|
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul |
|
from sympy.ntheory import isprime |
|
|
|
rmul = Permutation.rmul |
|
_af_new = Permutation._af_new |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _base_ordering(base, degree): |
|
r""" |
|
Order `\{0, 1, \dots, n-1\}` so that base points come first and in order. |
|
|
|
Parameters |
|
========== |
|
|
|
base : the base |
|
degree : the degree of the associated permutation group |
|
|
|
Returns |
|
======= |
|
|
|
A list ``base_ordering`` such that ``base_ordering[point]`` is the |
|
number of ``point`` in the ordering. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricGroup |
|
>>> from sympy.combinatorics.util import _base_ordering |
|
>>> S = SymmetricGroup(4) |
|
>>> S.schreier_sims() |
|
>>> _base_ordering(S.base, S.degree) |
|
[0, 1, 2, 3] |
|
|
|
Notes |
|
===== |
|
|
|
This is used in backtrack searches, when we define a relation `\ll` on |
|
the underlying set for a permutation group of degree `n`, |
|
`\{0, 1, \dots, n-1\}`, so that if `(b_1, b_2, \dots, b_k)` is a base we |
|
have `b_i \ll b_j` whenever `i<j` and `b_i \ll a` for all |
|
`i\in\{1,2, \dots, k\}` and `a` is not in the base. The idea is developed |
|
and applied to backtracking algorithms in [1], pp.108-132. The points |
|
that are not in the base are taken in increasing order. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Holt, D., Eick, B., O'Brien, E. |
|
"Handbook of computational group theory" |
|
|
|
""" |
|
base_len = len(base) |
|
ordering = [0]*degree |
|
for i in range(base_len): |
|
ordering[base[i]] = i |
|
current = base_len |
|
for i in range(degree): |
|
if i not in base: |
|
ordering[i] = current |
|
current += 1 |
|
return ordering |
|
|
|
|
|
def _check_cycles_alt_sym(perm): |
|
""" |
|
Checks for cycles of prime length p with n/2 < p < n-2. |
|
|
|
Explanation |
|
=========== |
|
|
|
Here `n` is the degree of the permutation. This is a helper function for |
|
the function is_alt_sym from sympy.combinatorics.perm_groups. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.util import _check_cycles_alt_sym |
|
>>> from sympy.combinatorics import Permutation |
|
>>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]]) |
|
>>> _check_cycles_alt_sym(a) |
|
False |
|
>>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]]) |
|
>>> _check_cycles_alt_sym(b) |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym |
|
|
|
""" |
|
n = perm.size |
|
af = perm.array_form |
|
current_len = 0 |
|
total_len = 0 |
|
used = set() |
|
for i in range(n//2): |
|
if i not in used and i < n//2 - total_len: |
|
current_len = 1 |
|
used.add(i) |
|
j = i |
|
while af[j] != i: |
|
current_len += 1 |
|
j = af[j] |
|
used.add(j) |
|
total_len += current_len |
|
if current_len > n//2 and current_len < n - 2 and isprime(current_len): |
|
return True |
|
return False |
|
|
|
|
|
def _distribute_gens_by_base(base, gens): |
|
r""" |
|
Distribute the group elements ``gens`` by membership in basic stabilizers. |
|
|
|
Explanation |
|
=========== |
|
|
|
Notice that for a base `(b_1, b_2, \dots, b_k)`, the basic stabilizers |
|
are defined as `G^{(i)} = G_{b_1, \dots, b_{i-1}}` for |
|
`i \in\{1, 2, \dots, k\}`. |
|
|
|
Parameters |
|
========== |
|
|
|
base : a sequence of points in `\{0, 1, \dots, n-1\}` |
|
gens : a list of elements of a permutation group of degree `n`. |
|
|
|
Returns |
|
======= |
|
|
|
List of length `k`, where `k` is |
|
the length of ``base``. The `i`-th entry contains those elements in |
|
``gens`` which fix the first `i` elements of ``base`` (so that the |
|
`0`-th entry is equal to ``gens`` itself). If no element fixes the first |
|
`i` elements of ``base``, the `i`-th element is set to a list containing |
|
the identity element. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> from sympy.combinatorics.util import _distribute_gens_by_base |
|
>>> D = DihedralGroup(3) |
|
>>> D.schreier_sims() |
|
>>> D.strong_gens |
|
[(0 1 2), (0 2), (1 2)] |
|
>>> D.base |
|
[0, 1] |
|
>>> _distribute_gens_by_base(D.base, D.strong_gens) |
|
[[(0 1 2), (0 2), (1 2)], |
|
[(1 2)]] |
|
|
|
See Also |
|
======== |
|
|
|
_strong_gens_from_distr, _orbits_transversals_from_bsgs, |
|
_handle_precomputed_bsgs |
|
|
|
""" |
|
base_len = len(base) |
|
degree = gens[0].size |
|
stabs = [[] for _ in range(base_len)] |
|
max_stab_index = 0 |
|
for gen in gens: |
|
j = 0 |
|
while j < base_len - 1 and gen._array_form[base[j]] == base[j]: |
|
j += 1 |
|
if j > max_stab_index: |
|
max_stab_index = j |
|
for k in range(j + 1): |
|
stabs[k].append(gen) |
|
for i in range(max_stab_index + 1, base_len): |
|
stabs[i].append(_af_new(list(range(degree)))) |
|
return stabs |
|
|
|
|
|
def _handle_precomputed_bsgs(base, strong_gens, transversals=None, |
|
basic_orbits=None, strong_gens_distr=None): |
|
""" |
|
Calculate BSGS-related structures from those present. |
|
|
|
Explanation |
|
=========== |
|
|
|
The base and strong generating set must be provided; if any of the |
|
transversals, basic orbits or distributed strong generators are not |
|
provided, they will be calculated from the base and strong generating set. |
|
|
|
Parameters |
|
========== |
|
|
|
``base`` - the base |
|
``strong_gens`` - the strong generators |
|
``transversals`` - basic transversals |
|
``basic_orbits`` - basic orbits |
|
``strong_gens_distr`` - strong generators distributed by membership in basic |
|
stabilizers |
|
|
|
Returns |
|
======= |
|
|
|
``(transversals, basic_orbits, strong_gens_distr)`` where ``transversals`` |
|
are the basic transversals, ``basic_orbits`` are the basic orbits, and |
|
``strong_gens_distr`` are the strong generators distributed by membership |
|
in basic stabilizers. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup |
|
>>> from sympy.combinatorics.util import _handle_precomputed_bsgs |
|
>>> D = DihedralGroup(3) |
|
>>> D.schreier_sims() |
|
>>> _handle_precomputed_bsgs(D.base, D.strong_gens, |
|
... basic_orbits=D.basic_orbits) |
|
([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]]) |
|
|
|
See Also |
|
======== |
|
|
|
_orbits_transversals_from_bsgs, _distribute_gens_by_base |
|
|
|
""" |
|
if strong_gens_distr is None: |
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) |
|
if transversals is None: |
|
if basic_orbits is None: |
|
basic_orbits, transversals = \ |
|
_orbits_transversals_from_bsgs(base, strong_gens_distr) |
|
else: |
|
transversals = \ |
|
_orbits_transversals_from_bsgs(base, strong_gens_distr, |
|
transversals_only=True) |
|
else: |
|
if basic_orbits is None: |
|
base_len = len(base) |
|
basic_orbits = [None]*base_len |
|
for i in range(base_len): |
|
basic_orbits[i] = list(transversals[i].keys()) |
|
return transversals, basic_orbits, strong_gens_distr |
|
|
|
|
|
def _orbits_transversals_from_bsgs(base, strong_gens_distr, |
|
transversals_only=False, slp=False): |
|
""" |
|
Compute basic orbits and transversals from a base and strong generating set. |
|
|
|
Explanation |
|
=========== |
|
|
|
The generators are provided as distributed across the basic stabilizers. |
|
If the optional argument ``transversals_only`` is set to True, only the |
|
transversals are returned. |
|
|
|
Parameters |
|
========== |
|
|
|
``base`` - The base. |
|
``strong_gens_distr`` - Strong generators distributed by membership in basic |
|
stabilizers. |
|
``transversals_only`` - bool |
|
A flag switching between returning only the |
|
transversals and both orbits and transversals. |
|
``slp`` - |
|
If ``True``, return a list of dictionaries containing the |
|
generator presentations of the elements of the transversals, |
|
i.e. the list of indices of generators from ``strong_gens_distr[i]`` |
|
such that their product is the relevant transversal element. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricGroup |
|
>>> from sympy.combinatorics.util import _distribute_gens_by_base |
|
>>> S = SymmetricGroup(3) |
|
>>> S.schreier_sims() |
|
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) |
|
>>> (S.base, strong_gens_distr) |
|
([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]]) |
|
|
|
See Also |
|
======== |
|
|
|
_distribute_gens_by_base, _handle_precomputed_bsgs |
|
|
|
""" |
|
from sympy.combinatorics.perm_groups import _orbit_transversal |
|
base_len = len(base) |
|
degree = strong_gens_distr[0][0].size |
|
transversals = [None]*base_len |
|
slps = [None]*base_len |
|
if transversals_only is False: |
|
basic_orbits = [None]*base_len |
|
for i in range(base_len): |
|
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], |
|
base[i], pairs=True, slp=True) |
|
transversals[i] = dict(transversals[i]) |
|
if transversals_only is False: |
|
basic_orbits[i] = list(transversals[i].keys()) |
|
if transversals_only: |
|
return transversals |
|
else: |
|
if not slp: |
|
return basic_orbits, transversals |
|
return basic_orbits, transversals, slps |
|
|
|
|
|
def _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None): |
|
""" |
|
Remove redundant generators from a strong generating set. |
|
|
|
Parameters |
|
========== |
|
|
|
``base`` - a base |
|
``strong_gens`` - a strong generating set relative to ``base`` |
|
``basic_orbits`` - basic orbits |
|
``strong_gens_distr`` - strong generators distributed by membership in basic |
|
stabilizers |
|
|
|
Returns |
|
======= |
|
|
|
A strong generating set with respect to ``base`` which is a subset of |
|
``strong_gens``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricGroup |
|
>>> from sympy.combinatorics.util import _remove_gens |
|
>>> from sympy.combinatorics.testutil import _verify_bsgs |
|
>>> S = SymmetricGroup(15) |
|
>>> base, strong_gens = S.schreier_sims_incremental() |
|
>>> new_gens = _remove_gens(base, strong_gens) |
|
>>> len(new_gens) |
|
14 |
|
>>> _verify_bsgs(S, base, new_gens) |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
This procedure is outlined in [1],p.95. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Holt, D., Eick, B., O'Brien, E. |
|
"Handbook of computational group theory" |
|
|
|
""" |
|
from sympy.combinatorics.perm_groups import _orbit |
|
base_len = len(base) |
|
degree = strong_gens[0].size |
|
if strong_gens_distr is None: |
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) |
|
if basic_orbits is None: |
|
basic_orbits = [] |
|
for i in range(base_len): |
|
basic_orbit = _orbit(degree, strong_gens_distr[i], base[i]) |
|
basic_orbits.append(basic_orbit) |
|
strong_gens_distr.append([]) |
|
res = strong_gens[:] |
|
for i in range(base_len - 1, -1, -1): |
|
gens_copy = strong_gens_distr[i][:] |
|
for gen in strong_gens_distr[i]: |
|
if gen not in strong_gens_distr[i + 1]: |
|
temp_gens = gens_copy[:] |
|
temp_gens.remove(gen) |
|
if temp_gens == []: |
|
continue |
|
temp_orbit = _orbit(degree, temp_gens, base[i]) |
|
if temp_orbit == basic_orbits[i]: |
|
gens_copy.remove(gen) |
|
res.remove(gen) |
|
return res |
|
|
|
|
|
def _strip(g, base, orbits, transversals): |
|
""" |
|
Attempt to decompose a permutation using a (possibly partial) BSGS |
|
structure. |
|
|
|
Explanation |
|
=========== |
|
|
|
This is done by treating the sequence ``base`` as an actual base, and |
|
the orbits ``orbits`` and transversals ``transversals`` as basic orbits and |
|
transversals relative to it. |
|
|
|
This process is called "sifting". A sift is unsuccessful when a certain |
|
orbit element is not found or when after the sift the decomposition |
|
does not end with the identity element. |
|
|
|
The argument ``transversals`` is a list of dictionaries that provides |
|
transversal elements for the orbits ``orbits``. |
|
|
|
Parameters |
|
========== |
|
|
|
``g`` - permutation to be decomposed |
|
``base`` - sequence of points |
|
``orbits`` - a list in which the ``i``-th entry is an orbit of ``base[i]`` |
|
under some subgroup of the pointwise stabilizer of ` |
|
`base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit |
|
in this function since the only information we need is encoded in the orbits |
|
and transversals |
|
``transversals`` - a list of orbit transversals associated with the orbits |
|
``orbits``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import Permutation, SymmetricGroup |
|
>>> from sympy.combinatorics.util import _strip |
|
>>> S = SymmetricGroup(5) |
|
>>> S.schreier_sims() |
|
>>> g = Permutation([0, 2, 3, 1, 4]) |
|
>>> _strip(g, S.base, S.basic_orbits, S.basic_transversals) |
|
((4), 5) |
|
|
|
Notes |
|
===== |
|
|
|
The algorithm is described in [1],pp.89-90. The reason for returning |
|
both the current state of the element being decomposed and the level |
|
at which the sifting ends is that they provide important information for |
|
the randomized version of the Schreier-Sims algorithm. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Holt, D., Eick, B., O'Brien, E."Handbook of computational group theory" |
|
|
|
See Also |
|
======== |
|
|
|
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims |
|
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random |
|
|
|
""" |
|
h = g._array_form |
|
base_len = len(base) |
|
for i in range(base_len): |
|
beta = h[base[i]] |
|
if beta == base[i]: |
|
continue |
|
if beta not in orbits[i]: |
|
return _af_new(h), i + 1 |
|
u = transversals[i][beta]._array_form |
|
h = _af_rmul(_af_invert(u), h) |
|
return _af_new(h), base_len + 1 |
|
|
|
|
|
def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}): |
|
""" |
|
optimized _strip, with h, transversals and result in array form |
|
if the stripped elements is the identity, it returns False, base_len + 1 |
|
|
|
j h[base[i]] == base[i] for i <= j |
|
|
|
""" |
|
base_len = len(base) |
|
for i in range(j+1, base_len): |
|
beta = h[base[i]] |
|
if beta == base[i]: |
|
continue |
|
if beta not in orbits[i]: |
|
if not slp: |
|
return h, i + 1 |
|
return h, i + 1, slp |
|
u = transversals[i][beta] |
|
if h == u: |
|
if not slp: |
|
return False, base_len + 1 |
|
return False, base_len + 1, slp |
|
h = _af_rmul(_af_invert(u), h) |
|
if slp: |
|
u_slp = slps[i][beta][:] |
|
u_slp.reverse() |
|
u_slp = [(i, (g,)) for g in u_slp] |
|
slp = u_slp + slp |
|
if not slp: |
|
return h, base_len + 1 |
|
return h, base_len + 1, slp |
|
|
|
|
|
def _strong_gens_from_distr(strong_gens_distr): |
|
""" |
|
Retrieve strong generating set from generators of basic stabilizers. |
|
|
|
This is just the union of the generators of the first and second basic |
|
stabilizers. |
|
|
|
Parameters |
|
========== |
|
|
|
``strong_gens_distr`` - strong generators distributed by membership in basic |
|
stabilizers |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.combinatorics import SymmetricGroup |
|
>>> from sympy.combinatorics.util import (_strong_gens_from_distr, |
|
... _distribute_gens_by_base) |
|
>>> S = SymmetricGroup(3) |
|
>>> S.schreier_sims() |
|
>>> S.strong_gens |
|
[(0 1 2), (2)(0 1), (1 2)] |
|
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens) |
|
>>> _strong_gens_from_distr(strong_gens_distr) |
|
[(0 1 2), (2)(0 1), (1 2)] |
|
|
|
See Also |
|
======== |
|
|
|
_distribute_gens_by_base |
|
|
|
""" |
|
if len(strong_gens_distr) == 1: |
|
return strong_gens_distr[0][:] |
|
else: |
|
result = strong_gens_distr[0] |
|
for gen in strong_gens_distr[1]: |
|
if gen not in result: |
|
result.append(gen) |
|
return result |
|
|