File size: 14,604 Bytes
f238c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import logging
import math
import random
from collections.abc import Iterable
from typing import List
import evaluate as hf_evaluate
import numpy as np
import sacrebleu
import sklearn.metrics
from lm_eval.api.registry import register_aggregation, register_metric
eval_logger = logging.getLogger("lm-eval")
# Register Aggregations First
@register_aggregation("bypass")
def bypass_agg(arr):
return 999
@register_aggregation("mean")
def mean(arr):
return sum(arr) / len(arr)
@register_aggregation("median")
def median(arr):
return arr[len(arr) // 2]
# Certain metrics must be calculated across all documents in a benchmark.
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
@register_aggregation("perplexity")
def perplexity(items):
return math.exp(-mean(items))
@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
return math.exp(-weighted_mean(items))
@register_aggregation("bits_per_byte")
def bits_per_byte(items):
return -weighted_mean(items) / math.log(2)
@register_aggregation("f1")
def f1_score(items):
unzipped_list = list(zip(*items))
golds = unzipped_list[0]
preds = unzipped_list[1]
fscore = sklearn.metrics.f1_score(golds, preds)
return np.max(fscore)
@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
unzipped_list = list(zip(*items))
golds = unzipped_list[0]
preds = unzipped_list[1]
# print(preds)
return sklearn.metrics.matthews_corrcoef(golds, preds)
@register_aggregation("bleu")
def bleu(items):
"""The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
for evaluating a generated sentence to a reference sentence. It counts matching
n-grams in the candidate translation to n-grams in the reference text, where
1-gram or unigram would be each token and a bigram comparison would be each
word pair. The comparison is made regardless of word order
Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
Paper: https://www.aclweb.org/anthology/P02-1040/
Higher is better
"""
refs = list(zip(*items))[0]
preds = list(zip(*items))[1]
refs, preds = _sacreformat(refs, preds)
return sacrebleu.corpus_bleu(preds, refs).score
@register_aggregation("chrf")
def chrf(items):
"""chrF++ is a tool for automatic evaluation of machine translation output
based on character n-gram precision and recall enhanced with word n-grams.
Source: https://github.com/m-popovic/chrF
Paper: https://www.aclweb.org/anthology/W15-3049.pdf
Higher is better # TODO I think
"""
refs = list(zip(*items))[0]
preds = list(zip(*items))[1]
refs, preds = _sacreformat(refs, preds)
return sacrebleu.corpus_chrf(preds, refs).score
@register_aggregation("ter")
def ter(items):
"""Translation Error Rate is an error metric for machine translation that
measures the number of edits required to change a system output into one
of the references
Source: http://www.cs.umd.edu/~snover/tercom/
Paper: http://mt-archive.info/AMTA-2006-Snover.pdf
Lower is better
"""
refs = list(zip(*items))[0]
preds = list(zip(*items))[1]
refs, preds = _sacreformat(refs, preds)
return sacrebleu.corpus_ter(preds, refs).score
@register_aggregation("brier_score")
def brier_score(items): # This is a passthrough function
gold, predictions = list(zip(*items))
gold = list(gold)
gold_one_hot = np.eye(np.max(gold) + 1)[gold]
predictions = list(zip(*items))[1]
return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))
@register_metric(
metric="brier_score",
higher_is_better=False,
output_type=["multiple_choice"],
aggregation="brier_score",
)
def brier_score_fn(items): # This is a passthrough function
return items
@register_metric(
metric="acc",
higher_is_better=True,
output_type=["loglikelihood", "multiple_choice"],
aggregation="mean",
)
def acc_fn(items): # This is a passthrough function
return items
@register_metric(
metric="acc_norm",
higher_is_better=True,
output_type=["loglikelihood", "multiple_choice"],
aggregation="mean",
)
def acc_norm_fn(items): # This is a passthrough function
return items
@register_metric(
metric="acc_mutual_info",
higher_is_better=True,
output_type="multiple_choice",
aggregation="mean",
)
def acc_mutual_info_fn(items): # This is a passthrough function
return items
exact_match = hf_evaluate.load("exact_match")
@register_metric(
metric="exact_match",
higher_is_better=True,
output_type="generate_until",
aggregation="mean",
)
def exact_match_fn(**kwargs):
return exact_match.compute(**kwargs)
@register_metric(
metric="perplexity",
higher_is_better=False,
output_type="loglikelihood",
aggregation="perplexity",
)
def perplexity_fn(items): # This is a passthrough function
return items
@register_metric(
metric="word_perplexity",
higher_is_better=False,
output_type="loglikelihood_rolling",
aggregation="weighted_perplexity",
)
def word_perplexity_fn(items): # This is a passthrough function
return items
@register_metric(
metric="byte_perplexity",
higher_is_better=False,
output_type="loglikelihood_rolling",
aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items): # This is a passthrough function
return items
@register_metric(
metric="bits_per_byte",
higher_is_better=False,
output_type="loglikelihood_rolling",
aggregation="bits_per_byte",
)
def bits_per_byte_fn(items): # This is a passthrough function
return items
def pop_stddev(arr):
mu = mean(arr)
return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))
def sample_stddev(arr):
mu = mean(arr)
return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))
def mean_stderr(arr):
return sample_stddev(arr) / math.sqrt(len(arr))
@register_metric(
metric="bypass",
higher_is_better=True,
output_type=["loglikelihood", "multiple_choice", "generate_until"],
aggregation="bypass",
)
def bypass(items):
return None
@register_metric(
metric="mcc",
higher_is_better=True,
output_type="multiple_choice",
aggregation="matthews_corrcoef",
)
def mcc_fn(items): # This is a passthrough function
return items
@register_metric(
metric="f1",
higher_is_better=True,
output_type="multiple_choice",
aggregation="f1",
)
def f1_fn(items): # This is a passthrough function
return items
@register_metric(
metric="bleu",
higher_is_better=True,
output_type="generate_until",
aggregation="bleu",
)
def bleu_fn(items): # This is a passthrough function
return items
@register_metric(
metric="chrf",
higher_is_better=True,
output_type="generate_until",
aggregation="chrf",
)
def chrf_fn(items): # This is a passthrough function
return items
@register_metric(
metric="ter",
higher_is_better=True,
output_type="generate_until",
aggregation="ter",
)
def ter_fn(items): # This is a passthrough function
return items
@register_metric(
metric="acc_all",
higher_is_better=True,
output_type="loglikelihood",
aggregation="mean",
)
def acc_all(items):
# Only count as correct if all answers are labeled correctly for each question
question_scoring_dict = {}
preds = list(zip(*items))[0]
docs = list(zip(*items))[1]
for doc, pred in zip(docs, preds):
paragraph_id = doc["idx"]["paragraph"]
question_id = doc["idx"]["question"]
if (paragraph_id, question_id) not in question_scoring_dict:
question_scoring_dict[(paragraph_id, question_id)] = []
gold_label = doc["label"] == 1
question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
return acc
def acc_all_stderr(items):
# Only count as correct if all answers are labeled correctly for each question
question_scoring_dict = {}
preds = list(zip(*items))[0]
docs = list(zip(*items))[1]
for doc, pred in zip(docs, preds):
question_id = doc["idx"]["question"]
if question_id not in question_scoring_dict:
question_scoring_dict[question_id] = []
gold_label = doc["label"] == 1
question_scoring_dict[question_id].append(gold_label == pred)
acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
return acc
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
"""Compute max metric between prediction and each ground truth."""
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def weighted_mean(items):
a, b = zip(*items)
return sum(a) / sum(b)
def is_non_str_iterable(obj):
return isinstance(obj, Iterable) and not isinstance(obj, str)
def _sacreformat(refs, preds):
"""Format refs and preds for sacrebleu corpus calculation. It is very particular"""
# Sacrebleu expects (List[str], List[List[str])
# e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])
# Note [ref1_stream] is the first reference for each pred.
# So lists are size N and (M, N) for N preds and M possible refs for each pred
# This is a different order of dimensions that I would expect
# We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
# Must become List[List[str]] with the inner list corresponding to preds
if not is_non_str_iterable(refs):
refs = list(refs)
if not is_non_str_iterable(refs[0]):
refs = [[ref] for ref in refs]
refs = list(zip(*refs))
# Note the number of refs in each ref list much match the number of preds
# We expect preds to be List[str] or List[List[str]]. Must become List[str]
if not is_non_str_iterable(preds):
preds = list(preds)
if is_non_str_iterable(preds[0]):
assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
preds = [pred[0] for pred in preds]
return refs, preds
# stderr stuff
class _bootstrap_internal:
def __init__(self, f, n) -> None:
self.f = f
self.n = n
def __call__(self, v):
i, xs = v
rnd = random.Random()
rnd.seed(i)
res = []
for _ in range(self.n):
res.append(self.f(rnd.choices(xs, k=len(xs))))
return res
def bootstrap_stderr(f, xs, iters):
import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
# this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
# equivalent to stderr calculated without Bessel's correction in the stddev.
# Unfortunately, I haven't been able to figure out what the right correction is
# to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
# that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
# Thankfully, shouldn't matter because our samples are pretty big usually anyways
res = []
chunk_size = min(1000, iters)
from tqdm import tqdm
print("bootstrapping for stddev:", f.__name__)
for bootstrap in tqdm(
pool.imap(
_bootstrap_internal(f, chunk_size),
[(i, xs) for i in range(iters // chunk_size)],
),
total=iters // chunk_size,
):
# sample w replacement
res.extend(bootstrap)
pool.close()
return sample_stddev(res)
def stderr_for_metric(metric, bootstrap_iters):
bootstrappable = [
median,
matthews_corrcoef,
f1_score,
perplexity,
bleu,
chrf,
ter,
]
if metric in bootstrappable:
return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
return stderr.get(metric, None)
def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
# Used to aggregate bootstrapped stderrs across subtasks in a group,
# when we are weighting by the size of each subtask.
#
assert len(stderrs) == len(sizes)
# formula source: https://en.wikipedia.org/wiki/Pooled_variance
# and: https://stats.stackexchange.com/a/4841331
# this empirically seems to match running `stderr_for_metric` on all instances
# from the subtasks concatenated with each other.
pooled_sample_var = (
sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
) / (sum(sizes) - len(sizes))
return np.sqrt(pooled_sample_var / sum(sizes))
def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
assert (
metrics is not None
), "Need to pass a list of each subtask's metric for this stderr aggregation"
assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)
# See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
# This formula depends on sample means.
# removed because it seems to give erroneously huge stderrs for groupings of tasks
# and does not seem to match up with bootstrap-calculated stderrs for groups.
### don't use this unless a statistician has told you it's the right thing to do ###
# accumulators: we'll aggregate pairwise N - 1 times
variance = stderrs[0] ** 2
curr_size = sizes[0]
curr_score = metrics[0]
for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
curr_score = ((curr_score * curr_size) + (score * size)) / (
curr_size + size
) # NOTE: this assumes our aggregation fn is "mean"
variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
curr_size + size - 1
) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
curr_score - score
) ** 2
return np.sqrt(variance)
def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
# A helper function that is used to aggregate
# subtask scores cross-task.
# TODO: does not hold for non-mean aggregations
if not weight_by_size:
sizes = [1] * len(sizes)
assert len(metrics) == len(sizes)
return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)
|