File size: 4,446 Bytes
068e5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import ast
import os
from typing import Dict

from lm_eval import utils
from lm_eval.utils import eval_logger


# Prompt library.
# Stores prompts in a dictionary indexed by 2 levels:
# prompt category name, and prompt name.
# This allows us to access prompts
PROMPT_REGISTRY: Dict[str, Dict[str, str]] = {
    "qa-basic": {
        "question-newline-answer": "Question: {{question}}\nAnswer:",
        "q-newline-a": "Q: {{question}}\nA:",
    },
}


def get_prompt(prompt_id: str, dataset_name: str = None, subset_name: str = None):
    # unpack prompt name
    category_name, prompt_name = prompt_id.split(":")
    if subset_name is None:
        dataset_full_name = dataset_name
    else:
        dataset_full_name = f"{dataset_name}-{subset_name}"
    eval_logger.info(f"Loading prompt from {category_name} for {dataset_full_name}")
    if category_name == "promptsource":
        try:
            from promptsource.templates import DatasetTemplates
        except ModuleNotFoundError:
            raise Exception(
                "Tried to load a Promptsource template, but promptsource is not installed ",
                "please install promptsource via pip install lm-eval[promptsource] or pip install -e .[promptsource]",
            )
        try:
            if subset_name is None:
                prompts = DatasetTemplates(dataset_name=dataset_name)
            else:
                prompts = DatasetTemplates(
                    dataset_name=dataset_name, subset_name=subset_name
                )
        except Exception:
            raise ValueError(f"{dataset_name} and {subset_name} not found")
        if prompt_name in prompts.all_template_names:
            return prompts[prompt_name]
        else:
            raise ValueError(
                f"{prompt_name} not in prompt list {prompts.all_template_names}"
            )
    elif ".yaml" in category_name:
        import yaml

        with open(category_name, "rb") as file:
            prompt_yaml_file = yaml.full_load(file)

        prompt_string = prompt_yaml_file["prompts"][prompt_name]
        return PromptString(prompt_string)
    else:
        try:
            return PROMPT_REGISTRY[category_name][prompt_name]
        except Exception:
            raise ValueError(
                f"expected only a single `:` as separator between \
                prompt category and name, but got `{prompt_id}` instead"
            )


def load_prompt_list(
    use_prompt: str, dataset_name=None, subset_name=None, yaml_path=None, **kwargs
):
    category_name, prompt_name = use_prompt.split(":")

    if category_name == "promptsource":
        from promptsource.templates import DatasetTemplates

        if subset_name is None:
            prompts = DatasetTemplates(dataset_name=dataset_name)
        else:
            prompts = DatasetTemplates(
                dataset_name=dataset_name, subset_name=subset_name
            )

        prompt_list = utils.pattern_match(prompt_name, prompts.all_template_names)

    elif ".yaml" in category_name:
        import yaml

        if yaml_path is not None:
            category_name = os.path.realpath(os.path.join(yaml_path, category_name))

        with open(category_name, "rb") as file:
            prompt_yaml_file = yaml.full_load(file)

        prompt_list = utils.pattern_match(
            prompt_name, prompt_yaml_file["prompts"].keys()
        )

    # category_name, *prompt_name = use_prompt.split(":")
    # TODO allow to multiple prompt naming
    # if len(prompt_name) > 1:
    #     prompt_list = []
    #     for prompt in prompt_name:
    #         prompt_list.append(utils.pattern_match(prompt_name, prompts.all_template_names))
    # else:
    #     prompt_list = utils.pattern_match(prompt_name, prompts.all_template_names)
    return [":".join([category_name, prompt]) for prompt in prompt_list]


class PromptString:
    def __init__(self, prompt_string):
        self.prompt_string = prompt_string

    def apply(self, doc):
        doc_to_text = self.prompt_string["doc_to_text"]
        doc_to_target = self.prompt_string["doc_to_target"]

        # TODO need a way to process doc_to_choice
        if "doc_to_choice" in self.prompt_string:
            raise Exception("Not yet implemented to accept doc_to_choice")

        text_string = utils.apply_template(doc_to_text, doc)
        target_string = utils.apply_template(doc_to_target, doc)

        return [text_string, target_string]