File size: 4,782 Bytes
068e5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import logging
import time

import requests
from requests.exceptions import RequestException
from tqdm import tqdm

from lm_eval.api.model import LM
from lm_eval.api.registry import register_model


logger = logging.getLogger(__name__)


def get_result(logprobs, context_length):
    is_greedy = True
    offsets = logprobs["text_offset"]
    tokens = logprobs["tokens"]
    tokens_logprobs = logprobs["token_logprobs"]

    idx = 0
    while offsets[idx] < context_length:
        idx += 1
    continuation_logprobs = sum(tokens_logprobs[idx:-1])
    for i in range(idx, len(tokens)):
        token = tokens[i]
        top_tokens = logprobs["top_logprobs"][i]
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break

    return continuation_logprobs, is_greedy


@register_model("gguf", "ggml")
class GGUFLM(LM):
    def __init__(self, base_url=None, max_length=2048, **kwargs):
        super().__init__()
        self.base_url = base_url
        assert self.base_url, "must pass `base_url` to use GGUF LM!"
        self.logprobs = 10
        self.temperature = 0.0
        self.max_length = max_length

    def gguf_completion(
        self, context, continuation=None, stop=None, retries=3, delay=5, **kwargs
    ):
        for _ in range(retries):
            try:
                prompt = context
                request = {
                    "prompt": prompt,
                    "logprobs": self.logprobs,
                    "temperature": self.temperature,
                }
                if continuation:
                    prompt += continuation
                    request.update({"prompt": prompt, "max_tokens": 1, "echo": True})
                if stop is not None:
                    request["stop"] = stop
                response = requests.post(
                    f"{self.base_url}/v1/completions", json=request
                )
                response.raise_for_status()
                return response.json()
            except RequestException as e:
                logger.error(f"RequestException: {e}")
                time.sleep(delay)  # wait before retrying
        else:
            raise Exception(f"Failed to get a valid response after {retries} retries.")

    def loglikelihood(self, requests, disable_tqdm: bool = False):
        if not requests:
            return []
        res = []
        for context, continuation in tqdm(
            [req.args for req in requests], disable=disable_tqdm
        ):
            response = self.gguf_completion(context=context, continuation=continuation)
            if response and "choices" in response and response["choices"]:
                choice = response["choices"][0]
                logprobs = choice.get("logprobs")
                if (
                    logprobs
                    and "token_logprobs" in logprobs
                    and logprobs["token_logprobs"]
                ):
                    logprob, is_greedy = get_result(logprobs, len(context))
                    res.append((logprob, is_greedy))
                else:
                    logger.warning(
                        "Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list."
                    )
            else:
                logger.error(
                    f"Invalid response for loglikelihood. Response: {response}"
                )
                assert False
        return res

    def generate_until(self, requests, disable_tqdm: bool = False):
        if not requests:
            return []

        res = []
        for request in tqdm([req.args for req in requests], disable=disable_tqdm):
            inp = request[0]
            request_args = request[1]
            until = request_args.get("until", ["</s>"])
            response = self.gguf_completion(context=inp, stop=until)
            if response and "choices" in response and response["choices"]:
                choice = response["choices"][0]
                if "text" in choice:
                    generated_text = choice["text"].strip()
                    res.append(generated_text)
                else:
                    logger.error(
                        f"Invalid response for greedy_until. Response: {response}"
                    )
                    res.append(None)  # Add default value in case of error
            else:
                logger.error(f"Invalid response for greedy_until. Response: {response}")
                res.append(None)  # Add default value in case of error
        return res

    def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
        raise NotImplementedError(
            "loglikelihood_rolling not yet supported for GGUF models"
        )