|
""" |
|
This module contains pdsolve() and different helper functions that it |
|
uses. It is heavily inspired by the ode module and hence the basic |
|
infrastructure remains the same. |
|
|
|
**Functions in this module** |
|
|
|
These are the user functions in this module: |
|
|
|
- pdsolve() - Solves PDE's |
|
- classify_pde() - Classifies PDEs into possible hints for dsolve(). |
|
- pde_separate() - Separate variables in partial differential equation either by |
|
additive or multiplicative separation approach. |
|
|
|
These are the helper functions in this module: |
|
|
|
- pde_separate_add() - Helper function for searching additive separable solutions. |
|
- pde_separate_mul() - Helper function for searching multiplicative |
|
separable solutions. |
|
|
|
**Currently implemented solver methods** |
|
|
|
The following methods are implemented for solving partial differential |
|
equations. See the docstrings of the various pde_hint() functions for |
|
more information on each (run help(pde)): |
|
|
|
- 1st order linear homogeneous partial differential equations |
|
with constant coefficients. |
|
- 1st order linear general partial differential equations |
|
with constant coefficients. |
|
- 1st order linear partial differential equations with |
|
variable coefficients. |
|
|
|
""" |
|
from functools import reduce |
|
|
|
from itertools import combinations_with_replacement |
|
from sympy.simplify import simplify |
|
from sympy.core import Add, S |
|
from sympy.core.function import Function, expand, AppliedUndef, Subs |
|
from sympy.core.relational import Equality, Eq |
|
from sympy.core.symbol import Symbol, Wild, symbols |
|
from sympy.functions import exp |
|
from sympy.integrals.integrals import Integral, integrate |
|
from sympy.utilities.iterables import has_dups, is_sequence |
|
from sympy.utilities.misc import filldedent |
|
|
|
from sympy.solvers.deutils import _preprocess, ode_order, _desolve |
|
from sympy.solvers.solvers import solve |
|
from sympy.simplify.radsimp import collect |
|
|
|
import operator |
|
|
|
|
|
allhints = ( |
|
"1st_linear_constant_coeff_homogeneous", |
|
"1st_linear_constant_coeff", |
|
"1st_linear_constant_coeff_Integral", |
|
"1st_linear_variable_coeff" |
|
) |
|
|
|
|
|
def pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs): |
|
""" |
|
Solves any (supported) kind of partial differential equation. |
|
|
|
**Usage** |
|
|
|
pdsolve(eq, f(x,y), hint) -> Solve partial differential equation |
|
eq for function f(x,y), using method hint. |
|
|
|
**Details** |
|
|
|
``eq`` can be any supported partial differential equation (see |
|
the pde docstring for supported methods). This can either |
|
be an Equality, or an expression, which is assumed to be |
|
equal to 0. |
|
|
|
``f(x,y)`` is a function of two variables whose derivatives in that |
|
variable make up the partial differential equation. In many |
|
cases it is not necessary to provide this; it will be autodetected |
|
(and an error raised if it could not be detected). |
|
|
|
``hint`` is the solving method that you want pdsolve to use. Use |
|
classify_pde(eq, f(x,y)) to get all of the possible hints for |
|
a PDE. The default hint, 'default', will use whatever hint |
|
is returned first by classify_pde(). See Hints below for |
|
more options that you can use for hint. |
|
|
|
``solvefun`` is the convention used for arbitrary functions returned |
|
by the PDE solver. If not set by the user, it is set by default |
|
to be F. |
|
|
|
**Hints** |
|
|
|
Aside from the various solving methods, there are also some |
|
meta-hints that you can pass to pdsolve(): |
|
|
|
"default": |
|
This uses whatever hint is returned first by |
|
classify_pde(). This is the default argument to |
|
pdsolve(). |
|
|
|
"all": |
|
To make pdsolve apply all relevant classification hints, |
|
use pdsolve(PDE, func, hint="all"). This will return a |
|
dictionary of hint:solution terms. If a hint causes |
|
pdsolve to raise the NotImplementedError, value of that |
|
hint's key will be the exception object raised. The |
|
dictionary will also include some special keys: |
|
|
|
- order: The order of the PDE. See also ode_order() in |
|
deutils.py |
|
- default: The solution that would be returned by |
|
default. This is the one produced by the hint that |
|
appears first in the tuple returned by classify_pde(). |
|
|
|
"all_Integral": |
|
This is the same as "all", except if a hint also has a |
|
corresponding "_Integral" hint, it only returns the |
|
"_Integral" hint. This is useful if "all" causes |
|
pdsolve() to hang because of a difficult or impossible |
|
integral. This meta-hint will also be much faster than |
|
"all", because integrate() is an expensive routine. |
|
|
|
See also the classify_pde() docstring for more info on hints, |
|
and the pde docstring for a list of all supported hints. |
|
|
|
**Tips** |
|
- You can declare the derivative of an unknown function this way: |
|
|
|
>>> from sympy import Function, Derivative |
|
>>> from sympy.abc import x, y # x and y are the independent variables |
|
>>> f = Function("f")(x, y) # f is a function of x and y |
|
>>> # fx will be the partial derivative of f with respect to x |
|
>>> fx = Derivative(f, x) |
|
>>> # fy will be the partial derivative of f with respect to y |
|
>>> fy = Derivative(f, y) |
|
|
|
- See test_pde.py for many tests, which serves also as a set of |
|
examples for how to use pdsolve(). |
|
- pdsolve always returns an Equality class (except for the case |
|
when the hint is "all" or "all_Integral"). Note that it is not possible |
|
to get an explicit solution for f(x, y) as in the case of ODE's |
|
- Do help(pde.pde_hintname) to get help more information on a |
|
specific hint |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.solvers.pde import pdsolve |
|
>>> from sympy import Function, Eq |
|
>>> from sympy.abc import x, y |
|
>>> f = Function('f') |
|
>>> u = f(x, y) |
|
>>> ux = u.diff(x) |
|
>>> uy = u.diff(y) |
|
>>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0) |
|
>>> pdsolve(eq) |
|
Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13)) |
|
|
|
""" |
|
|
|
if not solvefun: |
|
solvefun = Function('F') |
|
|
|
|
|
hints = _desolve(eq, func=func, hint=hint, simplify=True, |
|
type='pde', **kwargs) |
|
eq = hints.pop('eq', False) |
|
all_ = hints.pop('all', False) |
|
|
|
if all_: |
|
|
|
|
|
pdedict = {} |
|
failed_hints = {} |
|
gethints = classify_pde(eq, dict=True) |
|
pdedict.update({'order': gethints['order'], |
|
'default': gethints['default']}) |
|
for hint in hints: |
|
try: |
|
rv = _helper_simplify(eq, hint, hints[hint]['func'], |
|
hints[hint]['order'], hints[hint][hint], solvefun) |
|
except NotImplementedError as detail: |
|
failed_hints[hint] = detail |
|
else: |
|
pdedict[hint] = rv |
|
pdedict.update(failed_hints) |
|
return pdedict |
|
|
|
else: |
|
return _helper_simplify(eq, hints['hint'], hints['func'], |
|
hints['order'], hints[hints['hint']], solvefun) |
|
|
|
|
|
def _helper_simplify(eq, hint, func, order, match, solvefun): |
|
"""Helper function of pdsolve that calls the respective |
|
pde functions to solve for the partial differential |
|
equations. This minimizes the computation in |
|
calling _desolve multiple times. |
|
""" |
|
|
|
if hint.endswith("_Integral"): |
|
solvefunc = globals()[ |
|
"pde_" + hint[:-len("_Integral")]] |
|
else: |
|
solvefunc = globals()["pde_" + hint] |
|
return _handle_Integral(solvefunc(eq, func, order, |
|
match, solvefun), func, order, hint) |
|
|
|
|
|
def _handle_Integral(expr, func, order, hint): |
|
r""" |
|
Converts a solution with integrals in it into an actual solution. |
|
|
|
Simplifies the integral mainly using doit() |
|
""" |
|
if hint.endswith("_Integral"): |
|
return expr |
|
|
|
elif hint == "1st_linear_constant_coeff": |
|
return simplify(expr.doit()) |
|
|
|
else: |
|
return expr |
|
|
|
|
|
def classify_pde(eq, func=None, dict=False, *, prep=True, **kwargs): |
|
""" |
|
Returns a tuple of possible pdsolve() classifications for a PDE. |
|
|
|
The tuple is ordered so that first item is the classification that |
|
pdsolve() uses to solve the PDE by default. In general, |
|
classifications near the beginning of the list will produce |
|
better solutions faster than those near the end, though there are |
|
always exceptions. To make pdsolve use a different classification, |
|
use pdsolve(PDE, func, hint=<classification>). See also the pdsolve() |
|
docstring for different meta-hints you can use. |
|
|
|
If ``dict`` is true, classify_pde() will return a dictionary of |
|
hint:match expression terms. This is intended for internal use by |
|
pdsolve(). Note that because dictionaries are ordered arbitrarily, |
|
this will most likely not be in the same order as the tuple. |
|
|
|
You can get help on different hints by doing help(pde.pde_hintname), |
|
where hintname is the name of the hint without "_Integral". |
|
|
|
See sympy.pde.allhints or the sympy.pde docstring for a list of all |
|
supported hints that can be returned from classify_pde. |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.solvers.pde import classify_pde |
|
>>> from sympy import Function, Eq |
|
>>> from sympy.abc import x, y |
|
>>> f = Function('f') |
|
>>> u = f(x, y) |
|
>>> ux = u.diff(x) |
|
>>> uy = u.diff(y) |
|
>>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0) |
|
>>> classify_pde(eq) |
|
('1st_linear_constant_coeff_homogeneous',) |
|
""" |
|
|
|
if func and len(func.args) != 2: |
|
raise NotImplementedError("Right now only partial " |
|
"differential equations of two variables are supported") |
|
|
|
if prep or func is None: |
|
prep, func_ = _preprocess(eq, func) |
|
if func is None: |
|
func = func_ |
|
|
|
if isinstance(eq, Equality): |
|
if eq.rhs != 0: |
|
return classify_pde(eq.lhs - eq.rhs, func) |
|
eq = eq.lhs |
|
|
|
f = func.func |
|
x = func.args[0] |
|
y = func.args[1] |
|
fx = f(x,y).diff(x) |
|
fy = f(x,y).diff(y) |
|
|
|
|
|
|
|
|
|
|
|
order = ode_order(eq, f(x,y)) |
|
|
|
|
|
|
|
matching_hints = {'order': order} |
|
|
|
if not order: |
|
if dict: |
|
matching_hints["default"] = None |
|
return matching_hints |
|
else: |
|
return () |
|
|
|
eq = expand(eq) |
|
|
|
a = Wild('a', exclude = [f(x,y)]) |
|
b = Wild('b', exclude = [f(x,y), fx, fy, x, y]) |
|
c = Wild('c', exclude = [f(x,y), fx, fy, x, y]) |
|
d = Wild('d', exclude = [f(x,y), fx, fy, x, y]) |
|
e = Wild('e', exclude = [f(x,y), fx, fy]) |
|
n = Wild('n', exclude = [x, y]) |
|
|
|
|
|
reduced_eq = None |
|
if eq.is_Add: |
|
var = set(combinations_with_replacement((x,y), order)) |
|
dummyvar = var.copy() |
|
power = None |
|
for i in var: |
|
coeff = eq.coeff(f(x,y).diff(*i)) |
|
if coeff != 1: |
|
match = coeff.match(a*f(x,y)**n) |
|
if match and match[a]: |
|
power = match[n] |
|
dummyvar.remove(i) |
|
break |
|
dummyvar.remove(i) |
|
for i in dummyvar: |
|
coeff = eq.coeff(f(x,y).diff(*i)) |
|
if coeff != 1: |
|
match = coeff.match(a*f(x,y)**n) |
|
if match and match[a] and match[n] < power: |
|
power = match[n] |
|
if power: |
|
den = f(x,y)**power |
|
reduced_eq = Add(*[arg/den for arg in eq.args]) |
|
if not reduced_eq: |
|
reduced_eq = eq |
|
|
|
if order == 1: |
|
reduced_eq = collect(reduced_eq, f(x, y)) |
|
r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) |
|
if r: |
|
if not r[e]: |
|
|
|
|
|
r.update({'b': b, 'c': c, 'd': d}) |
|
matching_hints["1st_linear_constant_coeff_homogeneous"] = r |
|
else: |
|
if r[b]**2 + r[c]**2 != 0: |
|
|
|
|
|
r.update({'b': b, 'c': c, 'd': d, 'e': e}) |
|
matching_hints["1st_linear_constant_coeff"] = r |
|
matching_hints[ |
|
"1st_linear_constant_coeff_Integral"] = r |
|
|
|
else: |
|
b = Wild('b', exclude=[f(x, y), fx, fy]) |
|
c = Wild('c', exclude=[f(x, y), fx, fy]) |
|
d = Wild('d', exclude=[f(x, y), fx, fy]) |
|
r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) |
|
if r: |
|
r.update({'b': b, 'c': c, 'd': d, 'e': e}) |
|
matching_hints["1st_linear_variable_coeff"] = r |
|
|
|
|
|
retlist = [i for i in allhints if i in matching_hints] |
|
|
|
if dict: |
|
|
|
|
|
matching_hints["default"] = None |
|
matching_hints["ordered_hints"] = tuple(retlist) |
|
for i in allhints: |
|
if i in matching_hints: |
|
matching_hints["default"] = i |
|
break |
|
return matching_hints |
|
else: |
|
return tuple(retlist) |
|
|
|
|
|
def checkpdesol(pde, sol, func=None, solve_for_func=True): |
|
""" |
|
Checks if the given solution satisfies the partial differential |
|
equation. |
|
|
|
pde is the partial differential equation which can be given in the |
|
form of an equation or an expression. sol is the solution for which |
|
the pde is to be checked. This can also be given in an equation or |
|
an expression form. If the function is not provided, the helper |
|
function _preprocess from deutils is used to identify the function. |
|
|
|
If a sequence of solutions is passed, the same sort of container will be |
|
used to return the result for each solution. |
|
|
|
The following methods are currently being implemented to check if the |
|
solution satisfies the PDE: |
|
|
|
1. Directly substitute the solution in the PDE and check. If the |
|
solution has not been solved for f, then it will solve for f |
|
provided solve_for_func has not been set to False. |
|
|
|
If the solution satisfies the PDE, then a tuple (True, 0) is returned. |
|
Otherwise a tuple (False, expr) where expr is the value obtained |
|
after substituting the solution in the PDE. However if a known solution |
|
returns False, it may be due to the inability of doit() to simplify it to zero. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, symbols |
|
>>> from sympy.solvers.pde import checkpdesol, pdsolve |
|
>>> x, y = symbols('x y') |
|
>>> f = Function('f') |
|
>>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y) |
|
>>> sol = pdsolve(eq) |
|
>>> assert checkpdesol(eq, sol)[0] |
|
>>> eq = x*f(x,y) + f(x,y).diff(x) |
|
>>> checkpdesol(eq, sol) |
|
(False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25)) |
|
""" |
|
|
|
|
|
if not isinstance(pde, Equality): |
|
pde = Eq(pde, 0) |
|
|
|
|
|
if func is None: |
|
try: |
|
_, func = _preprocess(pde.lhs) |
|
except ValueError: |
|
funcs = [s.atoms(AppliedUndef) for s in ( |
|
sol if is_sequence(sol, set) else [sol])] |
|
funcs = set().union(funcs) |
|
if len(funcs) != 1: |
|
raise ValueError( |
|
'must pass func arg to checkpdesol for this case.') |
|
func = funcs.pop() |
|
|
|
|
|
|
|
if is_sequence(sol, set): |
|
return type(sol)([checkpdesol( |
|
pde, i, func=func, |
|
solve_for_func=solve_for_func) for i in sol]) |
|
|
|
|
|
if not isinstance(sol, Equality): |
|
sol = Eq(func, sol) |
|
elif sol.rhs == func: |
|
sol = sol.reversed |
|
|
|
|
|
solved = sol.lhs == func and not sol.rhs.has(func) |
|
if solve_for_func and not solved: |
|
solved = solve(sol, func) |
|
if solved: |
|
if len(solved) == 1: |
|
return checkpdesol(pde, Eq(func, solved[0]), |
|
func=func, solve_for_func=False) |
|
else: |
|
return checkpdesol(pde, [Eq(func, t) for t in solved], |
|
func=func, solve_for_func=False) |
|
|
|
|
|
if sol.lhs == func: |
|
pde = pde.lhs - pde.rhs |
|
s = simplify(pde.subs(func, sol.rhs).doit()) |
|
return s is S.Zero, s |
|
|
|
raise NotImplementedError(filldedent(''' |
|
Unable to test if %s is a solution to %s.''' % (sol, pde))) |
|
|
|
|
|
|
|
def pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun): |
|
r""" |
|
Solves a first order linear homogeneous |
|
partial differential equation with constant coefficients. |
|
|
|
The general form of this partial differential equation is |
|
|
|
.. math:: a \frac{\partial f(x,y)}{\partial x} |
|
+ b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = 0 |
|
|
|
where `a`, `b` and `c` are constants. |
|
|
|
The general solution is of the form: |
|
|
|
.. math:: |
|
f(x, y) = F(- a y + b x ) e^{- \frac{c (a x + b y)}{a^2 + b^2}} |
|
|
|
and can be found in SymPy with ``pdsolve``:: |
|
|
|
>>> from sympy.solvers import pdsolve |
|
>>> from sympy.abc import x, y, a, b, c |
|
>>> from sympy import Function, pprint |
|
>>> f = Function('f') |
|
>>> u = f(x,y) |
|
>>> ux = u.diff(x) |
|
>>> uy = u.diff(y) |
|
>>> genform = a*ux + b*uy + c*u |
|
>>> pprint(genform) |
|
d d |
|
a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) |
|
dx dy |
|
|
|
>>> pprint(pdsolve(genform)) |
|
-c*(a*x + b*y) |
|
--------------- |
|
2 2 |
|
a + b |
|
f(x, y) = F(-a*y + b*x)*e |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import pdsolve |
|
>>> from sympy import Function, pprint |
|
>>> from sympy.abc import x,y |
|
>>> f = Function('f') |
|
>>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)) |
|
Eq(f(x, y), F(x - y)*exp(-x/2 - y/2)) |
|
>>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))) |
|
x y |
|
- - - - |
|
2 2 |
|
f(x, y) = F(x - y)*e |
|
|
|
References |
|
========== |
|
|
|
- Viktor Grigoryan, "Partial Differential Equations" |
|
Math 124A - Fall 2010, pp.7 |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
f = func.func |
|
x = func.args[0] |
|
y = func.args[1] |
|
b = match[match['b']] |
|
c = match[match['c']] |
|
d = match[match['d']] |
|
return Eq(f(x,y), exp(-S(d)/(b**2 + c**2)*(b*x + c*y))*solvefun(c*x - b*y)) |
|
|
|
|
|
def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun): |
|
r""" |
|
Solves a first order linear partial differential equation |
|
with constant coefficients. |
|
|
|
The general form of this partial differential equation is |
|
|
|
.. math:: a \frac{\partial f(x,y)}{\partial x} |
|
+ b \frac{\partial f(x,y)}{\partial y} |
|
+ c f(x,y) = G(x,y) |
|
|
|
where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary |
|
function in `x` and `y`. |
|
|
|
The general solution of the PDE is: |
|
|
|
.. math:: |
|
f(x, y) = \left. \left[F(\eta) + \frac{1}{a^2 + b^2} |
|
\int\limits^{a x + b y} G\left(\frac{a \xi + b \eta}{a^2 + b^2}, |
|
\frac{- a \eta + b \xi}{a^2 + b^2} \right) |
|
e^{\frac{c \xi}{a^2 + b^2}}\, d\xi\right] |
|
e^{- \frac{c \xi}{a^2 + b^2}} |
|
\right|_{\substack{\eta=- a y + b x\\ \xi=a x + b y }}\, , |
|
|
|
where `F(\eta)` is an arbitrary single-valued function. The solution |
|
can be found in SymPy with ``pdsolve``:: |
|
|
|
>>> from sympy.solvers import pdsolve |
|
>>> from sympy.abc import x, y, a, b, c |
|
>>> from sympy import Function, pprint |
|
>>> f = Function('f') |
|
>>> G = Function('G') |
|
>>> u = f(x,y) |
|
>>> ux = u.diff(x) |
|
>>> uy = u.diff(y) |
|
>>> genform = a*ux + b*uy + c*u - G(x,y) |
|
>>> pprint(genform) |
|
d d |
|
a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) - G(x, y) |
|
dx dy |
|
>>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral')) |
|
// a*x + b*y \ |
|
|| / | |
|
|| | | |
|
|| | c*xi | |
|
|| | ------- | |
|
|| | 2 2 | |
|
|| | /a*xi + b*eta -a*eta + b*xi\ a + b | |
|
|| | G|------------, -------------|*e d(xi)| |
|
|| | | 2 2 2 2 | | |
|
|| | \ a + b a + b / | |
|
|| | | |
|
|| / | |
|
|| | |
|
f(x, y) = ||F(eta) + -------------------------------------------------------|* |
|
|| 2 2 | |
|
\\ a + b / |
|
<BLANKLINE> |
|
\| |
|
|| |
|
|| |
|
|| |
|
|| |
|
|| |
|
|| |
|
|| |
|
|| |
|
-c*xi || |
|
-------|| |
|
2 2|| |
|
a + b || |
|
e || |
|
|| |
|
/|eta=-a*y + b*x, xi=a*x + b*y |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.solvers.pde import pdsolve |
|
>>> from sympy import Function, pprint, exp |
|
>>> from sympy.abc import x,y |
|
>>> f = Function('f') |
|
>>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y) |
|
>>> pdsolve(eq) |
|
Eq(f(x, y), (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y)) |
|
|
|
References |
|
========== |
|
|
|
- Viktor Grigoryan, "Partial Differential Equations" |
|
Math 124A - Fall 2010, pp.7 |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
xi, eta = symbols("xi eta") |
|
f = func.func |
|
x = func.args[0] |
|
y = func.args[1] |
|
b = match[match['b']] |
|
c = match[match['c']] |
|
d = match[match['d']] |
|
e = -match[match['e']] |
|
expterm = exp(-S(d)/(b**2 + c**2)*xi) |
|
functerm = solvefun(eta) |
|
solvedict = solve((b*x + c*y - xi, c*x - b*y - eta), x, y) |
|
|
|
|
|
genterm = (1/S(b**2 + c**2))*Integral( |
|
(1/expterm*e).subs(solvedict), (xi, b*x + c*y)) |
|
return Eq(f(x,y), Subs(expterm*(functerm + genterm), |
|
(eta, xi), (c*x - b*y, b*x + c*y))) |
|
|
|
|
|
def pde_1st_linear_variable_coeff(eq, func, order, match, solvefun): |
|
r""" |
|
Solves a first order linear partial differential equation |
|
with variable coefficients. The general form of this partial |
|
differential equation is |
|
|
|
.. math:: a(x, y) \frac{\partial f(x, y)}{\partial x} |
|
+ b(x, y) \frac{\partial f(x, y)}{\partial y} |
|
+ c(x, y) f(x, y) = G(x, y) |
|
|
|
where `a(x, y)`, `b(x, y)`, `c(x, y)` and `G(x, y)` are arbitrary |
|
functions in `x` and `y`. This PDE is converted into an ODE by |
|
making the following transformation: |
|
|
|
1. `\xi` as `x` |
|
|
|
2. `\eta` as the constant in the solution to the differential |
|
equation `\frac{dy}{dx} = -\frac{b}{a}` |
|
|
|
Making the previous substitutions reduces it to the linear ODE |
|
|
|
.. math:: a(\xi, \eta)\frac{du}{d\xi} + c(\xi, \eta)u - G(\xi, \eta) = 0 |
|
|
|
which can be solved using ``dsolve``. |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import Function, pprint |
|
>>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']] |
|
>>> u = f(x,y) |
|
>>> ux = u.diff(x) |
|
>>> uy = u.diff(y) |
|
>>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y) |
|
>>> pprint(genform) |
|
d d |
|
-G(x, y) + a(x, y)*f(x, y) + b(x, y)*--(f(x, y)) + c(x, y)*--(f(x, y)) |
|
dx dy |
|
|
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.solvers.pde import pdsolve |
|
>>> from sympy import Function, pprint |
|
>>> from sympy.abc import x,y |
|
>>> f = Function('f') |
|
>>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2 |
|
>>> pdsolve(eq) |
|
Eq(f(x, y), F(x*y)*exp(y**2/2) + 1) |
|
|
|
References |
|
========== |
|
|
|
- Viktor Grigoryan, "Partial Differential Equations" |
|
Math 124A - Fall 2010, pp.7 |
|
|
|
""" |
|
from sympy.solvers.ode import dsolve |
|
|
|
xi, eta = symbols("xi eta") |
|
f = func.func |
|
x = func.args[0] |
|
y = func.args[1] |
|
b = match[match['b']] |
|
c = match[match['c']] |
|
d = match[match['d']] |
|
e = -match[match['e']] |
|
|
|
|
|
if not d: |
|
|
|
if not (b and c): |
|
if c: |
|
try: |
|
tsol = integrate(e/c, y) |
|
except NotImplementedError: |
|
raise NotImplementedError("Unable to find a solution" |
|
" due to inability of integrate") |
|
else: |
|
return Eq(f(x,y), solvefun(x) + tsol) |
|
if b: |
|
try: |
|
tsol = integrate(e/b, x) |
|
except NotImplementedError: |
|
raise NotImplementedError("Unable to find a solution" |
|
" due to inability of integrate") |
|
else: |
|
return Eq(f(x,y), solvefun(y) + tsol) |
|
|
|
if not c: |
|
|
|
|
|
plode = f(x).diff(x)*b + d*f(x) - e |
|
sol = dsolve(plode, f(x)) |
|
syms = sol.free_symbols - plode.free_symbols - {x, y} |
|
rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, y) |
|
return Eq(f(x, y), rhs) |
|
|
|
if not b: |
|
|
|
|
|
plode = f(y).diff(y)*c + d*f(y) - e |
|
sol = dsolve(plode, f(y)) |
|
syms = sol.free_symbols - plode.free_symbols - {x, y} |
|
rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, x) |
|
return Eq(f(x, y), rhs) |
|
|
|
dummy = Function('d') |
|
h = (c/b).subs(y, dummy(x)) |
|
sol = dsolve(dummy(x).diff(x) - h, dummy(x)) |
|
if isinstance(sol, list): |
|
sol = sol[0] |
|
solsym = sol.free_symbols - h.free_symbols - {x, y} |
|
if len(solsym) == 1: |
|
solsym = solsym.pop() |
|
etat = (solve(sol, solsym)[0]).subs(dummy(x), y) |
|
ysub = solve(eta - etat, y)[0] |
|
deq = (b*(f(x).diff(x)) + d*f(x) - e).subs(y, ysub) |
|
final = (dsolve(deq, f(x), hint='1st_linear')).rhs |
|
if isinstance(final, list): |
|
final = final[0] |
|
finsyms = final.free_symbols - deq.free_symbols - {x, y} |
|
rhs = _simplify_variable_coeff(final, finsyms, solvefun, etat) |
|
return Eq(f(x, y), rhs) |
|
|
|
else: |
|
raise NotImplementedError("Cannot solve the partial differential equation due" |
|
" to inability of constantsimp") |
|
|
|
|
|
def _simplify_variable_coeff(sol, syms, func, funcarg): |
|
r""" |
|
Helper function to replace constants by functions in 1st_linear_variable_coeff |
|
""" |
|
eta = Symbol("eta") |
|
if len(syms) == 1: |
|
sym = syms.pop() |
|
final = sol.subs(sym, func(funcarg)) |
|
|
|
else: |
|
for key, sym in enumerate(syms): |
|
final = sol.subs(sym, func(funcarg)) |
|
|
|
return simplify(final.subs(eta, funcarg)) |
|
|
|
|
|
def pde_separate(eq, fun, sep, strategy='mul'): |
|
"""Separate variables in partial differential equation either by additive |
|
or multiplicative separation approach. It tries to rewrite an equation so |
|
that one of the specified variables occurs on a different side of the |
|
equation than the others. |
|
|
|
:param eq: Partial differential equation |
|
|
|
:param fun: Original function F(x, y, z) |
|
|
|
:param sep: List of separated functions [X(x), u(y, z)] |
|
|
|
:param strategy: Separation strategy. You can choose between additive |
|
separation ('add') and multiplicative separation ('mul') which is |
|
default. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import E, Eq, Function, pde_separate, Derivative as D |
|
>>> from sympy.abc import x, t |
|
>>> u, X, T = map(Function, 'uXT') |
|
|
|
>>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) |
|
>>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add') |
|
[exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] |
|
|
|
>>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2)) |
|
>>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul') |
|
[Derivative(X(x), (x, 2))/X(x), Derivative(T(t), (t, 2))/T(t)] |
|
|
|
See Also |
|
======== |
|
pde_separate_add, pde_separate_mul |
|
""" |
|
|
|
do_add = False |
|
if strategy == 'add': |
|
do_add = True |
|
elif strategy == 'mul': |
|
do_add = False |
|
else: |
|
raise ValueError('Unknown strategy: %s' % strategy) |
|
|
|
if isinstance(eq, Equality): |
|
if eq.rhs != 0: |
|
return pde_separate(Eq(eq.lhs - eq.rhs, 0), fun, sep, strategy) |
|
else: |
|
return pde_separate(Eq(eq, 0), fun, sep, strategy) |
|
|
|
if eq.rhs != 0: |
|
raise ValueError("Value should be 0") |
|
|
|
|
|
orig_args = list(fun.args) |
|
subs_args = [arg for s in sep for arg in s.args] |
|
|
|
if do_add: |
|
functions = reduce(operator.add, sep) |
|
else: |
|
functions = reduce(operator.mul, sep) |
|
|
|
|
|
if len(subs_args) != len(orig_args): |
|
raise ValueError("Variable counts do not match") |
|
|
|
if has_dups(subs_args): |
|
raise ValueError("Duplicate substitution arguments detected") |
|
|
|
if set(orig_args) != set(subs_args): |
|
raise ValueError("Arguments do not match") |
|
|
|
|
|
result = eq.lhs.subs(fun, functions).doit() |
|
|
|
|
|
if not do_add: |
|
eq = 0 |
|
for i in result.args: |
|
eq += i/functions |
|
result = eq |
|
|
|
svar = subs_args[0] |
|
dvar = subs_args[1:] |
|
return _separate(result, svar, dvar) |
|
|
|
|
|
def pde_separate_add(eq, fun, sep): |
|
""" |
|
Helper function for searching additive separable solutions. |
|
|
|
Consider an equation of two independent variables x, y and a dependent |
|
variable w, we look for the product of two functions depending on different |
|
arguments: |
|
|
|
`w(x, y, z) = X(x) + y(y, z)` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D |
|
>>> from sympy.abc import x, t |
|
>>> u, X, T = map(Function, 'uXT') |
|
|
|
>>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) |
|
>>> pde_separate_add(eq, u(x, t), [X(x), T(t)]) |
|
[exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] |
|
|
|
""" |
|
return pde_separate(eq, fun, sep, strategy='add') |
|
|
|
|
|
def pde_separate_mul(eq, fun, sep): |
|
""" |
|
Helper function for searching multiplicative separable solutions. |
|
|
|
Consider an equation of two independent variables x, y and a dependent |
|
variable w, we look for the product of two functions depending on different |
|
arguments: |
|
|
|
`w(x, y, z) = X(x)*u(y, z)` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Function, Eq, pde_separate_mul, Derivative as D |
|
>>> from sympy.abc import x, y |
|
>>> u, X, Y = map(Function, 'uXY') |
|
|
|
>>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2)) |
|
>>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)]) |
|
[Derivative(X(x), (x, 2))/X(x), Derivative(Y(y), (y, 2))/Y(y)] |
|
|
|
""" |
|
return pde_separate(eq, fun, sep, strategy='mul') |
|
|
|
|
|
def _separate(eq, dep, others): |
|
"""Separate expression into two parts based on dependencies of variables.""" |
|
|
|
|
|
|
|
terms = set() |
|
for term in eq.args: |
|
if term.is_Mul: |
|
for i in term.args: |
|
if i.is_Derivative and not i.has(*others): |
|
terms.add(term) |
|
continue |
|
elif term.is_Derivative and not term.has(*others): |
|
terms.add(term) |
|
|
|
div = set() |
|
for term in terms: |
|
ext, sep = term.expand().as_independent(dep) |
|
|
|
if sep.has(*others): |
|
return None |
|
div.add(ext) |
|
|
|
|
|
|
|
if len(div) > 0: |
|
|
|
eq = Add(*[simplify(Add(*[term/i for i in div])) for term in eq.args]) |
|
|
|
div = set() |
|
lhs = rhs = 0 |
|
for term in eq.args: |
|
|
|
if not term.has(*others): |
|
lhs += term |
|
continue |
|
|
|
temp, sep = term.expand().as_independent(dep) |
|
|
|
if sep.has(*others): |
|
return None |
|
|
|
div.add(sep) |
|
rhs -= term.expand() |
|
|
|
fulldiv = reduce(operator.add, div) |
|
lhs = simplify(lhs/fulldiv).expand() |
|
rhs = simplify(rhs/fulldiv).expand() |
|
|
|
if lhs.has(*others) or rhs.has(dep): |
|
return None |
|
return [lhs, rhs] |
|
|