peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/joblib
/test
/test_parallel.py
| """ | |
| Test the parallel module. | |
| """ | |
| # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> | |
| # Copyright (c) 2010-2011 Gael Varoquaux | |
| # License: BSD Style, 3 clauses. | |
| import os | |
| import sys | |
| import time | |
| import mmap | |
| import weakref | |
| import warnings | |
| import threading | |
| from traceback import format_exception | |
| from math import sqrt | |
| from time import sleep | |
| from pickle import PicklingError | |
| from contextlib import nullcontext | |
| from multiprocessing import TimeoutError | |
| import pytest | |
| import joblib | |
| from joblib import parallel | |
| from joblib import dump, load | |
| from joblib._multiprocessing_helpers import mp | |
| from joblib.test.common import np, with_numpy | |
| from joblib.test.common import with_multiprocessing | |
| from joblib.test.common import IS_PYPY, force_gc_pypy | |
| from joblib.testing import (parametrize, raises, check_subprocess_call, | |
| skipif, warns) | |
| if mp is not None: | |
| # Loky is not available if multiprocessing is not | |
| from joblib.externals.loky import get_reusable_executor | |
| from queue import Queue | |
| try: | |
| import posix | |
| except ImportError: | |
| posix = None | |
| try: | |
| from ._openmp_test_helper.parallel_sum import parallel_sum | |
| except ImportError: | |
| parallel_sum = None | |
| try: | |
| import distributed | |
| except ImportError: | |
| distributed = None | |
| from joblib._parallel_backends import SequentialBackend | |
| from joblib._parallel_backends import ThreadingBackend | |
| from joblib._parallel_backends import MultiprocessingBackend | |
| from joblib._parallel_backends import ParallelBackendBase | |
| from joblib._parallel_backends import LokyBackend | |
| from joblib.parallel import Parallel, delayed | |
| from joblib.parallel import parallel_config | |
| from joblib.parallel import parallel_backend | |
| from joblib.parallel import register_parallel_backend | |
| from joblib.parallel import effective_n_jobs, cpu_count | |
| from joblib.parallel import mp, BACKENDS, DEFAULT_BACKEND | |
| RETURN_GENERATOR_BACKENDS = BACKENDS.copy() | |
| RETURN_GENERATOR_BACKENDS.pop("multiprocessing", None) | |
| ALL_VALID_BACKENDS = [None] + sorted(BACKENDS.keys()) | |
| # Add instances of backend classes deriving from ParallelBackendBase | |
| ALL_VALID_BACKENDS += [BACKENDS[backend_str]() for backend_str in BACKENDS] | |
| if mp is None: | |
| PROCESS_BACKENDS = [] | |
| else: | |
| PROCESS_BACKENDS = ['multiprocessing', 'loky'] | |
| PARALLEL_BACKENDS = PROCESS_BACKENDS + ['threading'] | |
| if hasattr(mp, 'get_context'): | |
| # Custom multiprocessing context in Python 3.4+ | |
| ALL_VALID_BACKENDS.append(mp.get_context('spawn')) | |
| DefaultBackend = BACKENDS[DEFAULT_BACKEND] | |
| def get_workers(backend): | |
| return getattr(backend, '_pool', getattr(backend, '_workers', None)) | |
| def division(x, y): | |
| return x / y | |
| def square(x): | |
| return x ** 2 | |
| class MyExceptionWithFinickyInit(Exception): | |
| """An exception class with non trivial __init__ | |
| """ | |
| def __init__(self, a, b, c, d): | |
| pass | |
| def exception_raiser(x, custom_exception=False): | |
| if x == 7: | |
| raise (MyExceptionWithFinickyInit('a', 'b', 'c', 'd') | |
| if custom_exception else ValueError) | |
| return x | |
| def interrupt_raiser(x): | |
| time.sleep(.05) | |
| raise KeyboardInterrupt | |
| def f(x, y=0, z=0): | |
| """ A module-level function so that it can be spawn with | |
| multiprocessing. | |
| """ | |
| return x ** 2 + y + z | |
| def _active_backend_type(): | |
| return type(parallel.get_active_backend()[0]) | |
| def parallel_func(inner_n_jobs, backend): | |
| return Parallel(n_jobs=inner_n_jobs, backend=backend)( | |
| delayed(square)(i) for i in range(3)) | |
| ############################################################################### | |
| def test_cpu_count(): | |
| assert cpu_count() > 0 | |
| def test_effective_n_jobs(): | |
| assert effective_n_jobs() > 0 | |
| def test_effective_n_jobs_None(context, backend_n_jobs, expected_n_jobs): | |
| # check the number of effective jobs when `n_jobs=None` | |
| # non-regression test for https://github.com/joblib/joblib/issues/984 | |
| with context("threading", n_jobs=backend_n_jobs): | |
| # when using a backend, the default of number jobs will be the one set | |
| # in the backend | |
| assert effective_n_jobs(n_jobs=None) == expected_n_jobs | |
| # without any backend, None will default to a single job | |
| assert effective_n_jobs(n_jobs=None) == 1 | |
| ############################################################################### | |
| # Test parallel | |
| def test_simple_parallel(backend, n_jobs, verbose): | |
| assert ([square(x) for x in range(5)] == | |
| Parallel(n_jobs=n_jobs, backend=backend, | |
| verbose=verbose)( | |
| delayed(square)(x) for x in range(5))) | |
| def test_main_thread_renamed_no_warning(backend, monkeypatch): | |
| # Check that no default backend relies on the name of the main thread: | |
| # https://github.com/joblib/joblib/issues/180#issuecomment-253266247 | |
| # Some programs use a different name for the main thread. This is the case | |
| # for uWSGI apps for instance. | |
| monkeypatch.setattr(target=threading.current_thread(), name='name', | |
| value='some_new_name_for_the_main_thread') | |
| with warnings.catch_warnings(record=True) as warninfo: | |
| results = Parallel(n_jobs=2, backend=backend)( | |
| delayed(square)(x) for x in range(3)) | |
| assert results == [0, 1, 4] | |
| # Due to the default parameters of LokyBackend, there is a chance that | |
| # warninfo catches Warnings from worker timeouts. We remove it if it exists | |
| warninfo = [w for w in warninfo if "worker timeout" not in str(w.message)] | |
| # The multiprocessing backend will raise a warning when detecting that is | |
| # started from the non-main thread. Let's check that there is no false | |
| # positive because of the name change. | |
| assert len(warninfo) == 0 | |
| def _assert_warning_nested(backend, inner_n_jobs, expected): | |
| with warnings.catch_warnings(record=True) as warninfo: | |
| warnings.simplefilter("always") | |
| parallel_func(backend=backend, inner_n_jobs=inner_n_jobs) | |
| warninfo = [w.message for w in warninfo] | |
| if expected: | |
| if warninfo: | |
| warnings_are_correct = all( | |
| 'backed parallel loops cannot' in each.args[0] | |
| for each in warninfo | |
| ) | |
| # With Python nogil, when the outer backend is threading, we might | |
| # see more that one warning | |
| warnings_have_the_right_length = ( | |
| len(warninfo) >= 1 if getattr(sys.flags, 'nogil', False) | |
| else len(warninfo) == 1) | |
| return warnings_are_correct and warnings_have_the_right_length | |
| return False | |
| else: | |
| assert not warninfo | |
| return True | |
| def test_nested_parallel_warnings(parent_backend, child_backend, expected): | |
| # no warnings if inner_n_jobs=1 | |
| Parallel(n_jobs=2, backend=parent_backend)( | |
| delayed(_assert_warning_nested)( | |
| backend=child_backend, inner_n_jobs=1, | |
| expected=False) | |
| for _ in range(5)) | |
| # warnings if inner_n_jobs != 1 and expected | |
| res = Parallel(n_jobs=2, backend=parent_backend)( | |
| delayed(_assert_warning_nested)( | |
| backend=child_backend, inner_n_jobs=2, | |
| expected=expected) | |
| for _ in range(5)) | |
| # warning handling is not thread safe. One thread might see multiple | |
| # warning or no warning at all. | |
| if parent_backend == "threading": | |
| if IS_PYPY and not any(res): | |
| # Related to joblib#1426, should be removed once it is solved. | |
| pytest.xfail(reason="This test often fails in PyPy.") | |
| assert any(res) | |
| else: | |
| assert all(res) | |
| def test_background_thread_parallelism(backend): | |
| is_run_parallel = [False] | |
| def background_thread(is_run_parallel): | |
| with warnings.catch_warnings(record=True) as warninfo: | |
| Parallel(n_jobs=2)( | |
| delayed(sleep)(.1) for _ in range(4)) | |
| print(len(warninfo)) | |
| is_run_parallel[0] = len(warninfo) == 0 | |
| t = threading.Thread(target=background_thread, args=(is_run_parallel,)) | |
| t.start() | |
| t.join() | |
| assert is_run_parallel[0] | |
| def nested_loop(backend): | |
| Parallel(n_jobs=2, backend=backend)( | |
| delayed(square)(.01) for _ in range(2)) | |
| def test_nested_loop(parent_backend, child_backend): | |
| Parallel(n_jobs=2, backend=parent_backend)( | |
| delayed(nested_loop)(child_backend) for _ in range(2)) | |
| def raise_exception(backend): | |
| raise ValueError | |
| def test_nested_loop_with_exception_with_loky(): | |
| with raises(ValueError): | |
| with Parallel(n_jobs=2, backend="loky") as parallel: | |
| parallel([delayed(nested_loop)("loky"), | |
| delayed(raise_exception)("loky")]) | |
| def test_mutate_input_with_threads(): | |
| """Input is mutable when using the threading backend""" | |
| q = Queue(maxsize=5) | |
| Parallel(n_jobs=2, backend="threading")( | |
| delayed(q.put)(1) for _ in range(5)) | |
| assert q.full() | |
| def test_parallel_kwargs(n_jobs): | |
| """Check the keyword argument processing of pmap.""" | |
| lst = range(10) | |
| assert ([f(x, y=1) for x in lst] == | |
| Parallel(n_jobs=n_jobs)(delayed(f)(x, y=1) for x in lst)) | |
| def test_parallel_as_context_manager(backend): | |
| lst = range(10) | |
| expected = [f(x, y=1) for x in lst] | |
| with Parallel(n_jobs=4, backend=backend) as p: | |
| # Internally a pool instance has been eagerly created and is managed | |
| # via the context manager protocol | |
| managed_backend = p._backend | |
| # We make call with the managed parallel object several times inside | |
| # the managed block: | |
| assert expected == p(delayed(f)(x, y=1) for x in lst) | |
| assert expected == p(delayed(f)(x, y=1) for x in lst) | |
| # Those calls have all used the same pool instance: | |
| if mp is not None: | |
| assert get_workers(managed_backend) is get_workers(p._backend) | |
| # As soon as we exit the context manager block, the pool is terminated and | |
| # no longer referenced from the parallel object: | |
| if mp is not None: | |
| assert get_workers(p._backend) is None | |
| # It's still possible to use the parallel instance in non-managed mode: | |
| assert expected == p(delayed(f)(x, y=1) for x in lst) | |
| if mp is not None: | |
| assert get_workers(p._backend) is None | |
| def test_parallel_pickling(): | |
| """ Check that pmap captures the errors when it is passed an object | |
| that cannot be pickled. | |
| """ | |
| class UnpicklableObject(object): | |
| def __reduce__(self): | |
| raise RuntimeError('123') | |
| with raises(PicklingError, match=r"the task to send"): | |
| Parallel(n_jobs=2, backend='loky')(delayed(id)( | |
| UnpicklableObject()) for _ in range(10)) | |
| def test_parallel_byteorder_corruption(byteorder): | |
| def inspect_byteorder(x): | |
| return x, x.dtype.byteorder | |
| x = np.arange(6).reshape((2, 3)).view(f'{byteorder}i4') | |
| initial_np_byteorder = x.dtype.byteorder | |
| result = Parallel(n_jobs=2, backend='loky')( | |
| delayed(inspect_byteorder)(x) for _ in range(3) | |
| ) | |
| for x_returned, byteorder_in_worker in result: | |
| assert byteorder_in_worker == initial_np_byteorder | |
| assert byteorder_in_worker == x_returned.dtype.byteorder | |
| np.testing.assert_array_equal(x, x_returned) | |
| def test_parallel_timeout_success(backend): | |
| # Check that timeout isn't thrown when function is fast enough | |
| assert len(Parallel(n_jobs=2, backend=backend, timeout=30)( | |
| delayed(sleep)(0.001) for x in range(10))) == 10 | |
| def test_parallel_timeout_fail(backend): | |
| # Check that timeout properly fails when function is too slow | |
| with raises(TimeoutError): | |
| Parallel(n_jobs=2, backend=backend, timeout=0.01)( | |
| delayed(sleep)(10) for x in range(10)) | |
| def test_error_capture(backend): | |
| # Check that error are captured, and that correct exceptions | |
| # are raised. | |
| if mp is not None: | |
| with raises(ZeroDivisionError): | |
| Parallel(n_jobs=2, backend=backend)( | |
| [delayed(division)(x, y) | |
| for x, y in zip((0, 1), (1, 0))]) | |
| with raises(KeyboardInterrupt): | |
| Parallel(n_jobs=2, backend=backend)( | |
| [delayed(interrupt_raiser)(x) for x in (1, 0)]) | |
| # Try again with the context manager API | |
| with Parallel(n_jobs=2, backend=backend) as parallel: | |
| assert get_workers(parallel._backend) is not None | |
| original_workers = get_workers(parallel._backend) | |
| with raises(ZeroDivisionError): | |
| parallel([delayed(division)(x, y) | |
| for x, y in zip((0, 1), (1, 0))]) | |
| # The managed pool should still be available and be in a working | |
| # state despite the previously raised (and caught) exception | |
| assert get_workers(parallel._backend) is not None | |
| # The pool should have been interrupted and restarted: | |
| assert get_workers(parallel._backend) is not original_workers | |
| assert ([f(x, y=1) for x in range(10)] == | |
| parallel(delayed(f)(x, y=1) for x in range(10))) | |
| original_workers = get_workers(parallel._backend) | |
| with raises(KeyboardInterrupt): | |
| parallel([delayed(interrupt_raiser)(x) for x in (1, 0)]) | |
| # The pool should still be available despite the exception | |
| assert get_workers(parallel._backend) is not None | |
| # The pool should have been interrupted and restarted: | |
| assert get_workers(parallel._backend) is not original_workers | |
| assert ([f(x, y=1) for x in range(10)] == | |
| parallel(delayed(f)(x, y=1) for x in range(10))), ( | |
| parallel._iterating, parallel.n_completed_tasks, | |
| parallel.n_dispatched_tasks, parallel._aborting | |
| ) | |
| # Check that the inner pool has been terminated when exiting the | |
| # context manager | |
| assert get_workers(parallel._backend) is None | |
| else: | |
| with raises(KeyboardInterrupt): | |
| Parallel(n_jobs=2)( | |
| [delayed(interrupt_raiser)(x) for x in (1, 0)]) | |
| # wrapped exceptions should inherit from the class of the original | |
| # exception to make it easy to catch them | |
| with raises(ZeroDivisionError): | |
| Parallel(n_jobs=2)( | |
| [delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))]) | |
| with raises(MyExceptionWithFinickyInit): | |
| Parallel(n_jobs=2, verbose=0)( | |
| (delayed(exception_raiser)(i, custom_exception=True) | |
| for i in range(30))) | |
| def test_error_in_task_iterator(backend): | |
| def my_generator(raise_at=0): | |
| for i in range(20): | |
| if i == raise_at: | |
| raise ValueError("Iterator Raising Error") | |
| yield i | |
| with Parallel(n_jobs=2, backend=backend) as p: | |
| # The error is raised in the pre-dispatch phase | |
| with raises(ValueError, match="Iterator Raising Error"): | |
| p(delayed(square)(i) for i in my_generator(raise_at=0)) | |
| # The error is raised when dispatching a new task after the | |
| # pre-dispatch (likely to happen in a different thread) | |
| with raises(ValueError, match="Iterator Raising Error"): | |
| p(delayed(square)(i) for i in my_generator(raise_at=5)) | |
| # Same, but raises long after the pre-dispatch phase | |
| with raises(ValueError, match="Iterator Raising Error"): | |
| p(delayed(square)(i) for i in my_generator(raise_at=19)) | |
| def consumer(queue, item): | |
| queue.append('Consumed %s' % item) | |
| def test_dispatch_one_job(backend, batch_size, expected_queue): | |
| """ Test that with only one job, Parallel does act as a iterator. | |
| """ | |
| queue = list() | |
| def producer(): | |
| for i in range(6): | |
| queue.append('Produced %i' % i) | |
| yield i | |
| Parallel(n_jobs=1, batch_size=batch_size, backend=backend)( | |
| delayed(consumer)(queue, x) for x in producer()) | |
| assert queue == expected_queue | |
| assert len(queue) == 12 | |
| def test_dispatch_multiprocessing(backend): | |
| """ Check that using pre_dispatch Parallel does indeed dispatch items | |
| lazily. | |
| """ | |
| manager = mp.Manager() | |
| queue = manager.list() | |
| def producer(): | |
| for i in range(6): | |
| queue.append('Produced %i' % i) | |
| yield i | |
| Parallel(n_jobs=2, batch_size=1, pre_dispatch=3, backend=backend)( | |
| delayed(consumer)(queue, 'any') for _ in producer()) | |
| queue_contents = list(queue) | |
| assert queue_contents[0] == 'Produced 0' | |
| # Only 3 tasks are pre-dispatched out of 6. The 4th task is dispatched only | |
| # after any of the first 3 jobs have completed. | |
| first_consumption_index = queue_contents[:4].index('Consumed any') | |
| assert first_consumption_index > -1 | |
| produced_3_index = queue_contents.index('Produced 3') # 4th task produced | |
| assert produced_3_index > first_consumption_index | |
| assert len(queue) == 12 | |
| def test_batching_auto_threading(): | |
| # batching='auto' with the threading backend leaves the effective batch | |
| # size to 1 (no batching) as it has been found to never be beneficial with | |
| # this low-overhead backend. | |
| with Parallel(n_jobs=2, batch_size='auto', backend='threading') as p: | |
| p(delayed(id)(i) for i in range(5000)) # many very fast tasks | |
| assert p._backend.compute_batch_size() == 1 | |
| def test_batching_auto_subprocesses(backend): | |
| with Parallel(n_jobs=2, batch_size='auto', backend=backend) as p: | |
| p(delayed(id)(i) for i in range(5000)) # many very fast tasks | |
| # It should be strictly larger than 1 but as we don't want heisen | |
| # failures on clogged CI worker environment be safe and only check that | |
| # it's a strictly positive number. | |
| assert p._backend.compute_batch_size() > 0 | |
| def test_exception_dispatch(): | |
| """Make sure that exception raised during dispatch are indeed captured""" | |
| with raises(ValueError): | |
| Parallel(n_jobs=2, pre_dispatch=16, verbose=0)( | |
| delayed(exception_raiser)(i) for i in range(30)) | |
| def nested_function_inner(i): | |
| Parallel(n_jobs=2)( | |
| delayed(exception_raiser)(j) for j in range(30)) | |
| def nested_function_outer(i): | |
| Parallel(n_jobs=2)( | |
| delayed(nested_function_inner)(j) for j in range(30)) | |
| def test_nested_exception_dispatch(backend): | |
| """Ensure errors for nested joblib cases gets propagated | |
| We rely on the Python 3 built-in __cause__ system that already | |
| report this kind of information to the user. | |
| """ | |
| with raises(ValueError) as excinfo: | |
| Parallel(n_jobs=2, backend=backend)( | |
| delayed(nested_function_outer)(i) for i in range(30)) | |
| # Check that important information such as function names are visible | |
| # in the final error message reported to the user | |
| report_lines = format_exception(excinfo.type, excinfo.value, excinfo.tb) | |
| report = "".join(report_lines) | |
| assert 'nested_function_outer' in report | |
| assert 'nested_function_inner' in report | |
| assert 'exception_raiser' in report | |
| assert type(excinfo.value) is ValueError | |
| class FakeParallelBackend(SequentialBackend): | |
| """Pretends to run concurrently while running sequentially.""" | |
| def configure(self, n_jobs=1, parallel=None, **backend_args): | |
| self.n_jobs = self.effective_n_jobs(n_jobs) | |
| self.parallel = parallel | |
| return n_jobs | |
| def effective_n_jobs(self, n_jobs=1): | |
| if n_jobs < 0: | |
| n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) | |
| return n_jobs | |
| def test_invalid_backend(): | |
| with raises(ValueError, match="Invalid backend:"): | |
| Parallel(backend='unit-testing') | |
| with raises(ValueError, match="Invalid backend:"): | |
| with parallel_config(backend='unit-testing'): | |
| pass | |
| with raises(ValueError, match="Invalid backend:"): | |
| with parallel_config(backend='unit-testing'): | |
| pass | |
| def test_invalid_njobs(backend): | |
| with raises(ValueError) as excinfo: | |
| Parallel(n_jobs=0, backend=backend)._initialize_backend() | |
| assert "n_jobs == 0 in Parallel has no meaning" in str(excinfo.value) | |
| with raises(ValueError) as excinfo: | |
| Parallel(n_jobs=0.5, backend=backend)._initialize_backend() | |
| assert "n_jobs == 0 in Parallel has no meaning" in str(excinfo.value) | |
| with raises(ValueError) as excinfo: | |
| Parallel(n_jobs="2.3", backend=backend)._initialize_backend() | |
| assert "n_jobs could not be converted to int" in str(excinfo.value) | |
| with raises(ValueError) as excinfo: | |
| Parallel(n_jobs="invalid_str", backend=backend)._initialize_backend() | |
| assert "n_jobs could not be converted to int" in str(excinfo.value) | |
| def test_njobs_converted_to_int(backend, n_jobs): | |
| p = Parallel(n_jobs=n_jobs, backend=backend) | |
| assert p._effective_n_jobs() == 2 | |
| res = p(delayed(square)(i) for i in range(10)) | |
| assert all(r == square(i) for i, r in enumerate(res)) | |
| def test_register_parallel_backend(): | |
| try: | |
| register_parallel_backend("test_backend", FakeParallelBackend) | |
| assert "test_backend" in BACKENDS | |
| assert BACKENDS["test_backend"] == FakeParallelBackend | |
| finally: | |
| del BACKENDS["test_backend"] | |
| def test_overwrite_default_backend(): | |
| assert _active_backend_type() == DefaultBackend | |
| try: | |
| register_parallel_backend("threading", BACKENDS["threading"], | |
| make_default=True) | |
| assert _active_backend_type() == ThreadingBackend | |
| finally: | |
| # Restore the global default manually | |
| parallel.DEFAULT_BACKEND = DEFAULT_BACKEND | |
| assert _active_backend_type() == DefaultBackend | |
| def test_backend_no_multiprocessing(): | |
| with warns(UserWarning, | |
| match="joblib backend '.*' is not available on.*"): | |
| Parallel(backend='loky')(delayed(square)(i) for i in range(3)) | |
| # The below should now work without problems | |
| with parallel_config(backend='loky'): | |
| Parallel()(delayed(square)(i) for i in range(3)) | |
| def check_backend_context_manager(context, backend_name): | |
| with context(backend_name, n_jobs=3): | |
| active_backend, active_n_jobs = parallel.get_active_backend() | |
| assert active_n_jobs == 3 | |
| assert effective_n_jobs(3) == 3 | |
| p = Parallel() | |
| assert p.n_jobs == 3 | |
| if backend_name == 'multiprocessing': | |
| assert type(active_backend) is MultiprocessingBackend | |
| assert type(p._backend) is MultiprocessingBackend | |
| elif backend_name == 'loky': | |
| assert type(active_backend) is LokyBackend | |
| assert type(p._backend) is LokyBackend | |
| elif backend_name == 'threading': | |
| assert type(active_backend) is ThreadingBackend | |
| assert type(p._backend) is ThreadingBackend | |
| elif backend_name.startswith('test_'): | |
| assert type(active_backend) is FakeParallelBackend | |
| assert type(p._backend) is FakeParallelBackend | |
| all_backends_for_context_manager = PARALLEL_BACKENDS[:] | |
| all_backends_for_context_manager.extend( | |
| ['test_backend_%d' % i for i in range(3)] | |
| ) | |
| def test_backend_context_manager(monkeypatch, backend, context): | |
| if backend not in BACKENDS: | |
| monkeypatch.setitem(BACKENDS, backend, FakeParallelBackend) | |
| assert _active_backend_type() == DefaultBackend | |
| # check that this possible to switch parallel backends sequentially | |
| check_backend_context_manager(context, backend) | |
| # The default backend is restored | |
| assert _active_backend_type() == DefaultBackend | |
| # Check that context manager switching is thread safe: | |
| Parallel(n_jobs=2, backend='threading')( | |
| delayed(check_backend_context_manager)(context, b) | |
| for b in all_backends_for_context_manager if not b) | |
| # The default backend is again restored | |
| assert _active_backend_type() == DefaultBackend | |
| class ParameterizedParallelBackend(SequentialBackend): | |
| """Pretends to run conncurrently while running sequentially.""" | |
| def __init__(self, param=None): | |
| if param is None: | |
| raise ValueError('param should not be None') | |
| self.param = param | |
| def test_parameterized_backend_context_manager(monkeypatch, context): | |
| monkeypatch.setitem(BACKENDS, 'param_backend', | |
| ParameterizedParallelBackend) | |
| assert _active_backend_type() == DefaultBackend | |
| with context('param_backend', param=42, n_jobs=3): | |
| active_backend, active_n_jobs = parallel.get_active_backend() | |
| assert type(active_backend) is ParameterizedParallelBackend | |
| assert active_backend.param == 42 | |
| assert active_n_jobs == 3 | |
| p = Parallel() | |
| assert p.n_jobs == 3 | |
| assert p._backend is active_backend | |
| results = p(delayed(sqrt)(i) for i in range(5)) | |
| assert results == [sqrt(i) for i in range(5)] | |
| # The default backend is again restored | |
| assert _active_backend_type() == DefaultBackend | |
| def test_directly_parameterized_backend_context_manager(context): | |
| assert _active_backend_type() == DefaultBackend | |
| # Check that it's possible to pass a backend instance directly, | |
| # without registration | |
| with context(ParameterizedParallelBackend(param=43), n_jobs=5): | |
| active_backend, active_n_jobs = parallel.get_active_backend() | |
| assert type(active_backend) is ParameterizedParallelBackend | |
| assert active_backend.param == 43 | |
| assert active_n_jobs == 5 | |
| p = Parallel() | |
| assert p.n_jobs == 5 | |
| assert p._backend is active_backend | |
| results = p(delayed(sqrt)(i) for i in range(5)) | |
| assert results == [sqrt(i) for i in range(5)] | |
| # The default backend is again restored | |
| assert _active_backend_type() == DefaultBackend | |
| def sleep_and_return_pid(): | |
| sleep(.1) | |
| return os.getpid() | |
| def get_nested_pids(): | |
| assert _active_backend_type() == ThreadingBackend | |
| # Assert that the nested backend does not change the default number of | |
| # jobs used in Parallel | |
| assert Parallel()._effective_n_jobs() == 1 | |
| # Assert that the tasks are running only on one process | |
| return Parallel(n_jobs=2)(delayed(sleep_and_return_pid)() | |
| for _ in range(2)) | |
| class MyBackend(joblib._parallel_backends.LokyBackend): | |
| """Backend to test backward compatibility with older backends""" | |
| def get_nested_backend(self, ): | |
| # Older backends only return a backend, without n_jobs indications. | |
| return super(MyBackend, self).get_nested_backend()[0] | |
| register_parallel_backend('back_compat_backend', MyBackend) | |
| def test_nested_backend_context_manager(context, backend): | |
| # Check that by default, nested parallel calls will always use the | |
| # ThreadingBackend | |
| with context(backend): | |
| pid_groups = Parallel(n_jobs=2)( | |
| delayed(get_nested_pids)() | |
| for _ in range(10) | |
| ) | |
| for pid_group in pid_groups: | |
| assert len(set(pid_group)) == 1 | |
| def test_nested_backend_in_sequential(backend, n_jobs, context): | |
| # Check that by default, nested parallel calls will always use the | |
| # ThreadingBackend | |
| def check_nested_backend(expected_backend_type, expected_n_job): | |
| # Assert that the sequential backend at top level, does not change the | |
| # backend for nested calls. | |
| assert _active_backend_type() == BACKENDS[expected_backend_type] | |
| # Assert that the nested backend in SequentialBackend does not change | |
| # the default number of jobs used in Parallel | |
| expected_n_job = effective_n_jobs(expected_n_job) | |
| assert Parallel()._effective_n_jobs() == expected_n_job | |
| Parallel(n_jobs=1)( | |
| delayed(check_nested_backend)(DEFAULT_BACKEND, 1) | |
| for _ in range(10) | |
| ) | |
| with context(backend, n_jobs=n_jobs): | |
| Parallel(n_jobs=1)( | |
| delayed(check_nested_backend)(backend, n_jobs) | |
| for _ in range(10) | |
| ) | |
| def check_nesting_level(context, inner_backend, expected_level): | |
| with context(inner_backend) as ctx: | |
| if context is parallel_config: | |
| backend = ctx["backend"] | |
| if context is parallel_backend: | |
| backend = ctx[0] | |
| assert backend.nesting_level == expected_level | |
| def test_backend_nesting_level(context, outer_backend, inner_backend): | |
| # Check that the nesting level for the backend is correctly set | |
| check_nesting_level(context, outer_backend, 0) | |
| Parallel(n_jobs=2, backend=outer_backend)( | |
| delayed(check_nesting_level)(context, inner_backend, 1) | |
| for _ in range(10) | |
| ) | |
| with context(inner_backend, n_jobs=2): | |
| Parallel()(delayed(check_nesting_level)(context, inner_backend, 1) | |
| for _ in range(10)) | |
| def test_retrieval_context(context, with_retrieve_callback): | |
| import contextlib | |
| class MyBackend(ThreadingBackend): | |
| i = 0 | |
| supports_retrieve_callback = with_retrieve_callback | |
| def retrieval_context(self): | |
| self.i += 1 | |
| yield | |
| register_parallel_backend("retrieval", MyBackend) | |
| def nested_call(n): | |
| return Parallel(n_jobs=2)(delayed(id)(i) for i in range(n)) | |
| with context("retrieval") as ctx: | |
| Parallel(n_jobs=2)( | |
| delayed(nested_call)(i) | |
| for i in range(5) | |
| ) | |
| if context is parallel_config: | |
| assert ctx["backend"].i == 1 | |
| if context is parallel_backend: | |
| assert ctx[0].i == 1 | |
| ############################################################################### | |
| # Test helpers | |
| def test_invalid_batch_size(batch_size): | |
| with raises(ValueError): | |
| Parallel(batch_size=batch_size) | |
| def test_dispatch_race_condition(n_tasks, n_jobs, pre_dispatch, batch_size): | |
| # Check that using (async-)dispatch does not yield a race condition on the | |
| # iterable generator that is not thread-safe natively. | |
| # This is a non-regression test for the "Pool seems closed" class of error | |
| params = {'n_jobs': n_jobs, 'pre_dispatch': pre_dispatch, | |
| 'batch_size': batch_size} | |
| expected = [square(i) for i in range(n_tasks)] | |
| results = Parallel(**params)(delayed(square)(i) for i in range(n_tasks)) | |
| assert results == expected | |
| def test_default_mp_context(): | |
| mp_start_method = mp.get_start_method() | |
| p = Parallel(n_jobs=2, backend='multiprocessing') | |
| context = p._backend_args.get('context') | |
| start_method = context.get_start_method() | |
| assert start_method == mp_start_method | |
| def test_no_blas_crash_or_freeze_with_subprocesses(backend): | |
| if backend == 'multiprocessing': | |
| # Use the spawn backend that is both robust and available on all | |
| # platforms | |
| backend = mp.get_context('spawn') | |
| # Check that on recent Python version, the 'spawn' start method can make | |
| # it possible to use multiprocessing in conjunction of any BLAS | |
| # implementation that happens to be used by numpy with causing a freeze or | |
| # a crash | |
| rng = np.random.RandomState(42) | |
| # call BLAS DGEMM to force the initialization of the internal thread-pool | |
| # in the main process | |
| a = rng.randn(1000, 1000) | |
| np.dot(a, a.T) | |
| # check that the internal BLAS thread-pool is not in an inconsistent state | |
| # in the worker processes managed by multiprocessing | |
| Parallel(n_jobs=2, backend=backend)( | |
| delayed(np.dot)(a, a.T) for i in range(2)) | |
| UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN = """\ | |
| from joblib import Parallel, delayed | |
| def square(x): | |
| return x ** 2 | |
| backend = "{}" | |
| if backend == "spawn": | |
| from multiprocessing import get_context | |
| backend = get_context(backend) | |
| print(Parallel(n_jobs=2, backend=backend)( | |
| delayed(square)(i) for i in range(5))) | |
| """ | |
| def test_parallel_with_interactively_defined_functions(backend): | |
| # When using the "-c" flag, interactive functions defined in __main__ | |
| # should work with any backend. | |
| if backend == "multiprocessing" and mp.get_start_method() != "fork": | |
| pytest.skip("Require fork start method to use interactively defined " | |
| "functions with multiprocessing.") | |
| code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN.format(backend) | |
| check_subprocess_call( | |
| [sys.executable, '-c', code], timeout=10, | |
| stdout_regex=r'\[0, 1, 4, 9, 16\]') | |
| UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN = """\ | |
| import sys | |
| # Make sure that joblib is importable in the subprocess launching this | |
| # script. This is needed in case we run the tests from the joblib root | |
| # folder without having installed joblib | |
| sys.path.insert(0, {joblib_root_folder!r}) | |
| from joblib import Parallel, delayed | |
| def run(f, x): | |
| return f(x) | |
| {define_func} | |
| if __name__ == "__main__": | |
| backend = "{backend}" | |
| if backend == "spawn": | |
| from multiprocessing import get_context | |
| backend = get_context(backend) | |
| callable_position = "{callable_position}" | |
| if callable_position == "delayed": | |
| print(Parallel(n_jobs=2, backend=backend)( | |
| delayed(square)(i) for i in range(5))) | |
| elif callable_position == "args": | |
| print(Parallel(n_jobs=2, backend=backend)( | |
| delayed(run)(square, i) for i in range(5))) | |
| else: | |
| print(Parallel(n_jobs=2, backend=backend)( | |
| delayed(run)(f=square, x=i) for i in range(5))) | |
| """ | |
| SQUARE_MAIN = """\ | |
| def square(x): | |
| return x ** 2 | |
| """ | |
| SQUARE_LOCAL = """\ | |
| def gen_square(): | |
| def square(x): | |
| return x ** 2 | |
| return square | |
| square = gen_square() | |
| """ | |
| SQUARE_LAMBDA = """\ | |
| square = lambda x: x ** 2 | |
| """ | |
| def test_parallel_with_unpicklable_functions_in_args( | |
| backend, define_func, callable_position, tmpdir): | |
| if backend in ['multiprocessing', 'spawn'] and ( | |
| define_func != SQUARE_MAIN or sys.platform == "win32"): | |
| pytest.skip("Not picklable with pickle") | |
| code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN.format( | |
| define_func=define_func, backend=backend, | |
| callable_position=callable_position, | |
| joblib_root_folder=os.path.dirname(os.path.dirname(joblib.__file__))) | |
| code_file = tmpdir.join("unpicklable_func_script.py") | |
| code_file.write(code) | |
| check_subprocess_call( | |
| [sys.executable, code_file.strpath], timeout=10, | |
| stdout_regex=r'\[0, 1, 4, 9, 16\]') | |
| INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT = """\ | |
| import sys | |
| import faulthandler | |
| # Make sure that joblib is importable in the subprocess launching this | |
| # script. This is needed in case we run the tests from the joblib root | |
| # folder without having installed joblib | |
| sys.path.insert(0, {joblib_root_folder!r}) | |
| from joblib import Parallel, delayed | |
| from functools import partial | |
| class MyClass: | |
| '''Class defined in the __main__ namespace''' | |
| def __init__(self, value): | |
| self.value = value | |
| def square(x, ignored=None, ignored2=None): | |
| '''Function defined in the __main__ namespace''' | |
| return x.value ** 2 | |
| square2 = partial(square, ignored2='something') | |
| # Here, we do not need the `if __name__ == "__main__":` safeguard when | |
| # using the default `loky` backend (even on Windows). | |
| # To make debugging easier | |
| faulthandler.dump_traceback_later(30, exit=True) | |
| # The following baroque function call is meant to check that joblib | |
| # introspection rightfully uses cloudpickle instead of the (faster) pickle | |
| # module of the standard library when necessary. In particular cloudpickle is | |
| # necessary for functions and instances of classes interactively defined in the | |
| # __main__ module. | |
| print(Parallel(backend="loky", n_jobs=2)( | |
| delayed(square2)(MyClass(i), ignored=[dict(a=MyClass(1))]) | |
| for i in range(5) | |
| )) | |
| """.format(joblib_root_folder=os.path.dirname( | |
| os.path.dirname(joblib.__file__))) | |
| def test_parallel_with_interactively_defined_functions_loky(tmpdir): | |
| # loky accepts interactive functions defined in __main__ and does not | |
| # require if __name__ == '__main__' even when the __main__ module is | |
| # defined by the result of the execution of a filesystem script. | |
| script = tmpdir.join('joblib_interactively_defined_function.py') | |
| script.write(INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT) | |
| check_subprocess_call( | |
| [sys.executable, script.strpath], | |
| stdout_regex=r'\[0, 1, 4, 9, 16\]', | |
| timeout=None, # rely on faulthandler to kill the process | |
| ) | |
| INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT = """\ | |
| import sys | |
| # Make sure that joblib is importable in the subprocess launching this | |
| # script. This is needed in case we run the tests from the joblib root | |
| # folder without having installed joblib | |
| sys.path.insert(0, {joblib_root_folder!r}) | |
| from joblib import Parallel, delayed, hash | |
| import multiprocessing as mp | |
| mp.util.log_to_stderr(5) | |
| class MyList(list): | |
| '''MyList is interactively defined by MyList.append is a built-in''' | |
| def __hash__(self): | |
| # XXX: workaround limitation in cloudpickle | |
| return hash(self).__hash__() | |
| l = MyList() | |
| print(Parallel(backend="loky", n_jobs=2)( | |
| delayed(l.append)(i) for i in range(3) | |
| )) | |
| """.format(joblib_root_folder=os.path.dirname( | |
| os.path.dirname(joblib.__file__))) | |
| def test_parallel_with_interactively_defined_bound_method_loky(tmpdir): | |
| script = tmpdir.join('joblib_interactive_bound_method_script.py') | |
| script.write(INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT) | |
| check_subprocess_call([sys.executable, script.strpath], | |
| stdout_regex=r'\[None, None, None\]', | |
| stderr_regex=r'LokyProcess', | |
| timeout=15) | |
| def test_parallel_with_exhausted_iterator(): | |
| exhausted_iterator = iter([]) | |
| assert Parallel(n_jobs=2)(exhausted_iterator) == [] | |
| def _cleanup_worker(): | |
| """Helper function to force gc in each worker.""" | |
| force_gc_pypy() | |
| time.sleep(.1) | |
| def check_memmap(a): | |
| if not isinstance(a, np.memmap): | |
| raise TypeError('Expected np.memmap instance, got %r', | |
| type(a)) | |
| return a.copy() # return a regular array instead of a memmap | |
| def test_auto_memmap_on_arrays_from_generator(backend): | |
| # Non-regression test for a problem with a bad interaction between the | |
| # GC collecting arrays recently created during iteration inside the | |
| # parallel dispatch loop and the auto-memmap feature of Parallel. | |
| # See: https://github.com/joblib/joblib/pull/294 | |
| def generate_arrays(n): | |
| for i in range(n): | |
| yield np.ones(10, dtype=np.float32) * i | |
| # Use max_nbytes=1 to force the use of memory-mapping even for small | |
| # arrays | |
| results = Parallel(n_jobs=2, max_nbytes=1, backend=backend)( | |
| delayed(check_memmap)(a) for a in generate_arrays(100)) | |
| for result, expected in zip(results, generate_arrays(len(results))): | |
| np.testing.assert_array_equal(expected, result) | |
| # Second call to force loky to adapt the executor by growing the number | |
| # of worker processes. This is a non-regression test for: | |
| # https://github.com/joblib/joblib/issues/629. | |
| results = Parallel(n_jobs=4, max_nbytes=1, backend=backend)( | |
| delayed(check_memmap)(a) for a in generate_arrays(100)) | |
| for result, expected in zip(results, generate_arrays(len(results))): | |
| np.testing.assert_array_equal(expected, result) | |
| def identity(arg): | |
| return arg | |
| def test_memmap_with_big_offset(tmpdir): | |
| fname = tmpdir.join('test.mmap').strpath | |
| size = mmap.ALLOCATIONGRANULARITY | |
| obj = [np.zeros(size, dtype='uint8'), np.ones(size, dtype='uint8')] | |
| dump(obj, fname) | |
| memmap = load(fname, mmap_mode='r') | |
| result, = Parallel(n_jobs=2)(delayed(identity)(memmap) for _ in [0]) | |
| assert isinstance(memmap[1], np.memmap) | |
| assert memmap[1].offset > size | |
| np.testing.assert_array_equal(obj, result) | |
| def test_warning_about_timeout_not_supported_by_backend(): | |
| with warnings.catch_warnings(record=True) as warninfo: | |
| Parallel(n_jobs=1, timeout=1)(delayed(square)(i) for i in range(50)) | |
| assert len(warninfo) == 1 | |
| w = warninfo[0] | |
| assert isinstance(w.message, UserWarning) | |
| assert str(w.message) == ( | |
| "The backend class 'SequentialBackend' does not support timeout. " | |
| "You have set 'timeout=1' in Parallel but the 'timeout' parameter " | |
| "will not be used.") | |
| def set_list_value(input_list, index, value): | |
| input_list[index] = value | |
| return value | |
| def test_parallel_return_order_with_return_as_generator_parameter(n_jobs): | |
| # This test inserts values in a list in some expected order | |
| # in sequential computing, and then checks that this order has been | |
| # respected by Parallel output generator. | |
| input_list = [0] * 5 | |
| result = Parallel(n_jobs=n_jobs, return_as="generator", | |
| backend='threading')( | |
| delayed(set_list_value)(input_list, i, i) for i in range(5)) | |
| # Ensure that all the tasks are completed before checking the result | |
| result = list(result) | |
| assert all(v == r for v, r in zip(input_list, result)) | |
| def _sqrt_with_delay(e, delay): | |
| if delay: | |
| sleep(30) | |
| return sqrt(e) | |
| def _test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs): | |
| # This test submits 10 tasks, but the second task is super slow. This test | |
| # checks that the 9 other tasks return before the slow task is done, when | |
| # `return_as` parameter is set to `'generator_unordered'` | |
| result = Parallel(n_jobs=n_jobs, return_as="generator_unordered", | |
| backend=backend)( | |
| delayed(_sqrt_with_delay)(i**2, (i == 1)) for i in range(10)) | |
| quickly_returned = sorted(next(result) for _ in range(9)) | |
| expected_quickly_returned = [0] + list(range(2, 10)) | |
| assert all( | |
| v == r for v, r in zip(expected_quickly_returned, quickly_returned) | |
| ) | |
| del result | |
| force_gc_pypy() | |
| # NB: for this test to work, the backend must be allowed to process tasks | |
| # concurrently, so at least two jobs with a non-sequential backend are | |
| # mandatory. | |
| def test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs): | |
| _test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs) | |
| def test_parallel_unordered_generator_returns_fastest_first_with_dask( | |
| n_jobs, context | |
| ): | |
| with distributed.Client( | |
| n_workers=2, threads_per_worker=2 | |
| ), context("dask"): | |
| _test_parallel_unordered_generator_returns_fastest_first(None, n_jobs) | |
| def test_abort_backend(n_jobs, backend): | |
| delays = ["a"] + [10] * 100 | |
| with raises(TypeError): | |
| t_start = time.time() | |
| Parallel(n_jobs=n_jobs, backend=backend)( | |
| delayed(time.sleep)(i) for i in delays) | |
| dt = time.time() - t_start | |
| assert dt < 20 | |
| def get_large_object(arg): | |
| result = np.ones(int(5 * 1e5), dtype=bool) | |
| result[0] = False | |
| return result | |
| def _test_deadlock_with_generator(backend, return_as, n_jobs): | |
| # Non-regression test for a race condition in the backends when the pickler | |
| # is delayed by a large object. | |
| with Parallel(n_jobs=n_jobs, backend=backend, | |
| return_as=return_as) as parallel: | |
| result = parallel(delayed(get_large_object)(i) for i in range(10)) | |
| next(result) | |
| next(result) | |
| del result | |
| # The gc in pypy can be delayed. Force it to make sure this test does | |
| # not cause timeout on the CI. | |
| force_gc_pypy() | |
| def test_deadlock_with_generator(backend, return_as, n_jobs): | |
| _test_deadlock_with_generator(backend, return_as, n_jobs) | |
| def test_deadlock_with_generator_and_dask(context, return_as, n_jobs): | |
| with distributed.Client( | |
| n_workers=2, threads_per_worker=2 | |
| ), context("dask"): | |
| _test_deadlock_with_generator(None, return_as, n_jobs) | |
| def test_multiple_generator_call(backend, return_as, n_jobs): | |
| # Non-regression test that ensures the dispatch of the tasks starts | |
| # immediately when Parallel.__call__ is called. This test relies on the | |
| # assumption that only one generator can be submitted at a time. | |
| with raises(RuntimeError, | |
| match="This Parallel instance is already running"): | |
| parallel = Parallel(n_jobs, backend=backend, return_as=return_as) | |
| g = parallel(delayed(sleep)(1) for _ in range(10)) # noqa: F841 | |
| t_start = time.time() | |
| gen2 = parallel(delayed(id)(i) for i in range(100)) # noqa: F841 | |
| # Make sure that the error is raised quickly | |
| assert time.time() - t_start < 2, ( | |
| "The error should be raised immediatly when submitting a new task " | |
| "but it took more than 2s." | |
| ) | |
| del g | |
| # The gc in pypy can be delayed. Force it to make sure this test does not | |
| # cause timeout on the CI. | |
| force_gc_pypy() | |
| def test_multiple_generator_call_managed(backend, return_as, n_jobs): | |
| # Non-regression test that ensures the dispatch of the tasks starts | |
| # immediately when Parallel.__call__ is called. This test relies on the | |
| # assumption that only one generator can be submitted at a time. | |
| with Parallel(n_jobs, backend=backend, | |
| return_as=return_as) as parallel: | |
| g = parallel(delayed(sleep)(10) for _ in range(10)) # noqa: F841 | |
| t_start = time.time() | |
| with raises(RuntimeError, | |
| match="This Parallel instance is already running"): | |
| g2 = parallel(delayed(id)(i) for i in range(100)) # noqa: F841 | |
| # Make sure that the error is raised quickly | |
| assert time.time() - t_start < 2, ( | |
| "The error should be raised immediatly when submitting a new task " | |
| "but it took more than 2s." | |
| ) | |
| # The gc in pypy can be delayed. Force it to make sure this test does not | |
| # cause timeout on the CI. | |
| del g | |
| force_gc_pypy() | |
| def test_multiple_generator_call_separated( | |
| backend, return_as_1, return_as_2, n_jobs | |
| ): | |
| # Check that for separated Parallel, both tasks are correctly returned. | |
| g = Parallel(n_jobs, backend=backend, return_as=return_as_1)( | |
| delayed(sqrt)(i ** 2) for i in range(10) | |
| ) | |
| g2 = Parallel(n_jobs, backend=backend, return_as=return_as_2)( | |
| delayed(sqrt)(i ** 2) for i in range(10, 20) | |
| ) | |
| if return_as_1 == "generator_unordered": | |
| g = sorted(g) | |
| if return_as_2 == "generator_unordered": | |
| g2 = sorted(g2) | |
| assert all(res == i for res, i in zip(g, range(10))) | |
| assert all(res == i for res, i in zip(g2, range(10, 20))) | |
| def test_multiple_generator_call_separated_gc( | |
| backend, return_as_1, return_as_2, error | |
| ): | |
| if (backend == 'loky') and (mp is None): | |
| pytest.skip("Requires multiprocessing") | |
| # Check that in loky, only one call can be run at a time with | |
| # a single executor. | |
| parallel = Parallel(2, backend=backend, return_as=return_as_1) | |
| g = parallel(delayed(sleep)(10) for i in range(10)) | |
| g_wr = weakref.finalize(g, lambda: print("Generator collected")) | |
| ctx = ( | |
| raises(RuntimeError, match="The executor underlying Parallel") | |
| if error else nullcontext() | |
| ) | |
| with ctx: | |
| # For loky, this call will raise an error as the gc of the previous | |
| # generator will shutdown the shared executor. | |
| # For the other backends, as the worker pools are not shared between | |
| # the two calls, this should proceed correctly. | |
| t_start = time.time() | |
| g = Parallel(2, backend=backend, return_as=return_as_2)( | |
| delayed(sqrt)(i ** 2) for i in range(10, 20) | |
| ) | |
| # The gc in pypy can be delayed. Force it to test the behavior when it | |
| # will eventually be collected. | |
| force_gc_pypy() | |
| if return_as_2 == "generator_unordered": | |
| g = sorted(g) | |
| assert all(res == i for res, i in zip(g, range(10, 20))) | |
| assert time.time() - t_start < 5 | |
| # Make sure that the computation are stopped for the gc'ed generator | |
| retry = 0 | |
| while g_wr.alive and retry < 3: | |
| retry += 1 | |
| time.sleep(.5) | |
| assert time.time() - t_start < 5 | |
| if parallel._effective_n_jobs() != 1: | |
| # check that the first parallel object is aborting (the final _aborted | |
| # state might be delayed). | |
| assert parallel._aborting | |
| def test_memmapping_leaks(backend, tmpdir): | |
| # Non-regression test for memmapping backends. Ensure that the data | |
| # does not stay too long in memory | |
| tmpdir = tmpdir.strpath | |
| # Use max_nbytes=1 to force the use of memory-mapping even for small | |
| # arrays | |
| with Parallel(n_jobs=2, max_nbytes=1, backend=backend, | |
| temp_folder=tmpdir) as p: | |
| p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2) | |
| # The memmap folder should not be clean in the context scope | |
| assert len(os.listdir(tmpdir)) > 0 | |
| # Cleaning of the memmap folder is triggered by the garbage | |
| # collection. With pypy the garbage collection has been observed to be | |
| # delayed, sometimes up until the shutdown of the interpreter. This | |
| # cleanup job executed in the worker ensures that it's triggered | |
| # immediately. | |
| p(delayed(_cleanup_worker)() for _ in range(2)) | |
| # Make sure that the shared memory is cleaned at the end when we exit | |
| # the context | |
| for _ in range(100): | |
| if not os.listdir(tmpdir): | |
| break | |
| sleep(.1) | |
| else: | |
| raise AssertionError('temporary directory of Parallel was not removed') | |
| # Make sure that the shared memory is cleaned at the end of a call | |
| p = Parallel(n_jobs=2, max_nbytes=1, backend=backend) | |
| p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2) | |
| p(delayed(_cleanup_worker)() for _ in range(2)) | |
| for _ in range(100): | |
| if not os.listdir(tmpdir): | |
| break | |
| sleep(.1) | |
| else: | |
| raise AssertionError('temporary directory of Parallel was not removed') | |
| def test_lambda_expression(backend): | |
| # cloudpickle is used to pickle delayed callables | |
| results = Parallel(n_jobs=2, backend=backend)( | |
| delayed(lambda x: x ** 2)(i) for i in range(10)) | |
| assert results == [i ** 2 for i in range(10)] | |
| def test_backend_batch_statistics_reset(backend): | |
| """Test that a parallel backend correctly resets its batch statistics.""" | |
| n_jobs = 2 | |
| n_inputs = 500 | |
| task_time = 2. / n_inputs | |
| p = Parallel(verbose=10, n_jobs=n_jobs, backend=backend) | |
| p(delayed(time.sleep)(task_time) for i in range(n_inputs)) | |
| assert (p._backend._effective_batch_size == | |
| p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE) | |
| assert (p._backend._smoothed_batch_duration == | |
| p._backend._DEFAULT_SMOOTHED_BATCH_DURATION) | |
| p(delayed(time.sleep)(task_time) for i in range(n_inputs)) | |
| assert (p._backend._effective_batch_size == | |
| p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE) | |
| assert (p._backend._smoothed_batch_duration == | |
| p._backend._DEFAULT_SMOOTHED_BATCH_DURATION) | |
| def test_backend_hinting_and_constraints(context): | |
| for n_jobs in [1, 2, -1]: | |
| assert type(Parallel(n_jobs=n_jobs)._backend) == DefaultBackend | |
| p = Parallel(n_jobs=n_jobs, prefer='threads') | |
| assert type(p._backend) is ThreadingBackend | |
| p = Parallel(n_jobs=n_jobs, prefer='processes') | |
| assert type(p._backend) is DefaultBackend | |
| p = Parallel(n_jobs=n_jobs, require='sharedmem') | |
| assert type(p._backend) is ThreadingBackend | |
| # Explicit backend selection can override backend hinting although it | |
| # is useless to pass a hint when selecting a backend. | |
| p = Parallel(n_jobs=2, backend='loky', prefer='threads') | |
| assert type(p._backend) is LokyBackend | |
| with context('loky', n_jobs=2): | |
| # Explicit backend selection by the user with the context manager | |
| # should be respected when combined with backend hints only. | |
| p = Parallel(prefer='threads') | |
| assert type(p._backend) is LokyBackend | |
| assert p.n_jobs == 2 | |
| with context('loky', n_jobs=2): | |
| # Locally hard-coded n_jobs value is respected. | |
| p = Parallel(n_jobs=3, prefer='threads') | |
| assert type(p._backend) is LokyBackend | |
| assert p.n_jobs == 3 | |
| with context('loky', n_jobs=2): | |
| # Explicit backend selection by the user with the context manager | |
| # should be ignored when the Parallel call has hard constraints. | |
| # In this case, the default backend that supports shared mem is | |
| # used an the default number of processes is used. | |
| p = Parallel(require='sharedmem') | |
| assert type(p._backend) is ThreadingBackend | |
| assert p.n_jobs == 1 | |
| with context('loky', n_jobs=2): | |
| p = Parallel(n_jobs=3, require='sharedmem') | |
| assert type(p._backend) is ThreadingBackend | |
| assert p.n_jobs == 3 | |
| def test_backend_hinting_and_constraints_with_custom_backends( | |
| capsys, context | |
| ): | |
| # Custom backends can declare that they use threads and have shared memory | |
| # semantics: | |
| class MyCustomThreadingBackend(ParallelBackendBase): | |
| supports_sharedmem = True | |
| use_threads = True | |
| def apply_async(self): | |
| pass | |
| def effective_n_jobs(self, n_jobs): | |
| return n_jobs | |
| with context(MyCustomThreadingBackend()): | |
| p = Parallel(n_jobs=2, prefer='processes') # ignored | |
| assert type(p._backend) is MyCustomThreadingBackend | |
| p = Parallel(n_jobs=2, require='sharedmem') | |
| assert type(p._backend) is MyCustomThreadingBackend | |
| class MyCustomProcessingBackend(ParallelBackendBase): | |
| supports_sharedmem = False | |
| use_threads = False | |
| def apply_async(self): | |
| pass | |
| def effective_n_jobs(self, n_jobs): | |
| return n_jobs | |
| with context(MyCustomProcessingBackend()): | |
| p = Parallel(n_jobs=2, prefer='processes') | |
| assert type(p._backend) is MyCustomProcessingBackend | |
| out, err = capsys.readouterr() | |
| assert out == "" | |
| assert err == "" | |
| p = Parallel(n_jobs=2, require='sharedmem', verbose=10) | |
| assert type(p._backend) is ThreadingBackend | |
| out, err = capsys.readouterr() | |
| expected = ("Using ThreadingBackend as joblib backend " | |
| "instead of MyCustomProcessingBackend as the latter " | |
| "does not provide shared memory semantics.") | |
| assert out.strip() == expected | |
| assert err == "" | |
| with raises(ValueError): | |
| Parallel(backend=MyCustomProcessingBackend(), require='sharedmem') | |
| def test_invalid_backend_hinting_and_constraints(): | |
| with raises(ValueError): | |
| Parallel(prefer='invalid') | |
| with raises(ValueError): | |
| Parallel(require='invalid') | |
| with raises(ValueError): | |
| # It is inconsistent to prefer process-based parallelism while | |
| # requiring shared memory semantics. | |
| Parallel(prefer='processes', require='sharedmem') | |
| if mp is not None: | |
| # It is inconsistent to ask explicitly for a process-based | |
| # parallelism while requiring shared memory semantics. | |
| with raises(ValueError): | |
| Parallel(backend='loky', require='sharedmem') | |
| with raises(ValueError): | |
| Parallel(backend='multiprocessing', require='sharedmem') | |
| def _recursive_backend_info(limit=3, **kwargs): | |
| """Perform nested parallel calls and introspect the backend on the way""" | |
| with Parallel(n_jobs=2) as p: | |
| this_level = [(type(p._backend).__name__, p._backend.nesting_level)] | |
| if limit == 0: | |
| return this_level | |
| results = p(delayed(_recursive_backend_info)(limit=limit - 1, **kwargs) | |
| for i in range(1)) | |
| return this_level + results[0] | |
| def test_nested_parallelism_limit(context, backend): | |
| with context(backend, n_jobs=2): | |
| backend_types_and_levels = _recursive_backend_info() | |
| if cpu_count() == 1: | |
| second_level_backend_type = 'SequentialBackend' | |
| max_level = 1 | |
| else: | |
| second_level_backend_type = 'ThreadingBackend' | |
| max_level = 2 | |
| top_level_backend_type = backend.title() + 'Backend' | |
| expected_types_and_levels = [ | |
| (top_level_backend_type, 0), | |
| (second_level_backend_type, 1), | |
| ('SequentialBackend', max_level), | |
| ('SequentialBackend', max_level) | |
| ] | |
| assert backend_types_and_levels == expected_types_and_levels | |
| def test_nested_parallelism_with_dask(context): | |
| with distributed.Client(n_workers=2, threads_per_worker=2): | |
| # 10 MB of data as argument to trigger implicit scattering | |
| data = np.ones(int(1e7), dtype=np.uint8) | |
| for i in range(2): | |
| with context('dask'): | |
| backend_types_and_levels = _recursive_backend_info(data=data) | |
| assert len(backend_types_and_levels) == 4 | |
| assert all(name == 'DaskDistributedBackend' | |
| for name, _ in backend_types_and_levels) | |
| # No argument | |
| with context('dask'): | |
| backend_types_and_levels = _recursive_backend_info() | |
| assert len(backend_types_and_levels) == 4 | |
| assert all(name == 'DaskDistributedBackend' | |
| for name, _ in backend_types_and_levels) | |
| def _recursive_parallel(nesting_limit=None): | |
| """A horrible function that does recursive parallel calls""" | |
| return Parallel()(delayed(_recursive_parallel)() for i in range(2)) | |
| def test_thread_bomb_mitigation(context, backend): | |
| # Test that recursive parallelism raises a recursion rather than | |
| # saturating the operating system resources by creating a unbounded number | |
| # of threads. | |
| with context(backend, n_jobs=2): | |
| with raises(BaseException) as excinfo: | |
| _recursive_parallel() | |
| exc = excinfo.value | |
| if backend == "loky": | |
| # Local import because loky may not be importable for lack of | |
| # multiprocessing | |
| from joblib.externals.loky.process_executor import TerminatedWorkerError # noqa | |
| if isinstance(exc, (TerminatedWorkerError, PicklingError)): | |
| # The recursion exception can itself cause an error when | |
| # pickling it to be send back to the parent process. In this | |
| # case the worker crashes but the original traceback is still | |
| # printed on stderr. This could be improved but does not seem | |
| # simple to do and this is not critical for users (as long | |
| # as there is no process or thread bomb happening). | |
| pytest.xfail("Loky worker crash when serializing RecursionError") | |
| assert isinstance(exc, RecursionError) | |
| def _run_parallel_sum(): | |
| env_vars = {} | |
| for var in ['OMP_NUM_THREADS', 'OPENBLAS_NUM_THREADS', 'MKL_NUM_THREADS', | |
| 'VECLIB_MAXIMUM_THREADS', 'NUMEXPR_NUM_THREADS', | |
| 'NUMBA_NUM_THREADS', 'ENABLE_IPC']: | |
| env_vars[var] = os.environ.get(var) | |
| return env_vars, parallel_sum(100) | |
| def test_parallel_thread_limit(backend): | |
| results = Parallel(n_jobs=2, backend=backend)( | |
| delayed(_run_parallel_sum)() for _ in range(2) | |
| ) | |
| expected_num_threads = max(cpu_count() // 2, 1) | |
| for worker_env_vars, omp_num_threads in results: | |
| assert omp_num_threads == expected_num_threads | |
| for name, value in worker_env_vars.items(): | |
| if name.endswith("_THREADS"): | |
| assert value == str(expected_num_threads) | |
| else: | |
| assert name == "ENABLE_IPC" | |
| assert value == "1" | |
| def test_dask_backend_when_dask_not_installed(context): | |
| with raises(ValueError, match='Please install dask'): | |
| context('dask') | |
| def test_zero_worker_backend(context): | |
| # joblib.Parallel should reject with an explicit error message parallel | |
| # backends that have no worker. | |
| class ZeroWorkerBackend(ThreadingBackend): | |
| def configure(self, *args, **kwargs): | |
| return 0 | |
| def apply_async(self, func, callback=None): # pragma: no cover | |
| raise TimeoutError("No worker available") | |
| def effective_n_jobs(self, n_jobs): # pragma: no cover | |
| return 0 | |
| expected_msg = "ZeroWorkerBackend has no active worker" | |
| with context(ZeroWorkerBackend()): | |
| with pytest.raises(RuntimeError, match=expected_msg): | |
| Parallel(n_jobs=2)(delayed(id)(i) for i in range(2)) | |
| def test_globals_update_at_each_parallel_call(): | |
| # This is a non-regression test related to joblib issues #836 and #833. | |
| # Cloudpickle versions between 0.5.4 and 0.7 introduced a bug where global | |
| # variables changes in a parent process between two calls to | |
| # joblib.Parallel would not be propagated into the workers. | |
| global MY_GLOBAL_VARIABLE | |
| MY_GLOBAL_VARIABLE = "original value" | |
| def check_globals(): | |
| global MY_GLOBAL_VARIABLE | |
| return MY_GLOBAL_VARIABLE | |
| assert check_globals() == "original value" | |
| workers_global_variable = Parallel(n_jobs=2)( | |
| delayed(check_globals)() for i in range(2)) | |
| assert set(workers_global_variable) == {"original value"} | |
| # Change the value of MY_GLOBAL_VARIABLE, and make sure this change gets | |
| # propagated into the workers environment | |
| MY_GLOBAL_VARIABLE = "changed value" | |
| assert check_globals() == "changed value" | |
| workers_global_variable = Parallel(n_jobs=2)( | |
| delayed(check_globals)() for i in range(2)) | |
| assert set(workers_global_variable) == {"changed value"} | |
| ############################################################################## | |
| # Test environment variable in child env, in particular for limiting | |
| # the maximal number of threads in C-library threadpools. | |
| # | |
| def _check_numpy_threadpool_limits(): | |
| import numpy as np | |
| # Let's call BLAS on a Matrix Matrix multiplication with dimensions large | |
| # enough to ensure that the threadpool managed by the underlying BLAS | |
| # implementation is actually used so as to force its initialization. | |
| a = np.random.randn(100, 100) | |
| np.dot(a, a) | |
| from threadpoolctl import threadpool_info | |
| return threadpool_info() | |
| def _parent_max_num_threads_for(child_module, parent_info): | |
| for parent_module in parent_info: | |
| if parent_module['filepath'] == child_module['filepath']: | |
| return parent_module['num_threads'] | |
| raise ValueError("An unexpected module was loaded in child:\n{}" | |
| .format(child_module)) | |
| def check_child_num_threads(workers_info, parent_info, num_threads): | |
| # Check that the number of threads reported in workers_info is consistent | |
| # with the expectation. We need to be careful to handle the cases where | |
| # the requested number of threads is below max_num_thread for the library. | |
| for child_threadpool_info in workers_info: | |
| for child_module in child_threadpool_info: | |
| parent_max_num_threads = _parent_max_num_threads_for( | |
| child_module, parent_info) | |
| expected = {min(num_threads, parent_max_num_threads), num_threads} | |
| assert child_module['num_threads'] in expected | |
| def test_threadpool_limitation_in_child_loky(n_jobs): | |
| # Check that the protection against oversubscription in workers is working | |
| # using threadpoolctl functionalities. | |
| # Skip this test if numpy is not linked to a BLAS library | |
| parent_info = _check_numpy_threadpool_limits() | |
| if len(parent_info) == 0: | |
| pytest.skip(reason="Need a version of numpy linked to BLAS") | |
| workers_threadpool_infos = Parallel(backend="loky", n_jobs=n_jobs)( | |
| delayed(_check_numpy_threadpool_limits)() for i in range(2)) | |
| n_jobs = effective_n_jobs(n_jobs) | |
| expected_child_num_threads = max(cpu_count() // n_jobs, 1) | |
| check_child_num_threads(workers_threadpool_infos, parent_info, | |
| expected_child_num_threads) | |
| def test_threadpool_limitation_in_child_context( | |
| context, n_jobs, inner_max_num_threads | |
| ): | |
| # Check that the protection against oversubscription in workers is working | |
| # using threadpoolctl functionalities. | |
| # Skip this test if numpy is not linked to a BLAS library | |
| parent_info = _check_numpy_threadpool_limits() | |
| if len(parent_info) == 0: | |
| pytest.skip(reason="Need a version of numpy linked to BLAS") | |
| with context('loky', inner_max_num_threads=inner_max_num_threads): | |
| workers_threadpool_infos = Parallel(n_jobs=n_jobs)( | |
| delayed(_check_numpy_threadpool_limits)() for i in range(2)) | |
| n_jobs = effective_n_jobs(n_jobs) | |
| if inner_max_num_threads is None: | |
| expected_child_num_threads = max(cpu_count() // n_jobs, 1) | |
| else: | |
| expected_child_num_threads = inner_max_num_threads | |
| check_child_num_threads(workers_threadpool_infos, parent_info, | |
| expected_child_num_threads) | |
| def test_threadpool_limitation_in_child_override(context, n_jobs, var_name): | |
| # Check that environment variables set by the user on the main process | |
| # always have the priority. | |
| # Clean up the existing executor because we change the environment of the | |
| # parent at runtime and it is not detected in loky intentionally. | |
| get_reusable_executor(reuse=True).shutdown() | |
| def _get_env(var_name): | |
| return os.environ.get(var_name) | |
| original_var_value = os.environ.get(var_name) | |
| try: | |
| os.environ[var_name] = "4" | |
| # Skip this test if numpy is not linked to a BLAS library | |
| results = Parallel(n_jobs=n_jobs)( | |
| delayed(_get_env)(var_name) for i in range(2)) | |
| assert results == ["4", "4"] | |
| with context('loky', inner_max_num_threads=1): | |
| results = Parallel(n_jobs=n_jobs)( | |
| delayed(_get_env)(var_name) for i in range(2)) | |
| assert results == ["1", "1"] | |
| finally: | |
| if original_var_value is None: | |
| del os.environ[var_name] | |
| else: | |
| os.environ[var_name] = original_var_value | |
| def test_loky_reuse_workers(n_jobs): | |
| # Non-regression test for issue #967 where the workers are not reused when | |
| # calling multiple Parallel loops. | |
| def parallel_call(n_jobs): | |
| x = range(10) | |
| Parallel(n_jobs=n_jobs)(delayed(sum)(x) for i in range(10)) | |
| # Run a parallel loop and get the workers used for computations | |
| parallel_call(n_jobs) | |
| first_executor = get_reusable_executor(reuse=True) | |
| # Ensure that the workers are reused for the next calls, as the executor is | |
| # not restarted. | |
| for _ in range(10): | |
| parallel_call(n_jobs) | |
| executor = get_reusable_executor(reuse=True) | |
| assert executor == first_executor | |