applied-ai-018 commited on
Commit
2c43f46
·
verified ·
1 Parent(s): 78d915e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/weyl_group.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__init__.py +62 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/__init__.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/_shape.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/adjoint.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/applyfunc.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/blockmatrix.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/companion.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/determinant.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/diagonal.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/dotproduct.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/factorizations.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/fourier.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/funcmatrix.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/hadamard.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/inverse.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matadd.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matexpr.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matmul.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matpow.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/permutation.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/slice.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/trace.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/transpose.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/_shape.py +102 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/adjoint.py +61 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/applyfunc.py +204 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/blockmatrix.py +979 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/companion.py +56 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.py +141 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/diagonal.py +220 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/dotproduct.py +55 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/factorizations.py +62 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/funcmatrix.py +118 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/hadamard.py +464 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/inverse.py +103 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matadd.py +155 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matexpr.py +885 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matmul.py +498 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matpow.py +142 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/permutation.py +303 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/sets.py +67 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/slice.py +114 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/special.py +299 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__init__.py +0 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_adjoint.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_applyfunc.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_diagonal.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_fourier.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_indexing.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/__pycache__/weyl_group.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__init__.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ A module which handles Matrix Expressions """
2
+
3
+ from .slice import MatrixSlice
4
+ from .blockmatrix import BlockMatrix, BlockDiagMatrix, block_collapse, blockcut
5
+ from .companion import CompanionMatrix
6
+ from .funcmatrix import FunctionMatrix
7
+ from .inverse import Inverse
8
+ from .matadd import MatAdd
9
+ from .matexpr import MatrixExpr, MatrixSymbol, matrix_symbols
10
+ from .matmul import MatMul
11
+ from .matpow import MatPow
12
+ from .trace import Trace, trace
13
+ from .determinant import Determinant, det, Permanent, per
14
+ from .transpose import Transpose
15
+ from .adjoint import Adjoint
16
+ from .hadamard import hadamard_product, HadamardProduct, hadamard_power, HadamardPower
17
+ from .diagonal import DiagonalMatrix, DiagonalOf, DiagMatrix, diagonalize_vector
18
+ from .dotproduct import DotProduct
19
+ from .kronecker import kronecker_product, KroneckerProduct, combine_kronecker
20
+ from .permutation import PermutationMatrix, MatrixPermute
21
+ from .sets import MatrixSet
22
+ from .special import ZeroMatrix, Identity, OneMatrix
23
+
24
+ __all__ = [
25
+ 'MatrixSlice',
26
+
27
+ 'BlockMatrix', 'BlockDiagMatrix', 'block_collapse', 'blockcut',
28
+ 'FunctionMatrix',
29
+
30
+ 'CompanionMatrix',
31
+
32
+ 'Inverse',
33
+
34
+ 'MatAdd',
35
+
36
+ 'Identity', 'MatrixExpr', 'MatrixSymbol', 'ZeroMatrix', 'OneMatrix',
37
+ 'matrix_symbols', 'MatrixSet',
38
+
39
+ 'MatMul',
40
+
41
+ 'MatPow',
42
+
43
+ 'Trace', 'trace',
44
+
45
+ 'Determinant', 'det',
46
+
47
+ 'Transpose',
48
+
49
+ 'Adjoint',
50
+
51
+ 'hadamard_product', 'HadamardProduct', 'hadamard_power', 'HadamardPower',
52
+
53
+ 'DiagonalMatrix', 'DiagonalOf', 'DiagMatrix', 'diagonalize_vector',
54
+
55
+ 'DotProduct',
56
+
57
+ 'kronecker_product', 'KroneckerProduct', 'combine_kronecker',
58
+
59
+ 'PermutationMatrix', 'MatrixPermute',
60
+
61
+ 'Permanent', 'per'
62
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.78 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/_shape.cpython-310.pyc ADDED
Binary file (4.26 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/adjoint.cpython-310.pyc ADDED
Binary file (2.48 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/applyfunc.cpython-310.pyc ADDED
Binary file (5.52 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/blockmatrix.cpython-310.pyc ADDED
Binary file (33.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/companion.cpython-310.pyc ADDED
Binary file (2.22 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/determinant.cpython-310.pyc ADDED
Binary file (3.98 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/diagonal.cpython-310.pyc ADDED
Binary file (7.07 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/dotproduct.cpython-310.pyc ADDED
Binary file (2.03 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/factorizations.cpython-310.pyc ADDED
Binary file (3.39 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/fourier.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/funcmatrix.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/hadamard.cpython-310.pyc ADDED
Binary file (14.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/inverse.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matadd.cpython-310.pyc ADDED
Binary file (6.92 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matexpr.cpython-310.pyc ADDED
Binary file (29.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matmul.cpython-310.pyc ADDED
Binary file (16.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matpow.cpython-310.pyc ADDED
Binary file (4.95 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/permutation.cpython-310.pyc ADDED
Binary file (7.66 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/slice.cpython-310.pyc ADDED
Binary file (3.56 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/trace.cpython-310.pyc ADDED
Binary file (4.86 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/transpose.cpython-310.pyc ADDED
Binary file (3.89 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/_shape.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.relational import Eq
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.numbers import Integer
4
+ from sympy.logic.boolalg import Boolean, And
5
+ from sympy.matrices.expressions.matexpr import MatrixExpr
6
+ from sympy.matrices.common import ShapeError
7
+ from typing import Union
8
+
9
+
10
+ def is_matadd_valid(*args: MatrixExpr) -> Boolean:
11
+ """Return the symbolic condition how ``MatAdd``, ``HadamardProduct``
12
+ makes sense.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ args
18
+ The list of arguments of matrices to be tested for.
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy import MatrixSymbol, symbols
24
+ >>> from sympy.matrices.expressions._shape import is_matadd_valid
25
+
26
+ >>> m, n, p, q = symbols('m n p q')
27
+ >>> A = MatrixSymbol('A', m, n)
28
+ >>> B = MatrixSymbol('B', p, q)
29
+ >>> is_matadd_valid(A, B)
30
+ Eq(m, p) & Eq(n, q)
31
+ """
32
+ rows, cols = zip(*(arg.shape for arg in args))
33
+ return And(
34
+ *(Eq(i, j) for i, j in zip(rows[:-1], rows[1:])),
35
+ *(Eq(i, j) for i, j in zip(cols[:-1], cols[1:])),
36
+ )
37
+
38
+
39
+ def is_matmul_valid(*args: Union[MatrixExpr, Expr]) -> Boolean:
40
+ """Return the symbolic condition how ``MatMul`` makes sense
41
+
42
+ Parameters
43
+ ==========
44
+
45
+ args
46
+ The list of arguments of matrices and scalar expressions to be tested
47
+ for.
48
+
49
+ Examples
50
+ ========
51
+
52
+ >>> from sympy import MatrixSymbol, symbols
53
+ >>> from sympy.matrices.expressions._shape import is_matmul_valid
54
+
55
+ >>> m, n, p, q = symbols('m n p q')
56
+ >>> A = MatrixSymbol('A', m, n)
57
+ >>> B = MatrixSymbol('B', p, q)
58
+ >>> is_matmul_valid(A, B)
59
+ Eq(n, p)
60
+ """
61
+ rows, cols = zip(*(arg.shape for arg in args if isinstance(arg, MatrixExpr)))
62
+ return And(*(Eq(i, j) for i, j in zip(cols[:-1], rows[1:])))
63
+
64
+
65
+ def is_square(arg: MatrixExpr, /) -> Boolean:
66
+ """Return the symbolic condition how the matrix is assumed to be square
67
+
68
+ Parameters
69
+ ==========
70
+
71
+ arg
72
+ The matrix to be tested for.
73
+
74
+ Examples
75
+ ========
76
+
77
+ >>> from sympy import MatrixSymbol, symbols
78
+ >>> from sympy.matrices.expressions._shape import is_square
79
+
80
+ >>> m, n = symbols('m n')
81
+ >>> A = MatrixSymbol('A', m, n)
82
+ >>> is_square(A)
83
+ Eq(m, n)
84
+ """
85
+ return Eq(arg.rows, arg.cols)
86
+
87
+
88
+ def validate_matadd_integer(*args: MatrixExpr) -> None:
89
+ """Validate matrix shape for addition only for integer values"""
90
+ rows, cols = zip(*(x.shape for x in args))
91
+ if len(set(filter(lambda x: isinstance(x, (int, Integer)), rows))) > 1:
92
+ raise ShapeError(f"Matrices have mismatching shape: {rows}")
93
+ if len(set(filter(lambda x: isinstance(x, (int, Integer)), cols))) > 1:
94
+ raise ShapeError(f"Matrices have mismatching shape: {cols}")
95
+
96
+
97
+ def validate_matmul_integer(*args: MatrixExpr) -> None:
98
+ """Validate matrix shape for multiplication only for integer values"""
99
+ for A, B in zip(args[:-1], args[1:]):
100
+ i, j = A.cols, B.rows
101
+ if isinstance(i, (int, Integer)) and isinstance(j, (int, Integer)) and i != j:
102
+ raise ShapeError("Matrices are not aligned", i, j)
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/adjoint.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic
2
+ from sympy.functions import adjoint, conjugate
3
+ from sympy.matrices.expressions.transpose import transpose
4
+ from sympy.matrices.expressions.matexpr import MatrixExpr
5
+
6
+
7
+ class Adjoint(MatrixExpr):
8
+ """
9
+ The Hermitian adjoint of a matrix expression.
10
+
11
+ This is a symbolic object that simply stores its argument without
12
+ evaluating it. To actually compute the adjoint, use the ``adjoint()``
13
+ function.
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy import MatrixSymbol, Adjoint, adjoint
19
+ >>> A = MatrixSymbol('A', 3, 5)
20
+ >>> B = MatrixSymbol('B', 5, 3)
21
+ >>> Adjoint(A*B)
22
+ Adjoint(A*B)
23
+ >>> adjoint(A*B)
24
+ Adjoint(B)*Adjoint(A)
25
+ >>> adjoint(A*B) == Adjoint(A*B)
26
+ False
27
+ >>> adjoint(A*B) == Adjoint(A*B).doit()
28
+ True
29
+ """
30
+ is_Adjoint = True
31
+
32
+ def doit(self, **hints):
33
+ arg = self.arg
34
+ if hints.get('deep', True) and isinstance(arg, Basic):
35
+ return adjoint(arg.doit(**hints))
36
+ else:
37
+ return adjoint(self.arg)
38
+
39
+ @property
40
+ def arg(self):
41
+ return self.args[0]
42
+
43
+ @property
44
+ def shape(self):
45
+ return self.arg.shape[::-1]
46
+
47
+ def _entry(self, i, j, **kwargs):
48
+ return conjugate(self.arg._entry(j, i, **kwargs))
49
+
50
+ def _eval_adjoint(self):
51
+ return self.arg
52
+
53
+ def _eval_conjugate(self):
54
+ return transpose(self.arg)
55
+
56
+ def _eval_trace(self):
57
+ from sympy.matrices.expressions.trace import Trace
58
+ return conjugate(Trace(self.arg))
59
+
60
+ def _eval_transpose(self):
61
+ return conjugate(self.arg)
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/applyfunc.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import ExprBuilder
2
+ from sympy.core.function import (Function, FunctionClass, Lambda)
3
+ from sympy.core.symbol import Dummy
4
+ from sympy.core.sympify import sympify, _sympify
5
+ from sympy.matrices.expressions import MatrixExpr
6
+ from sympy.matrices.matrices import MatrixBase
7
+
8
+
9
+ class ElementwiseApplyFunction(MatrixExpr):
10
+ r"""
11
+ Apply function to a matrix elementwise without evaluating.
12
+
13
+ Examples
14
+ ========
15
+
16
+ It can be created by calling ``.applyfunc(<function>)`` on a matrix
17
+ expression:
18
+
19
+ >>> from sympy import MatrixSymbol
20
+ >>> from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
21
+ >>> from sympy import exp
22
+ >>> X = MatrixSymbol("X", 3, 3)
23
+ >>> X.applyfunc(exp)
24
+ Lambda(_d, exp(_d)).(X)
25
+
26
+ Otherwise using the class constructor:
27
+
28
+ >>> from sympy import eye
29
+ >>> expr = ElementwiseApplyFunction(exp, eye(3))
30
+ >>> expr
31
+ Lambda(_d, exp(_d)).(Matrix([
32
+ [1, 0, 0],
33
+ [0, 1, 0],
34
+ [0, 0, 1]]))
35
+ >>> expr.doit()
36
+ Matrix([
37
+ [E, 1, 1],
38
+ [1, E, 1],
39
+ [1, 1, E]])
40
+
41
+ Notice the difference with the real mathematical functions:
42
+
43
+ >>> exp(eye(3))
44
+ Matrix([
45
+ [E, 0, 0],
46
+ [0, E, 0],
47
+ [0, 0, E]])
48
+ """
49
+
50
+ def __new__(cls, function, expr):
51
+ expr = _sympify(expr)
52
+ if not expr.is_Matrix:
53
+ raise ValueError("{} must be a matrix instance.".format(expr))
54
+
55
+ if expr.shape == (1, 1):
56
+ # Check if the function returns a matrix, in that case, just apply
57
+ # the function instead of creating an ElementwiseApplyFunc object:
58
+ ret = function(expr)
59
+ if isinstance(ret, MatrixExpr):
60
+ return ret
61
+
62
+ if not isinstance(function, (FunctionClass, Lambda)):
63
+ d = Dummy('d')
64
+ function = Lambda(d, function(d))
65
+
66
+ function = sympify(function)
67
+ if not isinstance(function, (FunctionClass, Lambda)):
68
+ raise ValueError(
69
+ "{} should be compatible with SymPy function classes."
70
+ .format(function))
71
+
72
+ if 1 not in function.nargs:
73
+ raise ValueError(
74
+ '{} should be able to accept 1 arguments.'.format(function))
75
+
76
+ if not isinstance(function, Lambda):
77
+ d = Dummy('d')
78
+ function = Lambda(d, function(d))
79
+
80
+ obj = MatrixExpr.__new__(cls, function, expr)
81
+ return obj
82
+
83
+ @property
84
+ def function(self):
85
+ return self.args[0]
86
+
87
+ @property
88
+ def expr(self):
89
+ return self.args[1]
90
+
91
+ @property
92
+ def shape(self):
93
+ return self.expr.shape
94
+
95
+ def doit(self, **hints):
96
+ deep = hints.get("deep", True)
97
+ expr = self.expr
98
+ if deep:
99
+ expr = expr.doit(**hints)
100
+ function = self.function
101
+ if isinstance(function, Lambda) and function.is_identity:
102
+ # This is a Lambda containing the identity function.
103
+ return expr
104
+ if isinstance(expr, MatrixBase):
105
+ return expr.applyfunc(self.function)
106
+ elif isinstance(expr, ElementwiseApplyFunction):
107
+ return ElementwiseApplyFunction(
108
+ lambda x: self.function(expr.function(x)),
109
+ expr.expr
110
+ ).doit(**hints)
111
+ else:
112
+ return self
113
+
114
+ def _entry(self, i, j, **kwargs):
115
+ return self.function(self.expr._entry(i, j, **kwargs))
116
+
117
+ def _get_function_fdiff(self):
118
+ d = Dummy("d")
119
+ function = self.function(d)
120
+ fdiff = function.diff(d)
121
+ if isinstance(fdiff, Function):
122
+ fdiff = type(fdiff)
123
+ else:
124
+ fdiff = Lambda(d, fdiff)
125
+ return fdiff
126
+
127
+ def _eval_derivative(self, x):
128
+ from sympy.matrices.expressions.hadamard import hadamard_product
129
+ dexpr = self.expr.diff(x)
130
+ fdiff = self._get_function_fdiff()
131
+ return hadamard_product(
132
+ dexpr,
133
+ ElementwiseApplyFunction(fdiff, self.expr)
134
+ )
135
+
136
+ def _eval_derivative_matrix_lines(self, x):
137
+ from sympy.matrices.expressions.special import Identity
138
+ from sympy.tensor.array.expressions.array_expressions import ArrayContraction
139
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
140
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
141
+
142
+ fdiff = self._get_function_fdiff()
143
+ lr = self.expr._eval_derivative_matrix_lines(x)
144
+ ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
145
+ if 1 in x.shape:
146
+ # Vector:
147
+ iscolumn = self.shape[1] == 1
148
+ for i in lr:
149
+ if iscolumn:
150
+ ptr1 = i.first_pointer
151
+ ptr2 = Identity(self.shape[1])
152
+ else:
153
+ ptr1 = Identity(self.shape[0])
154
+ ptr2 = i.second_pointer
155
+
156
+ subexpr = ExprBuilder(
157
+ ArrayDiagonal,
158
+ [
159
+ ExprBuilder(
160
+ ArrayTensorProduct,
161
+ [
162
+ ewdiff,
163
+ ptr1,
164
+ ptr2,
165
+ ]
166
+ ),
167
+ (0, 2) if iscolumn else (1, 4)
168
+ ],
169
+ validator=ArrayDiagonal._validate
170
+ )
171
+ i._lines = [subexpr]
172
+ i._first_pointer_parent = subexpr.args[0].args
173
+ i._first_pointer_index = 1
174
+ i._second_pointer_parent = subexpr.args[0].args
175
+ i._second_pointer_index = 2
176
+ else:
177
+ # Matrix case:
178
+ for i in lr:
179
+ ptr1 = i.first_pointer
180
+ ptr2 = i.second_pointer
181
+ newptr1 = Identity(ptr1.shape[1])
182
+ newptr2 = Identity(ptr2.shape[1])
183
+ subexpr = ExprBuilder(
184
+ ArrayContraction,
185
+ [
186
+ ExprBuilder(
187
+ ArrayTensorProduct,
188
+ [ptr1, newptr1, ewdiff, ptr2, newptr2]
189
+ ),
190
+ (1, 2, 4),
191
+ (5, 7, 8),
192
+ ],
193
+ validator=ArrayContraction._validate
194
+ )
195
+ i._first_pointer_parent = subexpr.args[0].args
196
+ i._first_pointer_index = 1
197
+ i._second_pointer_parent = subexpr.args[0].args
198
+ i._second_pointer_index = 4
199
+ i._lines = [subexpr]
200
+ return lr
201
+
202
+ def _eval_transpose(self):
203
+ from sympy.matrices.expressions.transpose import Transpose
204
+ return self.func(self.function, Transpose(self.expr).doit())
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/blockmatrix.py ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import (Q, ask)
2
+ from sympy.core import Basic, Add, Mul, S
3
+ from sympy.core.sympify import _sympify
4
+ from sympy.functions import adjoint
5
+ from sympy.functions.elementary.complexes import re, im
6
+ from sympy.strategies import typed, exhaust, condition, do_one, unpack
7
+ from sympy.strategies.traverse import bottom_up
8
+ from sympy.utilities.iterables import is_sequence, sift
9
+ from sympy.utilities.misc import filldedent
10
+
11
+ from sympy.matrices import Matrix, ShapeError
12
+ from sympy.matrices.common import NonInvertibleMatrixError
13
+ from sympy.matrices.expressions.determinant import det, Determinant
14
+ from sympy.matrices.expressions.inverse import Inverse
15
+ from sympy.matrices.expressions.matadd import MatAdd
16
+ from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement
17
+ from sympy.matrices.expressions.matmul import MatMul
18
+ from sympy.matrices.expressions.matpow import MatPow
19
+ from sympy.matrices.expressions.slice import MatrixSlice
20
+ from sympy.matrices.expressions.special import ZeroMatrix, Identity
21
+ from sympy.matrices.expressions.trace import trace
22
+ from sympy.matrices.expressions.transpose import Transpose, transpose
23
+
24
+
25
+ class BlockMatrix(MatrixExpr):
26
+ """A BlockMatrix is a Matrix comprised of other matrices.
27
+
28
+ The submatrices are stored in a SymPy Matrix object but accessed as part of
29
+ a Matrix Expression
30
+
31
+ >>> from sympy import (MatrixSymbol, BlockMatrix, symbols,
32
+ ... Identity, ZeroMatrix, block_collapse)
33
+ >>> n,m,l = symbols('n m l')
34
+ >>> X = MatrixSymbol('X', n, n)
35
+ >>> Y = MatrixSymbol('Y', m, m)
36
+ >>> Z = MatrixSymbol('Z', n, m)
37
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
38
+ >>> print(B)
39
+ Matrix([
40
+ [X, Z],
41
+ [0, Y]])
42
+
43
+ >>> C = BlockMatrix([[Identity(n), Z]])
44
+ >>> print(C)
45
+ Matrix([[I, Z]])
46
+
47
+ >>> print(block_collapse(C*B))
48
+ Matrix([[X, Z + Z*Y]])
49
+
50
+ Some matrices might be comprised of rows of blocks with
51
+ the matrices in each row having the same height and the
52
+ rows all having the same total number of columns but
53
+ not having the same number of columns for each matrix
54
+ in each row. In this case, the matrix is not a block
55
+ matrix and should be instantiated by Matrix.
56
+
57
+ >>> from sympy import ones, Matrix
58
+ >>> dat = [
59
+ ... [ones(3,2), ones(3,3)*2],
60
+ ... [ones(2,3)*3, ones(2,2)*4]]
61
+ ...
62
+ >>> BlockMatrix(dat)
63
+ Traceback (most recent call last):
64
+ ...
65
+ ValueError:
66
+ Although this matrix is comprised of blocks, the blocks do not fill
67
+ the matrix in a size-symmetric fashion. To create a full matrix from
68
+ these arguments, pass them directly to Matrix.
69
+ >>> Matrix(dat)
70
+ Matrix([
71
+ [1, 1, 2, 2, 2],
72
+ [1, 1, 2, 2, 2],
73
+ [1, 1, 2, 2, 2],
74
+ [3, 3, 3, 4, 4],
75
+ [3, 3, 3, 4, 4]])
76
+
77
+ See Also
78
+ ========
79
+ sympy.matrices.matrices.MatrixBase.irregular
80
+ """
81
+ def __new__(cls, *args, **kwargs):
82
+ from sympy.matrices.immutable import ImmutableDenseMatrix
83
+ isMat = lambda i: getattr(i, 'is_Matrix', False)
84
+ if len(args) != 1 or \
85
+ not is_sequence(args[0]) or \
86
+ len({isMat(r) for r in args[0]}) != 1:
87
+ raise ValueError(filldedent('''
88
+ expecting a sequence of 1 or more rows
89
+ containing Matrices.'''))
90
+ rows = args[0] if args else []
91
+ if not isMat(rows):
92
+ if rows and isMat(rows[0]):
93
+ rows = [rows] # rows is not list of lists or []
94
+ # regularity check
95
+ # same number of matrices in each row
96
+ blocky = ok = len({len(r) for r in rows}) == 1
97
+ if ok:
98
+ # same number of rows for each matrix in a row
99
+ for r in rows:
100
+ ok = len({i.rows for i in r}) == 1
101
+ if not ok:
102
+ break
103
+ blocky = ok
104
+ if ok:
105
+ # same number of cols for each matrix in each col
106
+ for c in range(len(rows[0])):
107
+ ok = len({rows[i][c].cols
108
+ for i in range(len(rows))}) == 1
109
+ if not ok:
110
+ break
111
+ if not ok:
112
+ # same total cols in each row
113
+ ok = len({
114
+ sum([i.cols for i in r]) for r in rows}) == 1
115
+ if blocky and ok:
116
+ raise ValueError(filldedent('''
117
+ Although this matrix is comprised of blocks,
118
+ the blocks do not fill the matrix in a
119
+ size-symmetric fashion. To create a full matrix
120
+ from these arguments, pass them directly to
121
+ Matrix.'''))
122
+ raise ValueError(filldedent('''
123
+ When there are not the same number of rows in each
124
+ row's matrices or there are not the same number of
125
+ total columns in each row, the matrix is not a
126
+ block matrix. If this matrix is known to consist of
127
+ blocks fully filling a 2-D space then see
128
+ Matrix.irregular.'''))
129
+ mat = ImmutableDenseMatrix(rows, evaluate=False)
130
+ obj = Basic.__new__(cls, mat)
131
+ return obj
132
+
133
+ @property
134
+ def shape(self):
135
+ numrows = numcols = 0
136
+ M = self.blocks
137
+ for i in range(M.shape[0]):
138
+ numrows += M[i, 0].shape[0]
139
+ for i in range(M.shape[1]):
140
+ numcols += M[0, i].shape[1]
141
+ return (numrows, numcols)
142
+
143
+ @property
144
+ def blockshape(self):
145
+ return self.blocks.shape
146
+
147
+ @property
148
+ def blocks(self):
149
+ return self.args[0]
150
+
151
+ @property
152
+ def rowblocksizes(self):
153
+ return [self.blocks[i, 0].rows for i in range(self.blockshape[0])]
154
+
155
+ @property
156
+ def colblocksizes(self):
157
+ return [self.blocks[0, i].cols for i in range(self.blockshape[1])]
158
+
159
+ def structurally_equal(self, other):
160
+ return (isinstance(other, BlockMatrix)
161
+ and self.shape == other.shape
162
+ and self.blockshape == other.blockshape
163
+ and self.rowblocksizes == other.rowblocksizes
164
+ and self.colblocksizes == other.colblocksizes)
165
+
166
+ def _blockmul(self, other):
167
+ if (isinstance(other, BlockMatrix) and
168
+ self.colblocksizes == other.rowblocksizes):
169
+ return BlockMatrix(self.blocks*other.blocks)
170
+
171
+ return self * other
172
+
173
+ def _blockadd(self, other):
174
+ if (isinstance(other, BlockMatrix)
175
+ and self.structurally_equal(other)):
176
+ return BlockMatrix(self.blocks + other.blocks)
177
+
178
+ return self + other
179
+
180
+ def _eval_transpose(self):
181
+ # Flip all the individual matrices
182
+ matrices = [transpose(matrix) for matrix in self.blocks]
183
+ # Make a copy
184
+ M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
185
+ # Transpose the block structure
186
+ M = M.transpose()
187
+ return BlockMatrix(M)
188
+
189
+ def _eval_adjoint(self):
190
+ # Adjoint all the individual matrices
191
+ matrices = [adjoint(matrix) for matrix in self.blocks]
192
+ # Make a copy
193
+ M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
194
+ # Transpose the block structure
195
+ M = M.transpose()
196
+ return BlockMatrix(M)
197
+
198
+ def _eval_trace(self):
199
+ if self.rowblocksizes == self.colblocksizes:
200
+ return Add(*[trace(self.blocks[i, i])
201
+ for i in range(self.blockshape[0])])
202
+ raise NotImplementedError(
203
+ "Can't perform trace of irregular blockshape")
204
+
205
+ def _eval_determinant(self):
206
+ if self.blockshape == (1, 1):
207
+ return det(self.blocks[0, 0])
208
+ if self.blockshape == (2, 2):
209
+ [[A, B],
210
+ [C, D]] = self.blocks.tolist()
211
+ if ask(Q.invertible(A)):
212
+ return det(A)*det(D - C*A.I*B)
213
+ elif ask(Q.invertible(D)):
214
+ return det(D)*det(A - B*D.I*C)
215
+ return Determinant(self)
216
+
217
+ def _eval_as_real_imag(self):
218
+ real_matrices = [re(matrix) for matrix in self.blocks]
219
+ real_matrices = Matrix(self.blockshape[0], self.blockshape[1], real_matrices)
220
+
221
+ im_matrices = [im(matrix) for matrix in self.blocks]
222
+ im_matrices = Matrix(self.blockshape[0], self.blockshape[1], im_matrices)
223
+
224
+ return (BlockMatrix(real_matrices), BlockMatrix(im_matrices))
225
+
226
+ def transpose(self):
227
+ """Return transpose of matrix.
228
+
229
+ Examples
230
+ ========
231
+
232
+ >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
233
+ >>> from sympy.abc import m, n
234
+ >>> X = MatrixSymbol('X', n, n)
235
+ >>> Y = MatrixSymbol('Y', m, m)
236
+ >>> Z = MatrixSymbol('Z', n, m)
237
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
238
+ >>> B.transpose()
239
+ Matrix([
240
+ [X.T, 0],
241
+ [Z.T, Y.T]])
242
+ >>> _.transpose()
243
+ Matrix([
244
+ [X, Z],
245
+ [0, Y]])
246
+ """
247
+ return self._eval_transpose()
248
+
249
+ def schur(self, mat = 'A', generalized = False):
250
+ """Return the Schur Complement of the 2x2 BlockMatrix
251
+
252
+ Parameters
253
+ ==========
254
+
255
+ mat : String, optional
256
+ The matrix with respect to which the
257
+ Schur Complement is calculated. 'A' is
258
+ used by default
259
+
260
+ generalized : bool, optional
261
+ If True, returns the generalized Schur
262
+ Component which uses Moore-Penrose Inverse
263
+
264
+ Examples
265
+ ========
266
+
267
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix
268
+ >>> m, n = symbols('m n')
269
+ >>> A = MatrixSymbol('A', n, n)
270
+ >>> B = MatrixSymbol('B', n, m)
271
+ >>> C = MatrixSymbol('C', m, n)
272
+ >>> D = MatrixSymbol('D', m, m)
273
+ >>> X = BlockMatrix([[A, B], [C, D]])
274
+
275
+ The default Schur Complement is evaluated with "A"
276
+
277
+ >>> X.schur()
278
+ -C*A**(-1)*B + D
279
+ >>> X.schur('D')
280
+ A - B*D**(-1)*C
281
+
282
+ Schur complement with non-invertible matrices is not
283
+ defined. Instead, the generalized Schur complement can
284
+ be calculated which uses the Moore-Penrose Inverse. To
285
+ achieve this, `generalized` must be set to `True`
286
+
287
+ >>> X.schur('B', generalized=True)
288
+ C - D*(B.T*B)**(-1)*B.T*A
289
+ >>> X.schur('C', generalized=True)
290
+ -A*(C.T*C)**(-1)*C.T*D + B
291
+
292
+ Returns
293
+ =======
294
+
295
+ M : Matrix
296
+ The Schur Complement Matrix
297
+
298
+ Raises
299
+ ======
300
+
301
+ ShapeError
302
+ If the block matrix is not a 2x2 matrix
303
+
304
+ NonInvertibleMatrixError
305
+ If given matrix is non-invertible
306
+
307
+ References
308
+ ==========
309
+
310
+ .. [1] Wikipedia Article on Schur Component : https://en.wikipedia.org/wiki/Schur_complement
311
+
312
+ See Also
313
+ ========
314
+
315
+ sympy.matrices.matrices.MatrixBase.pinv
316
+ """
317
+
318
+ if self.blockshape == (2, 2):
319
+ [[A, B],
320
+ [C, D]] = self.blocks.tolist()
321
+ d={'A' : A, 'B' : B, 'C' : C, 'D' : D}
322
+ try:
323
+ inv = (d[mat].T*d[mat]).inv()*d[mat].T if generalized else d[mat].inv()
324
+ if mat == 'A':
325
+ return D - C * inv * B
326
+ elif mat == 'B':
327
+ return C - D * inv * A
328
+ elif mat == 'C':
329
+ return B - A * inv * D
330
+ elif mat == 'D':
331
+ return A - B * inv * C
332
+ #For matrices where no sub-matrix is square
333
+ return self
334
+ except NonInvertibleMatrixError:
335
+ raise NonInvertibleMatrixError('The given matrix is not invertible. Please set generalized=True \
336
+ to compute the generalized Schur Complement which uses Moore-Penrose Inverse')
337
+ else:
338
+ raise ShapeError('Schur Complement can only be calculated for 2x2 block matrices')
339
+
340
+ def LDUdecomposition(self):
341
+ """Returns the Block LDU decomposition of
342
+ a 2x2 Block Matrix
343
+
344
+ Returns
345
+ =======
346
+
347
+ (L, D, U) : Matrices
348
+ L : Lower Diagonal Matrix
349
+ D : Diagonal Matrix
350
+ U : Upper Diagonal Matrix
351
+
352
+ Examples
353
+ ========
354
+
355
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
356
+ >>> m, n = symbols('m n')
357
+ >>> A = MatrixSymbol('A', n, n)
358
+ >>> B = MatrixSymbol('B', n, m)
359
+ >>> C = MatrixSymbol('C', m, n)
360
+ >>> D = MatrixSymbol('D', m, m)
361
+ >>> X = BlockMatrix([[A, B], [C, D]])
362
+ >>> L, D, U = X.LDUdecomposition()
363
+ >>> block_collapse(L*D*U)
364
+ Matrix([
365
+ [A, B],
366
+ [C, D]])
367
+
368
+ Raises
369
+ ======
370
+
371
+ ShapeError
372
+ If the block matrix is not a 2x2 matrix
373
+
374
+ NonInvertibleMatrixError
375
+ If the matrix "A" is non-invertible
376
+
377
+ See Also
378
+ ========
379
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
380
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
381
+ """
382
+ if self.blockshape == (2,2):
383
+ [[A, B],
384
+ [C, D]] = self.blocks.tolist()
385
+ try:
386
+ AI = A.I
387
+ except NonInvertibleMatrixError:
388
+ raise NonInvertibleMatrixError('Block LDU decomposition cannot be calculated when\
389
+ "A" is singular')
390
+ Ip = Identity(B.shape[0])
391
+ Iq = Identity(B.shape[1])
392
+ Z = ZeroMatrix(*B.shape)
393
+ L = BlockMatrix([[Ip, Z], [C*AI, Iq]])
394
+ D = BlockDiagMatrix(A, self.schur())
395
+ U = BlockMatrix([[Ip, AI*B],[Z.T, Iq]])
396
+ return L, D, U
397
+ else:
398
+ raise ShapeError("Block LDU decomposition is supported only for 2x2 block matrices")
399
+
400
+ def UDLdecomposition(self):
401
+ """Returns the Block UDL decomposition of
402
+ a 2x2 Block Matrix
403
+
404
+ Returns
405
+ =======
406
+
407
+ (U, D, L) : Matrices
408
+ U : Upper Diagonal Matrix
409
+ D : Diagonal Matrix
410
+ L : Lower Diagonal Matrix
411
+
412
+ Examples
413
+ ========
414
+
415
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
416
+ >>> m, n = symbols('m n')
417
+ >>> A = MatrixSymbol('A', n, n)
418
+ >>> B = MatrixSymbol('B', n, m)
419
+ >>> C = MatrixSymbol('C', m, n)
420
+ >>> D = MatrixSymbol('D', m, m)
421
+ >>> X = BlockMatrix([[A, B], [C, D]])
422
+ >>> U, D, L = X.UDLdecomposition()
423
+ >>> block_collapse(U*D*L)
424
+ Matrix([
425
+ [A, B],
426
+ [C, D]])
427
+
428
+ Raises
429
+ ======
430
+
431
+ ShapeError
432
+ If the block matrix is not a 2x2 matrix
433
+
434
+ NonInvertibleMatrixError
435
+ If the matrix "D" is non-invertible
436
+
437
+ See Also
438
+ ========
439
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
440
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
441
+ """
442
+ if self.blockshape == (2,2):
443
+ [[A, B],
444
+ [C, D]] = self.blocks.tolist()
445
+ try:
446
+ DI = D.I
447
+ except NonInvertibleMatrixError:
448
+ raise NonInvertibleMatrixError('Block UDL decomposition cannot be calculated when\
449
+ "D" is singular')
450
+ Ip = Identity(A.shape[0])
451
+ Iq = Identity(B.shape[1])
452
+ Z = ZeroMatrix(*B.shape)
453
+ U = BlockMatrix([[Ip, B*DI], [Z.T, Iq]])
454
+ D = BlockDiagMatrix(self.schur('D'), D)
455
+ L = BlockMatrix([[Ip, Z],[DI*C, Iq]])
456
+ return U, D, L
457
+ else:
458
+ raise ShapeError("Block UDL decomposition is supported only for 2x2 block matrices")
459
+
460
+ def LUdecomposition(self):
461
+ """Returns the Block LU decomposition of
462
+ a 2x2 Block Matrix
463
+
464
+ Returns
465
+ =======
466
+
467
+ (L, U) : Matrices
468
+ L : Lower Diagonal Matrix
469
+ U : Upper Diagonal Matrix
470
+
471
+ Examples
472
+ ========
473
+
474
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
475
+ >>> m, n = symbols('m n')
476
+ >>> A = MatrixSymbol('A', n, n)
477
+ >>> B = MatrixSymbol('B', n, m)
478
+ >>> C = MatrixSymbol('C', m, n)
479
+ >>> D = MatrixSymbol('D', m, m)
480
+ >>> X = BlockMatrix([[A, B], [C, D]])
481
+ >>> L, U = X.LUdecomposition()
482
+ >>> block_collapse(L*U)
483
+ Matrix([
484
+ [A, B],
485
+ [C, D]])
486
+
487
+ Raises
488
+ ======
489
+
490
+ ShapeError
491
+ If the block matrix is not a 2x2 matrix
492
+
493
+ NonInvertibleMatrixError
494
+ If the matrix "A" is non-invertible
495
+
496
+ See Also
497
+ ========
498
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
499
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
500
+ """
501
+ if self.blockshape == (2,2):
502
+ [[A, B],
503
+ [C, D]] = self.blocks.tolist()
504
+ try:
505
+ A = A**0.5
506
+ AI = A.I
507
+ except NonInvertibleMatrixError:
508
+ raise NonInvertibleMatrixError('Block LU decomposition cannot be calculated when\
509
+ "A" is singular')
510
+ Z = ZeroMatrix(*B.shape)
511
+ Q = self.schur()**0.5
512
+ L = BlockMatrix([[A, Z], [C*AI, Q]])
513
+ U = BlockMatrix([[A, AI*B],[Z.T, Q]])
514
+ return L, U
515
+ else:
516
+ raise ShapeError("Block LU decomposition is supported only for 2x2 block matrices")
517
+
518
+ def _entry(self, i, j, **kwargs):
519
+ # Find row entry
520
+ orig_i, orig_j = i, j
521
+ for row_block, numrows in enumerate(self.rowblocksizes):
522
+ cmp = i < numrows
523
+ if cmp == True:
524
+ break
525
+ elif cmp == False:
526
+ i -= numrows
527
+ elif row_block < self.blockshape[0] - 1:
528
+ # Can't tell which block and it's not the last one, return unevaluated
529
+ return MatrixElement(self, orig_i, orig_j)
530
+ for col_block, numcols in enumerate(self.colblocksizes):
531
+ cmp = j < numcols
532
+ if cmp == True:
533
+ break
534
+ elif cmp == False:
535
+ j -= numcols
536
+ elif col_block < self.blockshape[1] - 1:
537
+ return MatrixElement(self, orig_i, orig_j)
538
+ return self.blocks[row_block, col_block][i, j]
539
+
540
+ @property
541
+ def is_Identity(self):
542
+ if self.blockshape[0] != self.blockshape[1]:
543
+ return False
544
+ for i in range(self.blockshape[0]):
545
+ for j in range(self.blockshape[1]):
546
+ if i==j and not self.blocks[i, j].is_Identity:
547
+ return False
548
+ if i!=j and not self.blocks[i, j].is_ZeroMatrix:
549
+ return False
550
+ return True
551
+
552
+ @property
553
+ def is_structurally_symmetric(self):
554
+ return self.rowblocksizes == self.colblocksizes
555
+
556
+ def equals(self, other):
557
+ if self == other:
558
+ return True
559
+ if (isinstance(other, BlockMatrix) and self.blocks == other.blocks):
560
+ return True
561
+ return super().equals(other)
562
+
563
+
564
+ class BlockDiagMatrix(BlockMatrix):
565
+ """A sparse matrix with block matrices along its diagonals
566
+
567
+ Examples
568
+ ========
569
+
570
+ >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
571
+ >>> n, m, l = symbols('n m l')
572
+ >>> X = MatrixSymbol('X', n, n)
573
+ >>> Y = MatrixSymbol('Y', m, m)
574
+ >>> BlockDiagMatrix(X, Y)
575
+ Matrix([
576
+ [X, 0],
577
+ [0, Y]])
578
+
579
+ Notes
580
+ =====
581
+
582
+ If you want to get the individual diagonal blocks, use
583
+ :meth:`get_diag_blocks`.
584
+
585
+ See Also
586
+ ========
587
+
588
+ sympy.matrices.dense.diag
589
+ """
590
+ def __new__(cls, *mats):
591
+ return Basic.__new__(BlockDiagMatrix, *[_sympify(m) for m in mats])
592
+
593
+ @property
594
+ def diag(self):
595
+ return self.args
596
+
597
+ @property
598
+ def blocks(self):
599
+ from sympy.matrices.immutable import ImmutableDenseMatrix
600
+ mats = self.args
601
+ data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols)
602
+ for j in range(len(mats))]
603
+ for i in range(len(mats))]
604
+ return ImmutableDenseMatrix(data, evaluate=False)
605
+
606
+ @property
607
+ def shape(self):
608
+ return (sum(block.rows for block in self.args),
609
+ sum(block.cols for block in self.args))
610
+
611
+ @property
612
+ def blockshape(self):
613
+ n = len(self.args)
614
+ return (n, n)
615
+
616
+ @property
617
+ def rowblocksizes(self):
618
+ return [block.rows for block in self.args]
619
+
620
+ @property
621
+ def colblocksizes(self):
622
+ return [block.cols for block in self.args]
623
+
624
+ def _all_square_blocks(self):
625
+ """Returns true if all blocks are square"""
626
+ return all(mat.is_square for mat in self.args)
627
+
628
+ def _eval_determinant(self):
629
+ if self._all_square_blocks():
630
+ return Mul(*[det(mat) for mat in self.args])
631
+ # At least one block is non-square. Since the entire matrix must be square we know there must
632
+ # be at least two blocks in this matrix, in which case the entire matrix is necessarily rank-deficient
633
+ return S.Zero
634
+
635
+ def _eval_inverse(self, expand='ignored'):
636
+ if self._all_square_blocks():
637
+ return BlockDiagMatrix(*[mat.inverse() for mat in self.args])
638
+ # See comment in _eval_determinant()
639
+ raise NonInvertibleMatrixError('Matrix det == 0; not invertible.')
640
+
641
+ def _eval_transpose(self):
642
+ return BlockDiagMatrix(*[mat.transpose() for mat in self.args])
643
+
644
+ def _blockmul(self, other):
645
+ if (isinstance(other, BlockDiagMatrix) and
646
+ self.colblocksizes == other.rowblocksizes):
647
+ return BlockDiagMatrix(*[a*b for a, b in zip(self.args, other.args)])
648
+ else:
649
+ return BlockMatrix._blockmul(self, other)
650
+
651
+ def _blockadd(self, other):
652
+ if (isinstance(other, BlockDiagMatrix) and
653
+ self.blockshape == other.blockshape and
654
+ self.rowblocksizes == other.rowblocksizes and
655
+ self.colblocksizes == other.colblocksizes):
656
+ return BlockDiagMatrix(*[a + b for a, b in zip(self.args, other.args)])
657
+ else:
658
+ return BlockMatrix._blockadd(self, other)
659
+
660
+ def get_diag_blocks(self):
661
+ """Return the list of diagonal blocks of the matrix.
662
+
663
+ Examples
664
+ ========
665
+
666
+ >>> from sympy import BlockDiagMatrix, Matrix
667
+
668
+ >>> A = Matrix([[1, 2], [3, 4]])
669
+ >>> B = Matrix([[5, 6], [7, 8]])
670
+ >>> M = BlockDiagMatrix(A, B)
671
+
672
+ How to get diagonal blocks from the block diagonal matrix:
673
+
674
+ >>> diag_blocks = M.get_diag_blocks()
675
+ >>> diag_blocks[0]
676
+ Matrix([
677
+ [1, 2],
678
+ [3, 4]])
679
+ >>> diag_blocks[1]
680
+ Matrix([
681
+ [5, 6],
682
+ [7, 8]])
683
+ """
684
+ return self.args
685
+
686
+
687
+ def block_collapse(expr):
688
+ """Evaluates a block matrix expression
689
+
690
+ >>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse
691
+ >>> n,m,l = symbols('n m l')
692
+ >>> X = MatrixSymbol('X', n, n)
693
+ >>> Y = MatrixSymbol('Y', m, m)
694
+ >>> Z = MatrixSymbol('Z', n, m)
695
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
696
+ >>> print(B)
697
+ Matrix([
698
+ [X, Z],
699
+ [0, Y]])
700
+
701
+ >>> C = BlockMatrix([[Identity(n), Z]])
702
+ >>> print(C)
703
+ Matrix([[I, Z]])
704
+
705
+ >>> print(block_collapse(C*B))
706
+ Matrix([[X, Z + Z*Y]])
707
+ """
708
+ from sympy.strategies.util import expr_fns
709
+
710
+ hasbm = lambda expr: isinstance(expr, MatrixExpr) and expr.has(BlockMatrix)
711
+
712
+ conditioned_rl = condition(
713
+ hasbm,
714
+ typed(
715
+ {MatAdd: do_one(bc_matadd, bc_block_plus_ident),
716
+ MatMul: do_one(bc_matmul, bc_dist),
717
+ MatPow: bc_matmul,
718
+ Transpose: bc_transpose,
719
+ Inverse: bc_inverse,
720
+ BlockMatrix: do_one(bc_unpack, deblock)}
721
+ )
722
+ )
723
+
724
+ rule = exhaust(
725
+ bottom_up(
726
+ exhaust(conditioned_rl),
727
+ fns=expr_fns
728
+ )
729
+ )
730
+
731
+ result = rule(expr)
732
+ doit = getattr(result, 'doit', None)
733
+ if doit is not None:
734
+ return doit()
735
+ else:
736
+ return result
737
+
738
+ def bc_unpack(expr):
739
+ if expr.blockshape == (1, 1):
740
+ return expr.blocks[0, 0]
741
+ return expr
742
+
743
+ def bc_matadd(expr):
744
+ args = sift(expr.args, lambda M: isinstance(M, BlockMatrix))
745
+ blocks = args[True]
746
+ if not blocks:
747
+ return expr
748
+
749
+ nonblocks = args[False]
750
+ block = blocks[0]
751
+ for b in blocks[1:]:
752
+ block = block._blockadd(b)
753
+ if nonblocks:
754
+ return MatAdd(*nonblocks) + block
755
+ else:
756
+ return block
757
+
758
+ def bc_block_plus_ident(expr):
759
+ idents = [arg for arg in expr.args if arg.is_Identity]
760
+ if not idents:
761
+ return expr
762
+
763
+ blocks = [arg for arg in expr.args if isinstance(arg, BlockMatrix)]
764
+ if (blocks and all(b.structurally_equal(blocks[0]) for b in blocks)
765
+ and blocks[0].is_structurally_symmetric):
766
+ block_id = BlockDiagMatrix(*[Identity(k)
767
+ for k in blocks[0].rowblocksizes])
768
+ rest = [arg for arg in expr.args if not arg.is_Identity and not isinstance(arg, BlockMatrix)]
769
+ return MatAdd(block_id * len(idents), *blocks, *rest).doit()
770
+
771
+ return expr
772
+
773
+ def bc_dist(expr):
774
+ """ Turn a*[X, Y] into [a*X, a*Y] """
775
+ factor, mat = expr.as_coeff_mmul()
776
+ if factor == 1:
777
+ return expr
778
+
779
+ unpacked = unpack(mat)
780
+
781
+ if isinstance(unpacked, BlockDiagMatrix):
782
+ B = unpacked.diag
783
+ new_B = [factor * mat for mat in B]
784
+ return BlockDiagMatrix(*new_B)
785
+ elif isinstance(unpacked, BlockMatrix):
786
+ B = unpacked.blocks
787
+ new_B = [
788
+ [factor * B[i, j] for j in range(B.cols)] for i in range(B.rows)]
789
+ return BlockMatrix(new_B)
790
+ return expr
791
+
792
+
793
+ def bc_matmul(expr):
794
+ if isinstance(expr, MatPow):
795
+ if expr.args[1].is_Integer:
796
+ factor, matrices = (1, [expr.args[0]]*expr.args[1])
797
+ else:
798
+ return expr
799
+ else:
800
+ factor, matrices = expr.as_coeff_matrices()
801
+
802
+ i = 0
803
+ while (i+1 < len(matrices)):
804
+ A, B = matrices[i:i+2]
805
+ if isinstance(A, BlockMatrix) and isinstance(B, BlockMatrix):
806
+ matrices[i] = A._blockmul(B)
807
+ matrices.pop(i+1)
808
+ elif isinstance(A, BlockMatrix):
809
+ matrices[i] = A._blockmul(BlockMatrix([[B]]))
810
+ matrices.pop(i+1)
811
+ elif isinstance(B, BlockMatrix):
812
+ matrices[i] = BlockMatrix([[A]])._blockmul(B)
813
+ matrices.pop(i+1)
814
+ else:
815
+ i+=1
816
+ return MatMul(factor, *matrices).doit()
817
+
818
+ def bc_transpose(expr):
819
+ collapse = block_collapse(expr.arg)
820
+ return collapse._eval_transpose()
821
+
822
+
823
+ def bc_inverse(expr):
824
+ if isinstance(expr.arg, BlockDiagMatrix):
825
+ return expr.inverse()
826
+
827
+ expr2 = blockinverse_1x1(expr)
828
+ if expr != expr2:
829
+ return expr2
830
+ return blockinverse_2x2(Inverse(reblock_2x2(expr.arg)))
831
+
832
+ def blockinverse_1x1(expr):
833
+ if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (1, 1):
834
+ mat = Matrix([[expr.arg.blocks[0].inverse()]])
835
+ return BlockMatrix(mat)
836
+ return expr
837
+
838
+
839
+ def blockinverse_2x2(expr):
840
+ if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (2, 2):
841
+ # See: Inverses of 2x2 Block Matrices, Tzon-Tzer Lu and Sheng-Hua Shiou
842
+ [[A, B],
843
+ [C, D]] = expr.arg.blocks.tolist()
844
+
845
+ formula = _choose_2x2_inversion_formula(A, B, C, D)
846
+ if formula != None:
847
+ MI = expr.arg.schur(formula).I
848
+ if formula == 'A':
849
+ AI = A.I
850
+ return BlockMatrix([[AI + AI * B * MI * C * AI, -AI * B * MI], [-MI * C * AI, MI]])
851
+ if formula == 'B':
852
+ BI = B.I
853
+ return BlockMatrix([[-MI * D * BI, MI], [BI + BI * A * MI * D * BI, -BI * A * MI]])
854
+ if formula == 'C':
855
+ CI = C.I
856
+ return BlockMatrix([[-CI * D * MI, CI + CI * D * MI * A * CI], [MI, -MI * A * CI]])
857
+ if formula == 'D':
858
+ DI = D.I
859
+ return BlockMatrix([[MI, -MI * B * DI], [-DI * C * MI, DI + DI * C * MI * B * DI]])
860
+
861
+ return expr
862
+
863
+
864
+ def _choose_2x2_inversion_formula(A, B, C, D):
865
+ """
866
+ Assuming [[A, B], [C, D]] would form a valid square block matrix, find
867
+ which of the classical 2x2 block matrix inversion formulas would be
868
+ best suited.
869
+
870
+ Returns 'A', 'B', 'C', 'D' to represent the algorithm involving inversion
871
+ of the given argument or None if the matrix cannot be inverted using
872
+ any of those formulas.
873
+ """
874
+ # Try to find a known invertible matrix. Note that the Schur complement
875
+ # is currently not being considered for this
876
+ A_inv = ask(Q.invertible(A))
877
+ if A_inv == True:
878
+ return 'A'
879
+ B_inv = ask(Q.invertible(B))
880
+ if B_inv == True:
881
+ return 'B'
882
+ C_inv = ask(Q.invertible(C))
883
+ if C_inv == True:
884
+ return 'C'
885
+ D_inv = ask(Q.invertible(D))
886
+ if D_inv == True:
887
+ return 'D'
888
+ # Otherwise try to find a matrix that isn't known to be non-invertible
889
+ if A_inv != False:
890
+ return 'A'
891
+ if B_inv != False:
892
+ return 'B'
893
+ if C_inv != False:
894
+ return 'C'
895
+ if D_inv != False:
896
+ return 'D'
897
+ return None
898
+
899
+
900
+ def deblock(B):
901
+ """ Flatten a BlockMatrix of BlockMatrices """
902
+ if not isinstance(B, BlockMatrix) or not B.blocks.has(BlockMatrix):
903
+ return B
904
+ wrap = lambda x: x if isinstance(x, BlockMatrix) else BlockMatrix([[x]])
905
+ bb = B.blocks.applyfunc(wrap) # everything is a block
906
+
907
+ try:
908
+ MM = Matrix(0, sum(bb[0, i].blocks.shape[1] for i in range(bb.shape[1])), [])
909
+ for row in range(0, bb.shape[0]):
910
+ M = Matrix(bb[row, 0].blocks)
911
+ for col in range(1, bb.shape[1]):
912
+ M = M.row_join(bb[row, col].blocks)
913
+ MM = MM.col_join(M)
914
+
915
+ return BlockMatrix(MM)
916
+ except ShapeError:
917
+ return B
918
+
919
+
920
+ def reblock_2x2(expr):
921
+ """
922
+ Reblock a BlockMatrix so that it has 2x2 blocks of block matrices. If
923
+ possible in such a way that the matrix continues to be invertible using the
924
+ classical 2x2 block inversion formulas.
925
+ """
926
+ if not isinstance(expr, BlockMatrix) or not all(d > 2 for d in expr.blockshape):
927
+ return expr
928
+
929
+ BM = BlockMatrix # for brevity's sake
930
+ rowblocks, colblocks = expr.blockshape
931
+ blocks = expr.blocks
932
+ for i in range(1, rowblocks):
933
+ for j in range(1, colblocks):
934
+ # try to split rows at i and cols at j
935
+ A = bc_unpack(BM(blocks[:i, :j]))
936
+ B = bc_unpack(BM(blocks[:i, j:]))
937
+ C = bc_unpack(BM(blocks[i:, :j]))
938
+ D = bc_unpack(BM(blocks[i:, j:]))
939
+
940
+ formula = _choose_2x2_inversion_formula(A, B, C, D)
941
+ if formula is not None:
942
+ return BlockMatrix([[A, B], [C, D]])
943
+
944
+ # else: nothing worked, just split upper left corner
945
+ return BM([[blocks[0, 0], BM(blocks[0, 1:])],
946
+ [BM(blocks[1:, 0]), BM(blocks[1:, 1:])]])
947
+
948
+
949
+ def bounds(sizes):
950
+ """ Convert sequence of numbers into pairs of low-high pairs
951
+
952
+ >>> from sympy.matrices.expressions.blockmatrix import bounds
953
+ >>> bounds((1, 10, 50))
954
+ [(0, 1), (1, 11), (11, 61)]
955
+ """
956
+ low = 0
957
+ rv = []
958
+ for size in sizes:
959
+ rv.append((low, low + size))
960
+ low += size
961
+ return rv
962
+
963
+ def blockcut(expr, rowsizes, colsizes):
964
+ """ Cut a matrix expression into Blocks
965
+
966
+ >>> from sympy import ImmutableMatrix, blockcut
967
+ >>> M = ImmutableMatrix(4, 4, range(16))
968
+ >>> B = blockcut(M, (1, 3), (1, 3))
969
+ >>> type(B).__name__
970
+ 'BlockMatrix'
971
+ >>> ImmutableMatrix(B.blocks[0, 1])
972
+ Matrix([[1, 2, 3]])
973
+ """
974
+
975
+ rowbounds = bounds(rowsizes)
976
+ colbounds = bounds(colsizes)
977
+ return BlockMatrix([[MatrixSlice(expr, rowbound, colbound)
978
+ for colbound in colbounds]
979
+ for rowbound in rowbounds])
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/companion.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.polys.polytools import Poly
4
+
5
+ from .matexpr import MatrixExpr
6
+
7
+
8
+ class CompanionMatrix(MatrixExpr):
9
+ """A symbolic companion matrix of a polynomial.
10
+
11
+ Examples
12
+ ========
13
+
14
+ >>> from sympy import Poly, Symbol, symbols
15
+ >>> from sympy.matrices.expressions import CompanionMatrix
16
+ >>> x = Symbol('x')
17
+ >>> c0, c1, c2, c3, c4 = symbols('c0:5')
18
+ >>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
19
+ >>> CompanionMatrix(p)
20
+ CompanionMatrix(Poly(x**5 + c4*x**4 + c3*x**3 + c2*x**2 + c1*x + c0,
21
+ x, domain='ZZ[c0,c1,c2,c3,c4]'))
22
+ """
23
+ def __new__(cls, poly):
24
+ poly = _sympify(poly)
25
+ if not isinstance(poly, Poly):
26
+ raise ValueError("{} must be a Poly instance.".format(poly))
27
+ if not poly.is_monic:
28
+ raise ValueError("{} must be a monic polynomial.".format(poly))
29
+ if not poly.is_univariate:
30
+ raise ValueError(
31
+ "{} must be a univariate polynomial.".format(poly))
32
+ if not poly.degree() >= 1:
33
+ raise ValueError(
34
+ "{} must have degree not less than 1.".format(poly))
35
+
36
+ return super().__new__(cls, poly)
37
+
38
+
39
+ @property
40
+ def shape(self):
41
+ poly = self.args[0]
42
+ size = poly.degree()
43
+ return size, size
44
+
45
+
46
+ def _entry(self, i, j):
47
+ if j == self.cols - 1:
48
+ return -self.args[0].all_coeffs()[-1 - i]
49
+ elif i == j + 1:
50
+ return S.One
51
+ return S.Zero
52
+
53
+
54
+ def as_explicit(self):
55
+ from sympy.matrices.immutable import ImmutableDenseMatrix
56
+ return ImmutableDenseMatrix.companion(self.args[0])
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.singleton import S
4
+ from sympy.core.sympify import sympify
5
+ from sympy.matrices.common import NonSquareMatrixError
6
+
7
+
8
+ class Determinant(Expr):
9
+ """Matrix Determinant
10
+
11
+ Represents the determinant of a matrix expression.
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy import MatrixSymbol, Determinant, eye
17
+ >>> A = MatrixSymbol('A', 3, 3)
18
+ >>> Determinant(A)
19
+ Determinant(A)
20
+ >>> Determinant(eye(3)).doit()
21
+ 1
22
+ """
23
+ is_commutative = True
24
+
25
+ def __new__(cls, mat):
26
+ mat = sympify(mat)
27
+ if not mat.is_Matrix:
28
+ raise TypeError("Input to Determinant, %s, not a matrix" % str(mat))
29
+
30
+ if mat.is_square is False:
31
+ raise NonSquareMatrixError("Det of a non-square matrix")
32
+
33
+ return Basic.__new__(cls, mat)
34
+
35
+ @property
36
+ def arg(self):
37
+ return self.args[0]
38
+
39
+ @property
40
+ def kind(self):
41
+ return self.arg.kind.element_kind
42
+
43
+ def doit(self, expand=False, **hints):
44
+ try:
45
+ return self.arg._eval_determinant()
46
+ except (AttributeError, NotImplementedError):
47
+ return self
48
+
49
+ def det(matexpr):
50
+ """ Matrix Determinant
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy import MatrixSymbol, det, eye
56
+ >>> A = MatrixSymbol('A', 3, 3)
57
+ >>> det(A)
58
+ Determinant(A)
59
+ >>> det(eye(3))
60
+ 1
61
+ """
62
+
63
+ return Determinant(matexpr).doit()
64
+
65
+ class Permanent(Expr):
66
+ """Matrix Permanent
67
+
68
+ Represents the permanent of a matrix expression.
69
+
70
+ Examples
71
+ ========
72
+
73
+ >>> from sympy import MatrixSymbol, Permanent, ones
74
+ >>> A = MatrixSymbol('A', 3, 3)
75
+ >>> Permanent(A)
76
+ Permanent(A)
77
+ >>> Permanent(ones(3, 3)).doit()
78
+ 6
79
+ """
80
+
81
+ def __new__(cls, mat):
82
+ mat = sympify(mat)
83
+ if not mat.is_Matrix:
84
+ raise TypeError("Input to Permanent, %s, not a matrix" % str(mat))
85
+
86
+ return Basic.__new__(cls, mat)
87
+
88
+ @property
89
+ def arg(self):
90
+ return self.args[0]
91
+
92
+ def doit(self, expand=False, **hints):
93
+ try:
94
+ return self.arg.per()
95
+ except (AttributeError, NotImplementedError):
96
+ return self
97
+
98
+ def per(matexpr):
99
+ """ Matrix Permanent
100
+
101
+ Examples
102
+ ========
103
+
104
+ >>> from sympy import MatrixSymbol, Matrix, per, ones
105
+ >>> A = MatrixSymbol('A', 3, 3)
106
+ >>> per(A)
107
+ Permanent(A)
108
+ >>> per(ones(5, 5))
109
+ 120
110
+ >>> M = Matrix([1, 2, 5])
111
+ >>> per(M)
112
+ 8
113
+ """
114
+
115
+ return Permanent(matexpr).doit()
116
+
117
+ from sympy.assumptions.ask import ask, Q
118
+ from sympy.assumptions.refine import handlers_dict
119
+
120
+
121
+ def refine_Determinant(expr, assumptions):
122
+ """
123
+ >>> from sympy import MatrixSymbol, Q, assuming, refine, det
124
+ >>> X = MatrixSymbol('X', 2, 2)
125
+ >>> det(X)
126
+ Determinant(X)
127
+ >>> with assuming(Q.orthogonal(X)):
128
+ ... print(refine(det(X)))
129
+ 1
130
+ """
131
+ if ask(Q.orthogonal(expr.arg), assumptions):
132
+ return S.One
133
+ elif ask(Q.singular(expr.arg), assumptions):
134
+ return S.Zero
135
+ elif ask(Q.unit_triangular(expr.arg), assumptions):
136
+ return S.One
137
+
138
+ return expr
139
+
140
+
141
+ handlers_dict['Determinant'] = refine_Determinant
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/diagonal.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import _sympify
2
+
3
+ from sympy.matrices.expressions import MatrixExpr
4
+ from sympy.core import S, Eq, Ge
5
+ from sympy.core.mul import Mul
6
+ from sympy.functions.special.tensor_functions import KroneckerDelta
7
+
8
+
9
+ class DiagonalMatrix(MatrixExpr):
10
+ """DiagonalMatrix(M) will create a matrix expression that
11
+ behaves as though all off-diagonal elements,
12
+ `M[i, j]` where `i != j`, are zero.
13
+
14
+ Examples
15
+ ========
16
+
17
+ >>> from sympy import MatrixSymbol, DiagonalMatrix, Symbol
18
+ >>> n = Symbol('n', integer=True)
19
+ >>> m = Symbol('m', integer=True)
20
+ >>> D = DiagonalMatrix(MatrixSymbol('x', 2, 3))
21
+ >>> D[1, 2]
22
+ 0
23
+ >>> D[1, 1]
24
+ x[1, 1]
25
+
26
+ The length of the diagonal -- the lesser of the two dimensions of `M` --
27
+ is accessed through the `diagonal_length` property:
28
+
29
+ >>> D.diagonal_length
30
+ 2
31
+ >>> DiagonalMatrix(MatrixSymbol('x', n + 1, n)).diagonal_length
32
+ n
33
+
34
+ When one of the dimensions is symbolic the other will be treated as
35
+ though it is smaller:
36
+
37
+ >>> tall = DiagonalMatrix(MatrixSymbol('x', n, 3))
38
+ >>> tall.diagonal_length
39
+ 3
40
+ >>> tall[10, 1]
41
+ 0
42
+
43
+ When the size of the diagonal is not known, a value of None will
44
+ be returned:
45
+
46
+ >>> DiagonalMatrix(MatrixSymbol('x', n, m)).diagonal_length is None
47
+ True
48
+
49
+ """
50
+ arg = property(lambda self: self.args[0])
51
+
52
+ shape = property(lambda self: self.arg.shape) # type:ignore
53
+
54
+ @property
55
+ def diagonal_length(self):
56
+ r, c = self.shape
57
+ if r.is_Integer and c.is_Integer:
58
+ m = min(r, c)
59
+ elif r.is_Integer and not c.is_Integer:
60
+ m = r
61
+ elif c.is_Integer and not r.is_Integer:
62
+ m = c
63
+ elif r == c:
64
+ m = r
65
+ else:
66
+ try:
67
+ m = min(r, c)
68
+ except TypeError:
69
+ m = None
70
+ return m
71
+
72
+ def _entry(self, i, j, **kwargs):
73
+ if self.diagonal_length is not None:
74
+ if Ge(i, self.diagonal_length) is S.true:
75
+ return S.Zero
76
+ elif Ge(j, self.diagonal_length) is S.true:
77
+ return S.Zero
78
+ eq = Eq(i, j)
79
+ if eq is S.true:
80
+ return self.arg[i, i]
81
+ elif eq is S.false:
82
+ return S.Zero
83
+ return self.arg[i, j]*KroneckerDelta(i, j)
84
+
85
+
86
+ class DiagonalOf(MatrixExpr):
87
+ """DiagonalOf(M) will create a matrix expression that
88
+ is equivalent to the diagonal of `M`, represented as
89
+ a single column matrix.
90
+
91
+ Examples
92
+ ========
93
+
94
+ >>> from sympy import MatrixSymbol, DiagonalOf, Symbol
95
+ >>> n = Symbol('n', integer=True)
96
+ >>> m = Symbol('m', integer=True)
97
+ >>> x = MatrixSymbol('x', 2, 3)
98
+ >>> diag = DiagonalOf(x)
99
+ >>> diag.shape
100
+ (2, 1)
101
+
102
+ The diagonal can be addressed like a matrix or vector and will
103
+ return the corresponding element of the original matrix:
104
+
105
+ >>> diag[1, 0] == diag[1] == x[1, 1]
106
+ True
107
+
108
+ The length of the diagonal -- the lesser of the two dimensions of `M` --
109
+ is accessed through the `diagonal_length` property:
110
+
111
+ >>> diag.diagonal_length
112
+ 2
113
+ >>> DiagonalOf(MatrixSymbol('x', n + 1, n)).diagonal_length
114
+ n
115
+
116
+ When only one of the dimensions is symbolic the other will be
117
+ treated as though it is smaller:
118
+
119
+ >>> dtall = DiagonalOf(MatrixSymbol('x', n, 3))
120
+ >>> dtall.diagonal_length
121
+ 3
122
+
123
+ When the size of the diagonal is not known, a value of None will
124
+ be returned:
125
+
126
+ >>> DiagonalOf(MatrixSymbol('x', n, m)).diagonal_length is None
127
+ True
128
+
129
+ """
130
+ arg = property(lambda self: self.args[0])
131
+ @property
132
+ def shape(self):
133
+ r, c = self.arg.shape
134
+ if r.is_Integer and c.is_Integer:
135
+ m = min(r, c)
136
+ elif r.is_Integer and not c.is_Integer:
137
+ m = r
138
+ elif c.is_Integer and not r.is_Integer:
139
+ m = c
140
+ elif r == c:
141
+ m = r
142
+ else:
143
+ try:
144
+ m = min(r, c)
145
+ except TypeError:
146
+ m = None
147
+ return m, S.One
148
+
149
+ @property
150
+ def diagonal_length(self):
151
+ return self.shape[0]
152
+
153
+ def _entry(self, i, j, **kwargs):
154
+ return self.arg._entry(i, i, **kwargs)
155
+
156
+
157
+ class DiagMatrix(MatrixExpr):
158
+ """
159
+ Turn a vector into a diagonal matrix.
160
+ """
161
+ def __new__(cls, vector):
162
+ vector = _sympify(vector)
163
+ obj = MatrixExpr.__new__(cls, vector)
164
+ shape = vector.shape
165
+ dim = shape[1] if shape[0] == 1 else shape[0]
166
+ if vector.shape[0] != 1:
167
+ obj._iscolumn = True
168
+ else:
169
+ obj._iscolumn = False
170
+ obj._shape = (dim, dim)
171
+ obj._vector = vector
172
+ return obj
173
+
174
+ @property
175
+ def shape(self):
176
+ return self._shape
177
+
178
+ def _entry(self, i, j, **kwargs):
179
+ if self._iscolumn:
180
+ result = self._vector._entry(i, 0, **kwargs)
181
+ else:
182
+ result = self._vector._entry(0, j, **kwargs)
183
+ if i != j:
184
+ result *= KroneckerDelta(i, j)
185
+ return result
186
+
187
+ def _eval_transpose(self):
188
+ return self
189
+
190
+ def as_explicit(self):
191
+ from sympy.matrices.dense import diag
192
+ return diag(*list(self._vector.as_explicit()))
193
+
194
+ def doit(self, **hints):
195
+ from sympy.assumptions import ask, Q
196
+ from sympy.matrices.expressions.matmul import MatMul
197
+ from sympy.matrices.expressions.transpose import Transpose
198
+ from sympy.matrices.dense import eye
199
+ from sympy.matrices.matrices import MatrixBase
200
+ vector = self._vector
201
+ # This accounts for shape (1, 1) and identity matrices, among others:
202
+ if ask(Q.diagonal(vector)):
203
+ return vector
204
+ if isinstance(vector, MatrixBase):
205
+ ret = eye(max(vector.shape))
206
+ for i in range(ret.shape[0]):
207
+ ret[i, i] = vector[i]
208
+ return type(vector)(ret)
209
+ if vector.is_MatMul:
210
+ matrices = [arg for arg in vector.args if arg.is_Matrix]
211
+ scalars = [arg for arg in vector.args if arg not in matrices]
212
+ if scalars:
213
+ return Mul.fromiter(scalars)*DiagMatrix(MatMul.fromiter(matrices).doit()).doit()
214
+ if isinstance(vector, Transpose):
215
+ vector = vector.arg
216
+ return DiagMatrix(vector)
217
+
218
+
219
+ def diagonalize_vector(vector):
220
+ return DiagMatrix(vector).doit()
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/dotproduct.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Expr
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.matrices.expressions.transpose import transpose
4
+
5
+
6
+ class DotProduct(Expr):
7
+ """
8
+ Dot product of vector matrices
9
+
10
+ The input should be two 1 x n or n x 1 matrices. The output represents the
11
+ scalar dotproduct.
12
+
13
+ This is similar to using MatrixElement and MatMul, except DotProduct does
14
+ not require that one vector to be a row vector and the other vector to be
15
+ a column vector.
16
+
17
+ >>> from sympy import MatrixSymbol, DotProduct
18
+ >>> A = MatrixSymbol('A', 1, 3)
19
+ >>> B = MatrixSymbol('B', 1, 3)
20
+ >>> DotProduct(A, B)
21
+ DotProduct(A, B)
22
+ >>> DotProduct(A, B).doit()
23
+ A[0, 0]*B[0, 0] + A[0, 1]*B[0, 1] + A[0, 2]*B[0, 2]
24
+ """
25
+
26
+ def __new__(cls, arg1, arg2):
27
+ arg1, arg2 = _sympify((arg1, arg2))
28
+
29
+ if not arg1.is_Matrix:
30
+ raise TypeError("Argument 1 of DotProduct is not a matrix")
31
+ if not arg2.is_Matrix:
32
+ raise TypeError("Argument 2 of DotProduct is not a matrix")
33
+ if not (1 in arg1.shape):
34
+ raise TypeError("Argument 1 of DotProduct is not a vector")
35
+ if not (1 in arg2.shape):
36
+ raise TypeError("Argument 2 of DotProduct is not a vector")
37
+
38
+ if set(arg1.shape) != set(arg2.shape):
39
+ raise TypeError("DotProduct arguments are not the same length")
40
+
41
+ return Basic.__new__(cls, arg1, arg2)
42
+
43
+ def doit(self, expand=False, **hints):
44
+ if self.args[0].shape == self.args[1].shape:
45
+ if self.args[0].shape[0] == 1:
46
+ mul = self.args[0]*transpose(self.args[1])
47
+ else:
48
+ mul = transpose(self.args[0])*self.args[1]
49
+ else:
50
+ if self.args[0].shape[0] == 1:
51
+ mul = self.args[0]*self.args[1]
52
+ else:
53
+ mul = transpose(self.args[0])*transpose(self.args[1])
54
+
55
+ return mul[0]
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/factorizations.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions import MatrixExpr
2
+ from sympy.assumptions.ask import Q
3
+
4
+ class Factorization(MatrixExpr):
5
+ arg = property(lambda self: self.args[0])
6
+ shape = property(lambda self: self.arg.shape) # type: ignore
7
+
8
+ class LofLU(Factorization):
9
+ @property
10
+ def predicates(self):
11
+ return (Q.lower_triangular,)
12
+ class UofLU(Factorization):
13
+ @property
14
+ def predicates(self):
15
+ return (Q.upper_triangular,)
16
+
17
+ class LofCholesky(LofLU): pass
18
+ class UofCholesky(UofLU): pass
19
+
20
+ class QofQR(Factorization):
21
+ @property
22
+ def predicates(self):
23
+ return (Q.orthogonal,)
24
+ class RofQR(Factorization):
25
+ @property
26
+ def predicates(self):
27
+ return (Q.upper_triangular,)
28
+
29
+ class EigenVectors(Factorization):
30
+ @property
31
+ def predicates(self):
32
+ return (Q.orthogonal,)
33
+ class EigenValues(Factorization):
34
+ @property
35
+ def predicates(self):
36
+ return (Q.diagonal,)
37
+
38
+ class UofSVD(Factorization):
39
+ @property
40
+ def predicates(self):
41
+ return (Q.orthogonal,)
42
+ class SofSVD(Factorization):
43
+ @property
44
+ def predicates(self):
45
+ return (Q.diagonal,)
46
+ class VofSVD(Factorization):
47
+ @property
48
+ def predicates(self):
49
+ return (Q.orthogonal,)
50
+
51
+
52
+ def lu(expr):
53
+ return LofLU(expr), UofLU(expr)
54
+
55
+ def qr(expr):
56
+ return QofQR(expr), RofQR(expr)
57
+
58
+ def eig(expr):
59
+ return EigenValues(expr), EigenVectors(expr)
60
+
61
+ def svd(expr):
62
+ return UofSVD(expr), SofSVD(expr), VofSVD(expr)
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/funcmatrix.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .matexpr import MatrixExpr
2
+ from sympy.core.function import FunctionClass, Lambda
3
+ from sympy.core.symbol import Dummy
4
+ from sympy.core.sympify import _sympify, sympify
5
+ from sympy.matrices import Matrix
6
+ from sympy.functions.elementary.complexes import re, im
7
+
8
+
9
+ class FunctionMatrix(MatrixExpr):
10
+ """Represents a matrix using a function (``Lambda``) which gives
11
+ outputs according to the coordinates of each matrix entries.
12
+
13
+ Parameters
14
+ ==========
15
+
16
+ rows : nonnegative integer. Can be symbolic.
17
+
18
+ cols : nonnegative integer. Can be symbolic.
19
+
20
+ lamda : Function, Lambda or str
21
+ If it is a SymPy ``Function`` or ``Lambda`` instance,
22
+ it should be able to accept two arguments which represents the
23
+ matrix coordinates.
24
+
25
+ If it is a pure string containing Python ``lambda`` semantics,
26
+ it is interpreted by the SymPy parser and casted into a SymPy
27
+ ``Lambda`` instance.
28
+
29
+ Examples
30
+ ========
31
+
32
+ Creating a ``FunctionMatrix`` from ``Lambda``:
33
+
34
+ >>> from sympy import FunctionMatrix, symbols, Lambda, MatPow
35
+ >>> i, j, n, m = symbols('i,j,n,m')
36
+ >>> FunctionMatrix(n, m, Lambda((i, j), i + j))
37
+ FunctionMatrix(n, m, Lambda((i, j), i + j))
38
+
39
+ Creating a ``FunctionMatrix`` from a SymPy function:
40
+
41
+ >>> from sympy import KroneckerDelta
42
+ >>> X = FunctionMatrix(3, 3, KroneckerDelta)
43
+ >>> X.as_explicit()
44
+ Matrix([
45
+ [1, 0, 0],
46
+ [0, 1, 0],
47
+ [0, 0, 1]])
48
+
49
+ Creating a ``FunctionMatrix`` from a SymPy undefined function:
50
+
51
+ >>> from sympy import Function
52
+ >>> f = Function('f')
53
+ >>> X = FunctionMatrix(3, 3, f)
54
+ >>> X.as_explicit()
55
+ Matrix([
56
+ [f(0, 0), f(0, 1), f(0, 2)],
57
+ [f(1, 0), f(1, 1), f(1, 2)],
58
+ [f(2, 0), f(2, 1), f(2, 2)]])
59
+
60
+ Creating a ``FunctionMatrix`` from Python ``lambda``:
61
+
62
+ >>> FunctionMatrix(n, m, 'lambda i, j: i + j')
63
+ FunctionMatrix(n, m, Lambda((i, j), i + j))
64
+
65
+ Example of lazy evaluation of matrix product:
66
+
67
+ >>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
68
+ >>> isinstance(Y*Y, MatPow) # this is an expression object
69
+ True
70
+ >>> (Y**2)[10,10] # So this is evaluated lazily
71
+ 342923500
72
+
73
+ Notes
74
+ =====
75
+
76
+ This class provides an alternative way to represent an extremely
77
+ dense matrix with entries in some form of a sequence, in a most
78
+ sparse way.
79
+ """
80
+ def __new__(cls, rows, cols, lamda):
81
+ rows, cols = _sympify(rows), _sympify(cols)
82
+ cls._check_dim(rows)
83
+ cls._check_dim(cols)
84
+
85
+ lamda = sympify(lamda)
86
+ if not isinstance(lamda, (FunctionClass, Lambda)):
87
+ raise ValueError(
88
+ "{} should be compatible with SymPy function classes."
89
+ .format(lamda))
90
+
91
+ if 2 not in lamda.nargs:
92
+ raise ValueError(
93
+ '{} should be able to accept 2 arguments.'.format(lamda))
94
+
95
+ if not isinstance(lamda, Lambda):
96
+ i, j = Dummy('i'), Dummy('j')
97
+ lamda = Lambda((i, j), lamda(i, j))
98
+
99
+ return super().__new__(cls, rows, cols, lamda)
100
+
101
+ @property
102
+ def shape(self):
103
+ return self.args[0:2]
104
+
105
+ @property
106
+ def lamda(self):
107
+ return self.args[2]
108
+
109
+ def _entry(self, i, j, **kwargs):
110
+ return self.lamda(i, j)
111
+
112
+ def _eval_trace(self):
113
+ from sympy.matrices.expressions.trace import Trace
114
+ from sympy.concrete.summations import Sum
115
+ return Trace(self).rewrite(Sum).doit()
116
+
117
+ def _eval_as_real_imag(self):
118
+ return (re(Matrix(self)), im(Matrix(self)))
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/hadamard.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+
3
+ from sympy.core import Mul, sympify
4
+ from sympy.core.add import Add
5
+ from sympy.core.expr import ExprBuilder
6
+ from sympy.core.sorting import default_sort_key
7
+ from sympy.functions.elementary.exponential import log
8
+ from sympy.matrices.expressions.matexpr import MatrixExpr
9
+ from sympy.matrices.expressions._shape import validate_matadd_integer as validate
10
+ from sympy.matrices.expressions.special import ZeroMatrix, OneMatrix
11
+ from sympy.strategies import (
12
+ unpack, flatten, condition, exhaust, rm_id, sort
13
+ )
14
+ from sympy.utilities.exceptions import sympy_deprecation_warning
15
+
16
+
17
+ def hadamard_product(*matrices):
18
+ """
19
+ Return the elementwise (aka Hadamard) product of matrices.
20
+
21
+ Examples
22
+ ========
23
+
24
+ >>> from sympy import hadamard_product, MatrixSymbol
25
+ >>> A = MatrixSymbol('A', 2, 3)
26
+ >>> B = MatrixSymbol('B', 2, 3)
27
+ >>> hadamard_product(A)
28
+ A
29
+ >>> hadamard_product(A, B)
30
+ HadamardProduct(A, B)
31
+ >>> hadamard_product(A, B)[0, 1]
32
+ A[0, 1]*B[0, 1]
33
+ """
34
+ if not matrices:
35
+ raise TypeError("Empty Hadamard product is undefined")
36
+ if len(matrices) == 1:
37
+ return matrices[0]
38
+ return HadamardProduct(*matrices).doit()
39
+
40
+
41
+ class HadamardProduct(MatrixExpr):
42
+ """
43
+ Elementwise product of matrix expressions
44
+
45
+ Examples
46
+ ========
47
+
48
+ Hadamard product for matrix symbols:
49
+
50
+ >>> from sympy import hadamard_product, HadamardProduct, MatrixSymbol
51
+ >>> A = MatrixSymbol('A', 5, 5)
52
+ >>> B = MatrixSymbol('B', 5, 5)
53
+ >>> isinstance(hadamard_product(A, B), HadamardProduct)
54
+ True
55
+
56
+ Notes
57
+ =====
58
+
59
+ This is a symbolic object that simply stores its argument without
60
+ evaluating it. To actually compute the product, use the function
61
+ ``hadamard_product()`` or ``HadamardProduct.doit``
62
+ """
63
+ is_HadamardProduct = True
64
+
65
+ def __new__(cls, *args, evaluate=False, check=None):
66
+ args = list(map(sympify, args))
67
+ if len(args) == 0:
68
+ # We currently don't have a way to support one-matrices of generic dimensions:
69
+ raise ValueError("HadamardProduct needs at least one argument")
70
+
71
+ if not all(isinstance(arg, MatrixExpr) for arg in args):
72
+ raise TypeError("Mix of Matrix and Scalar symbols")
73
+
74
+ if check is not None:
75
+ sympy_deprecation_warning(
76
+ "Passing check to HadamardProduct is deprecated and the check argument will be removed in a future version.",
77
+ deprecated_since_version="1.11",
78
+ active_deprecations_target='remove-check-argument-from-matrix-operations')
79
+
80
+ if check is not False:
81
+ validate(*args)
82
+
83
+ obj = super().__new__(cls, *args)
84
+ if evaluate:
85
+ obj = obj.doit(deep=False)
86
+ return obj
87
+
88
+ @property
89
+ def shape(self):
90
+ return self.args[0].shape
91
+
92
+ def _entry(self, i, j, **kwargs):
93
+ return Mul(*[arg._entry(i, j, **kwargs) for arg in self.args])
94
+
95
+ def _eval_transpose(self):
96
+ from sympy.matrices.expressions.transpose import transpose
97
+ return HadamardProduct(*list(map(transpose, self.args)))
98
+
99
+ def doit(self, **hints):
100
+ expr = self.func(*(i.doit(**hints) for i in self.args))
101
+ # Check for explicit matrices:
102
+ from sympy.matrices.matrices import MatrixBase
103
+ from sympy.matrices.immutable import ImmutableMatrix
104
+
105
+ explicit = [i for i in expr.args if isinstance(i, MatrixBase)]
106
+ if explicit:
107
+ remainder = [i for i in expr.args if i not in explicit]
108
+ expl_mat = ImmutableMatrix([
109
+ Mul.fromiter(i) for i in zip(*explicit)
110
+ ]).reshape(*self.shape)
111
+ expr = HadamardProduct(*([expl_mat] + remainder))
112
+
113
+ return canonicalize(expr)
114
+
115
+ def _eval_derivative(self, x):
116
+ terms = []
117
+ args = list(self.args)
118
+ for i in range(len(args)):
119
+ factors = args[:i] + [args[i].diff(x)] + args[i+1:]
120
+ terms.append(hadamard_product(*factors))
121
+ return Add.fromiter(terms)
122
+
123
+ def _eval_derivative_matrix_lines(self, x):
124
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
125
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
126
+ from sympy.matrices.expressions.matexpr import _make_matrix
127
+
128
+ with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
129
+ lines = []
130
+ for ind in with_x_ind:
131
+ left_args = self.args[:ind]
132
+ right_args = self.args[ind+1:]
133
+
134
+ d = self.args[ind]._eval_derivative_matrix_lines(x)
135
+ hadam = hadamard_product(*(right_args + left_args))
136
+ diagonal = [(0, 2), (3, 4)]
137
+ diagonal = [e for j, e in enumerate(diagonal) if self.shape[j] != 1]
138
+ for i in d:
139
+ l1 = i._lines[i._first_line_index]
140
+ l2 = i._lines[i._second_line_index]
141
+ subexpr = ExprBuilder(
142
+ ArrayDiagonal,
143
+ [
144
+ ExprBuilder(
145
+ ArrayTensorProduct,
146
+ [
147
+ ExprBuilder(_make_matrix, [l1]),
148
+ hadam,
149
+ ExprBuilder(_make_matrix, [l2]),
150
+ ]
151
+ ),
152
+ *diagonal],
153
+
154
+ )
155
+ i._first_pointer_parent = subexpr.args[0].args[0].args
156
+ i._first_pointer_index = 0
157
+ i._second_pointer_parent = subexpr.args[0].args[2].args
158
+ i._second_pointer_index = 0
159
+ i._lines = [subexpr]
160
+ lines.append(i)
161
+
162
+ return lines
163
+
164
+
165
+ # TODO Implement algorithm for rewriting Hadamard product as diagonal matrix
166
+ # if matmul identy matrix is multiplied.
167
+ def canonicalize(x):
168
+ """Canonicalize the Hadamard product ``x`` with mathematical properties.
169
+
170
+ Examples
171
+ ========
172
+
173
+ >>> from sympy import MatrixSymbol, HadamardProduct
174
+ >>> from sympy import OneMatrix, ZeroMatrix
175
+ >>> from sympy.matrices.expressions.hadamard import canonicalize
176
+ >>> from sympy import init_printing
177
+ >>> init_printing(use_unicode=False)
178
+
179
+ >>> A = MatrixSymbol('A', 2, 2)
180
+ >>> B = MatrixSymbol('B', 2, 2)
181
+ >>> C = MatrixSymbol('C', 2, 2)
182
+
183
+ Hadamard product associativity:
184
+
185
+ >>> X = HadamardProduct(A, HadamardProduct(B, C))
186
+ >>> X
187
+ A.*(B.*C)
188
+ >>> canonicalize(X)
189
+ A.*B.*C
190
+
191
+ Hadamard product commutativity:
192
+
193
+ >>> X = HadamardProduct(A, B)
194
+ >>> Y = HadamardProduct(B, A)
195
+ >>> X
196
+ A.*B
197
+ >>> Y
198
+ B.*A
199
+ >>> canonicalize(X)
200
+ A.*B
201
+ >>> canonicalize(Y)
202
+ A.*B
203
+
204
+ Hadamard product identity:
205
+
206
+ >>> X = HadamardProduct(A, OneMatrix(2, 2))
207
+ >>> X
208
+ A.*1
209
+ >>> canonicalize(X)
210
+ A
211
+
212
+ Absorbing element of Hadamard product:
213
+
214
+ >>> X = HadamardProduct(A, ZeroMatrix(2, 2))
215
+ >>> X
216
+ A.*0
217
+ >>> canonicalize(X)
218
+ 0
219
+
220
+ Rewriting to Hadamard Power
221
+
222
+ >>> X = HadamardProduct(A, A, A)
223
+ >>> X
224
+ A.*A.*A
225
+ >>> canonicalize(X)
226
+ .3
227
+ A
228
+
229
+ Notes
230
+ =====
231
+
232
+ As the Hadamard product is associative, nested products can be flattened.
233
+
234
+ The Hadamard product is commutative so that factors can be sorted for
235
+ canonical form.
236
+
237
+ A matrix of only ones is an identity for Hadamard product,
238
+ so every matrices of only ones can be removed.
239
+
240
+ Any zero matrix will make the whole product a zero matrix.
241
+
242
+ Duplicate elements can be collected and rewritten as HadamardPower
243
+
244
+ References
245
+ ==========
246
+
247
+ .. [1] https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
248
+ """
249
+ # Associativity
250
+ rule = condition(
251
+ lambda x: isinstance(x, HadamardProduct),
252
+ flatten
253
+ )
254
+ fun = exhaust(rule)
255
+ x = fun(x)
256
+
257
+ # Identity
258
+ fun = condition(
259
+ lambda x: isinstance(x, HadamardProduct),
260
+ rm_id(lambda x: isinstance(x, OneMatrix))
261
+ )
262
+ x = fun(x)
263
+
264
+ # Absorbing by Zero Matrix
265
+ def absorb(x):
266
+ if any(isinstance(c, ZeroMatrix) for c in x.args):
267
+ return ZeroMatrix(*x.shape)
268
+ else:
269
+ return x
270
+ fun = condition(
271
+ lambda x: isinstance(x, HadamardProduct),
272
+ absorb
273
+ )
274
+ x = fun(x)
275
+
276
+ # Rewriting with HadamardPower
277
+ if isinstance(x, HadamardProduct):
278
+ tally = Counter(x.args)
279
+
280
+ new_arg = []
281
+ for base, exp in tally.items():
282
+ if exp == 1:
283
+ new_arg.append(base)
284
+ else:
285
+ new_arg.append(HadamardPower(base, exp))
286
+
287
+ x = HadamardProduct(*new_arg)
288
+
289
+ # Commutativity
290
+ fun = condition(
291
+ lambda x: isinstance(x, HadamardProduct),
292
+ sort(default_sort_key)
293
+ )
294
+ x = fun(x)
295
+
296
+ # Unpacking
297
+ x = unpack(x)
298
+ return x
299
+
300
+
301
+ def hadamard_power(base, exp):
302
+ base = sympify(base)
303
+ exp = sympify(exp)
304
+ if exp == 1:
305
+ return base
306
+ if not base.is_Matrix:
307
+ return base**exp
308
+ if exp.is_Matrix:
309
+ raise ValueError("cannot raise expression to a matrix")
310
+ return HadamardPower(base, exp)
311
+
312
+
313
+ class HadamardPower(MatrixExpr):
314
+ r"""
315
+ Elementwise power of matrix expressions
316
+
317
+ Parameters
318
+ ==========
319
+
320
+ base : scalar or matrix
321
+
322
+ exp : scalar or matrix
323
+
324
+ Notes
325
+ =====
326
+
327
+ There are four definitions for the hadamard power which can be used.
328
+ Let's consider `A, B` as `(m, n)` matrices, and `a, b` as scalars.
329
+
330
+ Matrix raised to a scalar exponent:
331
+
332
+ .. math::
333
+ A^{\circ b} = \begin{bmatrix}
334
+ A_{0, 0}^b & A_{0, 1}^b & \cdots & A_{0, n-1}^b \\
335
+ A_{1, 0}^b & A_{1, 1}^b & \cdots & A_{1, n-1}^b \\
336
+ \vdots & \vdots & \ddots & \vdots \\
337
+ A_{m-1, 0}^b & A_{m-1, 1}^b & \cdots & A_{m-1, n-1}^b
338
+ \end{bmatrix}
339
+
340
+ Scalar raised to a matrix exponent:
341
+
342
+ .. math::
343
+ a^{\circ B} = \begin{bmatrix}
344
+ a^{B_{0, 0}} & a^{B_{0, 1}} & \cdots & a^{B_{0, n-1}} \\
345
+ a^{B_{1, 0}} & a^{B_{1, 1}} & \cdots & a^{B_{1, n-1}} \\
346
+ \vdots & \vdots & \ddots & \vdots \\
347
+ a^{B_{m-1, 0}} & a^{B_{m-1, 1}} & \cdots & a^{B_{m-1, n-1}}
348
+ \end{bmatrix}
349
+
350
+ Matrix raised to a matrix exponent:
351
+
352
+ .. math::
353
+ A^{\circ B} = \begin{bmatrix}
354
+ A_{0, 0}^{B_{0, 0}} & A_{0, 1}^{B_{0, 1}} &
355
+ \cdots & A_{0, n-1}^{B_{0, n-1}} \\
356
+ A_{1, 0}^{B_{1, 0}} & A_{1, 1}^{B_{1, 1}} &
357
+ \cdots & A_{1, n-1}^{B_{1, n-1}} \\
358
+ \vdots & \vdots &
359
+ \ddots & \vdots \\
360
+ A_{m-1, 0}^{B_{m-1, 0}} & A_{m-1, 1}^{B_{m-1, 1}} &
361
+ \cdots & A_{m-1, n-1}^{B_{m-1, n-1}}
362
+ \end{bmatrix}
363
+
364
+ Scalar raised to a scalar exponent:
365
+
366
+ .. math::
367
+ a^{\circ b} = a^b
368
+ """
369
+
370
+ def __new__(cls, base, exp):
371
+ base = sympify(base)
372
+ exp = sympify(exp)
373
+
374
+ if base.is_scalar and exp.is_scalar:
375
+ return base ** exp
376
+
377
+ if isinstance(base, MatrixExpr) and isinstance(exp, MatrixExpr):
378
+ validate(base, exp)
379
+
380
+ obj = super().__new__(cls, base, exp)
381
+ return obj
382
+
383
+ @property
384
+ def base(self):
385
+ return self._args[0]
386
+
387
+ @property
388
+ def exp(self):
389
+ return self._args[1]
390
+
391
+ @property
392
+ def shape(self):
393
+ if self.base.is_Matrix:
394
+ return self.base.shape
395
+ return self.exp.shape
396
+
397
+ def _entry(self, i, j, **kwargs):
398
+ base = self.base
399
+ exp = self.exp
400
+
401
+ if base.is_Matrix:
402
+ a = base._entry(i, j, **kwargs)
403
+ elif base.is_scalar:
404
+ a = base
405
+ else:
406
+ raise ValueError(
407
+ 'The base {} must be a scalar or a matrix.'.format(base))
408
+
409
+ if exp.is_Matrix:
410
+ b = exp._entry(i, j, **kwargs)
411
+ elif exp.is_scalar:
412
+ b = exp
413
+ else:
414
+ raise ValueError(
415
+ 'The exponent {} must be a scalar or a matrix.'.format(exp))
416
+
417
+ return a ** b
418
+
419
+ def _eval_transpose(self):
420
+ from sympy.matrices.expressions.transpose import transpose
421
+ return HadamardPower(transpose(self.base), self.exp)
422
+
423
+ def _eval_derivative(self, x):
424
+ dexp = self.exp.diff(x)
425
+ logbase = self.base.applyfunc(log)
426
+ dlbase = logbase.diff(x)
427
+ return hadamard_product(
428
+ dexp*logbase + self.exp*dlbase,
429
+ self
430
+ )
431
+
432
+ def _eval_derivative_matrix_lines(self, x):
433
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
434
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
435
+ from sympy.matrices.expressions.matexpr import _make_matrix
436
+
437
+ lr = self.base._eval_derivative_matrix_lines(x)
438
+ for i in lr:
439
+ diagonal = [(1, 2), (3, 4)]
440
+ diagonal = [e for j, e in enumerate(diagonal) if self.base.shape[j] != 1]
441
+ l1 = i._lines[i._first_line_index]
442
+ l2 = i._lines[i._second_line_index]
443
+ subexpr = ExprBuilder(
444
+ ArrayDiagonal,
445
+ [
446
+ ExprBuilder(
447
+ ArrayTensorProduct,
448
+ [
449
+ ExprBuilder(_make_matrix, [l1]),
450
+ self.exp*hadamard_power(self.base, self.exp-1),
451
+ ExprBuilder(_make_matrix, [l2]),
452
+ ]
453
+ ),
454
+ *diagonal],
455
+ validator=ArrayDiagonal._validate
456
+ )
457
+ i._first_pointer_parent = subexpr.args[0].args[0].args
458
+ i._first_pointer_index = 0
459
+ i._first_line_index = 0
460
+ i._second_pointer_parent = subexpr.args[0].args[2].args
461
+ i._second_pointer_index = 0
462
+ i._second_line_index = 0
463
+ i._lines = [subexpr]
464
+ return lr
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/inverse.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import _sympify
2
+ from sympy.core import S, Basic
3
+
4
+ from sympy.matrices.common import NonSquareMatrixError
5
+ from sympy.matrices.expressions.matpow import MatPow
6
+
7
+
8
+ class Inverse(MatPow):
9
+ """
10
+ The multiplicative inverse of a matrix expression
11
+
12
+ This is a symbolic object that simply stores its argument without
13
+ evaluating it. To actually compute the inverse, use the ``.inverse()``
14
+ method of matrices.
15
+
16
+ Examples
17
+ ========
18
+
19
+ >>> from sympy import MatrixSymbol, Inverse
20
+ >>> A = MatrixSymbol('A', 3, 3)
21
+ >>> B = MatrixSymbol('B', 3, 3)
22
+ >>> Inverse(A)
23
+ A**(-1)
24
+ >>> A.inverse() == Inverse(A)
25
+ True
26
+ >>> (A*B).inverse()
27
+ B**(-1)*A**(-1)
28
+ >>> Inverse(A*B)
29
+ (A*B)**(-1)
30
+
31
+ """
32
+ is_Inverse = True
33
+ exp = S.NegativeOne
34
+
35
+ def __new__(cls, mat, exp=S.NegativeOne):
36
+ # exp is there to make it consistent with
37
+ # inverse.func(*inverse.args) == inverse
38
+ mat = _sympify(mat)
39
+ exp = _sympify(exp)
40
+ if not mat.is_Matrix:
41
+ raise TypeError("mat should be a matrix")
42
+ if mat.is_square is False:
43
+ raise NonSquareMatrixError("Inverse of non-square matrix %s" % mat)
44
+ return Basic.__new__(cls, mat, exp)
45
+
46
+ @property
47
+ def arg(self):
48
+ return self.args[0]
49
+
50
+ @property
51
+ def shape(self):
52
+ return self.arg.shape
53
+
54
+ def _eval_inverse(self):
55
+ return self.arg
56
+
57
+ def _eval_determinant(self):
58
+ from sympy.matrices.expressions.determinant import det
59
+ return 1/det(self.arg)
60
+
61
+ def doit(self, **hints):
62
+ if 'inv_expand' in hints and hints['inv_expand'] == False:
63
+ return self
64
+
65
+ arg = self.arg
66
+ if hints.get('deep', True):
67
+ arg = arg.doit(**hints)
68
+
69
+ return arg.inverse()
70
+
71
+ def _eval_derivative_matrix_lines(self, x):
72
+ arg = self.args[0]
73
+ lines = arg._eval_derivative_matrix_lines(x)
74
+ for line in lines:
75
+ line.first_pointer *= -self.T
76
+ line.second_pointer *= self
77
+ return lines
78
+
79
+
80
+ from sympy.assumptions.ask import ask, Q
81
+ from sympy.assumptions.refine import handlers_dict
82
+
83
+
84
+ def refine_Inverse(expr, assumptions):
85
+ """
86
+ >>> from sympy import MatrixSymbol, Q, assuming, refine
87
+ >>> X = MatrixSymbol('X', 2, 2)
88
+ >>> X.I
89
+ X**(-1)
90
+ >>> with assuming(Q.orthogonal(X)):
91
+ ... print(refine(X.I))
92
+ X.T
93
+ """
94
+ if ask(Q.orthogonal(expr), assumptions):
95
+ return expr.arg.T
96
+ elif ask(Q.unitary(expr), assumptions):
97
+ return expr.arg.conjugate()
98
+ elif ask(Q.singular(expr), assumptions):
99
+ raise ValueError("Inverse of singular matrix %s" % expr.arg)
100
+
101
+ return expr
102
+
103
+ handlers_dict['Inverse'] = refine_Inverse
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matadd.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import reduce
2
+ import operator
3
+
4
+ from sympy.core import Basic, sympify
5
+ from sympy.core.add import add, Add, _could_extract_minus_sign
6
+ from sympy.core.sorting import default_sort_key
7
+ from sympy.functions import adjoint
8
+ from sympy.matrices.matrices import MatrixBase
9
+ from sympy.matrices.expressions.transpose import transpose
10
+ from sympy.strategies import (rm_id, unpack, flatten, sort, condition,
11
+ exhaust, do_one, glom)
12
+ from sympy.matrices.expressions.matexpr import MatrixExpr
13
+ from sympy.matrices.expressions.special import ZeroMatrix, GenericZeroMatrix
14
+ from sympy.matrices.expressions._shape import validate_matadd_integer as validate
15
+ from sympy.utilities.iterables import sift
16
+ from sympy.utilities.exceptions import sympy_deprecation_warning
17
+
18
+ # XXX: MatAdd should perhaps not subclass directly from Add
19
+ class MatAdd(MatrixExpr, Add):
20
+ """A Sum of Matrix Expressions
21
+
22
+ MatAdd inherits from and operates like SymPy Add
23
+
24
+ Examples
25
+ ========
26
+
27
+ >>> from sympy import MatAdd, MatrixSymbol
28
+ >>> A = MatrixSymbol('A', 5, 5)
29
+ >>> B = MatrixSymbol('B', 5, 5)
30
+ >>> C = MatrixSymbol('C', 5, 5)
31
+ >>> MatAdd(A, B, C)
32
+ A + B + C
33
+ """
34
+ is_MatAdd = True
35
+
36
+ identity = GenericZeroMatrix()
37
+
38
+ def __new__(cls, *args, evaluate=False, check=None, _sympify=True):
39
+ if not args:
40
+ return cls.identity
41
+
42
+ # This must be removed aggressively in the constructor to avoid
43
+ # TypeErrors from GenericZeroMatrix().shape
44
+ args = list(filter(lambda i: cls.identity != i, args))
45
+ if _sympify:
46
+ args = list(map(sympify, args))
47
+
48
+ if not all(isinstance(arg, MatrixExpr) for arg in args):
49
+ raise TypeError("Mix of Matrix and Scalar symbols")
50
+
51
+ obj = Basic.__new__(cls, *args)
52
+
53
+ if check is not None:
54
+ sympy_deprecation_warning(
55
+ "Passing check to MatAdd is deprecated and the check argument will be removed in a future version.",
56
+ deprecated_since_version="1.11",
57
+ active_deprecations_target='remove-check-argument-from-matrix-operations')
58
+
59
+ if check is not False:
60
+ validate(*args)
61
+
62
+ if evaluate:
63
+ obj = cls._evaluate(obj)
64
+
65
+ return obj
66
+
67
+ @classmethod
68
+ def _evaluate(cls, expr):
69
+ return canonicalize(expr)
70
+
71
+ @property
72
+ def shape(self):
73
+ return self.args[0].shape
74
+
75
+ def could_extract_minus_sign(self):
76
+ return _could_extract_minus_sign(self)
77
+
78
+ def expand(self, **kwargs):
79
+ expanded = super(MatAdd, self).expand(**kwargs)
80
+ return self._evaluate(expanded)
81
+
82
+ def _entry(self, i, j, **kwargs):
83
+ return Add(*[arg._entry(i, j, **kwargs) for arg in self.args])
84
+
85
+ def _eval_transpose(self):
86
+ return MatAdd(*[transpose(arg) for arg in self.args]).doit()
87
+
88
+ def _eval_adjoint(self):
89
+ return MatAdd(*[adjoint(arg) for arg in self.args]).doit()
90
+
91
+ def _eval_trace(self):
92
+ from .trace import trace
93
+ return Add(*[trace(arg) for arg in self.args]).doit()
94
+
95
+ def doit(self, **hints):
96
+ deep = hints.get('deep', True)
97
+ if deep:
98
+ args = [arg.doit(**hints) for arg in self.args]
99
+ else:
100
+ args = self.args
101
+ return canonicalize(MatAdd(*args))
102
+
103
+ def _eval_derivative_matrix_lines(self, x):
104
+ add_lines = [arg._eval_derivative_matrix_lines(x) for arg in self.args]
105
+ return [j for i in add_lines for j in i]
106
+
107
+ add.register_handlerclass((Add, MatAdd), MatAdd)
108
+
109
+
110
+ factor_of = lambda arg: arg.as_coeff_mmul()[0]
111
+ matrix_of = lambda arg: unpack(arg.as_coeff_mmul()[1])
112
+ def combine(cnt, mat):
113
+ if cnt == 1:
114
+ return mat
115
+ else:
116
+ return cnt * mat
117
+
118
+
119
+ def merge_explicit(matadd):
120
+ """ Merge explicit MatrixBase arguments
121
+
122
+ Examples
123
+ ========
124
+
125
+ >>> from sympy import MatrixSymbol, eye, Matrix, MatAdd, pprint
126
+ >>> from sympy.matrices.expressions.matadd import merge_explicit
127
+ >>> A = MatrixSymbol('A', 2, 2)
128
+ >>> B = eye(2)
129
+ >>> C = Matrix([[1, 2], [3, 4]])
130
+ >>> X = MatAdd(A, B, C)
131
+ >>> pprint(X)
132
+ [1 0] [1 2]
133
+ A + [ ] + [ ]
134
+ [0 1] [3 4]
135
+ >>> pprint(merge_explicit(X))
136
+ [2 2]
137
+ A + [ ]
138
+ [3 5]
139
+ """
140
+ groups = sift(matadd.args, lambda arg: isinstance(arg, MatrixBase))
141
+ if len(groups[True]) > 1:
142
+ return MatAdd(*(groups[False] + [reduce(operator.add, groups[True])]))
143
+ else:
144
+ return matadd
145
+
146
+
147
+ rules = (rm_id(lambda x: x == 0 or isinstance(x, ZeroMatrix)),
148
+ unpack,
149
+ flatten,
150
+ glom(matrix_of, factor_of, combine),
151
+ merge_explicit,
152
+ sort(default_sort_key))
153
+
154
+ canonicalize = exhaust(condition(lambda x: isinstance(x, MatAdd),
155
+ do_one(*rules)))
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matexpr.py ADDED
@@ -0,0 +1,885 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from functools import wraps
3
+
4
+ from sympy.core import S, Integer, Basic, Mul, Add
5
+ from sympy.core.assumptions import check_assumptions
6
+ from sympy.core.decorators import call_highest_priority
7
+ from sympy.core.expr import Expr, ExprBuilder
8
+ from sympy.core.logic import FuzzyBool
9
+ from sympy.core.symbol import Str, Dummy, symbols, Symbol
10
+ from sympy.core.sympify import SympifyError, _sympify
11
+ from sympy.external.gmpy import SYMPY_INTS
12
+ from sympy.functions import conjugate, adjoint
13
+ from sympy.functions.special.tensor_functions import KroneckerDelta
14
+ from sympy.matrices.common import NonSquareMatrixError
15
+ from sympy.matrices.matrices import MatrixKind, MatrixBase
16
+ from sympy.multipledispatch import dispatch
17
+ from sympy.utilities.misc import filldedent
18
+
19
+
20
+ def _sympifyit(arg, retval=None):
21
+ # This version of _sympifyit sympifies MutableMatrix objects
22
+ def deco(func):
23
+ @wraps(func)
24
+ def __sympifyit_wrapper(a, b):
25
+ try:
26
+ b = _sympify(b)
27
+ return func(a, b)
28
+ except SympifyError:
29
+ return retval
30
+
31
+ return __sympifyit_wrapper
32
+
33
+ return deco
34
+
35
+
36
+ class MatrixExpr(Expr):
37
+ """Superclass for Matrix Expressions
38
+
39
+ MatrixExprs represent abstract matrices, linear transformations represented
40
+ within a particular basis.
41
+
42
+ Examples
43
+ ========
44
+
45
+ >>> from sympy import MatrixSymbol
46
+ >>> A = MatrixSymbol('A', 3, 3)
47
+ >>> y = MatrixSymbol('y', 3, 1)
48
+ >>> x = (A.T*A).I * A * y
49
+
50
+ See Also
51
+ ========
52
+
53
+ MatrixSymbol, MatAdd, MatMul, Transpose, Inverse
54
+ """
55
+ __slots__: tuple[str, ...] = ()
56
+
57
+ # Should not be considered iterable by the
58
+ # sympy.utilities.iterables.iterable function. Subclass that actually are
59
+ # iterable (i.e., explicit matrices) should set this to True.
60
+ _iterable = False
61
+
62
+ _op_priority = 11.0
63
+
64
+ is_Matrix: bool = True
65
+ is_MatrixExpr: bool = True
66
+ is_Identity: FuzzyBool = None
67
+ is_Inverse = False
68
+ is_Transpose = False
69
+ is_ZeroMatrix = False
70
+ is_MatAdd = False
71
+ is_MatMul = False
72
+
73
+ is_commutative = False
74
+ is_number = False
75
+ is_symbol = False
76
+ is_scalar = False
77
+
78
+ kind: MatrixKind = MatrixKind()
79
+
80
+ def __new__(cls, *args, **kwargs):
81
+ args = map(_sympify, args)
82
+ return Basic.__new__(cls, *args, **kwargs)
83
+
84
+ # The following is adapted from the core Expr object
85
+
86
+ @property
87
+ def shape(self) -> tuple[Expr, Expr]:
88
+ raise NotImplementedError
89
+
90
+ @property
91
+ def _add_handler(self):
92
+ return MatAdd
93
+
94
+ @property
95
+ def _mul_handler(self):
96
+ return MatMul
97
+
98
+ def __neg__(self):
99
+ return MatMul(S.NegativeOne, self).doit()
100
+
101
+ def __abs__(self):
102
+ raise NotImplementedError
103
+
104
+ @_sympifyit('other', NotImplemented)
105
+ @call_highest_priority('__radd__')
106
+ def __add__(self, other):
107
+ return MatAdd(self, other).doit()
108
+
109
+ @_sympifyit('other', NotImplemented)
110
+ @call_highest_priority('__add__')
111
+ def __radd__(self, other):
112
+ return MatAdd(other, self).doit()
113
+
114
+ @_sympifyit('other', NotImplemented)
115
+ @call_highest_priority('__rsub__')
116
+ def __sub__(self, other):
117
+ return MatAdd(self, -other).doit()
118
+
119
+ @_sympifyit('other', NotImplemented)
120
+ @call_highest_priority('__sub__')
121
+ def __rsub__(self, other):
122
+ return MatAdd(other, -self).doit()
123
+
124
+ @_sympifyit('other', NotImplemented)
125
+ @call_highest_priority('__rmul__')
126
+ def __mul__(self, other):
127
+ return MatMul(self, other).doit()
128
+
129
+ @_sympifyit('other', NotImplemented)
130
+ @call_highest_priority('__rmul__')
131
+ def __matmul__(self, other):
132
+ return MatMul(self, other).doit()
133
+
134
+ @_sympifyit('other', NotImplemented)
135
+ @call_highest_priority('__mul__')
136
+ def __rmul__(self, other):
137
+ return MatMul(other, self).doit()
138
+
139
+ @_sympifyit('other', NotImplemented)
140
+ @call_highest_priority('__mul__')
141
+ def __rmatmul__(self, other):
142
+ return MatMul(other, self).doit()
143
+
144
+ @_sympifyit('other', NotImplemented)
145
+ @call_highest_priority('__rpow__')
146
+ def __pow__(self, other):
147
+ return MatPow(self, other).doit()
148
+
149
+ @_sympifyit('other', NotImplemented)
150
+ @call_highest_priority('__pow__')
151
+ def __rpow__(self, other):
152
+ raise NotImplementedError("Matrix Power not defined")
153
+
154
+ @_sympifyit('other', NotImplemented)
155
+ @call_highest_priority('__rtruediv__')
156
+ def __truediv__(self, other):
157
+ return self * other**S.NegativeOne
158
+
159
+ @_sympifyit('other', NotImplemented)
160
+ @call_highest_priority('__truediv__')
161
+ def __rtruediv__(self, other):
162
+ raise NotImplementedError()
163
+ #return MatMul(other, Pow(self, S.NegativeOne))
164
+
165
+ @property
166
+ def rows(self):
167
+ return self.shape[0]
168
+
169
+ @property
170
+ def cols(self):
171
+ return self.shape[1]
172
+
173
+ @property
174
+ def is_square(self) -> bool | None:
175
+ rows, cols = self.shape
176
+ if isinstance(rows, Integer) and isinstance(cols, Integer):
177
+ return rows == cols
178
+ if rows == cols:
179
+ return True
180
+ return None
181
+
182
+ def _eval_conjugate(self):
183
+ from sympy.matrices.expressions.adjoint import Adjoint
184
+ return Adjoint(Transpose(self))
185
+
186
+ def as_real_imag(self, deep=True, **hints):
187
+ return self._eval_as_real_imag()
188
+
189
+ def _eval_as_real_imag(self):
190
+ real = S.Half * (self + self._eval_conjugate())
191
+ im = (self - self._eval_conjugate())/(2*S.ImaginaryUnit)
192
+ return (real, im)
193
+
194
+ def _eval_inverse(self):
195
+ return Inverse(self)
196
+
197
+ def _eval_determinant(self):
198
+ return Determinant(self)
199
+
200
+ def _eval_transpose(self):
201
+ return Transpose(self)
202
+
203
+ def _eval_power(self, exp):
204
+ """
205
+ Override this in sub-classes to implement simplification of powers. The cases where the exponent
206
+ is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases.
207
+ """
208
+ return MatPow(self, exp)
209
+
210
+ def _eval_simplify(self, **kwargs):
211
+ if self.is_Atom:
212
+ return self
213
+ else:
214
+ from sympy.simplify import simplify
215
+ return self.func(*[simplify(x, **kwargs) for x in self.args])
216
+
217
+ def _eval_adjoint(self):
218
+ from sympy.matrices.expressions.adjoint import Adjoint
219
+ return Adjoint(self)
220
+
221
+ def _eval_derivative_n_times(self, x, n):
222
+ return Basic._eval_derivative_n_times(self, x, n)
223
+
224
+ def _eval_derivative(self, x):
225
+ # `x` is a scalar:
226
+ if self.has(x):
227
+ # See if there are other methods using it:
228
+ return super()._eval_derivative(x)
229
+ else:
230
+ return ZeroMatrix(*self.shape)
231
+
232
+ @classmethod
233
+ def _check_dim(cls, dim):
234
+ """Helper function to check invalid matrix dimensions"""
235
+ ok = check_assumptions(dim, integer=True, nonnegative=True)
236
+ if ok is False:
237
+ raise ValueError(
238
+ "The dimension specification {} should be "
239
+ "a nonnegative integer.".format(dim))
240
+
241
+
242
+ def _entry(self, i, j, **kwargs):
243
+ raise NotImplementedError(
244
+ "Indexing not implemented for %s" % self.__class__.__name__)
245
+
246
+ def adjoint(self):
247
+ return adjoint(self)
248
+
249
+ def as_coeff_Mul(self, rational=False):
250
+ """Efficiently extract the coefficient of a product."""
251
+ return S.One, self
252
+
253
+ def conjugate(self):
254
+ return conjugate(self)
255
+
256
+ def transpose(self):
257
+ from sympy.matrices.expressions.transpose import transpose
258
+ return transpose(self)
259
+
260
+ @property
261
+ def T(self):
262
+ '''Matrix transposition'''
263
+ return self.transpose()
264
+
265
+ def inverse(self):
266
+ if self.is_square is False:
267
+ raise NonSquareMatrixError('Inverse of non-square matrix')
268
+ return self._eval_inverse()
269
+
270
+ def inv(self):
271
+ return self.inverse()
272
+
273
+ def det(self):
274
+ from sympy.matrices.expressions.determinant import det
275
+ return det(self)
276
+
277
+ @property
278
+ def I(self):
279
+ return self.inverse()
280
+
281
+ def valid_index(self, i, j):
282
+ def is_valid(idx):
283
+ return isinstance(idx, (int, Integer, Symbol, Expr))
284
+ return (is_valid(i) and is_valid(j) and
285
+ (self.rows is None or
286
+ (i >= -self.rows) != False and (i < self.rows) != False) and
287
+ (j >= -self.cols) != False and (j < self.cols) != False)
288
+
289
+ def __getitem__(self, key):
290
+ if not isinstance(key, tuple) and isinstance(key, slice):
291
+ from sympy.matrices.expressions.slice import MatrixSlice
292
+ return MatrixSlice(self, key, (0, None, 1))
293
+ if isinstance(key, tuple) and len(key) == 2:
294
+ i, j = key
295
+ if isinstance(i, slice) or isinstance(j, slice):
296
+ from sympy.matrices.expressions.slice import MatrixSlice
297
+ return MatrixSlice(self, i, j)
298
+ i, j = _sympify(i), _sympify(j)
299
+ if self.valid_index(i, j) != False:
300
+ return self._entry(i, j)
301
+ else:
302
+ raise IndexError("Invalid indices (%s, %s)" % (i, j))
303
+ elif isinstance(key, (SYMPY_INTS, Integer)):
304
+ # row-wise decomposition of matrix
305
+ rows, cols = self.shape
306
+ # allow single indexing if number of columns is known
307
+ if not isinstance(cols, Integer):
308
+ raise IndexError(filldedent('''
309
+ Single indexing is only supported when the number
310
+ of columns is known.'''))
311
+ key = _sympify(key)
312
+ i = key // cols
313
+ j = key % cols
314
+ if self.valid_index(i, j) != False:
315
+ return self._entry(i, j)
316
+ else:
317
+ raise IndexError("Invalid index %s" % key)
318
+ elif isinstance(key, (Symbol, Expr)):
319
+ raise IndexError(filldedent('''
320
+ Only integers may be used when addressing the matrix
321
+ with a single index.'''))
322
+ raise IndexError("Invalid index, wanted %s[i,j]" % self)
323
+
324
+ def _is_shape_symbolic(self) -> bool:
325
+ return (not isinstance(self.rows, (SYMPY_INTS, Integer))
326
+ or not isinstance(self.cols, (SYMPY_INTS, Integer)))
327
+
328
+ def as_explicit(self):
329
+ """
330
+ Returns a dense Matrix with elements represented explicitly
331
+
332
+ Returns an object of type ImmutableDenseMatrix.
333
+
334
+ Examples
335
+ ========
336
+
337
+ >>> from sympy import Identity
338
+ >>> I = Identity(3)
339
+ >>> I
340
+ I
341
+ >>> I.as_explicit()
342
+ Matrix([
343
+ [1, 0, 0],
344
+ [0, 1, 0],
345
+ [0, 0, 1]])
346
+
347
+ See Also
348
+ ========
349
+ as_mutable: returns mutable Matrix type
350
+
351
+ """
352
+ if self._is_shape_symbolic():
353
+ raise ValueError(
354
+ 'Matrix with symbolic shape '
355
+ 'cannot be represented explicitly.')
356
+ from sympy.matrices.immutable import ImmutableDenseMatrix
357
+ return ImmutableDenseMatrix([[self[i, j]
358
+ for j in range(self.cols)]
359
+ for i in range(self.rows)])
360
+
361
+ def as_mutable(self):
362
+ """
363
+ Returns a dense, mutable matrix with elements represented explicitly
364
+
365
+ Examples
366
+ ========
367
+
368
+ >>> from sympy import Identity
369
+ >>> I = Identity(3)
370
+ >>> I
371
+ I
372
+ >>> I.shape
373
+ (3, 3)
374
+ >>> I.as_mutable()
375
+ Matrix([
376
+ [1, 0, 0],
377
+ [0, 1, 0],
378
+ [0, 0, 1]])
379
+
380
+ See Also
381
+ ========
382
+ as_explicit: returns ImmutableDenseMatrix
383
+ """
384
+ return self.as_explicit().as_mutable()
385
+
386
+ def __array__(self):
387
+ from numpy import empty
388
+ a = empty(self.shape, dtype=object)
389
+ for i in range(self.rows):
390
+ for j in range(self.cols):
391
+ a[i, j] = self[i, j]
392
+ return a
393
+
394
+ def equals(self, other):
395
+ """
396
+ Test elementwise equality between matrices, potentially of different
397
+ types
398
+
399
+ >>> from sympy import Identity, eye
400
+ >>> Identity(3).equals(eye(3))
401
+ True
402
+ """
403
+ return self.as_explicit().equals(other)
404
+
405
+ def canonicalize(self):
406
+ return self
407
+
408
+ def as_coeff_mmul(self):
409
+ return S.One, MatMul(self)
410
+
411
+ @staticmethod
412
+ def from_index_summation(expr, first_index=None, last_index=None, dimensions=None):
413
+ r"""
414
+ Parse expression of matrices with explicitly summed indices into a
415
+ matrix expression without indices, if possible.
416
+
417
+ This transformation expressed in mathematical notation:
418
+
419
+ `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
420
+
421
+ Optional parameter ``first_index``: specify which free index to use as
422
+ the index starting the expression.
423
+
424
+ Examples
425
+ ========
426
+
427
+ >>> from sympy import MatrixSymbol, MatrixExpr, Sum
428
+ >>> from sympy.abc import i, j, k, l, N
429
+ >>> A = MatrixSymbol("A", N, N)
430
+ >>> B = MatrixSymbol("B", N, N)
431
+ >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
432
+ >>> MatrixExpr.from_index_summation(expr)
433
+ A*B
434
+
435
+ Transposition is detected:
436
+
437
+ >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
438
+ >>> MatrixExpr.from_index_summation(expr)
439
+ A.T*B
440
+
441
+ Detect the trace:
442
+
443
+ >>> expr = Sum(A[i, i], (i, 0, N-1))
444
+ >>> MatrixExpr.from_index_summation(expr)
445
+ Trace(A)
446
+
447
+ More complicated expressions:
448
+
449
+ >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
450
+ >>> MatrixExpr.from_index_summation(expr)
451
+ A*B.T*A.T
452
+ """
453
+ from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
454
+ from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
455
+ first_indices = []
456
+ if first_index is not None:
457
+ first_indices.append(first_index)
458
+ if last_index is not None:
459
+ first_indices.append(last_index)
460
+ arr = convert_indexed_to_array(expr, first_indices=first_indices)
461
+ return convert_array_to_matrix(arr)
462
+
463
+ def applyfunc(self, func):
464
+ from .applyfunc import ElementwiseApplyFunction
465
+ return ElementwiseApplyFunction(func, self)
466
+
467
+
468
+ @dispatch(MatrixExpr, Expr)
469
+ def _eval_is_eq(lhs, rhs): # noqa:F811
470
+ return False
471
+
472
+ @dispatch(MatrixExpr, MatrixExpr) # type: ignore
473
+ def _eval_is_eq(lhs, rhs): # noqa:F811
474
+ if lhs.shape != rhs.shape:
475
+ return False
476
+ if (lhs - rhs).is_ZeroMatrix:
477
+ return True
478
+
479
+ def get_postprocessor(cls):
480
+ def _postprocessor(expr):
481
+ # To avoid circular imports, we can't have MatMul/MatAdd on the top level
482
+ mat_class = {Mul: MatMul, Add: MatAdd}[cls]
483
+ nonmatrices = []
484
+ matrices = []
485
+ for term in expr.args:
486
+ if isinstance(term, MatrixExpr):
487
+ matrices.append(term)
488
+ else:
489
+ nonmatrices.append(term)
490
+
491
+ if not matrices:
492
+ return cls._from_args(nonmatrices)
493
+
494
+ if nonmatrices:
495
+ if cls == Mul:
496
+ for i in range(len(matrices)):
497
+ if not matrices[i].is_MatrixExpr:
498
+ # If one of the matrices explicit, absorb the scalar into it
499
+ # (doit will combine all explicit matrices into one, so it
500
+ # doesn't matter which)
501
+ matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices))
502
+ nonmatrices = []
503
+ break
504
+
505
+ else:
506
+ # Maintain the ability to create Add(scalar, matrix) without
507
+ # raising an exception. That way different algorithms can
508
+ # replace matrix expressions with non-commutative symbols to
509
+ # manipulate them like non-commutative scalars.
510
+ return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)])
511
+
512
+ if mat_class == MatAdd:
513
+ return mat_class(*matrices).doit(deep=False)
514
+ return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False)
515
+ return _postprocessor
516
+
517
+
518
+ Basic._constructor_postprocessor_mapping[MatrixExpr] = {
519
+ "Mul": [get_postprocessor(Mul)],
520
+ "Add": [get_postprocessor(Add)],
521
+ }
522
+
523
+
524
+ def _matrix_derivative(expr, x, old_algorithm=False):
525
+
526
+ if isinstance(expr, MatrixBase) or isinstance(x, MatrixBase):
527
+ # Do not use array expressions for explicit matrices:
528
+ old_algorithm = True
529
+
530
+ if old_algorithm:
531
+ return _matrix_derivative_old_algorithm(expr, x)
532
+
533
+ from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
534
+ from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
535
+ from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
536
+
537
+ array_expr = convert_matrix_to_array(expr)
538
+ diff_array_expr = array_derive(array_expr, x)
539
+ diff_matrix_expr = convert_array_to_matrix(diff_array_expr)
540
+ return diff_matrix_expr
541
+
542
+
543
+ def _matrix_derivative_old_algorithm(expr, x):
544
+ from sympy.tensor.array.array_derivatives import ArrayDerivative
545
+ lines = expr._eval_derivative_matrix_lines(x)
546
+
547
+ parts = [i.build() for i in lines]
548
+
549
+ from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
550
+
551
+ parts = [[convert_array_to_matrix(j) for j in i] for i in parts]
552
+
553
+ def _get_shape(elem):
554
+ if isinstance(elem, MatrixExpr):
555
+ return elem.shape
556
+ return 1, 1
557
+
558
+ def get_rank(parts):
559
+ return sum([j not in (1, None) for i in parts for j in _get_shape(i)])
560
+
561
+ ranks = [get_rank(i) for i in parts]
562
+ rank = ranks[0]
563
+
564
+ def contract_one_dims(parts):
565
+ if len(parts) == 1:
566
+ return parts[0]
567
+ else:
568
+ p1, p2 = parts[:2]
569
+ if p2.is_Matrix:
570
+ p2 = p2.T
571
+ if p1 == Identity(1):
572
+ pbase = p2
573
+ elif p2 == Identity(1):
574
+ pbase = p1
575
+ else:
576
+ pbase = p1*p2
577
+ if len(parts) == 2:
578
+ return pbase
579
+ else: # len(parts) > 2
580
+ if pbase.is_Matrix:
581
+ raise ValueError("")
582
+ return pbase*Mul.fromiter(parts[2:])
583
+
584
+ if rank <= 2:
585
+ return Add.fromiter([contract_one_dims(i) for i in parts])
586
+
587
+ return ArrayDerivative(expr, x)
588
+
589
+
590
+ class MatrixElement(Expr):
591
+ parent = property(lambda self: self.args[0])
592
+ i = property(lambda self: self.args[1])
593
+ j = property(lambda self: self.args[2])
594
+ _diff_wrt = True
595
+ is_symbol = True
596
+ is_commutative = True
597
+
598
+ def __new__(cls, name, n, m):
599
+ n, m = map(_sympify, (n, m))
600
+ from sympy.matrices.matrices import MatrixBase
601
+ if isinstance(name, str):
602
+ name = Symbol(name)
603
+ else:
604
+ if isinstance(name, MatrixBase):
605
+ if n.is_Integer and m.is_Integer:
606
+ return name[n, m]
607
+ name = _sympify(name) # change mutable into immutable
608
+ else:
609
+ name = _sympify(name)
610
+ if not isinstance(name.kind, MatrixKind):
611
+ raise TypeError("First argument of MatrixElement should be a matrix")
612
+ if not getattr(name, 'valid_index', lambda n, m: True)(n, m):
613
+ raise IndexError('indices out of range')
614
+ obj = Expr.__new__(cls, name, n, m)
615
+ return obj
616
+
617
+ @property
618
+ def symbol(self):
619
+ return self.args[0]
620
+
621
+ def doit(self, **hints):
622
+ deep = hints.get('deep', True)
623
+ if deep:
624
+ args = [arg.doit(**hints) for arg in self.args]
625
+ else:
626
+ args = self.args
627
+ return args[0][args[1], args[2]]
628
+
629
+ @property
630
+ def indices(self):
631
+ return self.args[1:]
632
+
633
+ def _eval_derivative(self, v):
634
+
635
+ if not isinstance(v, MatrixElement):
636
+ from sympy.matrices.matrices import MatrixBase
637
+ if isinstance(self.parent, MatrixBase):
638
+ return self.parent.diff(v)[self.i, self.j]
639
+ return S.Zero
640
+
641
+ M = self.args[0]
642
+
643
+ m, n = self.parent.shape
644
+
645
+ if M == v.args[0]:
646
+ return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \
647
+ KroneckerDelta(self.args[2], v.args[2], (0, n-1))
648
+
649
+ if isinstance(M, Inverse):
650
+ from sympy.concrete.summations import Sum
651
+ i, j = self.args[1:]
652
+ i1, i2 = symbols("z1, z2", cls=Dummy)
653
+ Y = M.args[0]
654
+ r1, r2 = Y.shape
655
+ return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1))
656
+
657
+ if self.has(v.args[0]):
658
+ return None
659
+
660
+ return S.Zero
661
+
662
+
663
+ class MatrixSymbol(MatrixExpr):
664
+ """Symbolic representation of a Matrix object
665
+
666
+ Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and
667
+ can be included in Matrix Expressions
668
+
669
+ Examples
670
+ ========
671
+
672
+ >>> from sympy import MatrixSymbol, Identity
673
+ >>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
674
+ >>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
675
+ >>> A.shape
676
+ (3, 4)
677
+ >>> 2*A*B + Identity(3)
678
+ I + 2*A*B
679
+ """
680
+ is_commutative = False
681
+ is_symbol = True
682
+ _diff_wrt = True
683
+
684
+ def __new__(cls, name, n, m):
685
+ n, m = _sympify(n), _sympify(m)
686
+
687
+ cls._check_dim(m)
688
+ cls._check_dim(n)
689
+
690
+ if isinstance(name, str):
691
+ name = Str(name)
692
+ obj = Basic.__new__(cls, name, n, m)
693
+ return obj
694
+
695
+ @property
696
+ def shape(self):
697
+ return self.args[1], self.args[2]
698
+
699
+ @property
700
+ def name(self):
701
+ return self.args[0].name
702
+
703
+ def _entry(self, i, j, **kwargs):
704
+ return MatrixElement(self, i, j)
705
+
706
+ @property
707
+ def free_symbols(self):
708
+ return {self}
709
+
710
+ def _eval_simplify(self, **kwargs):
711
+ return self
712
+
713
+ def _eval_derivative(self, x):
714
+ # x is a scalar:
715
+ return ZeroMatrix(self.shape[0], self.shape[1])
716
+
717
+ def _eval_derivative_matrix_lines(self, x):
718
+ if self != x:
719
+ first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero
720
+ second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero
721
+ return [_LeftRightArgs(
722
+ [first, second],
723
+ )]
724
+ else:
725
+ first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One
726
+ second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One
727
+ return [_LeftRightArgs(
728
+ [first, second],
729
+ )]
730
+
731
+
732
+ def matrix_symbols(expr):
733
+ return [sym for sym in expr.free_symbols if sym.is_Matrix]
734
+
735
+
736
+ class _LeftRightArgs:
737
+ r"""
738
+ Helper class to compute matrix derivatives.
739
+
740
+ The logic: when an expression is derived by a matrix `X_{mn}`, two lines of
741
+ matrix multiplications are created: the one contracted to `m` (first line),
742
+ and the one contracted to `n` (second line).
743
+
744
+ Transposition flips the side by which new matrices are connected to the
745
+ lines.
746
+
747
+ The trace connects the end of the two lines.
748
+ """
749
+
750
+ def __init__(self, lines, higher=S.One):
751
+ self._lines = list(lines)
752
+ self._first_pointer_parent = self._lines
753
+ self._first_pointer_index = 0
754
+ self._first_line_index = 0
755
+ self._second_pointer_parent = self._lines
756
+ self._second_pointer_index = 1
757
+ self._second_line_index = 1
758
+ self.higher = higher
759
+
760
+ @property
761
+ def first_pointer(self):
762
+ return self._first_pointer_parent[self._first_pointer_index]
763
+
764
+ @first_pointer.setter
765
+ def first_pointer(self, value):
766
+ self._first_pointer_parent[self._first_pointer_index] = value
767
+
768
+ @property
769
+ def second_pointer(self):
770
+ return self._second_pointer_parent[self._second_pointer_index]
771
+
772
+ @second_pointer.setter
773
+ def second_pointer(self, value):
774
+ self._second_pointer_parent[self._second_pointer_index] = value
775
+
776
+ def __repr__(self):
777
+ built = [self._build(i) for i in self._lines]
778
+ return "_LeftRightArgs(lines=%s, higher=%s)" % (
779
+ built,
780
+ self.higher,
781
+ )
782
+
783
+ def transpose(self):
784
+ self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent
785
+ self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index
786
+ self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index
787
+ return self
788
+
789
+ @staticmethod
790
+ def _build(expr):
791
+ if isinstance(expr, ExprBuilder):
792
+ return expr.build()
793
+ if isinstance(expr, list):
794
+ if len(expr) == 1:
795
+ return expr[0]
796
+ else:
797
+ return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]])
798
+ else:
799
+ return expr
800
+
801
+ def build(self):
802
+ data = [self._build(i) for i in self._lines]
803
+ if self.higher != 1:
804
+ data += [self._build(self.higher)]
805
+ data = list(data)
806
+ return data
807
+
808
+ def matrix_form(self):
809
+ if self.first != 1 and self.higher != 1:
810
+ raise ValueError("higher dimensional array cannot be represented")
811
+
812
+ def _get_shape(elem):
813
+ if isinstance(elem, MatrixExpr):
814
+ return elem.shape
815
+ return (None, None)
816
+
817
+ if _get_shape(self.first)[1] != _get_shape(self.second)[1]:
818
+ # Remove one-dimensional identity matrices:
819
+ # (this is needed by `a.diff(a)` where `a` is a vector)
820
+ if _get_shape(self.second) == (1, 1):
821
+ return self.first*self.second[0, 0]
822
+ if _get_shape(self.first) == (1, 1):
823
+ return self.first[1, 1]*self.second.T
824
+ raise ValueError("incompatible shapes")
825
+ if self.first != 1:
826
+ return self.first*self.second.T
827
+ else:
828
+ return self.higher
829
+
830
+ def rank(self):
831
+ """
832
+ Number of dimensions different from trivial (warning: not related to
833
+ matrix rank).
834
+ """
835
+ rank = 0
836
+ if self.first != 1:
837
+ rank += sum([i != 1 for i in self.first.shape])
838
+ if self.second != 1:
839
+ rank += sum([i != 1 for i in self.second.shape])
840
+ if self.higher != 1:
841
+ rank += 2
842
+ return rank
843
+
844
+ def _multiply_pointer(self, pointer, other):
845
+ from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
846
+ from ...tensor.array.expressions.array_expressions import ArrayContraction
847
+
848
+ subexpr = ExprBuilder(
849
+ ArrayContraction,
850
+ [
851
+ ExprBuilder(
852
+ ArrayTensorProduct,
853
+ [
854
+ pointer,
855
+ other
856
+ ]
857
+ ),
858
+ (1, 2)
859
+ ],
860
+ validator=ArrayContraction._validate
861
+ )
862
+
863
+ return subexpr
864
+
865
+ def append_first(self, other):
866
+ self.first_pointer *= other
867
+
868
+ def append_second(self, other):
869
+ self.second_pointer *= other
870
+
871
+
872
+ def _make_matrix(x):
873
+ from sympy.matrices.immutable import ImmutableDenseMatrix
874
+ if isinstance(x, MatrixExpr):
875
+ return x
876
+ return ImmutableDenseMatrix([[x]])
877
+
878
+
879
+ from .matmul import MatMul
880
+ from .matadd import MatAdd
881
+ from .matpow import MatPow
882
+ from .transpose import Transpose
883
+ from .inverse import Inverse
884
+ from .special import ZeroMatrix, Identity
885
+ from .determinant import Determinant
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matmul.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import ask, Q
2
+ from sympy.assumptions.refine import handlers_dict
3
+ from sympy.core import Basic, sympify, S
4
+ from sympy.core.mul import mul, Mul
5
+ from sympy.core.numbers import Number, Integer
6
+ from sympy.core.symbol import Dummy
7
+ from sympy.functions import adjoint
8
+ from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
9
+ do_one, new)
10
+ from sympy.matrices.common import NonInvertibleMatrixError
11
+ from sympy.matrices.matrices import MatrixBase
12
+ from sympy.utilities.exceptions import sympy_deprecation_warning
13
+ from sympy.matrices.expressions._shape import validate_matmul_integer as validate
14
+
15
+ from .inverse import Inverse
16
+ from .matexpr import MatrixExpr
17
+ from .matpow import MatPow
18
+ from .transpose import transpose
19
+ from .permutation import PermutationMatrix
20
+ from .special import ZeroMatrix, Identity, GenericIdentity, OneMatrix
21
+
22
+
23
+ # XXX: MatMul should perhaps not subclass directly from Mul
24
+ class MatMul(MatrixExpr, Mul):
25
+ """
26
+ A product of matrix expressions
27
+
28
+ Examples
29
+ ========
30
+
31
+ >>> from sympy import MatMul, MatrixSymbol
32
+ >>> A = MatrixSymbol('A', 5, 4)
33
+ >>> B = MatrixSymbol('B', 4, 3)
34
+ >>> C = MatrixSymbol('C', 3, 6)
35
+ >>> MatMul(A, B, C)
36
+ A*B*C
37
+ """
38
+ is_MatMul = True
39
+
40
+ identity = GenericIdentity()
41
+
42
+ def __new__(cls, *args, evaluate=False, check=None, _sympify=True):
43
+ if not args:
44
+ return cls.identity
45
+
46
+ # This must be removed aggressively in the constructor to avoid
47
+ # TypeErrors from GenericIdentity().shape
48
+ args = list(filter(lambda i: cls.identity != i, args))
49
+ if _sympify:
50
+ args = list(map(sympify, args))
51
+ obj = Basic.__new__(cls, *args)
52
+ factor, matrices = obj.as_coeff_matrices()
53
+
54
+ if check is not None:
55
+ sympy_deprecation_warning(
56
+ "Passing check to MatMul is deprecated and the check argument will be removed in a future version.",
57
+ deprecated_since_version="1.11",
58
+ active_deprecations_target='remove-check-argument-from-matrix-operations')
59
+
60
+ if check is not False:
61
+ validate(*matrices)
62
+
63
+ if not matrices:
64
+ # Should it be
65
+ #
66
+ # return Basic.__neq__(cls, factor, GenericIdentity()) ?
67
+ return factor
68
+
69
+ if evaluate:
70
+ return cls._evaluate(obj)
71
+
72
+ return obj
73
+
74
+ @classmethod
75
+ def _evaluate(cls, expr):
76
+ return canonicalize(expr)
77
+
78
+ @property
79
+ def shape(self):
80
+ matrices = [arg for arg in self.args if arg.is_Matrix]
81
+ return (matrices[0].rows, matrices[-1].cols)
82
+
83
+ def _entry(self, i, j, expand=True, **kwargs):
84
+ # Avoid cyclic imports
85
+ from sympy.concrete.summations import Sum
86
+ from sympy.matrices.immutable import ImmutableMatrix
87
+
88
+ coeff, matrices = self.as_coeff_matrices()
89
+
90
+ if len(matrices) == 1: # situation like 2*X, matmul is just X
91
+ return coeff * matrices[0][i, j]
92
+
93
+ indices = [None]*(len(matrices) + 1)
94
+ ind_ranges = [None]*(len(matrices) - 1)
95
+ indices[0] = i
96
+ indices[-1] = j
97
+
98
+ def f():
99
+ counter = 1
100
+ while True:
101
+ yield Dummy("i_%i" % counter)
102
+ counter += 1
103
+
104
+ dummy_generator = kwargs.get("dummy_generator", f())
105
+
106
+ for i in range(1, len(matrices)):
107
+ indices[i] = next(dummy_generator)
108
+
109
+ for i, arg in enumerate(matrices[:-1]):
110
+ ind_ranges[i] = arg.shape[1] - 1
111
+ matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)]
112
+ expr_in_sum = Mul.fromiter(matrices)
113
+ if any(v.has(ImmutableMatrix) for v in matrices):
114
+ expand = True
115
+ result = coeff*Sum(
116
+ expr_in_sum,
117
+ *zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges)
118
+ )
119
+
120
+ # Don't waste time in result.doit() if the sum bounds are symbolic
121
+ if not any(isinstance(v, (Integer, int)) for v in ind_ranges):
122
+ expand = False
123
+ return result.doit() if expand else result
124
+
125
+ def as_coeff_matrices(self):
126
+ scalars = [x for x in self.args if not x.is_Matrix]
127
+ matrices = [x for x in self.args if x.is_Matrix]
128
+ coeff = Mul(*scalars)
129
+ if coeff.is_commutative is False:
130
+ raise NotImplementedError("noncommutative scalars in MatMul are not supported.")
131
+
132
+ return coeff, matrices
133
+
134
+ def as_coeff_mmul(self):
135
+ coeff, matrices = self.as_coeff_matrices()
136
+ return coeff, MatMul(*matrices)
137
+
138
+ def expand(self, **kwargs):
139
+ expanded = super(MatMul, self).expand(**kwargs)
140
+ return self._evaluate(expanded)
141
+
142
+ def _eval_transpose(self):
143
+ """Transposition of matrix multiplication.
144
+
145
+ Notes
146
+ =====
147
+
148
+ The following rules are applied.
149
+
150
+ Transposition for matrix multiplied with another matrix:
151
+ `\\left(A B\\right)^{T} = B^{T} A^{T}`
152
+
153
+ Transposition for matrix multiplied with scalar:
154
+ `\\left(c A\\right)^{T} = c A^{T}`
155
+
156
+ References
157
+ ==========
158
+
159
+ .. [1] https://en.wikipedia.org/wiki/Transpose
160
+ """
161
+ coeff, matrices = self.as_coeff_matrices()
162
+ return MatMul(
163
+ coeff, *[transpose(arg) for arg in matrices[::-1]]).doit()
164
+
165
+ def _eval_adjoint(self):
166
+ return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit()
167
+
168
+ def _eval_trace(self):
169
+ factor, mmul = self.as_coeff_mmul()
170
+ if factor != 1:
171
+ from .trace import trace
172
+ return factor * trace(mmul.doit())
173
+ else:
174
+ raise NotImplementedError("Can't simplify any further")
175
+
176
+ def _eval_determinant(self):
177
+ from sympy.matrices.expressions.determinant import Determinant
178
+ factor, matrices = self.as_coeff_matrices()
179
+ square_matrices = only_squares(*matrices)
180
+ return factor**self.rows * Mul(*list(map(Determinant, square_matrices)))
181
+
182
+ def _eval_inverse(self):
183
+ if all(arg.is_square for arg in self.args if isinstance(arg, MatrixExpr)):
184
+ return MatMul(*(
185
+ arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1
186
+ for arg in self.args[::-1]
187
+ )
188
+ ).doit()
189
+ return Inverse(self)
190
+
191
+ def doit(self, **hints):
192
+ deep = hints.get('deep', True)
193
+ if deep:
194
+ args = tuple(arg.doit(**hints) for arg in self.args)
195
+ else:
196
+ args = self.args
197
+
198
+ # treat scalar*MatrixSymbol or scalar*MatPow separately
199
+ expr = canonicalize(MatMul(*args))
200
+ return expr
201
+
202
+ # Needed for partial compatibility with Mul
203
+ def args_cnc(self, cset=False, warn=True, **kwargs):
204
+ coeff_c = [x for x in self.args if x.is_commutative]
205
+ coeff_nc = [x for x in self.args if not x.is_commutative]
206
+ if cset:
207
+ clen = len(coeff_c)
208
+ coeff_c = set(coeff_c)
209
+ if clen and warn and len(coeff_c) != clen:
210
+ raise ValueError('repeated commutative arguments: %s' %
211
+ [ci for ci in coeff_c if list(self.args).count(ci) > 1])
212
+ return [coeff_c, coeff_nc]
213
+
214
+ def _eval_derivative_matrix_lines(self, x):
215
+ from .transpose import Transpose
216
+ with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
217
+ lines = []
218
+ for ind in with_x_ind:
219
+ left_args = self.args[:ind]
220
+ right_args = self.args[ind+1:]
221
+
222
+ if right_args:
223
+ right_mat = MatMul.fromiter(right_args)
224
+ else:
225
+ right_mat = Identity(self.shape[1])
226
+ if left_args:
227
+ left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)])
228
+ else:
229
+ left_rev = Identity(self.shape[0])
230
+
231
+ d = self.args[ind]._eval_derivative_matrix_lines(x)
232
+ for i in d:
233
+ i.append_first(left_rev)
234
+ i.append_second(right_mat)
235
+ lines.append(i)
236
+
237
+ return lines
238
+
239
+ mul.register_handlerclass((Mul, MatMul), MatMul)
240
+
241
+
242
+ # Rules
243
+ def newmul(*args):
244
+ if args[0] == 1:
245
+ args = args[1:]
246
+ return new(MatMul, *args)
247
+
248
+ def any_zeros(mul):
249
+ if any(arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix)
250
+ for arg in mul.args):
251
+ matrices = [arg for arg in mul.args if arg.is_Matrix]
252
+ return ZeroMatrix(matrices[0].rows, matrices[-1].cols)
253
+ return mul
254
+
255
+ def merge_explicit(matmul):
256
+ """ Merge explicit MatrixBase arguments
257
+
258
+ >>> from sympy import MatrixSymbol, Matrix, MatMul, pprint
259
+ >>> from sympy.matrices.expressions.matmul import merge_explicit
260
+ >>> A = MatrixSymbol('A', 2, 2)
261
+ >>> B = Matrix([[1, 1], [1, 1]])
262
+ >>> C = Matrix([[1, 2], [3, 4]])
263
+ >>> X = MatMul(A, B, C)
264
+ >>> pprint(X)
265
+ [1 1] [1 2]
266
+ A*[ ]*[ ]
267
+ [1 1] [3 4]
268
+ >>> pprint(merge_explicit(X))
269
+ [4 6]
270
+ A*[ ]
271
+ [4 6]
272
+
273
+ >>> X = MatMul(B, A, C)
274
+ >>> pprint(X)
275
+ [1 1] [1 2]
276
+ [ ]*A*[ ]
277
+ [1 1] [3 4]
278
+ >>> pprint(merge_explicit(X))
279
+ [1 1] [1 2]
280
+ [ ]*A*[ ]
281
+ [1 1] [3 4]
282
+ """
283
+ if not any(isinstance(arg, MatrixBase) for arg in matmul.args):
284
+ return matmul
285
+ newargs = []
286
+ last = matmul.args[0]
287
+ for arg in matmul.args[1:]:
288
+ if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)):
289
+ last = last * arg
290
+ else:
291
+ newargs.append(last)
292
+ last = arg
293
+ newargs.append(last)
294
+
295
+ return MatMul(*newargs)
296
+
297
+ def remove_ids(mul):
298
+ """ Remove Identities from a MatMul
299
+
300
+ This is a modified version of sympy.strategies.rm_id.
301
+ This is necesssary because MatMul may contain both MatrixExprs and Exprs
302
+ as args.
303
+
304
+ See Also
305
+ ========
306
+
307
+ sympy.strategies.rm_id
308
+ """
309
+ # Separate Exprs from MatrixExprs in args
310
+ factor, mmul = mul.as_coeff_mmul()
311
+ # Apply standard rm_id for MatMuls
312
+ result = rm_id(lambda x: x.is_Identity is True)(mmul)
313
+ if result != mmul:
314
+ return newmul(factor, *result.args) # Recombine and return
315
+ else:
316
+ return mul
317
+
318
+ def factor_in_front(mul):
319
+ factor, matrices = mul.as_coeff_matrices()
320
+ if factor != 1:
321
+ return newmul(factor, *matrices)
322
+ return mul
323
+
324
+ def combine_powers(mul):
325
+ r"""Combine consecutive powers with the same base into one, e.g.
326
+ $$A \times A^2 \Rightarrow A^3$$
327
+
328
+ This also cancels out the possible matrix inverses using the
329
+ knowledgebase of :class:`~.Inverse`, e.g.,
330
+ $$ Y \times X \times X^{-1} \Rightarrow Y $$
331
+ """
332
+ factor, args = mul.as_coeff_matrices()
333
+ new_args = [args[0]]
334
+
335
+ for i in range(1, len(args)):
336
+ A = new_args[-1]
337
+ B = args[i]
338
+
339
+ if isinstance(B, Inverse) and isinstance(B.arg, MatMul):
340
+ Bargs = B.arg.args
341
+ l = len(Bargs)
342
+ if list(Bargs) == new_args[-l:]:
343
+ new_args = new_args[:-l] + [Identity(B.shape[0])]
344
+ continue
345
+
346
+ if isinstance(A, Inverse) and isinstance(A.arg, MatMul):
347
+ Aargs = A.arg.args
348
+ l = len(Aargs)
349
+ if list(Aargs) == args[i:i+l]:
350
+ identity = Identity(A.shape[0])
351
+ new_args[-1] = identity
352
+ for j in range(i, i+l):
353
+ args[j] = identity
354
+ continue
355
+
356
+ if A.is_square == False or B.is_square == False:
357
+ new_args.append(B)
358
+ continue
359
+
360
+ if isinstance(A, MatPow):
361
+ A_base, A_exp = A.args
362
+ else:
363
+ A_base, A_exp = A, S.One
364
+
365
+ if isinstance(B, MatPow):
366
+ B_base, B_exp = B.args
367
+ else:
368
+ B_base, B_exp = B, S.One
369
+
370
+ if A_base == B_base:
371
+ new_exp = A_exp + B_exp
372
+ new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
373
+ continue
374
+ elif not isinstance(B_base, MatrixBase):
375
+ try:
376
+ B_base_inv = B_base.inverse()
377
+ except NonInvertibleMatrixError:
378
+ B_base_inv = None
379
+ if B_base_inv is not None and A_base == B_base_inv:
380
+ new_exp = A_exp - B_exp
381
+ new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
382
+ continue
383
+ new_args.append(B)
384
+
385
+ return newmul(factor, *new_args)
386
+
387
+ def combine_permutations(mul):
388
+ """Refine products of permutation matrices as the products of cycles.
389
+ """
390
+ args = mul.args
391
+ l = len(args)
392
+ if l < 2:
393
+ return mul
394
+
395
+ result = [args[0]]
396
+ for i in range(1, l):
397
+ A = result[-1]
398
+ B = args[i]
399
+ if isinstance(A, PermutationMatrix) and \
400
+ isinstance(B, PermutationMatrix):
401
+ cycle_1 = A.args[0]
402
+ cycle_2 = B.args[0]
403
+ result[-1] = PermutationMatrix(cycle_1 * cycle_2)
404
+ else:
405
+ result.append(B)
406
+
407
+ return MatMul(*result)
408
+
409
+ def combine_one_matrices(mul):
410
+ """
411
+ Combine products of OneMatrix
412
+
413
+ e.g. OneMatrix(2, 3) * OneMatrix(3, 4) -> 3 * OneMatrix(2, 4)
414
+ """
415
+ factor, args = mul.as_coeff_matrices()
416
+ new_args = [args[0]]
417
+
418
+ for B in args[1:]:
419
+ A = new_args[-1]
420
+ if not isinstance(A, OneMatrix) or not isinstance(B, OneMatrix):
421
+ new_args.append(B)
422
+ continue
423
+ new_args.pop()
424
+ new_args.append(OneMatrix(A.shape[0], B.shape[1]))
425
+ factor *= A.shape[1]
426
+
427
+ return newmul(factor, *new_args)
428
+
429
+ def distribute_monom(mul):
430
+ """
431
+ Simplify MatMul expressions but distributing
432
+ rational term to MatMul.
433
+
434
+ e.g. 2*(A+B) -> 2*A + 2*B
435
+ """
436
+ args = mul.args
437
+ if len(args) == 2:
438
+ from .matadd import MatAdd
439
+ if args[0].is_MatAdd and args[1].is_Rational:
440
+ return MatAdd(*[MatMul(mat, args[1]).doit() for mat in args[0].args])
441
+ if args[1].is_MatAdd and args[0].is_Rational:
442
+ return MatAdd(*[MatMul(args[0], mat).doit() for mat in args[1].args])
443
+ return mul
444
+
445
+ rules = (
446
+ distribute_monom, any_zeros, remove_ids, combine_one_matrices, combine_powers, unpack, rm_id(lambda x: x == 1),
447
+ merge_explicit, factor_in_front, flatten, combine_permutations)
448
+
449
+ canonicalize = exhaust(typed({MatMul: do_one(*rules)}))
450
+
451
+ def only_squares(*matrices):
452
+ """factor matrices only if they are square"""
453
+ if matrices[0].rows != matrices[-1].cols:
454
+ raise RuntimeError("Invalid matrices being multiplied")
455
+ out = []
456
+ start = 0
457
+ for i, M in enumerate(matrices):
458
+ if M.cols == matrices[start].rows:
459
+ out.append(MatMul(*matrices[start:i+1]).doit())
460
+ start = i+1
461
+ return out
462
+
463
+
464
+ def refine_MatMul(expr, assumptions):
465
+ """
466
+ >>> from sympy import MatrixSymbol, Q, assuming, refine
467
+ >>> X = MatrixSymbol('X', 2, 2)
468
+ >>> expr = X * X.T
469
+ >>> print(expr)
470
+ X*X.T
471
+ >>> with assuming(Q.orthogonal(X)):
472
+ ... print(refine(expr))
473
+ I
474
+ """
475
+ newargs = []
476
+ exprargs = []
477
+
478
+ for args in expr.args:
479
+ if args.is_Matrix:
480
+ exprargs.append(args)
481
+ else:
482
+ newargs.append(args)
483
+
484
+ last = exprargs[0]
485
+ for arg in exprargs[1:]:
486
+ if arg == last.T and ask(Q.orthogonal(arg), assumptions):
487
+ last = Identity(arg.shape[0])
488
+ elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
489
+ last = Identity(arg.shape[0])
490
+ else:
491
+ newargs.append(last)
492
+ last = arg
493
+ newargs.append(last)
494
+
495
+ return MatMul(*newargs)
496
+
497
+
498
+ handlers_dict['MatMul'] = refine_MatMul
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/matpow.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .matexpr import MatrixExpr
2
+ from .special import Identity
3
+ from sympy.core import S
4
+ from sympy.core.expr import ExprBuilder
5
+ from sympy.core.cache import cacheit
6
+ from sympy.core.power import Pow
7
+ from sympy.core.sympify import _sympify
8
+ from sympy.matrices import MatrixBase
9
+ from sympy.matrices.common import NonSquareMatrixError
10
+
11
+
12
+ class MatPow(MatrixExpr):
13
+ def __new__(cls, base, exp, evaluate=False, **options):
14
+ base = _sympify(base)
15
+ if not base.is_Matrix:
16
+ raise TypeError("MatPow base should be a matrix")
17
+
18
+ if base.is_square is False:
19
+ raise NonSquareMatrixError("Power of non-square matrix %s" % base)
20
+
21
+ exp = _sympify(exp)
22
+ obj = super().__new__(cls, base, exp)
23
+
24
+ if evaluate:
25
+ obj = obj.doit(deep=False)
26
+
27
+ return obj
28
+
29
+ @property
30
+ def base(self):
31
+ return self.args[0]
32
+
33
+ @property
34
+ def exp(self):
35
+ return self.args[1]
36
+
37
+ @property
38
+ def shape(self):
39
+ return self.base.shape
40
+
41
+ @cacheit
42
+ def _get_explicit_matrix(self):
43
+ return self.base.as_explicit()**self.exp
44
+
45
+ def _entry(self, i, j, **kwargs):
46
+ from sympy.matrices.expressions import MatMul
47
+ A = self.doit()
48
+ if isinstance(A, MatPow):
49
+ # We still have a MatPow, make an explicit MatMul out of it.
50
+ if A.exp.is_Integer and A.exp.is_positive:
51
+ A = MatMul(*[A.base for k in range(A.exp)])
52
+ elif not self._is_shape_symbolic():
53
+ return A._get_explicit_matrix()[i, j]
54
+ else:
55
+ # Leave the expression unevaluated:
56
+ from sympy.matrices.expressions.matexpr import MatrixElement
57
+ return MatrixElement(self, i, j)
58
+ return A[i, j]
59
+
60
+ def doit(self, **hints):
61
+ if hints.get('deep', True):
62
+ base, exp = (arg.doit(**hints) for arg in self.args)
63
+ else:
64
+ base, exp = self.args
65
+
66
+ # combine all powers, e.g. (A ** 2) ** 3 -> A ** 6
67
+ while isinstance(base, MatPow):
68
+ exp *= base.args[1]
69
+ base = base.args[0]
70
+
71
+ if isinstance(base, MatrixBase):
72
+ # Delegate
73
+ return base ** exp
74
+
75
+ # Handle simple cases so that _eval_power() in MatrixExpr sub-classes can ignore them
76
+ if exp == S.One:
77
+ return base
78
+ if exp == S.Zero:
79
+ return Identity(base.rows)
80
+ if exp == S.NegativeOne:
81
+ from sympy.matrices.expressions import Inverse
82
+ return Inverse(base).doit(**hints)
83
+
84
+ eval_power = getattr(base, '_eval_power', None)
85
+ if eval_power is not None:
86
+ return eval_power(exp)
87
+
88
+ return MatPow(base, exp)
89
+
90
+ def _eval_transpose(self):
91
+ base, exp = self.args
92
+ return MatPow(base.T, exp)
93
+
94
+ def _eval_derivative(self, x):
95
+ return Pow._eval_derivative(self, x)
96
+
97
+ def _eval_derivative_matrix_lines(self, x):
98
+ from sympy.tensor.array.expressions.array_expressions import ArrayContraction
99
+ from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
100
+ from .matmul import MatMul
101
+ from .inverse import Inverse
102
+ exp = self.exp
103
+ if self.base.shape == (1, 1) and not exp.has(x):
104
+ lr = self.base._eval_derivative_matrix_lines(x)
105
+ for i in lr:
106
+ subexpr = ExprBuilder(
107
+ ArrayContraction,
108
+ [
109
+ ExprBuilder(
110
+ ArrayTensorProduct,
111
+ [
112
+ Identity(1),
113
+ i._lines[0],
114
+ exp*self.base**(exp-1),
115
+ i._lines[1],
116
+ Identity(1),
117
+ ]
118
+ ),
119
+ (0, 3, 4), (5, 7, 8)
120
+ ],
121
+ validator=ArrayContraction._validate
122
+ )
123
+ i._first_pointer_parent = subexpr.args[0].args
124
+ i._first_pointer_index = 0
125
+ i._second_pointer_parent = subexpr.args[0].args
126
+ i._second_pointer_index = 4
127
+ i._lines = [subexpr]
128
+ return lr
129
+ if (exp > 0) == True:
130
+ newexpr = MatMul.fromiter([self.base for i in range(exp)])
131
+ elif (exp == -1) == True:
132
+ return Inverse(self.base)._eval_derivative_matrix_lines(x)
133
+ elif (exp < 0) == True:
134
+ newexpr = MatMul.fromiter([Inverse(self.base) for i in range(-exp)])
135
+ elif (exp == 0) == True:
136
+ return self.doit()._eval_derivative_matrix_lines(x)
137
+ else:
138
+ raise NotImplementedError("cannot evaluate %s derived by %s" % (self, x))
139
+ return newexpr._eval_derivative_matrix_lines(x)
140
+
141
+ def _eval_inverse(self):
142
+ return MatPow(self.base, -self.exp)
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/permutation.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import S
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.functions import KroneckerDelta
4
+
5
+ from .matexpr import MatrixExpr
6
+ from .special import ZeroMatrix, Identity, OneMatrix
7
+
8
+
9
+ class PermutationMatrix(MatrixExpr):
10
+ """A Permutation Matrix
11
+
12
+ Parameters
13
+ ==========
14
+
15
+ perm : Permutation
16
+ The permutation the matrix uses.
17
+
18
+ The size of the permutation determines the matrix size.
19
+
20
+ See the documentation of
21
+ :class:`sympy.combinatorics.permutations.Permutation` for
22
+ the further information of how to create a permutation object.
23
+
24
+ Examples
25
+ ========
26
+
27
+ >>> from sympy import Matrix, PermutationMatrix
28
+ >>> from sympy.combinatorics import Permutation
29
+
30
+ Creating a permutation matrix:
31
+
32
+ >>> p = Permutation(1, 2, 0)
33
+ >>> P = PermutationMatrix(p)
34
+ >>> P = P.as_explicit()
35
+ >>> P
36
+ Matrix([
37
+ [0, 1, 0],
38
+ [0, 0, 1],
39
+ [1, 0, 0]])
40
+
41
+ Permuting a matrix row and column:
42
+
43
+ >>> M = Matrix([0, 1, 2])
44
+ >>> Matrix(P*M)
45
+ Matrix([
46
+ [1],
47
+ [2],
48
+ [0]])
49
+
50
+ >>> Matrix(M.T*P)
51
+ Matrix([[2, 0, 1]])
52
+
53
+ See Also
54
+ ========
55
+
56
+ sympy.combinatorics.permutations.Permutation
57
+ """
58
+
59
+ def __new__(cls, perm):
60
+ from sympy.combinatorics.permutations import Permutation
61
+
62
+ perm = _sympify(perm)
63
+ if not isinstance(perm, Permutation):
64
+ raise ValueError(
65
+ "{} must be a SymPy Permutation instance.".format(perm))
66
+
67
+ return super().__new__(cls, perm)
68
+
69
+ @property
70
+ def shape(self):
71
+ size = self.args[0].size
72
+ return (size, size)
73
+
74
+ @property
75
+ def is_Identity(self):
76
+ return self.args[0].is_Identity
77
+
78
+ def doit(self, **hints):
79
+ if self.is_Identity:
80
+ return Identity(self.rows)
81
+ return self
82
+
83
+ def _entry(self, i, j, **kwargs):
84
+ perm = self.args[0]
85
+ return KroneckerDelta(perm.apply(i), j)
86
+
87
+ def _eval_power(self, exp):
88
+ return PermutationMatrix(self.args[0] ** exp).doit()
89
+
90
+ def _eval_inverse(self):
91
+ return PermutationMatrix(self.args[0] ** -1)
92
+
93
+ _eval_transpose = _eval_adjoint = _eval_inverse
94
+
95
+ def _eval_determinant(self):
96
+ sign = self.args[0].signature()
97
+ if sign == 1:
98
+ return S.One
99
+ elif sign == -1:
100
+ return S.NegativeOne
101
+ raise NotImplementedError
102
+
103
+ def _eval_rewrite_as_BlockDiagMatrix(self, *args, **kwargs):
104
+ from sympy.combinatorics.permutations import Permutation
105
+ from .blockmatrix import BlockDiagMatrix
106
+
107
+ perm = self.args[0]
108
+ full_cyclic_form = perm.full_cyclic_form
109
+
110
+ cycles_picks = []
111
+
112
+ # Stage 1. Decompose the cycles into the blockable form.
113
+ a, b, c = 0, 0, 0
114
+ flag = False
115
+ for cycle in full_cyclic_form:
116
+ l = len(cycle)
117
+ m = max(cycle)
118
+
119
+ if not flag:
120
+ if m + 1 > a + l:
121
+ flag = True
122
+ temp = [cycle]
123
+ b = m
124
+ c = l
125
+ else:
126
+ cycles_picks.append([cycle])
127
+ a += l
128
+
129
+ else:
130
+ if m > b:
131
+ if m + 1 == a + c + l:
132
+ temp.append(cycle)
133
+ cycles_picks.append(temp)
134
+ flag = False
135
+ a = m+1
136
+ else:
137
+ b = m
138
+ temp.append(cycle)
139
+ c += l
140
+ else:
141
+ if b + 1 == a + c + l:
142
+ temp.append(cycle)
143
+ cycles_picks.append(temp)
144
+ flag = False
145
+ a = b+1
146
+ else:
147
+ temp.append(cycle)
148
+ c += l
149
+
150
+ # Stage 2. Normalize each decomposed cycles and build matrix.
151
+ p = 0
152
+ args = []
153
+ for pick in cycles_picks:
154
+ new_cycles = []
155
+ l = 0
156
+ for cycle in pick:
157
+ new_cycle = [i - p for i in cycle]
158
+ new_cycles.append(new_cycle)
159
+ l += len(cycle)
160
+ p += l
161
+ perm = Permutation(new_cycles)
162
+ mat = PermutationMatrix(perm)
163
+ args.append(mat)
164
+
165
+ return BlockDiagMatrix(*args)
166
+
167
+
168
+ class MatrixPermute(MatrixExpr):
169
+ r"""Symbolic representation for permuting matrix rows or columns.
170
+
171
+ Parameters
172
+ ==========
173
+
174
+ perm : Permutation, PermutationMatrix
175
+ The permutation to use for permuting the matrix.
176
+ The permutation can be resized to the suitable one,
177
+
178
+ axis : 0 or 1
179
+ The axis to permute alongside.
180
+ If `0`, it will permute the matrix rows.
181
+ If `1`, it will permute the matrix columns.
182
+
183
+ Notes
184
+ =====
185
+
186
+ This follows the same notation used in
187
+ :meth:`sympy.matrices.common.MatrixCommon.permute`.
188
+
189
+ Examples
190
+ ========
191
+
192
+ >>> from sympy import Matrix, MatrixPermute
193
+ >>> from sympy.combinatorics import Permutation
194
+
195
+ Permuting the matrix rows:
196
+
197
+ >>> p = Permutation(1, 2, 0)
198
+ >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
199
+ >>> B = MatrixPermute(A, p, axis=0)
200
+ >>> B.as_explicit()
201
+ Matrix([
202
+ [4, 5, 6],
203
+ [7, 8, 9],
204
+ [1, 2, 3]])
205
+
206
+ Permuting the matrix columns:
207
+
208
+ >>> B = MatrixPermute(A, p, axis=1)
209
+ >>> B.as_explicit()
210
+ Matrix([
211
+ [2, 3, 1],
212
+ [5, 6, 4],
213
+ [8, 9, 7]])
214
+
215
+ See Also
216
+ ========
217
+
218
+ sympy.matrices.common.MatrixCommon.permute
219
+ """
220
+ def __new__(cls, mat, perm, axis=S.Zero):
221
+ from sympy.combinatorics.permutations import Permutation
222
+
223
+ mat = _sympify(mat)
224
+ if not mat.is_Matrix:
225
+ raise ValueError(
226
+ "{} must be a SymPy matrix instance.".format(perm))
227
+
228
+ perm = _sympify(perm)
229
+ if isinstance(perm, PermutationMatrix):
230
+ perm = perm.args[0]
231
+
232
+ if not isinstance(perm, Permutation):
233
+ raise ValueError(
234
+ "{} must be a SymPy Permutation or a PermutationMatrix " \
235
+ "instance".format(perm))
236
+
237
+ axis = _sympify(axis)
238
+ if axis not in (0, 1):
239
+ raise ValueError("The axis must be 0 or 1.")
240
+
241
+ mat_size = mat.shape[axis]
242
+ if mat_size != perm.size:
243
+ try:
244
+ perm = perm.resize(mat_size)
245
+ except ValueError:
246
+ raise ValueError(
247
+ "Size does not match between the permutation {} "
248
+ "and the matrix {} threaded over the axis {} "
249
+ "and cannot be converted."
250
+ .format(perm, mat, axis))
251
+
252
+ return super().__new__(cls, mat, perm, axis)
253
+
254
+ def doit(self, deep=True, **hints):
255
+ mat, perm, axis = self.args
256
+
257
+ if deep:
258
+ mat = mat.doit(deep=deep, **hints)
259
+ perm = perm.doit(deep=deep, **hints)
260
+
261
+ if perm.is_Identity:
262
+ return mat
263
+
264
+ if mat.is_Identity:
265
+ if axis is S.Zero:
266
+ return PermutationMatrix(perm)
267
+ elif axis is S.One:
268
+ return PermutationMatrix(perm**-1)
269
+
270
+ if isinstance(mat, (ZeroMatrix, OneMatrix)):
271
+ return mat
272
+
273
+ if isinstance(mat, MatrixPermute) and mat.args[2] == axis:
274
+ return MatrixPermute(mat.args[0], perm * mat.args[1], axis)
275
+
276
+ return self
277
+
278
+ @property
279
+ def shape(self):
280
+ return self.args[0].shape
281
+
282
+ def _entry(self, i, j, **kwargs):
283
+ mat, perm, axis = self.args
284
+
285
+ if axis == 0:
286
+ return mat[perm.apply(i), j]
287
+ elif axis == 1:
288
+ return mat[i, perm.apply(j)]
289
+
290
+ def _eval_rewrite_as_MatMul(self, *args, **kwargs):
291
+ from .matmul import MatMul
292
+
293
+ mat, perm, axis = self.args
294
+
295
+ deep = kwargs.get("deep", True)
296
+
297
+ if deep:
298
+ mat = mat.rewrite(MatMul)
299
+
300
+ if axis == 0:
301
+ return MatMul(PermutationMatrix(perm), mat)
302
+ elif axis == 1:
303
+ return MatMul(mat, PermutationMatrix(perm**-1))
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/sets.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.assumptions import check_assumptions
2
+ from sympy.core.logic import fuzzy_and
3
+ from sympy.core.sympify import _sympify
4
+ from sympy.matrices.common import MatrixKind
5
+ from sympy.sets.sets import Set, SetKind
6
+ from sympy.core.kind import NumberKind
7
+ from .matexpr import MatrixExpr
8
+
9
+
10
+ class MatrixSet(Set):
11
+ """
12
+ MatrixSet represents the set of matrices with ``shape = (n, m)`` over the
13
+ given set.
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.matrices import MatrixSet
19
+ >>> from sympy import S, I, Matrix
20
+ >>> M = MatrixSet(2, 2, set=S.Reals)
21
+ >>> X = Matrix([[1, 2], [3, 4]])
22
+ >>> X in M
23
+ True
24
+ >>> X = Matrix([[1, 2], [I, 4]])
25
+ >>> X in M
26
+ False
27
+
28
+ """
29
+ is_empty = False
30
+
31
+ def __new__(cls, n, m, set):
32
+ n, m, set = _sympify(n), _sympify(m), _sympify(set)
33
+ cls._check_dim(n)
34
+ cls._check_dim(m)
35
+ if not isinstance(set, Set):
36
+ raise TypeError("{} should be an instance of Set.".format(set))
37
+ return Set.__new__(cls, n, m, set)
38
+
39
+ @property
40
+ def shape(self):
41
+ return self.args[:2]
42
+
43
+ @property
44
+ def set(self):
45
+ return self.args[2]
46
+
47
+ def _contains(self, other):
48
+ if not isinstance(other, MatrixExpr):
49
+ raise TypeError("{} should be an instance of MatrixExpr.".format(other))
50
+ if other.shape != self.shape:
51
+ are_symbolic = any(_sympify(x).is_Symbol for x in other.shape + self.shape)
52
+ if are_symbolic:
53
+ return None
54
+ return False
55
+ return fuzzy_and(self.set.contains(x) for x in other)
56
+
57
+ @classmethod
58
+ def _check_dim(cls, dim):
59
+ """Helper function to check invalid matrix dimensions"""
60
+ ok = check_assumptions(dim, integer=True, nonnegative=True)
61
+ if ok is False:
62
+ raise ValueError(
63
+ "The dimension specification {} should be "
64
+ "a nonnegative integer.".format(dim))
65
+
66
+ def _kind(self):
67
+ return SetKind(MatrixKind(NumberKind))
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/slice.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions.matexpr import MatrixExpr
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.containers import Tuple
4
+ from sympy.functions.elementary.integers import floor
5
+
6
+ def normalize(i, parentsize):
7
+ if isinstance(i, slice):
8
+ i = (i.start, i.stop, i.step)
9
+ if not isinstance(i, (tuple, list, Tuple)):
10
+ if (i < 0) == True:
11
+ i += parentsize
12
+ i = (i, i+1, 1)
13
+ i = list(i)
14
+ if len(i) == 2:
15
+ i.append(1)
16
+ start, stop, step = i
17
+ start = start or 0
18
+ if stop is None:
19
+ stop = parentsize
20
+ if (start < 0) == True:
21
+ start += parentsize
22
+ if (stop < 0) == True:
23
+ stop += parentsize
24
+ step = step or 1
25
+
26
+ if ((stop - start) * step < 1) == True:
27
+ raise IndexError()
28
+
29
+ return (start, stop, step)
30
+
31
+ class MatrixSlice(MatrixExpr):
32
+ """ A MatrixSlice of a Matrix Expression
33
+
34
+ Examples
35
+ ========
36
+
37
+ >>> from sympy import MatrixSlice, ImmutableMatrix
38
+ >>> M = ImmutableMatrix(4, 4, range(16))
39
+ >>> M
40
+ Matrix([
41
+ [ 0, 1, 2, 3],
42
+ [ 4, 5, 6, 7],
43
+ [ 8, 9, 10, 11],
44
+ [12, 13, 14, 15]])
45
+
46
+ >>> B = MatrixSlice(M, (0, 2), (2, 4))
47
+ >>> ImmutableMatrix(B)
48
+ Matrix([
49
+ [2, 3],
50
+ [6, 7]])
51
+ """
52
+ parent = property(lambda self: self.args[0])
53
+ rowslice = property(lambda self: self.args[1])
54
+ colslice = property(lambda self: self.args[2])
55
+
56
+ def __new__(cls, parent, rowslice, colslice):
57
+ rowslice = normalize(rowslice, parent.shape[0])
58
+ colslice = normalize(colslice, parent.shape[1])
59
+ if not (len(rowslice) == len(colslice) == 3):
60
+ raise IndexError()
61
+ if ((0 > rowslice[0]) == True or
62
+ (parent.shape[0] < rowslice[1]) == True or
63
+ (0 > colslice[0]) == True or
64
+ (parent.shape[1] < colslice[1]) == True):
65
+ raise IndexError()
66
+ if isinstance(parent, MatrixSlice):
67
+ return mat_slice_of_slice(parent, rowslice, colslice)
68
+ return Basic.__new__(cls, parent, Tuple(*rowslice), Tuple(*colslice))
69
+
70
+ @property
71
+ def shape(self):
72
+ rows = self.rowslice[1] - self.rowslice[0]
73
+ rows = rows if self.rowslice[2] == 1 else floor(rows/self.rowslice[2])
74
+ cols = self.colslice[1] - self.colslice[0]
75
+ cols = cols if self.colslice[2] == 1 else floor(cols/self.colslice[2])
76
+ return rows, cols
77
+
78
+ def _entry(self, i, j, **kwargs):
79
+ return self.parent._entry(i*self.rowslice[2] + self.rowslice[0],
80
+ j*self.colslice[2] + self.colslice[0],
81
+ **kwargs)
82
+
83
+ @property
84
+ def on_diag(self):
85
+ return self.rowslice == self.colslice
86
+
87
+
88
+ def slice_of_slice(s, t):
89
+ start1, stop1, step1 = s
90
+ start2, stop2, step2 = t
91
+
92
+ start = start1 + start2*step1
93
+ step = step1 * step2
94
+ stop = start1 + step1*stop2
95
+
96
+ if stop > stop1:
97
+ raise IndexError()
98
+
99
+ return start, stop, step
100
+
101
+
102
+ def mat_slice_of_slice(parent, rowslice, colslice):
103
+ """ Collapse nested matrix slices
104
+
105
+ >>> from sympy import MatrixSymbol
106
+ >>> X = MatrixSymbol('X', 10, 10)
107
+ >>> X[:, 1:5][5:8, :]
108
+ X[5:8, 1:5]
109
+ >>> X[1:9:2, 2:6][1:3, 2]
110
+ X[3:7:2, 4:5]
111
+ """
112
+ row = slice_of_slice(parent.rowslice, rowslice)
113
+ col = slice_of_slice(parent.colslice, colslice)
114
+ return MatrixSlice(parent.parent, row, col)
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/special.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import ask, Q
2
+ from sympy.core.relational import Eq
3
+ from sympy.core.singleton import S
4
+ from sympy.core.sympify import _sympify
5
+ from sympy.functions.special.tensor_functions import KroneckerDelta
6
+ from sympy.matrices.common import NonInvertibleMatrixError
7
+ from .matexpr import MatrixExpr
8
+
9
+
10
+ class ZeroMatrix(MatrixExpr):
11
+ """The Matrix Zero 0 - additive identity
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy import MatrixSymbol, ZeroMatrix
17
+ >>> A = MatrixSymbol('A', 3, 5)
18
+ >>> Z = ZeroMatrix(3, 5)
19
+ >>> A + Z
20
+ A
21
+ >>> Z*A.T
22
+ 0
23
+ """
24
+ is_ZeroMatrix = True
25
+
26
+ def __new__(cls, m, n):
27
+ m, n = _sympify(m), _sympify(n)
28
+ cls._check_dim(m)
29
+ cls._check_dim(n)
30
+
31
+ return super().__new__(cls, m, n)
32
+
33
+ @property
34
+ def shape(self):
35
+ return (self.args[0], self.args[1])
36
+
37
+ def _eval_power(self, exp):
38
+ # exp = -1, 0, 1 are already handled at this stage
39
+ if (exp < 0) == True:
40
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
41
+ return self
42
+
43
+ def _eval_transpose(self):
44
+ return ZeroMatrix(self.cols, self.rows)
45
+
46
+ def _eval_adjoint(self):
47
+ return ZeroMatrix(self.cols, self.rows)
48
+
49
+ def _eval_trace(self):
50
+ return S.Zero
51
+
52
+ def _eval_determinant(self):
53
+ return S.Zero
54
+
55
+ def _eval_inverse(self):
56
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
57
+
58
+ def _eval_as_real_imag(self):
59
+ return (self, self)
60
+
61
+ def _eval_conjugate(self):
62
+ return self
63
+
64
+ def _entry(self, i, j, **kwargs):
65
+ return S.Zero
66
+
67
+
68
+ class GenericZeroMatrix(ZeroMatrix):
69
+ """
70
+ A zero matrix without a specified shape
71
+
72
+ This exists primarily so MatAdd() with no arguments can return something
73
+ meaningful.
74
+ """
75
+ def __new__(cls):
76
+ # super(ZeroMatrix, cls) instead of super(GenericZeroMatrix, cls)
77
+ # because ZeroMatrix.__new__ doesn't have the same signature
78
+ return super(ZeroMatrix, cls).__new__(cls)
79
+
80
+ @property
81
+ def rows(self):
82
+ raise TypeError("GenericZeroMatrix does not have a specified shape")
83
+
84
+ @property
85
+ def cols(self):
86
+ raise TypeError("GenericZeroMatrix does not have a specified shape")
87
+
88
+ @property
89
+ def shape(self):
90
+ raise TypeError("GenericZeroMatrix does not have a specified shape")
91
+
92
+ # Avoid Matrix.__eq__ which might call .shape
93
+ def __eq__(self, other):
94
+ return isinstance(other, GenericZeroMatrix)
95
+
96
+ def __ne__(self, other):
97
+ return not (self == other)
98
+
99
+ def __hash__(self):
100
+ return super().__hash__()
101
+
102
+
103
+
104
+ class Identity(MatrixExpr):
105
+ """The Matrix Identity I - multiplicative identity
106
+
107
+ Examples
108
+ ========
109
+
110
+ >>> from sympy import Identity, MatrixSymbol
111
+ >>> A = MatrixSymbol('A', 3, 5)
112
+ >>> I = Identity(3)
113
+ >>> I*A
114
+ A
115
+ """
116
+
117
+ is_Identity = True
118
+
119
+ def __new__(cls, n):
120
+ n = _sympify(n)
121
+ cls._check_dim(n)
122
+
123
+ return super().__new__(cls, n)
124
+
125
+ @property
126
+ def rows(self):
127
+ return self.args[0]
128
+
129
+ @property
130
+ def cols(self):
131
+ return self.args[0]
132
+
133
+ @property
134
+ def shape(self):
135
+ return (self.args[0], self.args[0])
136
+
137
+ @property
138
+ def is_square(self):
139
+ return True
140
+
141
+ def _eval_transpose(self):
142
+ return self
143
+
144
+ def _eval_trace(self):
145
+ return self.rows
146
+
147
+ def _eval_inverse(self):
148
+ return self
149
+
150
+ def _eval_as_real_imag(self):
151
+ return (self, ZeroMatrix(*self.shape))
152
+
153
+ def _eval_conjugate(self):
154
+ return self
155
+
156
+ def _eval_adjoint(self):
157
+ return self
158
+
159
+ def _entry(self, i, j, **kwargs):
160
+ eq = Eq(i, j)
161
+ if eq is S.true:
162
+ return S.One
163
+ elif eq is S.false:
164
+ return S.Zero
165
+ return KroneckerDelta(i, j, (0, self.cols-1))
166
+
167
+ def _eval_determinant(self):
168
+ return S.One
169
+
170
+ def _eval_power(self, exp):
171
+ return self
172
+
173
+
174
+ class GenericIdentity(Identity):
175
+ """
176
+ An identity matrix without a specified shape
177
+
178
+ This exists primarily so MatMul() with no arguments can return something
179
+ meaningful.
180
+ """
181
+ def __new__(cls):
182
+ # super(Identity, cls) instead of super(GenericIdentity, cls) because
183
+ # Identity.__new__ doesn't have the same signature
184
+ return super(Identity, cls).__new__(cls)
185
+
186
+ @property
187
+ def rows(self):
188
+ raise TypeError("GenericIdentity does not have a specified shape")
189
+
190
+ @property
191
+ def cols(self):
192
+ raise TypeError("GenericIdentity does not have a specified shape")
193
+
194
+ @property
195
+ def shape(self):
196
+ raise TypeError("GenericIdentity does not have a specified shape")
197
+
198
+ @property
199
+ def is_square(self):
200
+ return True
201
+
202
+ # Avoid Matrix.__eq__ which might call .shape
203
+ def __eq__(self, other):
204
+ return isinstance(other, GenericIdentity)
205
+
206
+ def __ne__(self, other):
207
+ return not (self == other)
208
+
209
+ def __hash__(self):
210
+ return super().__hash__()
211
+
212
+
213
+ class OneMatrix(MatrixExpr):
214
+ """
215
+ Matrix whose all entries are ones.
216
+ """
217
+ def __new__(cls, m, n, evaluate=False):
218
+ m, n = _sympify(m), _sympify(n)
219
+ cls._check_dim(m)
220
+ cls._check_dim(n)
221
+
222
+ if evaluate:
223
+ condition = Eq(m, 1) & Eq(n, 1)
224
+ if condition == True:
225
+ return Identity(1)
226
+
227
+ obj = super().__new__(cls, m, n)
228
+ return obj
229
+
230
+ @property
231
+ def shape(self):
232
+ return self._args
233
+
234
+ @property
235
+ def is_Identity(self):
236
+ return self._is_1x1() == True
237
+
238
+ def as_explicit(self):
239
+ from sympy.matrices.immutable import ImmutableDenseMatrix
240
+ return ImmutableDenseMatrix.ones(*self.shape)
241
+
242
+ def doit(self, **hints):
243
+ args = self.args
244
+ if hints.get('deep', True):
245
+ args = [a.doit(**hints) for a in args]
246
+ return self.func(*args, evaluate=True)
247
+
248
+ def _eval_power(self, exp):
249
+ # exp = -1, 0, 1 are already handled at this stage
250
+ if self._is_1x1() == True:
251
+ return Identity(1)
252
+ if (exp < 0) == True:
253
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
254
+ if ask(Q.integer(exp)):
255
+ return self.shape[0] ** (exp - 1) * OneMatrix(*self.shape)
256
+ return super()._eval_power(exp)
257
+
258
+ def _eval_transpose(self):
259
+ return OneMatrix(self.cols, self.rows)
260
+
261
+ def _eval_adjoint(self):
262
+ return OneMatrix(self.cols, self.rows)
263
+
264
+ def _eval_trace(self):
265
+ return S.One*self.rows
266
+
267
+ def _is_1x1(self):
268
+ """Returns true if the matrix is known to be 1x1"""
269
+ shape = self.shape
270
+ return Eq(shape[0], 1) & Eq(shape[1], 1)
271
+
272
+ def _eval_determinant(self):
273
+ condition = self._is_1x1()
274
+ if condition == True:
275
+ return S.One
276
+ elif condition == False:
277
+ return S.Zero
278
+ else:
279
+ from sympy.matrices.expressions.determinant import Determinant
280
+ return Determinant(self)
281
+
282
+ def _eval_inverse(self):
283
+ condition = self._is_1x1()
284
+ if condition == True:
285
+ return Identity(1)
286
+ elif condition == False:
287
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
288
+ else:
289
+ from .inverse import Inverse
290
+ return Inverse(self)
291
+
292
+ def _eval_as_real_imag(self):
293
+ return (self, ZeroMatrix(*self.shape))
294
+
295
+ def _eval_conjugate(self):
296
+ return self
297
+
298
+ def _entry(self, i, j, **kwargs):
299
+ return S.One
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_adjoint.cpython-310.pyc ADDED
Binary file (1.31 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_applyfunc.cpython-310.pyc ADDED
Binary file (3.66 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_diagonal.cpython-310.pyc ADDED
Binary file (4.38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_fourier.cpython-310.pyc ADDED
Binary file (2.47 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (12 kB). View file