|
"""Utility functions for geometrical entities. |
|
|
|
Contains |
|
======== |
|
intersection |
|
convex_hull |
|
closest_points |
|
farthest_points |
|
are_coplanar |
|
are_similar |
|
|
|
""" |
|
|
|
from collections import deque |
|
from math import sqrt as _sqrt |
|
|
|
|
|
from .entity import GeometryEntity |
|
from .exceptions import GeometryError |
|
from .point import Point, Point2D, Point3D |
|
from sympy.core.containers import OrderedSet |
|
from sympy.core.exprtools import factor_terms |
|
from sympy.core.function import Function, expand_mul |
|
from sympy.core.sorting import ordered |
|
from sympy.core.symbol import Symbol |
|
from sympy.core.singleton import S |
|
from sympy.polys.polytools import cancel |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.utilities.iterables import is_sequence |
|
|
|
|
|
def find(x, equation): |
|
""" |
|
Checks whether a Symbol matching ``x`` is present in ``equation`` |
|
or not. If present, the matching symbol is returned, else a |
|
ValueError is raised. If ``x`` is a string the matching symbol |
|
will have the same name; if ``x`` is a Symbol then it will be |
|
returned if found. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.geometry.util import find |
|
>>> from sympy import Dummy |
|
>>> from sympy.abc import x |
|
>>> find('x', x) |
|
x |
|
>>> find('x', Dummy('x')) |
|
_x |
|
|
|
The dummy symbol is returned since it has a matching name: |
|
|
|
>>> _.name == 'x' |
|
True |
|
>>> find(x, Dummy('x')) |
|
Traceback (most recent call last): |
|
... |
|
ValueError: could not find x |
|
""" |
|
|
|
free = equation.free_symbols |
|
xs = [i for i in free if (i.name if isinstance(x, str) else i) == x] |
|
if not xs: |
|
raise ValueError('could not find %s' % x) |
|
if len(xs) != 1: |
|
raise ValueError('ambiguous %s' % x) |
|
return xs[0] |
|
|
|
|
|
def _ordered_points(p): |
|
"""Return the tuple of points sorted numerically according to args""" |
|
return tuple(sorted(p, key=lambda x: x.args)) |
|
|
|
|
|
def are_coplanar(*e): |
|
""" Returns True if the given entities are coplanar otherwise False |
|
|
|
Parameters |
|
========== |
|
|
|
e: entities to be checked for being coplanar |
|
|
|
Returns |
|
======= |
|
|
|
Boolean |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point3D, Line3D |
|
>>> from sympy.geometry.util import are_coplanar |
|
>>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) |
|
>>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) |
|
>>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) |
|
>>> are_coplanar(a, b, c) |
|
False |
|
|
|
""" |
|
from .line import LinearEntity3D |
|
from .plane import Plane |
|
|
|
|
|
e = set(e) |
|
|
|
for i in list(e): |
|
if isinstance(i, Plane): |
|
e.remove(i) |
|
return all(p.is_coplanar(i) for p in e) |
|
|
|
if all(isinstance(i, Point3D) for i in e): |
|
if len(e) < 3: |
|
return False |
|
|
|
|
|
a, b = e.pop(), e.pop() |
|
for i in list(e): |
|
if Point3D.are_collinear(a, b, i): |
|
e.remove(i) |
|
|
|
if not e: |
|
return False |
|
else: |
|
|
|
p = Plane(a, b, e.pop()) |
|
for i in e: |
|
if i not in p: |
|
return False |
|
return True |
|
else: |
|
pt3d = [] |
|
for i in e: |
|
if isinstance(i, Point3D): |
|
pt3d.append(i) |
|
elif isinstance(i, LinearEntity3D): |
|
pt3d.extend(i.args) |
|
elif isinstance(i, GeometryEntity): |
|
|
|
for p in i.args: |
|
if isinstance(p, Point): |
|
pt3d.append(Point3D(*(p.args + (0,)))) |
|
return are_coplanar(*pt3d) |
|
|
|
|
|
def are_similar(e1, e2): |
|
"""Are two geometrical entities similar. |
|
|
|
Can one geometrical entity be uniformly scaled to the other? |
|
|
|
Parameters |
|
========== |
|
|
|
e1 : GeometryEntity |
|
e2 : GeometryEntity |
|
|
|
Returns |
|
======= |
|
|
|
are_similar : boolean |
|
|
|
Raises |
|
====== |
|
|
|
GeometryError |
|
When `e1` and `e2` cannot be compared. |
|
|
|
Notes |
|
===== |
|
|
|
If the two objects are equal then they are similar. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.entity.GeometryEntity.is_similar |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Circle, Triangle, are_similar |
|
>>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3) |
|
>>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) |
|
>>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2)) |
|
>>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1)) |
|
>>> are_similar(t1, t2) |
|
True |
|
>>> are_similar(t1, t3) |
|
False |
|
|
|
""" |
|
if e1 == e2: |
|
return True |
|
is_similar1 = getattr(e1, 'is_similar', None) |
|
if is_similar1: |
|
return is_similar1(e2) |
|
is_similar2 = getattr(e2, 'is_similar', None) |
|
if is_similar2: |
|
return is_similar2(e1) |
|
n1 = e1.__class__.__name__ |
|
n2 = e2.__class__.__name__ |
|
raise GeometryError( |
|
"Cannot test similarity between %s and %s" % (n1, n2)) |
|
|
|
|
|
def centroid(*args): |
|
"""Find the centroid (center of mass) of the collection containing only Points, |
|
Segments or Polygons. The centroid is the weighted average of the individual centroid |
|
where the weights are the lengths (of segments) or areas (of polygons). |
|
Overlapping regions will add to the weight of that region. |
|
|
|
If there are no objects (or a mixture of objects) then None is returned. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point, sympy.geometry.line.Segment, |
|
sympy.geometry.polygon.Polygon |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Point, Segment, Polygon |
|
>>> from sympy.geometry.util import centroid |
|
>>> p = Polygon((0, 0), (10, 0), (10, 10)) |
|
>>> q = p.translate(0, 20) |
|
>>> p.centroid, q.centroid |
|
(Point2D(20/3, 10/3), Point2D(20/3, 70/3)) |
|
>>> centroid(p, q) |
|
Point2D(20/3, 40/3) |
|
>>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2)) |
|
>>> centroid(p, q) |
|
Point2D(1, 2 - sqrt(2)) |
|
>>> centroid(Point(0, 0), Point(2, 0)) |
|
Point2D(1, 0) |
|
|
|
Stacking 3 polygons on top of each other effectively triples the |
|
weight of that polygon: |
|
|
|
>>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1)) |
|
>>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1)) |
|
>>> centroid(p, q) |
|
Point2D(3/2, 1/2) |
|
>>> centroid(p, p, p, q) # centroid x-coord shifts left |
|
Point2D(11/10, 1/2) |
|
|
|
Stacking the squares vertically above and below p has the same |
|
effect: |
|
|
|
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q) |
|
Point2D(11/10, 1/2) |
|
|
|
""" |
|
from .line import Segment |
|
from .polygon import Polygon |
|
if args: |
|
if all(isinstance(g, Point) for g in args): |
|
c = Point(0, 0) |
|
for g in args: |
|
c += g |
|
den = len(args) |
|
elif all(isinstance(g, Segment) for g in args): |
|
c = Point(0, 0) |
|
L = 0 |
|
for g in args: |
|
l = g.length |
|
c += g.midpoint*l |
|
L += l |
|
den = L |
|
elif all(isinstance(g, Polygon) for g in args): |
|
c = Point(0, 0) |
|
A = 0 |
|
for g in args: |
|
a = g.area |
|
c += g.centroid*a |
|
A += a |
|
den = A |
|
c /= den |
|
return c.func(*[i.simplify() for i in c.args]) |
|
|
|
|
|
def closest_points(*args): |
|
"""Return the subset of points from a set of points that were |
|
the closest to each other in the 2D plane. |
|
|
|
Parameters |
|
========== |
|
|
|
args |
|
A collection of Points on 2D plane. |
|
|
|
Notes |
|
===== |
|
|
|
This can only be performed on a set of points whose coordinates can |
|
be ordered on the number line. If there are no ties then a single |
|
pair of Points will be in the set. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import closest_points, Triangle |
|
>>> Triangle(sss=(3, 4, 5)).args |
|
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) |
|
>>> closest_points(*_) |
|
{(Point2D(0, 0), Point2D(3, 0))} |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html |
|
|
|
.. [2] Sweep line algorithm |
|
https://en.wikipedia.org/wiki/Sweep_line_algorithm |
|
|
|
""" |
|
p = [Point2D(i) for i in set(args)] |
|
if len(p) < 2: |
|
raise ValueError('At least 2 distinct points must be given.') |
|
|
|
try: |
|
p.sort(key=lambda x: x.args) |
|
except TypeError: |
|
raise ValueError("The points could not be sorted.") |
|
|
|
if not all(i.is_Rational for j in p for i in j.args): |
|
def hypot(x, y): |
|
arg = x*x + y*y |
|
if arg.is_Rational: |
|
return _sqrt(arg) |
|
return sqrt(arg) |
|
else: |
|
from math import hypot |
|
|
|
rv = [(0, 1)] |
|
best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y) |
|
i = 2 |
|
left = 0 |
|
box = deque([0, 1]) |
|
while i < len(p): |
|
while left < i and p[i][0] - p[left][0] > best_dist: |
|
box.popleft() |
|
left += 1 |
|
|
|
for j in box: |
|
d = hypot(p[i].x - p[j].x, p[i].y - p[j].y) |
|
if d < best_dist: |
|
rv = [(j, i)] |
|
elif d == best_dist: |
|
rv.append((j, i)) |
|
else: |
|
continue |
|
best_dist = d |
|
box.append(i) |
|
i += 1 |
|
|
|
return {tuple([p[i] for i in pair]) for pair in rv} |
|
|
|
|
|
def convex_hull(*args, polygon=True): |
|
"""The convex hull surrounding the Points contained in the list of entities. |
|
|
|
Parameters |
|
========== |
|
|
|
args : a collection of Points, Segments and/or Polygons |
|
|
|
Optional parameters |
|
=================== |
|
|
|
polygon : Boolean. If True, returns a Polygon, if false a tuple, see below. |
|
Default is True. |
|
|
|
Returns |
|
======= |
|
|
|
convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where |
|
``L`` and ``U`` are the lower and upper hulls, respectively. |
|
|
|
Notes |
|
===== |
|
|
|
This can only be performed on a set of points whose coordinates can |
|
be ordered on the number line. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.point.Point, sympy.geometry.polygon.Polygon |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import convex_hull |
|
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)] |
|
>>> convex_hull(*points) |
|
Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)) |
|
>>> convex_hull(*points, **dict(polygon=False)) |
|
([Point2D(-5, 2), Point2D(15, 4)], |
|
[Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)]) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Graham_scan |
|
|
|
.. [2] Andrew's Monotone Chain Algorithm |
|
(A.M. Andrew, |
|
"Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979) |
|
https://web.archive.org/web/20210511015444/http://geomalgorithms.com/a10-_hull-1.html |
|
|
|
""" |
|
from .line import Segment |
|
from .polygon import Polygon |
|
p = OrderedSet() |
|
for e in args: |
|
if not isinstance(e, GeometryEntity): |
|
try: |
|
e = Point(e) |
|
except NotImplementedError: |
|
raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e)) |
|
if isinstance(e, Point): |
|
p.add(e) |
|
elif isinstance(e, Segment): |
|
p.update(e.points) |
|
elif isinstance(e, Polygon): |
|
p.update(e.vertices) |
|
else: |
|
raise NotImplementedError( |
|
'Convex hull for %s not implemented.' % type(e)) |
|
|
|
|
|
if any(len(x) != 2 for x in p): |
|
raise ValueError('Can only compute the convex hull in two dimensions') |
|
|
|
p = list(p) |
|
if len(p) == 1: |
|
return p[0] if polygon else (p[0], None) |
|
elif len(p) == 2: |
|
s = Segment(p[0], p[1]) |
|
return s if polygon else (s, None) |
|
|
|
def _orientation(p, q, r): |
|
'''Return positive if p-q-r are clockwise, neg if ccw, zero if |
|
collinear.''' |
|
return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y) |
|
|
|
|
|
U = [] |
|
L = [] |
|
try: |
|
p.sort(key=lambda x: x.args) |
|
except TypeError: |
|
raise ValueError("The points could not be sorted.") |
|
for p_i in p: |
|
while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0: |
|
U.pop() |
|
while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0: |
|
L.pop() |
|
U.append(p_i) |
|
L.append(p_i) |
|
U.reverse() |
|
convexHull = tuple(L + U[1:-1]) |
|
|
|
if len(convexHull) == 2: |
|
s = Segment(convexHull[0], convexHull[1]) |
|
return s if polygon else (s, None) |
|
if polygon: |
|
return Polygon(*convexHull) |
|
else: |
|
U.reverse() |
|
return (U, L) |
|
|
|
def farthest_points(*args): |
|
"""Return the subset of points from a set of points that were |
|
the furthest apart from each other in the 2D plane. |
|
|
|
Parameters |
|
========== |
|
|
|
args |
|
A collection of Points on 2D plane. |
|
|
|
Notes |
|
===== |
|
|
|
This can only be performed on a set of points whose coordinates can |
|
be ordered on the number line. If there are no ties then a single |
|
pair of Points will be in the set. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.geometry import farthest_points, Triangle |
|
>>> Triangle(sss=(3, 4, 5)).args |
|
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) |
|
>>> farthest_points(*_) |
|
{(Point2D(0, 0), Point2D(3, 4))} |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/ |
|
|
|
.. [2] Rotating Callipers Technique |
|
https://en.wikipedia.org/wiki/Rotating_calipers |
|
|
|
""" |
|
|
|
def rotatingCalipers(Points): |
|
U, L = convex_hull(*Points, **{"polygon": False}) |
|
|
|
if L is None: |
|
if isinstance(U, Point): |
|
raise ValueError('At least two distinct points must be given.') |
|
yield U.args |
|
else: |
|
i = 0 |
|
j = len(L) - 1 |
|
while i < len(U) - 1 or j > 0: |
|
yield U[i], L[j] |
|
|
|
if i == len(U) - 1: |
|
j -= 1 |
|
elif j == 0: |
|
i += 1 |
|
|
|
|
|
elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \ |
|
(L[j].y - L[j-1].y) * (U[i+1].x - U[i].x): |
|
i += 1 |
|
else: |
|
j -= 1 |
|
|
|
p = [Point2D(i) for i in set(args)] |
|
|
|
if not all(i.is_Rational for j in p for i in j.args): |
|
def hypot(x, y): |
|
arg = x*x + y*y |
|
if arg.is_Rational: |
|
return _sqrt(arg) |
|
return sqrt(arg) |
|
else: |
|
from math import hypot |
|
|
|
rv = [] |
|
diam = 0 |
|
for pair in rotatingCalipers(args): |
|
h, q = _ordered_points(pair) |
|
d = hypot(h.x - q.x, h.y - q.y) |
|
if d > diam: |
|
rv = [(h, q)] |
|
elif d == diam: |
|
rv.append((h, q)) |
|
else: |
|
continue |
|
diam = d |
|
|
|
return set(rv) |
|
|
|
|
|
def idiff(eq, y, x, n=1): |
|
"""Return ``dy/dx`` assuming that ``eq == 0``. |
|
|
|
Parameters |
|
========== |
|
|
|
y : the dependent variable or a list of dependent variables (with y first) |
|
x : the variable that the derivative is being taken with respect to |
|
n : the order of the derivative (default is 1) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y, a |
|
>>> from sympy.geometry.util import idiff |
|
|
|
>>> circ = x**2 + y**2 - 4 |
|
>>> idiff(circ, y, x) |
|
-x/y |
|
>>> idiff(circ, y, x, 2).simplify() |
|
(-x**2 - y**2)/y**3 |
|
|
|
Here, ``a`` is assumed to be independent of ``x``: |
|
|
|
>>> idiff(x + a + y, y, x) |
|
-1 |
|
|
|
Now the x-dependence of ``a`` is made explicit by listing ``a`` after |
|
``y`` in a list. |
|
|
|
>>> idiff(x + a + y, [y, a], x) |
|
-Derivative(a, x) - 1 |
|
|
|
See Also |
|
======== |
|
|
|
sympy.core.function.Derivative: represents unevaluated derivatives |
|
sympy.core.function.diff: explicitly differentiates wrt symbols |
|
|
|
""" |
|
if is_sequence(y): |
|
dep = set(y) |
|
y = y[0] |
|
elif isinstance(y, Symbol): |
|
dep = {y} |
|
elif isinstance(y, Function): |
|
pass |
|
else: |
|
raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y) |
|
|
|
f = {s: Function(s.name)(x) for s in eq.free_symbols |
|
if s != x and s in dep} |
|
|
|
if isinstance(y, Symbol): |
|
dydx = Function(y.name)(x).diff(x) |
|
else: |
|
dydx = y.diff(x) |
|
|
|
eq = eq.subs(f) |
|
derivs = {} |
|
for i in range(n): |
|
|
|
deq = eq.diff(x) |
|
b = deq.xreplace({dydx: S.Zero}) |
|
a = (deq - b).xreplace({dydx: S.One}) |
|
yp = factor_terms(expand_mul(cancel((-b/a).subs(derivs)), deep=False)) |
|
if i == n - 1: |
|
return yp.subs([(v, k) for k, v in f.items()]) |
|
derivs[dydx] = yp |
|
eq = dydx - yp |
|
dydx = dydx.diff(x) |
|
|
|
|
|
def intersection(*entities, pairwise=False, **kwargs): |
|
"""The intersection of a collection of GeometryEntity instances. |
|
|
|
Parameters |
|
========== |
|
entities : sequence of GeometryEntity |
|
pairwise (keyword argument) : Can be either True or False |
|
|
|
Returns |
|
======= |
|
intersection : list of GeometryEntity |
|
|
|
Raises |
|
====== |
|
NotImplementedError |
|
When unable to calculate intersection. |
|
|
|
Notes |
|
===== |
|
The intersection of any geometrical entity with itself should return |
|
a list with one item: the entity in question. |
|
An intersection requires two or more entities. If only a single |
|
entity is given then the function will return an empty list. |
|
It is possible for `intersection` to miss intersections that one |
|
knows exists because the required quantities were not fully |
|
simplified internally. |
|
Reals should be converted to Rationals, e.g. Rational(str(real_num)) |
|
or else failures due to floating point issues may result. |
|
|
|
Case 1: When the keyword argument 'pairwise' is False (default value): |
|
In this case, the function returns a list of intersections common to |
|
all entities. |
|
|
|
Case 2: When the keyword argument 'pairwise' is True: |
|
In this case, the functions returns a list intersections that occur |
|
between any pair of entities. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.geometry.entity.GeometryEntity.intersection |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Ray, Circle, intersection |
|
>>> c = Circle((0, 1), 1) |
|
>>> intersection(c, c.center) |
|
[] |
|
>>> right = Ray((0, 0), (1, 0)) |
|
>>> up = Ray((0, 0), (0, 1)) |
|
>>> intersection(c, right, up) |
|
[Point2D(0, 0)] |
|
>>> intersection(c, right, up, pairwise=True) |
|
[Point2D(0, 0), Point2D(0, 2)] |
|
>>> left = Ray((1, 0), (0, 0)) |
|
>>> intersection(right, left) |
|
[Segment2D(Point2D(0, 0), Point2D(1, 0))] |
|
|
|
""" |
|
if len(entities) <= 1: |
|
return [] |
|
|
|
|
|
entities = list(entities) |
|
for i, e in enumerate(entities): |
|
if not isinstance(e, GeometryEntity): |
|
entities[i] = Point(e) |
|
|
|
if not pairwise: |
|
|
|
res = entities[0].intersection(entities[1]) |
|
for entity in entities[2:]: |
|
newres = [] |
|
for x in res: |
|
newres.extend(x.intersection(entity)) |
|
res = newres |
|
return res |
|
|
|
|
|
ans = [] |
|
for j in range(len(entities)): |
|
for k in range(j + 1, len(entities)): |
|
ans.extend(intersection(entities[j], entities[k])) |
|
return list(ordered(set(ans))) |
|
|