|
""" |
|
|
|
Module for the DDM class. |
|
|
|
The DDM class is an internal representation used by DomainMatrix. The letters |
|
DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using |
|
elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix |
|
representation. |
|
|
|
Basic usage: |
|
|
|
>>> from sympy import ZZ, QQ |
|
>>> from sympy.polys.matrices.ddm import DDM |
|
>>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) |
|
>>> A.shape |
|
(2, 2) |
|
>>> A |
|
[[0, 1], [-1, 0]] |
|
>>> type(A) |
|
<class 'sympy.polys.matrices.ddm.DDM'> |
|
>>> A @ A |
|
[[-1, 0], [0, -1]] |
|
|
|
The ddm_* functions are designed to operate on DDM as well as on an ordinary |
|
list of lists: |
|
|
|
>>> from sympy.polys.matrices.dense import ddm_idet |
|
>>> ddm_idet(A, QQ) |
|
1 |
|
>>> ddm_idet([[0, 1], [-1, 0]], QQ) |
|
1 |
|
>>> A |
|
[[-1, 0], [0, -1]] |
|
|
|
Note that ddm_idet modifies the input matrix in-place. It is recommended to |
|
use the DDM.det method as a friendlier interface to this instead which takes |
|
care of copying the matrix: |
|
|
|
>>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) |
|
>>> B.det() |
|
1 |
|
|
|
Normally DDM would not be used directly and is just part of the internal |
|
representation of DomainMatrix which adds further functionality including e.g. |
|
unifying domains. |
|
|
|
The dense format used by DDM is a list of lists of elements e.g. the 2x2 |
|
identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass |
|
of list and its list items are plain lists. Elements are accessed as e.g. |
|
ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the |
|
jth column of that row. Subclassing list makes e.g. iteration and indexing |
|
very efficient. We do not override __getitem__ because it would lose that |
|
benefit. |
|
|
|
The core routines are implemented by the ddm_* functions defined in dense.py. |
|
Those functions are intended to be able to operate on a raw list-of-lists |
|
representation of matrices with most functions operating in-place. The DDM |
|
class takes care of copying etc and also stores a Domain object associated |
|
with its elements. This makes it possible to implement things like A + B with |
|
domain checking and also shape checking so that the list of lists |
|
representation is friendlier. |
|
|
|
""" |
|
from itertools import chain |
|
|
|
from .exceptions import DMBadInputError, DMShapeError, DMDomainError |
|
|
|
from .dense import ( |
|
ddm_transpose, |
|
ddm_iadd, |
|
ddm_isub, |
|
ddm_ineg, |
|
ddm_imul, |
|
ddm_irmul, |
|
ddm_imatmul, |
|
ddm_irref, |
|
ddm_idet, |
|
ddm_iinv, |
|
ddm_ilu_split, |
|
ddm_ilu_solve, |
|
ddm_berk, |
|
) |
|
|
|
from sympy.polys.domains import QQ |
|
from .lll import ddm_lll, ddm_lll_transform |
|
|
|
|
|
class DDM(list): |
|
"""Dense matrix based on polys domain elements |
|
|
|
This is a list subclass and is a wrapper for a list of lists that supports |
|
basic matrix arithmetic +, -, *, **. |
|
""" |
|
|
|
fmt = 'dense' |
|
|
|
def __init__(self, rowslist, shape, domain): |
|
super().__init__(rowslist) |
|
self.shape = self.rows, self.cols = m, n = shape |
|
self.domain = domain |
|
|
|
if not (len(self) == m and all(len(row) == n for row in self)): |
|
raise DMBadInputError("Inconsistent row-list/shape") |
|
|
|
def getitem(self, i, j): |
|
return self[i][j] |
|
|
|
def setitem(self, i, j, value): |
|
self[i][j] = value |
|
|
|
def extract_slice(self, slice1, slice2): |
|
ddm = [row[slice2] for row in self[slice1]] |
|
rows = len(ddm) |
|
cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2]) |
|
return DDM(ddm, (rows, cols), self.domain) |
|
|
|
def extract(self, rows, cols): |
|
ddm = [] |
|
for i in rows: |
|
rowi = self[i] |
|
ddm.append([rowi[j] for j in cols]) |
|
return DDM(ddm, (len(rows), len(cols)), self.domain) |
|
|
|
def to_list(self): |
|
return list(self) |
|
|
|
def to_list_flat(self): |
|
flat = [] |
|
for row in self: |
|
flat.extend(row) |
|
return flat |
|
|
|
def flatiter(self): |
|
return chain.from_iterable(self) |
|
|
|
def flat(self): |
|
items = [] |
|
for row in self: |
|
items.extend(row) |
|
return items |
|
|
|
def to_dok(self): |
|
return {(i, j): e for i, row in enumerate(self) for j, e in enumerate(row)} |
|
|
|
def to_ddm(self): |
|
return self |
|
|
|
def to_sdm(self): |
|
return SDM.from_list(self, self.shape, self.domain) |
|
|
|
def convert_to(self, K): |
|
Kold = self.domain |
|
if K == Kold: |
|
return self.copy() |
|
rows = ([K.convert_from(e, Kold) for e in row] for row in self) |
|
return DDM(rows, self.shape, K) |
|
|
|
def __str__(self): |
|
rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self] |
|
return '[%s]' % ', '.join(rowsstr) |
|
|
|
def __repr__(self): |
|
cls = type(self).__name__ |
|
rows = list.__repr__(self) |
|
return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain) |
|
|
|
def __eq__(self, other): |
|
if not isinstance(other, DDM): |
|
return False |
|
return (super().__eq__(other) and self.domain == other.domain) |
|
|
|
def __ne__(self, other): |
|
return not self.__eq__(other) |
|
|
|
@classmethod |
|
def zeros(cls, shape, domain): |
|
z = domain.zero |
|
m, n = shape |
|
rowslist = ([z] * n for _ in range(m)) |
|
return DDM(rowslist, shape, domain) |
|
|
|
@classmethod |
|
def ones(cls, shape, domain): |
|
one = domain.one |
|
m, n = shape |
|
rowlist = ([one] * n for _ in range(m)) |
|
return DDM(rowlist, shape, domain) |
|
|
|
@classmethod |
|
def eye(cls, size, domain): |
|
one = domain.one |
|
ddm = cls.zeros((size, size), domain) |
|
for i in range(size): |
|
ddm[i][i] = one |
|
return ddm |
|
|
|
def copy(self): |
|
copyrows = (row[:] for row in self) |
|
return DDM(copyrows, self.shape, self.domain) |
|
|
|
def transpose(self): |
|
rows, cols = self.shape |
|
if rows: |
|
ddmT = ddm_transpose(self) |
|
else: |
|
ddmT = [[]] * cols |
|
return DDM(ddmT, (cols, rows), self.domain) |
|
|
|
def __add__(a, b): |
|
if not isinstance(b, DDM): |
|
return NotImplemented |
|
return a.add(b) |
|
|
|
def __sub__(a, b): |
|
if not isinstance(b, DDM): |
|
return NotImplemented |
|
return a.sub(b) |
|
|
|
def __neg__(a): |
|
return a.neg() |
|
|
|
def __mul__(a, b): |
|
if b in a.domain: |
|
return a.mul(b) |
|
else: |
|
return NotImplemented |
|
|
|
def __rmul__(a, b): |
|
if b in a.domain: |
|
return a.mul(b) |
|
else: |
|
return NotImplemented |
|
|
|
def __matmul__(a, b): |
|
if isinstance(b, DDM): |
|
return a.matmul(b) |
|
else: |
|
return NotImplemented |
|
|
|
@classmethod |
|
def _check(cls, a, op, b, ashape, bshape): |
|
if a.domain != b.domain: |
|
msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) |
|
raise DMDomainError(msg) |
|
if ashape != bshape: |
|
msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) |
|
raise DMShapeError(msg) |
|
|
|
def add(a, b): |
|
"""a + b""" |
|
a._check(a, '+', b, a.shape, b.shape) |
|
c = a.copy() |
|
ddm_iadd(c, b) |
|
return c |
|
|
|
def sub(a, b): |
|
"""a - b""" |
|
a._check(a, '-', b, a.shape, b.shape) |
|
c = a.copy() |
|
ddm_isub(c, b) |
|
return c |
|
|
|
def neg(a): |
|
"""-a""" |
|
b = a.copy() |
|
ddm_ineg(b) |
|
return b |
|
|
|
def mul(a, b): |
|
c = a.copy() |
|
ddm_imul(c, b) |
|
return c |
|
|
|
def rmul(a, b): |
|
c = a.copy() |
|
ddm_irmul(c, b) |
|
return c |
|
|
|
def matmul(a, b): |
|
"""a @ b (matrix product)""" |
|
m, o = a.shape |
|
o2, n = b.shape |
|
a._check(a, '*', b, o, o2) |
|
c = a.zeros((m, n), a.domain) |
|
ddm_imatmul(c, a, b) |
|
return c |
|
|
|
def mul_elementwise(a, b): |
|
assert a.shape == b.shape |
|
assert a.domain == b.domain |
|
c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)] |
|
return DDM(c, a.shape, a.domain) |
|
|
|
def hstack(A, *B): |
|
"""Horizontally stacks :py:class:`~.DDM` matrices. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import DDM |
|
|
|
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) |
|
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) |
|
>>> A.hstack(B) |
|
[[1, 2, 5, 6], [3, 4, 7, 8]] |
|
|
|
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) |
|
>>> A.hstack(B, C) |
|
[[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]] |
|
""" |
|
Anew = list(A.copy()) |
|
rows, cols = A.shape |
|
domain = A.domain |
|
|
|
for Bk in B: |
|
Bkrows, Bkcols = Bk.shape |
|
assert Bkrows == rows |
|
assert Bk.domain == domain |
|
|
|
cols += Bkcols |
|
|
|
for i, Bki in enumerate(Bk): |
|
Anew[i].extend(Bki) |
|
|
|
return DDM(Anew, (rows, cols), A.domain) |
|
|
|
def vstack(A, *B): |
|
"""Vertically stacks :py:class:`~.DDM` matrices. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import DDM |
|
|
|
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) |
|
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) |
|
>>> A.vstack(B) |
|
[[1, 2], [3, 4], [5, 6], [7, 8]] |
|
|
|
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) |
|
>>> A.vstack(B, C) |
|
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] |
|
""" |
|
Anew = list(A.copy()) |
|
rows, cols = A.shape |
|
domain = A.domain |
|
|
|
for Bk in B: |
|
Bkrows, Bkcols = Bk.shape |
|
assert Bkcols == cols |
|
assert Bk.domain == domain |
|
|
|
rows += Bkrows |
|
|
|
Anew.extend(Bk.copy()) |
|
|
|
return DDM(Anew, (rows, cols), A.domain) |
|
|
|
def applyfunc(self, func, domain): |
|
elements = (list(map(func, row)) for row in self) |
|
return DDM(elements, self.shape, domain) |
|
|
|
def scc(a): |
|
"""Strongly connected components of a square matrix *a*. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.polys.matrices.sdm import DDM |
|
>>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ) |
|
>>> A.scc() |
|
[[0], [1]] |
|
|
|
See also |
|
======== |
|
|
|
sympy.polys.matrices.domainmatrix.DomainMatrix.scc |
|
|
|
""" |
|
return a.to_sdm().scc() |
|
|
|
def rref(a): |
|
"""Reduced-row echelon form of a and list of pivots""" |
|
b = a.copy() |
|
K = a.domain |
|
partial_pivot = K.is_RealField or K.is_ComplexField |
|
pivots = ddm_irref(b, _partial_pivot=partial_pivot) |
|
return b, pivots |
|
|
|
def nullspace(a): |
|
rref, pivots = a.rref() |
|
rows, cols = a.shape |
|
domain = a.domain |
|
|
|
basis = [] |
|
nonpivots = [] |
|
for i in range(cols): |
|
if i in pivots: |
|
continue |
|
nonpivots.append(i) |
|
vec = [domain.one if i == j else domain.zero for j in range(cols)] |
|
for ii, jj in enumerate(pivots): |
|
vec[jj] -= rref[ii][i] |
|
basis.append(vec) |
|
|
|
return DDM(basis, (len(basis), cols), domain), nonpivots |
|
|
|
def particular(a): |
|
return a.to_sdm().particular().to_ddm() |
|
|
|
def det(a): |
|
"""Determinant of a""" |
|
m, n = a.shape |
|
if m != n: |
|
raise DMShapeError("Determinant of non-square matrix") |
|
b = a.copy() |
|
K = b.domain |
|
deta = ddm_idet(b, K) |
|
return deta |
|
|
|
def inv(a): |
|
"""Inverse of a""" |
|
m, n = a.shape |
|
if m != n: |
|
raise DMShapeError("Determinant of non-square matrix") |
|
ainv = a.copy() |
|
K = a.domain |
|
ddm_iinv(ainv, a, K) |
|
return ainv |
|
|
|
def lu(a): |
|
"""L, U decomposition of a""" |
|
m, n = a.shape |
|
K = a.domain |
|
|
|
U = a.copy() |
|
L = a.eye(m, K) |
|
swaps = ddm_ilu_split(L, U, K) |
|
|
|
return L, U, swaps |
|
|
|
def lu_solve(a, b): |
|
"""x where a*x = b""" |
|
m, n = a.shape |
|
m2, o = b.shape |
|
a._check(a, 'lu_solve', b, m, m2) |
|
|
|
L, U, swaps = a.lu() |
|
x = a.zeros((n, o), a.domain) |
|
ddm_ilu_solve(x, L, U, swaps, b) |
|
return x |
|
|
|
def charpoly(a): |
|
"""Coefficients of characteristic polynomial of a""" |
|
K = a.domain |
|
m, n = a.shape |
|
if m != n: |
|
raise DMShapeError("Charpoly of non-square matrix") |
|
vec = ddm_berk(a, K) |
|
coeffs = [vec[i][0] for i in range(n+1)] |
|
return coeffs |
|
|
|
def is_zero_matrix(self): |
|
""" |
|
Says whether this matrix has all zero entries. |
|
""" |
|
zero = self.domain.zero |
|
return all(Mij == zero for Mij in self.flatiter()) |
|
|
|
def is_upper(self): |
|
""" |
|
Says whether this matrix is upper-triangular. True can be returned |
|
even if the matrix is not square. |
|
""" |
|
zero = self.domain.zero |
|
return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i]) |
|
|
|
def is_lower(self): |
|
""" |
|
Says whether this matrix is lower-triangular. True can be returned |
|
even if the matrix is not square. |
|
""" |
|
zero = self.domain.zero |
|
return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:]) |
|
|
|
def lll(A, delta=QQ(3, 4)): |
|
return ddm_lll(A, delta=delta) |
|
|
|
def lll_transform(A, delta=QQ(3, 4)): |
|
return ddm_lll_transform(A, delta=delta) |
|
|
|
|
|
from .sdm import SDM |
|
|