|
from sympy.core.basic import Basic |
|
from sympy.core.expr import Expr, ExprBuilder |
|
from sympy.core.singleton import S |
|
from sympy.core.sorting import default_sort_key |
|
from sympy.core.symbol import uniquely_named_symbol |
|
from sympy.core.sympify import sympify |
|
from sympy.matrices.matrices import MatrixBase |
|
from sympy.matrices.common import NonSquareMatrixError |
|
|
|
|
|
class Trace(Expr): |
|
"""Matrix Trace |
|
|
|
Represents the trace of a matrix expression. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import MatrixSymbol, Trace, eye |
|
>>> A = MatrixSymbol('A', 3, 3) |
|
>>> Trace(A) |
|
Trace(A) |
|
>>> Trace(eye(3)) |
|
Trace(Matrix([ |
|
[1, 0, 0], |
|
[0, 1, 0], |
|
[0, 0, 1]])) |
|
>>> Trace(eye(3)).simplify() |
|
3 |
|
""" |
|
is_Trace = True |
|
is_commutative = True |
|
|
|
def __new__(cls, mat): |
|
mat = sympify(mat) |
|
|
|
if not mat.is_Matrix: |
|
raise TypeError("input to Trace, %s, is not a matrix" % str(mat)) |
|
|
|
if mat.is_square is False: |
|
raise NonSquareMatrixError("Trace of a non-square matrix") |
|
|
|
return Basic.__new__(cls, mat) |
|
|
|
def _eval_transpose(self): |
|
return self |
|
|
|
def _eval_derivative(self, v): |
|
from sympy.concrete.summations import Sum |
|
from .matexpr import MatrixElement |
|
if isinstance(v, MatrixElement): |
|
return self.rewrite(Sum).diff(v) |
|
expr = self.doit() |
|
if isinstance(expr, Trace): |
|
|
|
raise NotImplementedError |
|
return expr._eval_derivative(v) |
|
|
|
def _eval_derivative_matrix_lines(self, x): |
|
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction |
|
r = self.args[0]._eval_derivative_matrix_lines(x) |
|
for lr in r: |
|
if lr.higher == 1: |
|
lr.higher = ExprBuilder( |
|
ArrayContraction, |
|
[ |
|
ExprBuilder( |
|
ArrayTensorProduct, |
|
[ |
|
lr._lines[0], |
|
lr._lines[1], |
|
] |
|
), |
|
(1, 3), |
|
], |
|
validator=ArrayContraction._validate |
|
) |
|
else: |
|
|
|
lr.higher = ExprBuilder( |
|
ArrayContraction, |
|
[ |
|
ExprBuilder( |
|
ArrayTensorProduct, |
|
[ |
|
lr._lines[0], |
|
lr._lines[1], |
|
lr.higher, |
|
] |
|
), |
|
(1, 3), (0, 2) |
|
] |
|
) |
|
lr._lines = [S.One, S.One] |
|
lr._first_pointer_parent = lr._lines |
|
lr._second_pointer_parent = lr._lines |
|
lr._first_pointer_index = 0 |
|
lr._second_pointer_index = 1 |
|
return r |
|
|
|
@property |
|
def arg(self): |
|
return self.args[0] |
|
|
|
def doit(self, **hints): |
|
if hints.get('deep', True): |
|
arg = self.arg.doit(**hints) |
|
try: |
|
return arg._eval_trace() |
|
except (AttributeError, NotImplementedError): |
|
return Trace(arg) |
|
else: |
|
|
|
if isinstance(self.arg, MatrixBase): |
|
return trace(self.arg) |
|
else: |
|
return Trace(self.arg) |
|
|
|
def as_explicit(self): |
|
return Trace(self.arg.as_explicit()).doit() |
|
|
|
def _normalize(self): |
|
|
|
|
|
|
|
from sympy.matrices.expressions.matmul import MatMul |
|
from sympy.matrices.expressions.transpose import Transpose |
|
trace_arg = self.arg |
|
if isinstance(trace_arg, MatMul): |
|
|
|
def get_arg_key(x): |
|
a = trace_arg.args[x] |
|
if isinstance(a, Transpose): |
|
a = a.arg |
|
return default_sort_key(a) |
|
|
|
indmin = min(range(len(trace_arg.args)), key=get_arg_key) |
|
if isinstance(trace_arg.args[indmin], Transpose): |
|
trace_arg = Transpose(trace_arg).doit() |
|
indmin = min(range(len(trace_arg.args)), key=lambda x: default_sort_key(trace_arg.args[x])) |
|
trace_arg = MatMul.fromiter(trace_arg.args[indmin:] + trace_arg.args[:indmin]) |
|
return Trace(trace_arg) |
|
return self |
|
|
|
def _eval_rewrite_as_Sum(self, expr, **kwargs): |
|
from sympy.concrete.summations import Sum |
|
i = uniquely_named_symbol('i', expr) |
|
s = Sum(self.arg[i, i], (i, 0, self.arg.rows - 1)) |
|
return s.doit() |
|
|
|
|
|
def trace(expr): |
|
"""Trace of a Matrix. Sum of the diagonal elements. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import trace, Symbol, MatrixSymbol, eye |
|
>>> n = Symbol('n') |
|
>>> X = MatrixSymbol('X', n, n) # A square matrix |
|
>>> trace(2*X) |
|
2*Trace(X) |
|
>>> trace(eye(3)) |
|
3 |
|
""" |
|
return Trace(expr).doit() |
|
|