input_ids=context,
max_length=max_length,
stopping_criteria=stopping_criteria,
pad_token_id=self.tokenizer.pad_token_id,
use_cache=True,
**generation_kwargs,
)
def _select_cont_toks(
self, logits: torch.Tensor, contlen: int = None, inplen: int = None
) -> torch.Tensor:
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
assert (
contlen and inplen
), "Must pass input len and cont. len to select scored logits for causal LM"
# discard right-padding.
# also discard the input/context tokens. we'll only score continuations.
logits = logits[inplen - contlen : inplen]
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
assert (
contlen and not inplen
), "Selecting scored logits for Seq2SeqLM requires only cont. len"
# only discard right-padding.
# the logits input to this fn only contain decoder-side tokens.
logits = logits[:contlen]
return logits
def loglikelihood_rolling(
self, requests: List[Instance], disable_tqdm: bool = False
) -> List[float]:
loglikelihoods = []
adaptive_batch_size = None
if self.batch_size == "auto":
# using rolling window with maximum context
print("Passed argument batch_size = auto. Detecting largest batch size")
batch_size = self._detect_batch_size()
print(f"Determined Largest batch size: {batch_size}")
adaptive_batch_size = batch_size
for (string,) in tqdm(
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
):
rolling_token_windows = list(
map(
utils.make_disjoint_window,
utils.get_rolling_token_windows(
token_list=self.tok_encode(string),
prefix_token=self.prefix_token_id,
max_seq_len=self.max_length,
context_len=1,
),
)
)
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
pad_amnt = 0
if self.world_size > 1:
# We pad out the external document-level iterator so the inner iterator doesn't hang
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
gathered = (
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
)
pad_amnt = max(gathered) - gathered[self.rank]
if pad_amnt > 0:
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
string_nll = self._loglikelihood_tokens(
requests=rolling_token_windows,
disable_tqdm=True,
override_bs=adaptive_batch_size,
)
if (self.world_size > 1) and (pad_amnt > 0):
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
else:
# discard is_greedy
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
def _batch_scheduler(self, pos, n_reordered_requests):
sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
if sched in self.batch_sizes:
return self.batch_sizes[sched]
if (len(self.batch_sizes) > 1) and (
self.batch_sizes[sched - 1] == self.max_batch_size
):
# if previous batch size is already maximal, skip recomputation
self.batch_sizes[sched] = self.max_batch_size
return self.batch_sizes[sched]
print(
f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
)
self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
print(f"Determined largest batch size: {self.batch_sizes[sched]}")
return self.batch_sizes[sched]
def _loglikelihood_tokens(
self,
requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
disable_tqdm: bool = False,
override_bs: int = None,
) -> List[Tuple[float, bool]]:
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
res = []
def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
"""Defines the key for the sorted method"""
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = req[1] + req[2]
return -len(toks), tuple(toks)
def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
"""Defines the key to group and lookup one-token continuations"""
# Use with group_by="contexts" (optional)"
# allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
# speeds up some multiple-choice tasks proportionally to the number of choices.
# groups requests by context+continuation[:-1] and infer on one request/group.
return req[-2] + req[-1][:-1]
re_ord = Collator(
requests,
sort_fn=_collate,
group_by="contexts"
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
and self.logits_cache
else None,
group_fn=_lookup_one_token_cont,
)
# automatic (variable) batch size detection for vectorization
# pull longest context sample from request
n_reordered_requests = len(re_ord)
batch_size = (
self.batch_size
if self.batch_size != "auto"
else override_bs
if override_bs is not None
else 0
)
batch_fn = (
self._batch_scheduler
if self.batch_size == "auto"
and n_reordered_requests > 0
and not override_bs
else None
)
chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
pbar = tqdm(
total=len(requests),
disable=(disable_tqdm or (self.rank != 0)),
desc="Running loglikelihood requests",
)
for chunk in chunks:
inps = []
cont_toks_list = []
inplens = []
conts = []
encoder_attns = []
padding_len_inp = None
padding_len_cont = None
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
# again because vectorizing is annoying
for _, context_enc, continuation_enc in chunk:
# sanity check
assert len(context_enc) > 0
assert len(continuation_enc) > 0
assert len(continuation_enc) <= self.max_length
# how this all works (illustrated on a causal decoder-only setup):
# CTX CONT
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
# model \ \
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
# when too long to fit in context, truncate from the left
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
inp = torch.tensor(
(context_enc)[-self.max_length :],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
# build encoder attn masks
encoder_attns.append(torch.ones_like(inp))
cont = torch.tensor(
(continuation_enc)[-self.max_length :],
# TODO: left-shift these?
# TODO: our code assumes we never end up truncating conts for either model type
dtype=torch.long,
device=self.device,
)
(contlen,) = cont.shape
conts.append(cont)
padding_len_cont = (
max(padding_len_cont, contlen)
if padding_len_cont is not None
else contlen
)
padding_len_inp = (
max(padding_len_inp, inplen)
if padding_len_inp is not None
else inplen
)
inps.append(inp) # [1, inp_length]
cont_toks_list.append(continuation_enc)
inplens.append(inplen)
# create encoder attn mask and batched conts, if seq2seq
call_kwargs = {}
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
batched_inps = pad_and_concat(
padding_len_inp, inps, padding_side="right"
) # [batch, padding_len_inp]
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
# TODO: left-pad encoder inps and mask?
batched_inps = pad_and_concat(
padding_len_inp, inps
) # [batch, padding_len_inp]
batched_conts = pad_and_concat(
padding_len_cont, conts
) # [batch, padding_len_cont]
batched_encoder_mask = pad_and_concat(
padding_len_inp, encoder_attns
) # [batch, padding_len_inp]
call_kwargs = {
"attn_mask": batched_encoder_mask,
"labels": batched_conts,
}
multi_logits = F.log_softmax(
self._model_call(batched_inps, **call_kwargs), dim=-1
) # [batch, padding_length (inp or cont), vocab]
for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
chunk, multi_logits, inplens, cont_toks_list
):
# Slice to original seq length
contlen = len(cont_toks)
# take only logits in the continuation
# (discard context toks if decoder-only ; discard right-padding)
# also discards + checks for "virtual tokens" in the causal LM's input window
# from prompt/prefix tuning tokens, if applicable
ctx_len = (
inplen + (logits.shape[0] - padding_len_inp)
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
else None
)
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
logits = logits.unsqueeze(0) # [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens = logits.argmax(dim=-1)
# check for one-token continuation cache hits.
# noop in case group_by != "contexts" or no cache hit and returns the
# original args. Otherwise, expands the logits batch dimension and yields each
# batch along with matching continuation tokens and prompt strings.
# logits -> [1, seq, vocab]
for request_str, cont_toks, logits in re_ord.get_cache(
req_str=request_str,
cxt_toks=ctx_tokens,
cont_toks=cont_toks,
logits=logits,
):
cont_toks = torch.tensor(
cont_toks, dtype=torch.long, device=self.device
).unsqueeze(0) # [1, seq]
max_equal = (greedy_tokens == cont_toks).all()
# Obtain log-probs at the corresponding continuation token indices
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
-1
) # [1, seq]
# Answer: (log prob, is-exact-match)
answer = (float(logits.sum()), bool(max_equal))
res.append(answer)
self.cache_hook.add_partial("loglikelihood", request_str, answer)
pbar.update(1)
pbar.close()
return re_ord.get_original(res)
def generate_until(
self, requests: List[Instance], disable_tqdm: bool = False
) -> List[str]:
res = []
def _collate(req: Tuple[str, dict]):
"""Defines the key for the sorted method"""
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(req[0])
return -len(toks), req[0]
pbar = tqdm(
total=len(requests),
disable=(disable_tqdm or (self.rank != 0)),
desc="Running generate_until requests",
)
adaptive_batch_size = None
if self.batch_size == "auto":
# using rolling window with maximum context
print("Passed argument batch_size = auto. Detecting largest batch size")
batch_size = self._detect_batch_size()
print(f"Determined Largest batch size: {batch_size}")
adaptive_batch_size = batch_size
# for each different set of kwargs, we execute all requests, by batch.
batch_size = (
self.batch_size
if self.batch_size != "auto"
else adaptive_batch_size
if adaptive_batch_size is not None
else 0
)
batch_fn = (
self._batch_scheduler
if self.batch_size == "auto" and not adaptive_batch_size
else None
)
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
# group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
re_ords = Collator(
[reg.args for reg in requests],
sort_fn=_collate,
group_by="gen_kwargs",
group_fn=lambda x: x[1],
)
chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
for chunk in chunks:
contexts, all_gen_kwargs = zip(*chunk)
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
# unpack our keyword arguments.
until = None
if isinstance(gen_kwargs, dict):
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
if "until" in kwargs.keys():
until = kwargs.pop("until")
if isinstance(until, str):
until = [until]
elif not isinstance(until, list):
raise ValueError(
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
)
else:
raise ValueError(
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
)
# add EOS token to stop sequences
eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
if not until:
until = [eos]
else:
until.append(eos)
if "max_gen_toks" in kwargs.keys():
max_gen_toks = kwargs.pop("max_gen_toks")
else:
max_gen_toks = self.max_gen_toks
# set the max length in tokens of inputs ("context_enc")
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
# max len for inputs = max length, minus room to generate the max new tokens
max_ctx_len = self.max_length - max_gen_toks
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
# max len for inputs = encoder's whole max_length
max_ctx_len = self.max_length
# encode, pad, and truncate contexts for this batch
context_enc, attn_masks = self.tok_batch_encode(
contexts,
left_truncate_len=max_ctx_len,
truncation=self.truncation,
)
context_enc = context_enc.to(self.device)
attn_masks = attn_masks.to(self.device)
if "max_length" not in kwargs:
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
# perform batched generation
cont = self._model_generate(
context=context_enc,
attention_mask=attn_masks,
stop=until,
**kwargs,
)
cont_toks_list = cont.tolist()
for cont_toks, context in zip(cont_toks_list, contexts):
# discard context + left-padding toks if using causal decoder-only LM
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
cont_toks = cont_toks[context_enc.shape[1] :]
s = self.tok_decode(cont_toks)
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
for term in until:
if len(term) > 0:
# ignore '' separator,
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
s = s.split(term)[0]
res.append(s)
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)
pbar.close()
return res
|