peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/sets
/contains.py
from sympy.core import S | |
from sympy.core.relational import Eq, Ne | |
from sympy.logic.boolalg import BooleanFunction | |
from sympy.utilities.misc import func_name | |
from .sets import Set | |
class Contains(BooleanFunction): | |
""" | |
Asserts that x is an element of the set S. | |
Examples | |
======== | |
>>> from sympy import Symbol, Integer, S, Contains | |
>>> Contains(Integer(2), S.Integers) | |
True | |
>>> Contains(Integer(-2), S.Naturals) | |
False | |
>>> i = Symbol('i', integer=True) | |
>>> Contains(i, S.Naturals) | |
Contains(i, Naturals) | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29 | |
""" | |
def eval(cls, x, s): | |
if not isinstance(s, Set): | |
raise TypeError('expecting Set, not %s' % func_name(s)) | |
ret = s.contains(x) | |
if not isinstance(ret, Contains) and ( | |
ret in (S.true, S.false) or isinstance(ret, Set)): | |
return ret | |
def binary_symbols(self): | |
return set().union(*[i.binary_symbols | |
for i in self.args[1].args | |
if i.is_Boolean or i.is_Symbol or | |
isinstance(i, (Eq, Ne))]) | |
def as_set(self): | |
return self.args[1] | |