|
"""Line-like geometrical entities. |
|
|
|
Contains |
|
======== |
|
LinearEntity |
|
Line |
|
Ray |
|
Segment |
|
LinearEntity2D |
|
Line2D |
|
Ray2D |
|
Segment2D |
|
LinearEntity3D |
|
Line3D |
|
Ray3D |
|
Segment3D |
|
|
|
""" |
|
|
|
from sympy.core.containers import Tuple |
|
from sympy.core.evalf import N |
|
from sympy.core.expr import Expr |
|
from sympy.core.numbers import Rational, oo, Float |
|
from sympy.core.relational import Eq |
|
from sympy.core.singleton import S |
|
from sympy.core.sorting import ordered |
|
from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol |
|
from sympy.core.sympify import sympify |
|
from sympy.functions.elementary.piecewise import Piecewise |
|
from sympy.functions.elementary.trigonometric import (_pi_coeff, acos, tan, atan2) |
|
from .entity import GeometryEntity, GeometrySet |
|
from .exceptions import GeometryError |
|
from .point import Point, Point3D |
|
from .util import find, intersection |
|
from sympy.logic.boolalg import And |
|
from sympy.matrices import Matrix |
|
from sympy.sets.sets import Intersection |
|
from sympy.simplify.simplify import simplify |
|
from sympy.solvers.solvers import solve |
|
from sympy.solvers.solveset import linear_coeffs |
|
from sympy.utilities.misc import Undecidable, filldedent |
|
|
|
|
|
import random |
|
|
|
|
|
t, u = [Dummy('line_dummy') for i in range(2)] |
|
|
|
|
|
class LinearEntity(GeometrySet): |
|
"""A base class for all linear entities (Line, Ray and Segment) |
|
in n-dimensional Euclidean space. |
|
|
|
Attributes |
|
========== |
|
|
|
ambient_dimension |
|
direction |
|
length |
|
p1 |
|
p2 |
|
points |
|
|
|
Notes |
|
===== |
|
|
|
This is an abstract class and is not meant to be instantiated. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.entity.GeometryEntity |
|
|
|
""" |
|
def __new__(cls, p1, p2=None, **kwargs): |
|
p1, p2 = Point._normalize_dimension(p1, p2) |
|
if p1 == p2: |
|
|
|
|
|
raise ValueError( |
|
"%s.__new__ requires two unique Points." % cls.__name__) |
|
if len(p1) != len(p2): |
|
raise ValueError( |
|
"%s.__new__ requires two Points of equal dimension." % cls.__name__) |
|
|
|
return GeometryEntity.__new__(cls, p1, p2, **kwargs) |
|
|
|
def __contains__(self, other): |
|
"""Return a definitive answer or else raise an error if it cannot |
|
be determined that other is on the boundaries of self.""" |
|
result = self.contains(other) |
|
|
|
if result is not None: |
|
return result |
|
else: |
|
raise Undecidable( |
|
"Cannot decide whether '%s' contains '%s'" % (self, other)) |
|
|
|
def _span_test(self, other): |
|
"""Test whether the point `other` lies in the positive span of `self`. |
|
A point x is 'in front' of a point y if x.dot(y) >= 0. Return |
|
-1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and |
|
and 1 if `other` is in front of `self.p1`.""" |
|
if self.p1 == other: |
|
return 0 |
|
|
|
rel_pos = other - self.p1 |
|
d = self.direction |
|
if d.dot(rel_pos) > 0: |
|
return 1 |
|
return -1 |
|
|
|
@property |
|
def ambient_dimension(self): |
|
"""A property method that returns the dimension of LinearEntity |
|
object. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : LinearEntity |
|
|
|
Returns |
|
======= |
|
|
|
dimension : integer |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(1, 1) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.ambient_dimension |
|
2 |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.ambient_dimension |
|
3 |
|
|
|
""" |
|
return len(self.p1) |
|
|
|
def angle_between(l1, l2): |
|
"""Return the non-reflex angle formed by rays emanating from |
|
the origin with directions the same as the direction vectors |
|
of the linear entities. |
|
|
|
Parameters |
|
========== |
|
|
|
l1 : LinearEntity |
|
l2 : LinearEntity |
|
|
|
Returns |
|
======= |
|
|
|
angle : angle in radians |
|
|
|
Notes |
|
===== |
|
|
|
From the dot product of vectors v1 and v2 it is known that: |
|
|
|
``dot(v1, v2) = |v1|*|v2|*cos(A)`` |
|
|
|
where A is the angle formed between the two vectors. We can |
|
get the directional vectors of the two lines and readily |
|
find the angle between the two using the above formula. |
|
|
|
See Also |
|
======== |
|
|
|
is_perpendicular, Ray2D.closing_angle |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Line |
|
>>> e = Line((0, 0), (1, 0)) |
|
>>> ne = Line((0, 0), (1, 1)) |
|
>>> sw = Line((1, 1), (0, 0)) |
|
>>> ne.angle_between(e) |
|
pi/4 |
|
>>> sw.angle_between(e) |
|
3*pi/4 |
|
|
|
To obtain the non-obtuse angle at the intersection of lines, use |
|
the ``smallest_angle_between`` method: |
|
|
|
>>> sw.smallest_angle_between(e) |
|
pi/4 |
|
|
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0) |
|
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3) |
|
>>> l1.angle_between(l2) |
|
acos(-sqrt(2)/3) |
|
>>> l1.smallest_angle_between(l2) |
|
acos(sqrt(2)/3) |
|
""" |
|
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): |
|
raise TypeError('Must pass only LinearEntity objects') |
|
|
|
v1, v2 = l1.direction, l2.direction |
|
return acos(v1.dot(v2)/(abs(v1)*abs(v2))) |
|
|
|
def smallest_angle_between(l1, l2): |
|
"""Return the smallest angle formed at the intersection of the |
|
lines containing the linear entities. |
|
|
|
Parameters |
|
========== |
|
|
|
l1 : LinearEntity |
|
l2 : LinearEntity |
|
|
|
Returns |
|
======= |
|
|
|
angle : angle in radians |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2) |
|
>>> l1, l2 = Line(p1, p2), Line(p1, p3) |
|
>>> l1.smallest_angle_between(l2) |
|
pi/4 |
|
|
|
See Also |
|
======== |
|
|
|
angle_between, is_perpendicular, Ray2D.closing_angle |
|
""" |
|
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): |
|
raise TypeError('Must pass only LinearEntity objects') |
|
|
|
v1, v2 = l1.direction, l2.direction |
|
return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2))) |
|
|
|
def arbitrary_point(self, parameter='t'): |
|
"""A parameterized point on the Line. |
|
|
|
Parameters |
|
========== |
|
|
|
parameter : str, optional |
|
The name of the parameter which will be used for the parametric |
|
point. The default value is 't'. When this parameter is 0, the |
|
first point used to define the line will be returned, and when |
|
it is 1 the second point will be returned. |
|
|
|
Returns |
|
======= |
|
|
|
point : Point |
|
|
|
Raises |
|
====== |
|
|
|
ValueError |
|
When ``parameter`` already appears in the Line's definition. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(1, 0), Point(5, 3) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.arbitrary_point() |
|
Point2D(4*t + 1, 3*t) |
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1) |
|
>>> l1 = Line3D(p1, p2) |
|
>>> l1.arbitrary_point() |
|
Point3D(4*t + 1, 3*t, t) |
|
|
|
""" |
|
t = _symbol(parameter, real=True) |
|
if t.name in (f.name for f in self.free_symbols): |
|
raise ValueError(filldedent(''' |
|
Symbol %s already appears in object |
|
and cannot be used as a parameter. |
|
''' % t.name)) |
|
|
|
|
|
return self.p1 + (self.p2 - self.p1)*t |
|
|
|
@staticmethod |
|
def are_concurrent(*lines): |
|
"""Is a sequence of linear entities concurrent? |
|
|
|
Two or more linear entities are concurrent if they all |
|
intersect at a single point. |
|
|
|
Parameters |
|
========== |
|
|
|
lines |
|
A sequence of linear entities. |
|
|
|
Returns |
|
======= |
|
|
|
True : if the set of linear entities intersect in one point |
|
False : otherwise. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.util.intersection |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(3, 5) |
|
>>> p3, p4 = Point(-2, -2), Point(0, 2) |
|
>>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4) |
|
>>> Line.are_concurrent(l1, l2, l3) |
|
True |
|
>>> l4 = Line(p2, p3) |
|
>>> Line.are_concurrent(l2, l3, l4) |
|
False |
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2) |
|
>>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1) |
|
>>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4) |
|
>>> Line3D.are_concurrent(l1, l2, l3) |
|
True |
|
>>> l4 = Line3D(p2, p3) |
|
>>> Line3D.are_concurrent(l2, l3, l4) |
|
False |
|
|
|
""" |
|
common_points = Intersection(*lines) |
|
if common_points.is_FiniteSet and len(common_points) == 1: |
|
return True |
|
return False |
|
|
|
def contains(self, other): |
|
"""Subclasses should implement this method and should return |
|
True if other is on the boundaries of self; |
|
False if not on the boundaries of self; |
|
None if a determination cannot be made.""" |
|
raise NotImplementedError() |
|
|
|
@property |
|
def direction(self): |
|
"""The direction vector of the LinearEntity. |
|
|
|
Returns |
|
======= |
|
|
|
p : a Point; the ray from the origin to this point is the |
|
direction of `self` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Line |
|
>>> a, b = (1, 1), (1, 3) |
|
>>> Line(a, b).direction |
|
Point2D(0, 2) |
|
>>> Line(b, a).direction |
|
Point2D(0, -2) |
|
|
|
This can be reported so the distance from the origin is 1: |
|
|
|
>>> Line(b, a).direction.unit |
|
Point2D(0, -1) |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point.unit |
|
|
|
""" |
|
return self.p2 - self.p1 |
|
|
|
def intersection(self, other): |
|
"""The intersection with another geometrical entity. |
|
|
|
Parameters |
|
========== |
|
|
|
o : Point or LinearEntity |
|
|
|
Returns |
|
======= |
|
|
|
intersection : list of geometrical entities |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line, Segment |
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.intersection(p3) |
|
[Point2D(7, 7)] |
|
>>> p4, p5 = Point(5, 0), Point(0, 3) |
|
>>> l2 = Line(p4, p5) |
|
>>> l1.intersection(l2) |
|
[Point2D(15/8, 15/8)] |
|
>>> p6, p7 = Point(0, 5), Point(2, 6) |
|
>>> s1 = Segment(p6, p7) |
|
>>> l1.intersection(s1) |
|
[] |
|
>>> from sympy import Point3D, Line3D, Segment3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7) |
|
>>> l1 = Line3D(p1, p2) |
|
>>> l1.intersection(p3) |
|
[Point3D(7, 7, 7)] |
|
>>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17)) |
|
>>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8]) |
|
>>> l1.intersection(l2) |
|
[Point3D(1, 1, -3)] |
|
>>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3) |
|
>>> s1 = Segment3D(p6, p7) |
|
>>> l1.intersection(s1) |
|
[] |
|
|
|
""" |
|
def intersect_parallel_rays(ray1, ray2): |
|
if ray1.direction.dot(ray2.direction) > 0: |
|
|
|
|
|
return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1] |
|
else: |
|
|
|
st = ray1._span_test(ray2.p1) |
|
if st < 0: |
|
return [] |
|
elif st == 0: |
|
return [ray2.p1] |
|
return [Segment(ray1.p1, ray2.p1)] |
|
|
|
def intersect_parallel_ray_and_segment(ray, seg): |
|
st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2) |
|
if st1 < 0 and st2 < 0: |
|
return [] |
|
elif st1 >= 0 and st2 >= 0: |
|
return [seg] |
|
elif st1 >= 0: |
|
return [Segment(ray.p1, seg.p1)] |
|
else: |
|
return [Segment(ray.p1, seg.p2)] |
|
|
|
def intersect_parallel_segments(seg1, seg2): |
|
if seg1.contains(seg2): |
|
return [seg2] |
|
if seg2.contains(seg1): |
|
return [seg1] |
|
|
|
|
|
if seg1.direction.dot(seg2.direction) < 0: |
|
seg2 = Segment(seg2.p2, seg2.p1) |
|
|
|
if seg1._span_test(seg2.p1) < 0: |
|
seg1, seg2 = seg2, seg1 |
|
if seg2._span_test(seg1.p2) < 0: |
|
return [] |
|
return [Segment(seg2.p1, seg1.p2)] |
|
|
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
if other.is_Point: |
|
if self.contains(other): |
|
return [other] |
|
else: |
|
return [] |
|
elif isinstance(other, LinearEntity): |
|
|
|
|
|
pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2) |
|
rank = Point.affine_rank(*pts) |
|
|
|
if rank == 1: |
|
|
|
if isinstance(self, Line): |
|
return [other] |
|
if isinstance(other, Line): |
|
return [self] |
|
|
|
if isinstance(self, Ray) and isinstance(other, Ray): |
|
return intersect_parallel_rays(self, other) |
|
if isinstance(self, Ray) and isinstance(other, Segment): |
|
return intersect_parallel_ray_and_segment(self, other) |
|
if isinstance(self, Segment) and isinstance(other, Ray): |
|
return intersect_parallel_ray_and_segment(other, self) |
|
if isinstance(self, Segment) and isinstance(other, Segment): |
|
return intersect_parallel_segments(self, other) |
|
elif rank == 2: |
|
|
|
l1 = Line(*pts[:2]) |
|
l2 = Line(*pts[2:]) |
|
|
|
|
|
|
|
|
|
if l1.direction.is_scalar_multiple(l2.direction): |
|
return [] |
|
|
|
|
|
|
|
m = Matrix([l1.direction, -l2.direction]).transpose() |
|
v = Matrix([l2.p1 - l1.p1]).transpose() |
|
|
|
|
|
m_rref, pivots = m.col_insert(2, v).rref(simplify=True) |
|
|
|
if len(pivots) != 2: |
|
raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v)) |
|
coeff = m_rref[0, 2] |
|
line_intersection = l1.direction*coeff + self.p1 |
|
|
|
|
|
if isinstance(self, Line) and isinstance(other, Line): |
|
return [line_intersection] |
|
|
|
if ((isinstance(self, Line) or |
|
self.contains(line_intersection)) and |
|
other.contains(line_intersection)): |
|
return [line_intersection] |
|
if not self.atoms(Float) and not other.atoms(Float): |
|
|
|
|
|
|
|
return [] |
|
|
|
|
|
|
|
|
|
tu = solve(self.arbitrary_point(t) - other.arbitrary_point(u), |
|
t, u, dict=True)[0] |
|
def ok(p, l): |
|
if isinstance(l, Line): |
|
|
|
return True |
|
if isinstance(l, Ray): |
|
|
|
return p.is_nonnegative |
|
if isinstance(l, Segment): |
|
|
|
return p.is_nonnegative and (1 - p).is_nonnegative |
|
raise ValueError("unexpected line type") |
|
if ok(tu[t], self) and ok(tu[u], other): |
|
return [line_intersection] |
|
return [] |
|
else: |
|
|
|
return [] |
|
|
|
return other.intersection(self) |
|
|
|
def is_parallel(l1, l2): |
|
"""Are two linear entities parallel? |
|
|
|
Parameters |
|
========== |
|
|
|
l1 : LinearEntity |
|
l2 : LinearEntity |
|
|
|
Returns |
|
======= |
|
|
|
True : if l1 and l2 are parallel, |
|
False : otherwise. |
|
|
|
See Also |
|
======== |
|
|
|
coefficients |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(1, 1) |
|
>>> p3, p4 = Point(3, 4), Point(6, 7) |
|
>>> l1, l2 = Line(p1, p2), Line(p3, p4) |
|
>>> Line.is_parallel(l1, l2) |
|
True |
|
>>> p5 = Point(6, 6) |
|
>>> l3 = Line(p3, p5) |
|
>>> Line.is_parallel(l1, l3) |
|
False |
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5) |
|
>>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11) |
|
>>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4) |
|
>>> Line3D.is_parallel(l1, l2) |
|
True |
|
>>> p5 = Point3D(6, 6, 6) |
|
>>> l3 = Line3D(p3, p5) |
|
>>> Line3D.is_parallel(l1, l3) |
|
False |
|
|
|
""" |
|
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): |
|
raise TypeError('Must pass only LinearEntity objects') |
|
|
|
return l1.direction.is_scalar_multiple(l2.direction) |
|
|
|
def is_perpendicular(l1, l2): |
|
"""Are two linear entities perpendicular? |
|
|
|
Parameters |
|
========== |
|
|
|
l1 : LinearEntity |
|
l2 : LinearEntity |
|
|
|
Returns |
|
======= |
|
|
|
True : if l1 and l2 are perpendicular, |
|
False : otherwise. |
|
|
|
See Also |
|
======== |
|
|
|
coefficients |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1) |
|
>>> l1, l2 = Line(p1, p2), Line(p1, p3) |
|
>>> l1.is_perpendicular(l2) |
|
True |
|
>>> p4 = Point(5, 3) |
|
>>> l3 = Line(p1, p4) |
|
>>> l1.is_perpendicular(l3) |
|
False |
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0) |
|
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3) |
|
>>> l1.is_perpendicular(l2) |
|
False |
|
>>> p4 = Point3D(5, 3, 7) |
|
>>> l3 = Line3D(p1, p4) |
|
>>> l1.is_perpendicular(l3) |
|
False |
|
|
|
""" |
|
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): |
|
raise TypeError('Must pass only LinearEntity objects') |
|
|
|
return S.Zero.equals(l1.direction.dot(l2.direction)) |
|
|
|
def is_similar(self, other): |
|
""" |
|
Return True if self and other are contained in the same line. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3) |
|
>>> l1 = Line(p1, p2) |
|
>>> l2 = Line(p1, p3) |
|
>>> l1.is_similar(l2) |
|
True |
|
""" |
|
l = Line(self.p1, self.p2) |
|
return l.contains(other) |
|
|
|
@property |
|
def length(self): |
|
""" |
|
The length of the line. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(3, 5) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.length |
|
oo |
|
""" |
|
return S.Infinity |
|
|
|
@property |
|
def p1(self): |
|
"""The first defining point of a linear entity. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(5, 3) |
|
>>> l = Line(p1, p2) |
|
>>> l.p1 |
|
Point2D(0, 0) |
|
|
|
""" |
|
return self.args[0] |
|
|
|
@property |
|
def p2(self): |
|
"""The second defining point of a linear entity. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(5, 3) |
|
>>> l = Line(p1, p2) |
|
>>> l.p2 |
|
Point2D(5, 3) |
|
|
|
""" |
|
return self.args[1] |
|
|
|
def parallel_line(self, p): |
|
"""Create a new Line parallel to this linear entity which passes |
|
through the point `p`. |
|
|
|
Parameters |
|
========== |
|
|
|
p : Point |
|
|
|
Returns |
|
======= |
|
|
|
line : Line |
|
|
|
See Also |
|
======== |
|
|
|
is_parallel |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) |
|
>>> l1 = Line(p1, p2) |
|
>>> l2 = l1.parallel_line(p3) |
|
>>> p3 in l2 |
|
True |
|
>>> l1.is_parallel(l2) |
|
True |
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0) |
|
>>> l1 = Line3D(p1, p2) |
|
>>> l2 = l1.parallel_line(p3) |
|
>>> p3 in l2 |
|
True |
|
>>> l1.is_parallel(l2) |
|
True |
|
|
|
""" |
|
p = Point(p, dim=self.ambient_dimension) |
|
return Line(p, p + self.direction) |
|
|
|
def perpendicular_line(self, p): |
|
"""Create a new Line perpendicular to this linear entity which passes |
|
through the point `p`. |
|
|
|
Parameters |
|
========== |
|
|
|
p : Point |
|
|
|
Returns |
|
======= |
|
|
|
line : Line |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0) |
|
>>> L = Line3D(p1, p2) |
|
>>> P = L.perpendicular_line(p3); P |
|
Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29)) |
|
>>> L.is_perpendicular(P) |
|
True |
|
|
|
In 3D the, the first point used to define the line is the point |
|
through which the perpendicular was required to pass; the |
|
second point is (arbitrarily) contained in the given line: |
|
|
|
>>> P.p2 in L |
|
True |
|
""" |
|
p = Point(p, dim=self.ambient_dimension) |
|
if p in self: |
|
p = p + self.direction.orthogonal_direction |
|
return Line(p, self.projection(p)) |
|
|
|
def perpendicular_segment(self, p): |
|
"""Create a perpendicular line segment from `p` to this line. |
|
|
|
The endpoints of the segment are ``p`` and the closest point in |
|
the line containing self. (If self is not a line, the point might |
|
not be in self.) |
|
|
|
Parameters |
|
========== |
|
|
|
p : Point |
|
|
|
Returns |
|
======= |
|
|
|
segment : Segment |
|
|
|
Notes |
|
===== |
|
|
|
Returns `p` itself if `p` is on this linear entity. |
|
|
|
See Also |
|
======== |
|
|
|
perpendicular_line |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2) |
|
>>> l1 = Line(p1, p2) |
|
>>> s1 = l1.perpendicular_segment(p3) |
|
>>> l1.is_perpendicular(s1) |
|
True |
|
>>> p3 in s1 |
|
True |
|
>>> l1.perpendicular_segment(Point(4, 0)) |
|
Segment2D(Point2D(4, 0), Point2D(2, 2)) |
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0) |
|
>>> l1 = Line3D(p1, p2) |
|
>>> s1 = l1.perpendicular_segment(p3) |
|
>>> l1.is_perpendicular(s1) |
|
True |
|
>>> p3 in s1 |
|
True |
|
>>> l1.perpendicular_segment(Point3D(4, 0, 0)) |
|
Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3)) |
|
|
|
""" |
|
p = Point(p, dim=self.ambient_dimension) |
|
if p in self: |
|
return p |
|
l = self.perpendicular_line(p) |
|
|
|
p2, = Intersection(Line(self.p1, self.p2), l) |
|
|
|
return Segment(p, p2) |
|
|
|
@property |
|
def points(self): |
|
"""The two points used to define this linear entity. |
|
|
|
Returns |
|
======= |
|
|
|
points : tuple of Points |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(5, 11) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.points |
|
(Point2D(0, 0), Point2D(5, 11)) |
|
|
|
""" |
|
return (self.p1, self.p2) |
|
|
|
def projection(self, other): |
|
"""Project a point, line, ray, or segment onto this linear entity. |
|
|
|
Parameters |
|
========== |
|
|
|
other : Point or LinearEntity (Line, Ray, Segment) |
|
|
|
Returns |
|
======= |
|
|
|
projection : Point or LinearEntity (Line, Ray, Segment) |
|
The return type matches the type of the parameter ``other``. |
|
|
|
Raises |
|
====== |
|
|
|
GeometryError |
|
When method is unable to perform projection. |
|
|
|
Notes |
|
===== |
|
|
|
A projection involves taking the two points that define |
|
the linear entity and projecting those points onto a |
|
Line and then reforming the linear entity using these |
|
projections. |
|
A point P is projected onto a line L by finding the point |
|
on L that is closest to P. This point is the intersection |
|
of L and the line perpendicular to L that passes through P. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point, perpendicular_line |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line, Segment, Rational |
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.projection(p3) |
|
Point2D(1/4, 1/4) |
|
>>> p4, p5 = Point(10, 0), Point(12, 1) |
|
>>> s1 = Segment(p4, p5) |
|
>>> l1.projection(s1) |
|
Segment2D(Point2D(5, 5), Point2D(13/2, 13/2)) |
|
>>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.projection(p3) |
|
Point3D(2/3, 2/3, 5/3) |
|
>>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3) |
|
>>> s1 = Segment(p4, p5) |
|
>>> l1.projection(s1) |
|
Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6)) |
|
|
|
""" |
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
|
|
def proj_point(p): |
|
return Point.project(p - self.p1, self.direction) + self.p1 |
|
|
|
if isinstance(other, Point): |
|
return proj_point(other) |
|
elif isinstance(other, LinearEntity): |
|
p1, p2 = proj_point(other.p1), proj_point(other.p2) |
|
|
|
if p1 == p2: |
|
return p1 |
|
projected = other.__class__(p1, p2) |
|
projected = Intersection(self, projected) |
|
if projected.is_empty: |
|
return projected |
|
|
|
if projected.is_FiniteSet and len(projected) == 1: |
|
|
|
a, = projected |
|
return a |
|
|
|
if self.direction.dot(projected.direction) < 0: |
|
p1, p2 = projected.args |
|
projected = projected.func(p2, p1) |
|
return projected |
|
|
|
raise GeometryError( |
|
"Do not know how to project %s onto %s" % (other, self)) |
|
|
|
def random_point(self, seed=None): |
|
"""A random point on a LinearEntity. |
|
|
|
Returns |
|
======= |
|
|
|
point : Point |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line, Ray, Segment |
|
>>> p1, p2 = Point(0, 0), Point(5, 3) |
|
>>> line = Line(p1, p2) |
|
>>> r = line.random_point(seed=42) # seed value is optional |
|
>>> r.n(3) |
|
Point2D(-0.72, -0.432) |
|
>>> r in line |
|
True |
|
>>> Ray(p1, p2).random_point(seed=42).n(3) |
|
Point2D(0.72, 0.432) |
|
>>> Segment(p1, p2).random_point(seed=42).n(3) |
|
Point2D(3.2, 1.92) |
|
|
|
""" |
|
if seed is not None: |
|
rng = random.Random(seed) |
|
else: |
|
rng = random |
|
pt = self.arbitrary_point(t) |
|
if isinstance(self, Ray): |
|
v = abs(rng.gauss(0, 1)) |
|
elif isinstance(self, Segment): |
|
v = rng.random() |
|
elif isinstance(self, Line): |
|
v = rng.gauss(0, 1) |
|
else: |
|
raise NotImplementedError('unhandled line type') |
|
return pt.subs(t, Rational(v)) |
|
|
|
def bisectors(self, other): |
|
"""Returns the perpendicular lines which pass through the intersections |
|
of self and other that are in the same plane. |
|
|
|
Parameters |
|
========== |
|
|
|
line : Line3D |
|
|
|
Returns |
|
======= |
|
|
|
list: two Line instances |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Line3D |
|
>>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) |
|
>>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0)) |
|
>>> r1.bisectors(r2) |
|
[Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))] |
|
|
|
""" |
|
if not isinstance(other, LinearEntity): |
|
raise GeometryError("Expecting LinearEntity, not %s" % other) |
|
|
|
l1, l2 = self, other |
|
|
|
|
|
|
|
if l1.p1.ambient_dimension != l2.p1.ambient_dimension: |
|
if isinstance(l1, Line2D): |
|
l1, l2 = l2, l1 |
|
_, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore') |
|
_, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore') |
|
l2 = Line(p1, p2) |
|
|
|
point = intersection(l1, l2) |
|
|
|
|
|
if not point: |
|
raise GeometryError("The lines do not intersect") |
|
else: |
|
pt = point[0] |
|
if isinstance(pt, Line): |
|
|
|
return [self] |
|
|
|
|
|
d1 = l1.direction.unit |
|
d2 = l2.direction.unit |
|
|
|
bis1 = Line(pt, pt + d1 + d2) |
|
bis2 = Line(pt, pt + d1 - d2) |
|
|
|
return [bis1, bis2] |
|
|
|
|
|
class Line(LinearEntity): |
|
"""An infinite line in space. |
|
|
|
A 2D line is declared with two distinct points, point and slope, or |
|
an equation. A 3D line may be defined with a point and a direction ratio. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point |
|
p2 : Point |
|
slope : SymPy expression |
|
direction_ratio : list |
|
equation : equation of a line |
|
|
|
Notes |
|
===== |
|
|
|
`Line` will automatically subclass to `Line2D` or `Line3D` based |
|
on the dimension of `p1`. The `slope` argument is only relevant |
|
for `Line2D` and the `direction_ratio` argument is only relevant |
|
for `Line3D`. |
|
|
|
The order of the points will define the direction of the line |
|
which is used when calculating the angle between lines. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
sympy.geometry.line.Line2D |
|
sympy.geometry.line.Line3D |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Line, Segment, Point, Eq |
|
>>> from sympy.abc import x, y, a, b |
|
|
|
>>> L = Line(Point(2,3), Point(3,5)) |
|
>>> L |
|
Line2D(Point2D(2, 3), Point2D(3, 5)) |
|
>>> L.points |
|
(Point2D(2, 3), Point2D(3, 5)) |
|
>>> L.equation() |
|
-2*x + y + 1 |
|
>>> L.coefficients |
|
(-2, 1, 1) |
|
|
|
Instantiate with keyword ``slope``: |
|
|
|
>>> Line(Point(0, 0), slope=0) |
|
Line2D(Point2D(0, 0), Point2D(1, 0)) |
|
|
|
Instantiate with another linear object |
|
|
|
>>> s = Segment((0, 0), (0, 1)) |
|
>>> Line(s).equation() |
|
x |
|
|
|
The line corresponding to an equation in the for `ax + by + c = 0`, |
|
can be entered: |
|
|
|
>>> Line(3*x + y + 18) |
|
Line2D(Point2D(0, -18), Point2D(1, -21)) |
|
|
|
If `x` or `y` has a different name, then they can be specified, too, |
|
as a string (to match the name) or symbol: |
|
|
|
>>> Line(Eq(3*a + b, -18), x='a', y=b) |
|
Line2D(Point2D(0, -18), Point2D(1, -21)) |
|
""" |
|
def __new__(cls, *args, **kwargs): |
|
if len(args) == 1 and isinstance(args[0], (Expr, Eq)): |
|
missing = uniquely_named_symbol('?', args) |
|
if not kwargs: |
|
x = 'x' |
|
y = 'y' |
|
else: |
|
x = kwargs.pop('x', missing) |
|
y = kwargs.pop('y', missing) |
|
if kwargs: |
|
raise ValueError('expecting only x and y as keywords') |
|
|
|
equation = args[0] |
|
if isinstance(equation, Eq): |
|
equation = equation.lhs - equation.rhs |
|
|
|
def find_or_missing(x): |
|
try: |
|
return find(x, equation) |
|
except ValueError: |
|
return missing |
|
x = find_or_missing(x) |
|
y = find_or_missing(y) |
|
|
|
a, b, c = linear_coeffs(equation, x, y) |
|
|
|
if b: |
|
return Line((0, -c/b), slope=-a/b) |
|
if a: |
|
return Line((-c/a, 0), slope=oo) |
|
|
|
raise ValueError('not found in equation: %s' % (set('xy') - {x, y})) |
|
|
|
else: |
|
if len(args) > 0: |
|
p1 = args[0] |
|
if len(args) > 1: |
|
p2 = args[1] |
|
else: |
|
p2 = None |
|
|
|
if isinstance(p1, LinearEntity): |
|
if p2: |
|
raise ValueError('If p1 is a LinearEntity, p2 must be None.') |
|
dim = len(p1.p1) |
|
else: |
|
p1 = Point(p1) |
|
dim = len(p1) |
|
if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim: |
|
p2 = Point(p2) |
|
|
|
if dim == 2: |
|
return Line2D(p1, p2, **kwargs) |
|
elif dim == 3: |
|
return Line3D(p1, p2, **kwargs) |
|
return LinearEntity.__new__(cls, p1, p2, **kwargs) |
|
|
|
def contains(self, other): |
|
""" |
|
Return True if `other` is on this Line, or False otherwise. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Line,Point |
|
>>> p1, p2 = Point(0, 1), Point(3, 4) |
|
>>> l = Line(p1, p2) |
|
>>> l.contains(p1) |
|
True |
|
>>> l.contains((0, 1)) |
|
True |
|
>>> l.contains((0, 0)) |
|
False |
|
>>> a = (0, 0, 0) |
|
>>> b = (1, 1, 1) |
|
>>> c = (2, 2, 2) |
|
>>> l1 = Line(a, b) |
|
>>> l2 = Line(b, a) |
|
>>> l1 == l2 |
|
False |
|
>>> l1 in l2 |
|
True |
|
|
|
""" |
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
if isinstance(other, Point): |
|
return Point.is_collinear(other, self.p1, self.p2) |
|
if isinstance(other, LinearEntity): |
|
return Point.is_collinear(self.p1, self.p2, other.p1, other.p2) |
|
return False |
|
|
|
def distance(self, other): |
|
""" |
|
Finds the shortest distance between a line and a point. |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError is raised if `other` is not a Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(1, 1) |
|
>>> s = Line(p1, p2) |
|
>>> s.distance(Point(-1, 1)) |
|
sqrt(2) |
|
>>> s.distance((-1, 2)) |
|
3*sqrt(2)/2 |
|
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1) |
|
>>> s = Line(p1, p2) |
|
>>> s.distance(Point(-1, 1, 1)) |
|
2*sqrt(6)/3 |
|
>>> s.distance((-1, 1, 1)) |
|
2*sqrt(6)/3 |
|
|
|
""" |
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
if self.contains(other): |
|
return S.Zero |
|
return self.perpendicular_segment(other).length |
|
|
|
def equals(self, other): |
|
"""Returns True if self and other are the same mathematical entities""" |
|
if not isinstance(other, Line): |
|
return False |
|
return Point.is_collinear(self.p1, other.p1, self.p2, other.p2) |
|
|
|
def plot_interval(self, parameter='t'): |
|
"""The plot interval for the default geometric plot of line. Gives |
|
values that will produce a line that is +/- 5 units long (where a |
|
unit is the distance between the two points that define the line). |
|
|
|
Parameters |
|
========== |
|
|
|
parameter : str, optional |
|
Default value is 't'. |
|
|
|
Returns |
|
======= |
|
|
|
plot_interval : list (plot interval) |
|
[parameter, lower_bound, upper_bound] |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(5, 3) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.plot_interval() |
|
[t, -5, 5] |
|
|
|
""" |
|
t = _symbol(parameter, real=True) |
|
return [t, -5, 5] |
|
|
|
|
|
class Ray(LinearEntity): |
|
"""A Ray is a semi-line in the space with a source point and a direction. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point |
|
The source of the Ray |
|
p2 : Point or radian value |
|
This point determines the direction in which the Ray propagates. |
|
If given as an angle it is interpreted in radians with the positive |
|
direction being ccw. |
|
|
|
Attributes |
|
========== |
|
|
|
source |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.Ray2D |
|
sympy.geometry.line.Ray3D |
|
sympy.geometry.point.Point |
|
sympy.geometry.line.Line |
|
|
|
Notes |
|
===== |
|
|
|
`Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the |
|
dimension of `p1`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Ray, Point, pi |
|
>>> r = Ray(Point(2, 3), Point(3, 5)) |
|
>>> r |
|
Ray2D(Point2D(2, 3), Point2D(3, 5)) |
|
>>> r.points |
|
(Point2D(2, 3), Point2D(3, 5)) |
|
>>> r.source |
|
Point2D(2, 3) |
|
>>> r.xdirection |
|
oo |
|
>>> r.ydirection |
|
oo |
|
>>> r.slope |
|
2 |
|
>>> Ray(Point(0, 0), angle=pi/4).slope |
|
1 |
|
|
|
""" |
|
def __new__(cls, p1, p2=None, **kwargs): |
|
p1 = Point(p1) |
|
if p2 is not None: |
|
p1, p2 = Point._normalize_dimension(p1, Point(p2)) |
|
dim = len(p1) |
|
|
|
if dim == 2: |
|
return Ray2D(p1, p2, **kwargs) |
|
elif dim == 3: |
|
return Ray3D(p1, p2, **kwargs) |
|
return LinearEntity.__new__(cls, p1, p2, **kwargs) |
|
|
|
def _svg(self, scale_factor=1., fill_color="#66cc99"): |
|
"""Returns SVG path element for the LinearEntity. |
|
|
|
Parameters |
|
========== |
|
|
|
scale_factor : float |
|
Multiplication factor for the SVG stroke-width. Default is 1. |
|
fill_color : str, optional |
|
Hex string for fill color. Default is "#66cc99". |
|
""" |
|
verts = (N(self.p1), N(self.p2)) |
|
coords = ["{},{}".format(p.x, p.y) for p in verts] |
|
path = "M {} L {}".format(coords[0], " L ".join(coords[1:])) |
|
|
|
return ( |
|
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' |
|
'stroke-width="{0}" opacity="0.6" d="{1}" ' |
|
'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>' |
|
).format(2.*scale_factor, path, fill_color) |
|
|
|
def contains(self, other): |
|
""" |
|
Is other GeometryEntity contained in this Ray? |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Ray,Point,Segment |
|
>>> p1, p2 = Point(0, 0), Point(4, 4) |
|
>>> r = Ray(p1, p2) |
|
>>> r.contains(p1) |
|
True |
|
>>> r.contains((1, 1)) |
|
True |
|
>>> r.contains((1, 3)) |
|
False |
|
>>> s = Segment((1, 1), (2, 2)) |
|
>>> r.contains(s) |
|
True |
|
>>> s = Segment((1, 2), (2, 5)) |
|
>>> r.contains(s) |
|
False |
|
>>> r1 = Ray((2, 2), (3, 3)) |
|
>>> r.contains(r1) |
|
True |
|
>>> r1 = Ray((2, 2), (3, 5)) |
|
>>> r.contains(r1) |
|
False |
|
""" |
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
if isinstance(other, Point): |
|
if Point.is_collinear(self.p1, self.p2, other): |
|
|
|
|
|
|
|
return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero) |
|
return False |
|
elif isinstance(other, Ray): |
|
if Point.is_collinear(self.p1, self.p2, other.p1, other.p2): |
|
return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero) |
|
return False |
|
elif isinstance(other, Segment): |
|
return other.p1 in self and other.p2 in self |
|
|
|
|
|
return False |
|
|
|
def distance(self, other): |
|
""" |
|
Finds the shortest distance between the ray and a point. |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError is raised if `other` is not a Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Ray |
|
>>> p1, p2 = Point(0, 0), Point(1, 1) |
|
>>> s = Ray(p1, p2) |
|
>>> s.distance(Point(-1, -1)) |
|
sqrt(2) |
|
>>> s.distance((-1, 2)) |
|
3*sqrt(2)/2 |
|
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2) |
|
>>> s = Ray(p1, p2) |
|
>>> s |
|
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2)) |
|
>>> s.distance(Point(-1, -1, 2)) |
|
4*sqrt(3)/3 |
|
>>> s.distance((-1, -1, 2)) |
|
4*sqrt(3)/3 |
|
|
|
""" |
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
if self.contains(other): |
|
return S.Zero |
|
|
|
proj = Line(self.p1, self.p2).projection(other) |
|
if self.contains(proj): |
|
return abs(other - proj) |
|
else: |
|
return abs(other - self.source) |
|
|
|
def equals(self, other): |
|
"""Returns True if self and other are the same mathematical entities""" |
|
if not isinstance(other, Ray): |
|
return False |
|
return self.source == other.source and other.p2 in self |
|
|
|
def plot_interval(self, parameter='t'): |
|
"""The plot interval for the default geometric plot of the Ray. Gives |
|
values that will produce a ray that is 10 units long (where a unit is |
|
the distance between the two points that define the ray). |
|
|
|
Parameters |
|
========== |
|
|
|
parameter : str, optional |
|
Default value is 't'. |
|
|
|
Returns |
|
======= |
|
|
|
plot_interval : list |
|
[parameter, lower_bound, upper_bound] |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Ray, pi |
|
>>> r = Ray((0, 0), angle=pi/4) |
|
>>> r.plot_interval() |
|
[t, 0, 10] |
|
|
|
""" |
|
t = _symbol(parameter, real=True) |
|
return [t, 0, 10] |
|
|
|
@property |
|
def source(self): |
|
"""The point from which the ray emanates. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Ray |
|
>>> p1, p2 = Point(0, 0), Point(4, 1) |
|
>>> r1 = Ray(p1, p2) |
|
>>> r1.source |
|
Point2D(0, 0) |
|
>>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5) |
|
>>> r1 = Ray(p2, p1) |
|
>>> r1.source |
|
Point3D(4, 1, 5) |
|
|
|
""" |
|
return self.p1 |
|
|
|
|
|
class Segment(LinearEntity): |
|
"""A line segment in space. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point |
|
p2 : Point |
|
|
|
Attributes |
|
========== |
|
|
|
length : number or SymPy expression |
|
midpoint : Point |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.Segment2D |
|
sympy.geometry.line.Segment3D |
|
sympy.geometry.point.Point |
|
sympy.geometry.line.Line |
|
|
|
Notes |
|
===== |
|
|
|
If 2D or 3D points are used to define `Segment`, it will |
|
be automatically subclassed to `Segment2D` or `Segment3D`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts |
|
Segment2D(Point2D(1, 0), Point2D(1, 1)) |
|
>>> s = Segment(Point(4, 3), Point(1, 1)) |
|
>>> s.points |
|
(Point2D(4, 3), Point2D(1, 1)) |
|
>>> s.slope |
|
2/3 |
|
>>> s.length |
|
sqrt(13) |
|
>>> s.midpoint |
|
Point2D(5/2, 2) |
|
>>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts |
|
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1)) |
|
>>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s |
|
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)) |
|
>>> s.points |
|
(Point3D(4, 3, 9), Point3D(1, 1, 7)) |
|
>>> s.length |
|
sqrt(17) |
|
>>> s.midpoint |
|
Point3D(5/2, 2, 8) |
|
|
|
""" |
|
def __new__(cls, p1, p2, **kwargs): |
|
p1, p2 = Point._normalize_dimension(Point(p1), Point(p2)) |
|
dim = len(p1) |
|
|
|
if dim == 2: |
|
return Segment2D(p1, p2, **kwargs) |
|
elif dim == 3: |
|
return Segment3D(p1, p2, **kwargs) |
|
return LinearEntity.__new__(cls, p1, p2, **kwargs) |
|
|
|
def contains(self, other): |
|
""" |
|
Is the other GeometryEntity contained within this Segment? |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> p1, p2 = Point(0, 1), Point(3, 4) |
|
>>> s = Segment(p1, p2) |
|
>>> s2 = Segment(p2, p1) |
|
>>> s.contains(s2) |
|
True |
|
>>> from sympy import Point3D, Segment3D |
|
>>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5) |
|
>>> s = Segment3D(p1, p2) |
|
>>> s2 = Segment3D(p2, p1) |
|
>>> s.contains(s2) |
|
True |
|
>>> s.contains((p1 + p2)/2) |
|
True |
|
""" |
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
if isinstance(other, Point): |
|
if Point.is_collinear(other, self.p1, self.p2): |
|
if isinstance(self, Segment2D): |
|
|
|
|
|
vert = (1/self.slope).equals(0) |
|
if vert is False: |
|
isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0 |
|
if isin in (True, False): |
|
return isin |
|
if vert is True: |
|
isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0 |
|
if isin in (True, False): |
|
return isin |
|
|
|
d1, d2 = other - self.p1, other - self.p2 |
|
d = self.p2 - self.p1 |
|
|
|
|
|
|
|
try: |
|
|
|
|
|
return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0))) |
|
except TypeError: |
|
raise Undecidable("Cannot determine if {} is in {}".format(other, self)) |
|
if isinstance(other, Segment): |
|
return other.p1 in self and other.p2 in self |
|
|
|
return False |
|
|
|
def equals(self, other): |
|
"""Returns True if self and other are the same mathematical entities""" |
|
return isinstance(other, self.func) and list( |
|
ordered(self.args)) == list(ordered(other.args)) |
|
|
|
def distance(self, other): |
|
""" |
|
Finds the shortest distance between a line segment and a point. |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError is raised if `other` is not a Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> p1, p2 = Point(0, 1), Point(3, 4) |
|
>>> s = Segment(p1, p2) |
|
>>> s.distance(Point(10, 15)) |
|
sqrt(170) |
|
>>> s.distance((0, 12)) |
|
sqrt(73) |
|
>>> from sympy import Point3D, Segment3D |
|
>>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4) |
|
>>> s = Segment3D(p1, p2) |
|
>>> s.distance(Point3D(10, 15, 12)) |
|
sqrt(341) |
|
>>> s.distance((10, 15, 12)) |
|
sqrt(341) |
|
""" |
|
if not isinstance(other, GeometryEntity): |
|
other = Point(other, dim=self.ambient_dimension) |
|
if isinstance(other, Point): |
|
vp1 = other - self.p1 |
|
vp2 = other - self.p2 |
|
|
|
dot_prod_sign_1 = self.direction.dot(vp1) >= 0 |
|
dot_prod_sign_2 = self.direction.dot(vp2) <= 0 |
|
if dot_prod_sign_1 and dot_prod_sign_2: |
|
return Line(self.p1, self.p2).distance(other) |
|
if dot_prod_sign_1 and not dot_prod_sign_2: |
|
return abs(vp2) |
|
if not dot_prod_sign_1 and dot_prod_sign_2: |
|
return abs(vp1) |
|
raise NotImplementedError() |
|
|
|
@property |
|
def length(self): |
|
"""The length of the line segment. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point.distance |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> p1, p2 = Point(0, 0), Point(4, 3) |
|
>>> s1 = Segment(p1, p2) |
|
>>> s1.length |
|
5 |
|
>>> from sympy import Point3D, Segment3D |
|
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3) |
|
>>> s1 = Segment3D(p1, p2) |
|
>>> s1.length |
|
sqrt(34) |
|
|
|
""" |
|
return Point.distance(self.p1, self.p2) |
|
|
|
@property |
|
def midpoint(self): |
|
"""The midpoint of the line segment. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point.midpoint |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> p1, p2 = Point(0, 0), Point(4, 3) |
|
>>> s1 = Segment(p1, p2) |
|
>>> s1.midpoint |
|
Point2D(2, 3/2) |
|
>>> from sympy import Point3D, Segment3D |
|
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3) |
|
>>> s1 = Segment3D(p1, p2) |
|
>>> s1.midpoint |
|
Point3D(2, 3/2, 3/2) |
|
|
|
""" |
|
return Point.midpoint(self.p1, self.p2) |
|
|
|
def perpendicular_bisector(self, p=None): |
|
"""The perpendicular bisector of this segment. |
|
|
|
If no point is specified or the point specified is not on the |
|
bisector then the bisector is returned as a Line. Otherwise a |
|
Segment is returned that joins the point specified and the |
|
intersection of the bisector and the segment. |
|
|
|
Parameters |
|
========== |
|
|
|
p : Point |
|
|
|
Returns |
|
======= |
|
|
|
bisector : Line or Segment |
|
|
|
See Also |
|
======== |
|
|
|
LinearEntity.perpendicular_segment |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1) |
|
>>> s1 = Segment(p1, p2) |
|
>>> s1.perpendicular_bisector() |
|
Line2D(Point2D(3, 3), Point2D(-3, 9)) |
|
|
|
>>> s1.perpendicular_bisector(p3) |
|
Segment2D(Point2D(5, 1), Point2D(3, 3)) |
|
|
|
""" |
|
l = self.perpendicular_line(self.midpoint) |
|
if p is not None: |
|
p2 = Point(p, dim=self.ambient_dimension) |
|
if p2 in l: |
|
return Segment(p2, self.midpoint) |
|
return l |
|
|
|
def plot_interval(self, parameter='t'): |
|
"""The plot interval for the default geometric plot of the Segment gives |
|
values that will produce the full segment in a plot. |
|
|
|
Parameters |
|
========== |
|
|
|
parameter : str, optional |
|
Default value is 't'. |
|
|
|
Returns |
|
======= |
|
|
|
plot_interval : list |
|
[parameter, lower_bound, upper_bound] |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> p1, p2 = Point(0, 0), Point(5, 3) |
|
>>> s1 = Segment(p1, p2) |
|
>>> s1.plot_interval() |
|
[t, 0, 1] |
|
|
|
""" |
|
t = _symbol(parameter, real=True) |
|
return [t, 0, 1] |
|
|
|
|
|
class LinearEntity2D(LinearEntity): |
|
"""A base class for all linear entities (line, ray and segment) |
|
in a 2-dimensional Euclidean space. |
|
|
|
Attributes |
|
========== |
|
|
|
p1 |
|
p2 |
|
coefficients |
|
slope |
|
points |
|
|
|
Notes |
|
===== |
|
|
|
This is an abstract class and is not meant to be instantiated. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.entity.GeometryEntity |
|
|
|
""" |
|
@property |
|
def bounds(self): |
|
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding |
|
rectangle for the geometric figure. |
|
|
|
""" |
|
verts = self.points |
|
xs = [p.x for p in verts] |
|
ys = [p.y for p in verts] |
|
return (min(xs), min(ys), max(xs), max(ys)) |
|
|
|
def perpendicular_line(self, p): |
|
"""Create a new Line perpendicular to this linear entity which passes |
|
through the point `p`. |
|
|
|
Parameters |
|
========== |
|
|
|
p : Point |
|
|
|
Returns |
|
======= |
|
|
|
line : Line |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) |
|
>>> L = Line(p1, p2) |
|
>>> P = L.perpendicular_line(p3); P |
|
Line2D(Point2D(-2, 2), Point2D(-5, 4)) |
|
>>> L.is_perpendicular(P) |
|
True |
|
|
|
In 2D, the first point of the perpendicular line is the |
|
point through which was required to pass; the second |
|
point is arbitrarily chosen. To get a line that explicitly |
|
uses a point in the line, create a line from the perpendicular |
|
segment from the line to the point: |
|
|
|
>>> Line(L.perpendicular_segment(p3)) |
|
Line2D(Point2D(-2, 2), Point2D(4/13, 6/13)) |
|
""" |
|
p = Point(p, dim=self.ambient_dimension) |
|
|
|
|
|
|
|
return Line(p, p + self.direction.orthogonal_direction) |
|
|
|
@property |
|
def slope(self): |
|
"""The slope of this linear entity, or infinity if vertical. |
|
|
|
Returns |
|
======= |
|
|
|
slope : number or SymPy expression |
|
|
|
See Also |
|
======== |
|
|
|
coefficients |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(0, 0), Point(3, 5) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.slope |
|
5/3 |
|
|
|
>>> p3 = Point(0, 4) |
|
>>> l2 = Line(p1, p3) |
|
>>> l2.slope |
|
oo |
|
|
|
""" |
|
d1, d2 = (self.p1 - self.p2).args |
|
if d1 == 0: |
|
return S.Infinity |
|
return simplify(d2/d1) |
|
|
|
|
|
class Line2D(LinearEntity2D, Line): |
|
"""An infinite line in space 2D. |
|
|
|
A line is declared with two distinct points or a point and slope |
|
as defined using keyword `slope`. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point |
|
pt : Point |
|
slope : SymPy expression |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Line, Segment, Point |
|
>>> L = Line(Point(2,3), Point(3,5)) |
|
>>> L |
|
Line2D(Point2D(2, 3), Point2D(3, 5)) |
|
>>> L.points |
|
(Point2D(2, 3), Point2D(3, 5)) |
|
>>> L.equation() |
|
-2*x + y + 1 |
|
>>> L.coefficients |
|
(-2, 1, 1) |
|
|
|
Instantiate with keyword ``slope``: |
|
|
|
>>> Line(Point(0, 0), slope=0) |
|
Line2D(Point2D(0, 0), Point2D(1, 0)) |
|
|
|
Instantiate with another linear object |
|
|
|
>>> s = Segment((0, 0), (0, 1)) |
|
>>> Line(s).equation() |
|
x |
|
""" |
|
def __new__(cls, p1, pt=None, slope=None, **kwargs): |
|
if isinstance(p1, LinearEntity): |
|
if pt is not None: |
|
raise ValueError('When p1 is a LinearEntity, pt should be None') |
|
p1, pt = Point._normalize_dimension(*p1.args, dim=2) |
|
else: |
|
p1 = Point(p1, dim=2) |
|
if pt is not None and slope is None: |
|
try: |
|
p2 = Point(pt, dim=2) |
|
except (NotImplementedError, TypeError, ValueError): |
|
raise ValueError(filldedent(''' |
|
The 2nd argument was not a valid Point. |
|
If it was a slope, enter it with keyword "slope". |
|
''')) |
|
elif slope is not None and pt is None: |
|
slope = sympify(slope) |
|
if slope.is_finite is False: |
|
|
|
dx = 0 |
|
dy = 1 |
|
else: |
|
|
|
dx = 1 |
|
dy = slope |
|
|
|
p2 = Point(p1.x + dx, p1.y + dy, evaluate=False) |
|
else: |
|
raise ValueError('A 2nd Point or keyword "slope" must be used.') |
|
return LinearEntity2D.__new__(cls, p1, p2, **kwargs) |
|
|
|
def _svg(self, scale_factor=1., fill_color="#66cc99"): |
|
"""Returns SVG path element for the LinearEntity. |
|
|
|
Parameters |
|
========== |
|
|
|
scale_factor : float |
|
Multiplication factor for the SVG stroke-width. Default is 1. |
|
fill_color : str, optional |
|
Hex string for fill color. Default is "#66cc99". |
|
""" |
|
verts = (N(self.p1), N(self.p2)) |
|
coords = ["{},{}".format(p.x, p.y) for p in verts] |
|
path = "M {} L {}".format(coords[0], " L ".join(coords[1:])) |
|
|
|
return ( |
|
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' |
|
'stroke-width="{0}" opacity="0.6" d="{1}" ' |
|
'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>' |
|
).format(2.*scale_factor, path, fill_color) |
|
|
|
@property |
|
def coefficients(self): |
|
"""The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.Line2D.equation |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> from sympy.abc import x, y |
|
>>> p1, p2 = Point(0, 0), Point(5, 3) |
|
>>> l = Line(p1, p2) |
|
>>> l.coefficients |
|
(-3, 5, 0) |
|
|
|
>>> p3 = Point(x, y) |
|
>>> l2 = Line(p1, p3) |
|
>>> l2.coefficients |
|
(-y, x, 0) |
|
|
|
""" |
|
p1, p2 = self.points |
|
if p1.x == p2.x: |
|
return (S.One, S.Zero, -p1.x) |
|
elif p1.y == p2.y: |
|
return (S.Zero, S.One, -p1.y) |
|
return tuple([simplify(i) for i in |
|
(self.p1.y - self.p2.y, |
|
self.p2.x - self.p1.x, |
|
self.p1.x*self.p2.y - self.p1.y*self.p2.x)]) |
|
|
|
def equation(self, x='x', y='y'): |
|
"""The equation of the line: ax + by + c. |
|
|
|
Parameters |
|
========== |
|
|
|
x : str, optional |
|
The name to use for the x-axis, default value is 'x'. |
|
y : str, optional |
|
The name to use for the y-axis, default value is 'y'. |
|
|
|
Returns |
|
======= |
|
|
|
equation : SymPy expression |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.Line2D.coefficients |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Line |
|
>>> p1, p2 = Point(1, 0), Point(5, 3) |
|
>>> l1 = Line(p1, p2) |
|
>>> l1.equation() |
|
-3*x + 4*y + 3 |
|
|
|
""" |
|
x = _symbol(x, real=True) |
|
y = _symbol(y, real=True) |
|
p1, p2 = self.points |
|
if p1.x == p2.x: |
|
return x - p1.x |
|
elif p1.y == p2.y: |
|
return y - p1.y |
|
|
|
a, b, c = self.coefficients |
|
return a*x + b*y + c |
|
|
|
|
|
class Ray2D(LinearEntity2D, Ray): |
|
""" |
|
A Ray is a semi-line in the space with a source point and a direction. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point |
|
The source of the Ray |
|
p2 : Point or radian value |
|
This point determines the direction in which the Ray propagates. |
|
If given as an angle it is interpreted in radians with the positive |
|
direction being ccw. |
|
|
|
Attributes |
|
========== |
|
|
|
source |
|
xdirection |
|
ydirection |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point, Line |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, pi, Ray |
|
>>> r = Ray(Point(2, 3), Point(3, 5)) |
|
>>> r |
|
Ray2D(Point2D(2, 3), Point2D(3, 5)) |
|
>>> r.points |
|
(Point2D(2, 3), Point2D(3, 5)) |
|
>>> r.source |
|
Point2D(2, 3) |
|
>>> r.xdirection |
|
oo |
|
>>> r.ydirection |
|
oo |
|
>>> r.slope |
|
2 |
|
>>> Ray(Point(0, 0), angle=pi/4).slope |
|
1 |
|
|
|
""" |
|
def __new__(cls, p1, pt=None, angle=None, **kwargs): |
|
p1 = Point(p1, dim=2) |
|
if pt is not None and angle is None: |
|
try: |
|
p2 = Point(pt, dim=2) |
|
except (NotImplementedError, TypeError, ValueError): |
|
raise ValueError(filldedent(''' |
|
The 2nd argument was not a valid Point; if |
|
it was meant to be an angle it should be |
|
given with keyword "angle".''')) |
|
if p1 == p2: |
|
raise ValueError('A Ray requires two distinct points.') |
|
elif angle is not None and pt is None: |
|
|
|
angle = sympify(angle) |
|
c = _pi_coeff(angle) |
|
p2 = None |
|
if c is not None: |
|
if c.is_Rational: |
|
if c.q == 2: |
|
if c.p == 1: |
|
p2 = p1 + Point(0, 1) |
|
elif c.p == 3: |
|
p2 = p1 + Point(0, -1) |
|
elif c.q == 1: |
|
if c.p == 0: |
|
p2 = p1 + Point(1, 0) |
|
elif c.p == 1: |
|
p2 = p1 + Point(-1, 0) |
|
if p2 is None: |
|
c *= S.Pi |
|
else: |
|
c = angle % (2*S.Pi) |
|
if not p2: |
|
m = 2*c/S.Pi |
|
left = And(1 < m, m < 3) |
|
x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True)) |
|
y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True)) |
|
p2 = p1 + Point(x, y) |
|
else: |
|
raise ValueError('A 2nd point or keyword "angle" must be used.') |
|
|
|
return LinearEntity2D.__new__(cls, p1, p2, **kwargs) |
|
|
|
@property |
|
def xdirection(self): |
|
"""The x direction of the ray. |
|
|
|
Positive infinity if the ray points in the positive x direction, |
|
negative infinity if the ray points in the negative x direction, |
|
or 0 if the ray is vertical. |
|
|
|
See Also |
|
======== |
|
|
|
ydirection |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Ray |
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1) |
|
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3) |
|
>>> r1.xdirection |
|
oo |
|
>>> r2.xdirection |
|
0 |
|
|
|
""" |
|
if self.p1.x < self.p2.x: |
|
return S.Infinity |
|
elif self.p1.x == self.p2.x: |
|
return S.Zero |
|
else: |
|
return S.NegativeInfinity |
|
|
|
@property |
|
def ydirection(self): |
|
"""The y direction of the ray. |
|
|
|
Positive infinity if the ray points in the positive y direction, |
|
negative infinity if the ray points in the negative y direction, |
|
or 0 if the ray is horizontal. |
|
|
|
See Also |
|
======== |
|
|
|
xdirection |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Ray |
|
>>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0) |
|
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3) |
|
>>> r1.ydirection |
|
-oo |
|
>>> r2.ydirection |
|
0 |
|
|
|
""" |
|
if self.p1.y < self.p2.y: |
|
return S.Infinity |
|
elif self.p1.y == self.p2.y: |
|
return S.Zero |
|
else: |
|
return S.NegativeInfinity |
|
|
|
def closing_angle(r1, r2): |
|
"""Return the angle by which r2 must be rotated so it faces the same |
|
direction as r1. |
|
|
|
Parameters |
|
========== |
|
|
|
r1 : Ray2D |
|
r2 : Ray2D |
|
|
|
Returns |
|
======= |
|
|
|
angle : angle in radians (ccw angle is positive) |
|
|
|
See Also |
|
======== |
|
|
|
LinearEntity.angle_between |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Ray, pi |
|
>>> r1 = Ray((0, 0), (1, 0)) |
|
>>> r2 = r1.rotate(-pi/2) |
|
>>> angle = r1.closing_angle(r2); angle |
|
pi/2 |
|
>>> r2.rotate(angle).direction.unit == r1.direction.unit |
|
True |
|
>>> r2.closing_angle(r1) |
|
-pi/2 |
|
""" |
|
if not all(isinstance(r, Ray2D) for r in (r1, r2)): |
|
|
|
|
|
|
|
raise TypeError('Both arguments must be Ray2D objects.') |
|
|
|
a1 = atan2(*list(reversed(r1.direction.args))) |
|
a2 = atan2(*list(reversed(r2.direction.args))) |
|
if a1*a2 < 0: |
|
a1 = 2*S.Pi + a1 if a1 < 0 else a1 |
|
a2 = 2*S.Pi + a2 if a2 < 0 else a2 |
|
return a1 - a2 |
|
|
|
|
|
class Segment2D(LinearEntity2D, Segment): |
|
"""A line segment in 2D space. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point |
|
p2 : Point |
|
|
|
Attributes |
|
========== |
|
|
|
length : number or SymPy expression |
|
midpoint : Point |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point, Line |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment |
|
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts |
|
Segment2D(Point2D(1, 0), Point2D(1, 1)) |
|
>>> s = Segment(Point(4, 3), Point(1, 1)); s |
|
Segment2D(Point2D(4, 3), Point2D(1, 1)) |
|
>>> s.points |
|
(Point2D(4, 3), Point2D(1, 1)) |
|
>>> s.slope |
|
2/3 |
|
>>> s.length |
|
sqrt(13) |
|
>>> s.midpoint |
|
Point2D(5/2, 2) |
|
|
|
""" |
|
def __new__(cls, p1, p2, **kwargs): |
|
p1 = Point(p1, dim=2) |
|
p2 = Point(p2, dim=2) |
|
|
|
if p1 == p2: |
|
return p1 |
|
|
|
return LinearEntity2D.__new__(cls, p1, p2, **kwargs) |
|
|
|
def _svg(self, scale_factor=1., fill_color="#66cc99"): |
|
"""Returns SVG path element for the LinearEntity. |
|
|
|
Parameters |
|
========== |
|
|
|
scale_factor : float |
|
Multiplication factor for the SVG stroke-width. Default is 1. |
|
fill_color : str, optional |
|
Hex string for fill color. Default is "#66cc99". |
|
""" |
|
verts = (N(self.p1), N(self.p2)) |
|
coords = ["{},{}".format(p.x, p.y) for p in verts] |
|
path = "M {} L {}".format(coords[0], " L ".join(coords[1:])) |
|
return ( |
|
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' |
|
'stroke-width="{0}" opacity="0.6" d="{1}" />' |
|
).format(2.*scale_factor, path, fill_color) |
|
|
|
|
|
class LinearEntity3D(LinearEntity): |
|
"""An base class for all linear entities (line, ray and segment) |
|
in a 3-dimensional Euclidean space. |
|
|
|
Attributes |
|
========== |
|
|
|
p1 |
|
p2 |
|
direction_ratio |
|
direction_cosine |
|
points |
|
|
|
Notes |
|
===== |
|
|
|
This is a base class and is not meant to be instantiated. |
|
""" |
|
def __new__(cls, p1, p2, **kwargs): |
|
p1 = Point3D(p1, dim=3) |
|
p2 = Point3D(p2, dim=3) |
|
if p1 == p2: |
|
|
|
raise ValueError( |
|
"%s.__new__ requires two unique Points." % cls.__name__) |
|
|
|
return GeometryEntity.__new__(cls, p1, p2, **kwargs) |
|
|
|
ambient_dimension = 3 |
|
|
|
@property |
|
def direction_ratio(self): |
|
"""The direction ratio of a given line in 3D. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.Line3D.equation |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1) |
|
>>> l = Line3D(p1, p2) |
|
>>> l.direction_ratio |
|
[5, 3, 1] |
|
""" |
|
p1, p2 = self.points |
|
return p1.direction_ratio(p2) |
|
|
|
@property |
|
def direction_cosine(self): |
|
"""The normalized direction ratio of a given line in 3D. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.line.Line3D.equation |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Line3D |
|
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1) |
|
>>> l = Line3D(p1, p2) |
|
>>> l.direction_cosine |
|
[sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35] |
|
>>> sum(i**2 for i in _) |
|
1 |
|
""" |
|
p1, p2 = self.points |
|
return p1.direction_cosine(p2) |
|
|
|
|
|
class Line3D(LinearEntity3D, Line): |
|
"""An infinite 3D line in space. |
|
|
|
A line is declared with two distinct points or a point and direction_ratio |
|
as defined using keyword `direction_ratio`. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point3D |
|
pt : Point3D |
|
direction_ratio : list |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point3D |
|
sympy.geometry.line.Line |
|
sympy.geometry.line.Line2D |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Line3D, Point3D |
|
>>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1)) |
|
>>> L |
|
Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1)) |
|
>>> L.points |
|
(Point3D(2, 3, 4), Point3D(3, 5, 1)) |
|
""" |
|
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs): |
|
if isinstance(p1, LinearEntity3D): |
|
if pt is not None: |
|
raise ValueError('if p1 is a LinearEntity, pt must be None.') |
|
p1, pt = p1.args |
|
else: |
|
p1 = Point(p1, dim=3) |
|
if pt is not None and len(direction_ratio) == 0: |
|
pt = Point(pt, dim=3) |
|
elif len(direction_ratio) == 3 and pt is None: |
|
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1], |
|
p1.z + direction_ratio[2]) |
|
else: |
|
raise ValueError('A 2nd Point or keyword "direction_ratio" must ' |
|
'be used.') |
|
|
|
return LinearEntity3D.__new__(cls, p1, pt, **kwargs) |
|
|
|
def equation(self, x='x', y='y', z='z'): |
|
"""Return the equations that define the line in 3D. |
|
|
|
Parameters |
|
========== |
|
|
|
x : str, optional |
|
The name to use for the x-axis, default value is 'x'. |
|
y : str, optional |
|
The name to use for the y-axis, default value is 'y'. |
|
z : str, optional |
|
The name to use for the z-axis, default value is 'z'. |
|
|
|
Returns |
|
======= |
|
|
|
equation : Tuple of simultaneous equations |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Line3D, solve |
|
>>> from sympy.abc import x, y, z |
|
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0) |
|
>>> l1 = Line3D(p1, p2) |
|
>>> eq = l1.equation(x, y, z); eq |
|
(-3*x + 4*y + 3, z) |
|
>>> solve(eq.subs(z, 0), (x, y, z)) |
|
{x: 4*y/3 + 1} |
|
""" |
|
x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')] |
|
p1, p2 = self.points |
|
d1, d2, d3 = p1.direction_ratio(p2) |
|
x1, y1, z1 = p1 |
|
eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1] |
|
|
|
for i, e in enumerate(eqs): |
|
if e.has(k): |
|
kk = solve(eqs[i], k)[0] |
|
eqs.pop(i) |
|
break |
|
return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs]) |
|
|
|
|
|
class Ray3D(LinearEntity3D, Ray): |
|
""" |
|
A Ray is a semi-line in the space with a source point and a direction. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point3D |
|
The source of the Ray |
|
p2 : Point or a direction vector |
|
direction_ratio: Determines the direction in which the Ray propagates. |
|
|
|
|
|
Attributes |
|
========== |
|
|
|
source |
|
xdirection |
|
ydirection |
|
zdirection |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point3D, Line3D |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Ray3D |
|
>>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0)) |
|
>>> r |
|
Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0)) |
|
>>> r.points |
|
(Point3D(2, 3, 4), Point3D(3, 5, 0)) |
|
>>> r.source |
|
Point3D(2, 3, 4) |
|
>>> r.xdirection |
|
oo |
|
>>> r.ydirection |
|
oo |
|
>>> r.direction_ratio |
|
[1, 2, -4] |
|
|
|
""" |
|
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs): |
|
if isinstance(p1, LinearEntity3D): |
|
if pt is not None: |
|
raise ValueError('If p1 is a LinearEntity, pt must be None') |
|
p1, pt = p1.args |
|
else: |
|
p1 = Point(p1, dim=3) |
|
if pt is not None and len(direction_ratio) == 0: |
|
pt = Point(pt, dim=3) |
|
elif len(direction_ratio) == 3 and pt is None: |
|
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1], |
|
p1.z + direction_ratio[2]) |
|
else: |
|
raise ValueError(filldedent(''' |
|
A 2nd Point or keyword "direction_ratio" must be used. |
|
''')) |
|
|
|
return LinearEntity3D.__new__(cls, p1, pt, **kwargs) |
|
|
|
@property |
|
def xdirection(self): |
|
"""The x direction of the ray. |
|
|
|
Positive infinity if the ray points in the positive x direction, |
|
negative infinity if the ray points in the negative x direction, |
|
or 0 if the ray is vertical. |
|
|
|
See Also |
|
======== |
|
|
|
ydirection |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Ray3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0) |
|
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) |
|
>>> r1.xdirection |
|
oo |
|
>>> r2.xdirection |
|
0 |
|
|
|
""" |
|
if self.p1.x < self.p2.x: |
|
return S.Infinity |
|
elif self.p1.x == self.p2.x: |
|
return S.Zero |
|
else: |
|
return S.NegativeInfinity |
|
|
|
@property |
|
def ydirection(self): |
|
"""The y direction of the ray. |
|
|
|
Positive infinity if the ray points in the positive y direction, |
|
negative infinity if the ray points in the negative y direction, |
|
or 0 if the ray is horizontal. |
|
|
|
See Also |
|
======== |
|
|
|
xdirection |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Ray3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0) |
|
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) |
|
>>> r1.ydirection |
|
-oo |
|
>>> r2.ydirection |
|
0 |
|
|
|
""" |
|
if self.p1.y < self.p2.y: |
|
return S.Infinity |
|
elif self.p1.y == self.p2.y: |
|
return S.Zero |
|
else: |
|
return S.NegativeInfinity |
|
|
|
@property |
|
def zdirection(self): |
|
"""The z direction of the ray. |
|
|
|
Positive infinity if the ray points in the positive z direction, |
|
negative infinity if the ray points in the negative z direction, |
|
or 0 if the ray is horizontal. |
|
|
|
See Also |
|
======== |
|
|
|
xdirection |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Ray3D |
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0) |
|
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) |
|
>>> r1.ydirection |
|
-oo |
|
>>> r2.ydirection |
|
0 |
|
>>> r2.zdirection |
|
0 |
|
|
|
""" |
|
if self.p1.z < self.p2.z: |
|
return S.Infinity |
|
elif self.p1.z == self.p2.z: |
|
return S.Zero |
|
else: |
|
return S.NegativeInfinity |
|
|
|
|
|
class Segment3D(LinearEntity3D, Segment): |
|
"""A line segment in a 3D space. |
|
|
|
Parameters |
|
========== |
|
|
|
p1 : Point3D |
|
p2 : Point3D |
|
|
|
Attributes |
|
========== |
|
|
|
length : number or SymPy expression |
|
midpoint : Point3D |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point3D, Line3D |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Segment3D |
|
>>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts |
|
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1)) |
|
>>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s |
|
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)) |
|
>>> s.points |
|
(Point3D(4, 3, 9), Point3D(1, 1, 7)) |
|
>>> s.length |
|
sqrt(17) |
|
>>> s.midpoint |
|
Point3D(5/2, 2, 8) |
|
|
|
""" |
|
def __new__(cls, p1, p2, **kwargs): |
|
p1 = Point(p1, dim=3) |
|
p2 = Point(p2, dim=3) |
|
|
|
if p1 == p2: |
|
return p1 |
|
|
|
return LinearEntity3D.__new__(cls, p1, p2, **kwargs) |
|
|