Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl_01.npy +3 -0
- env-llmeval/lib/python3.10/site-packages/scipy.libs/libgfortran-040039e1.so.5.0.0 +3 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/algorithms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/approximations.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/cnodes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/cutils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/fnodes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/futils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/pynodes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/rewriting.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/__init__.py +71 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/bivariate.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/deutils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/solvers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/bivariate.py +509 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/decompogen.py +126 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py +5 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/diophantine.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py +1037 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__init__.py +16 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/hypergeometric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/lie_group.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/nonhomogeneous.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/ode.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/riccati.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/single.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/subscheck.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/systems.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/hypergeometric.py +272 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/lie_group.py +1101 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/nonhomogeneous.py +499 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/ode.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/riccati.py +893 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/single.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/subscheck.py +392 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/systems.py +2135 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/test_lie_group.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/test_ode.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/test_riccati.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -127,3 +127,4 @@ env-llmeval/lib/python3.10/site-packages/lxml/objectify.cpython-310-x86_64-linux
|
|
127 |
env-llmeval/lib/python3.10/site-packages/triton/third_party/cuda/bin/ptxas filter=lfs diff=lfs merge=lfs -text
|
128 |
env-llmeval/lib/python3.10/site-packages/lxml/etree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
129 |
env-llmeval/lib/python3.10/site-packages/scipy.libs/libopenblasp-r0-24bff013.3.26.dev.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
127 |
env-llmeval/lib/python3.10/site-packages/triton/third_party/cuda/bin/ptxas filter=lfs diff=lfs merge=lfs -text
|
128 |
env-llmeval/lib/python3.10/site-packages/lxml/etree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
129 |
env-llmeval/lib/python3.10/site-packages/scipy.libs/libopenblasp-r0-24bff013.3.26.dev.so filter=lfs diff=lfs merge=lfs -text
|
130 |
+
env-llmeval/lib/python3.10/site-packages/scipy.libs/libgfortran-040039e1.so.5.0.0 filter=lfs diff=lfs merge=lfs -text
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl_01.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0efbd7d9ce7eec3a6e0a0db41e795e0396cca3d6b037dad6c61b464843d28809
|
3 |
+
size 120
|
env-llmeval/lib/python3.10/site-packages/scipy.libs/libgfortran-040039e1.so.5.0.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14afb3129b1a8b50bc40a3b0820c7f1152ea9bc10121aab152943f7057472886
|
3 |
+
size 2686065
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/algorithms.cpython-310.pyc
ADDED
Binary file (5.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/approximations.cpython-310.pyc
ADDED
Binary file (6.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/cnodes.cpython-310.pyc
ADDED
Binary file (4.31 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/cutils.cpython-310.pyc
ADDED
Binary file (717 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/fnodes.cpython-310.pyc
ADDED
Binary file (21.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/futils.cpython-310.pyc
ADDED
Binary file (2.02 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/pynodes.cpython-310.pyc
ADDED
Binary file (669 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/codegen/__pycache__/rewriting.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module for solving all kinds of equations.
|
2 |
+
|
3 |
+
Examples
|
4 |
+
========
|
5 |
+
|
6 |
+
>>> from sympy.solvers import solve
|
7 |
+
>>> from sympy.abc import x
|
8 |
+
>>> solve(x**5+5*x**4+10*x**3+10*x**2+5*x+1,x)
|
9 |
+
[-1]
|
10 |
+
"""
|
11 |
+
from sympy.core.assumptions import check_assumptions, failing_assumptions
|
12 |
+
|
13 |
+
from .solvers import solve, solve_linear_system, solve_linear_system_LU, \
|
14 |
+
solve_undetermined_coeffs, nsolve, solve_linear, checksol, \
|
15 |
+
det_quick, inv_quick
|
16 |
+
|
17 |
+
from .diophantine import diophantine
|
18 |
+
|
19 |
+
from .recurr import rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper
|
20 |
+
|
21 |
+
from .ode import checkodesol, classify_ode, dsolve, \
|
22 |
+
homogeneous_order
|
23 |
+
|
24 |
+
from .polysys import solve_poly_system, solve_triangulated
|
25 |
+
|
26 |
+
from .pde import pde_separate, pde_separate_add, pde_separate_mul, \
|
27 |
+
pdsolve, classify_pde, checkpdesol
|
28 |
+
|
29 |
+
from .deutils import ode_order
|
30 |
+
|
31 |
+
from .inequalities import reduce_inequalities, reduce_abs_inequality, \
|
32 |
+
reduce_abs_inequalities, solve_poly_inequality, solve_rational_inequalities, solve_univariate_inequality
|
33 |
+
|
34 |
+
from .decompogen import decompogen
|
35 |
+
|
36 |
+
from .solveset import solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution
|
37 |
+
|
38 |
+
# This is here instead of sympy/sets/__init__.py to avoid circular import issues
|
39 |
+
from ..core.singleton import S
|
40 |
+
Complexes = S.Complexes
|
41 |
+
|
42 |
+
__all__ = [
|
43 |
+
'solve', 'solve_linear_system', 'solve_linear_system_LU',
|
44 |
+
'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol',
|
45 |
+
'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions',
|
46 |
+
|
47 |
+
'diophantine',
|
48 |
+
|
49 |
+
'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper',
|
50 |
+
|
51 |
+
'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order',
|
52 |
+
|
53 |
+
'solve_poly_system', 'solve_triangulated',
|
54 |
+
|
55 |
+
'pde_separate', 'pde_separate_add', 'pde_separate_mul', 'pdsolve',
|
56 |
+
'classify_pde', 'checkpdesol',
|
57 |
+
|
58 |
+
'ode_order',
|
59 |
+
|
60 |
+
'reduce_inequalities', 'reduce_abs_inequality', 'reduce_abs_inequalities',
|
61 |
+
'solve_poly_inequality', 'solve_rational_inequalities',
|
62 |
+
'solve_univariate_inequality',
|
63 |
+
|
64 |
+
'decompogen',
|
65 |
+
|
66 |
+
'solveset', 'linsolve', 'linear_eq_to_matrix', 'nonlinsolve',
|
67 |
+
'substitution',
|
68 |
+
|
69 |
+
# This is here instead of sympy/sets/__init__.py to avoid circular import issues
|
70 |
+
'Complexes',
|
71 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/bivariate.cpython-310.pyc
ADDED
Binary file (13.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/deutils.cpython-310.pyc
ADDED
Binary file (8.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/solvers.cpython-310.pyc
ADDED
Binary file (98.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/bivariate.py
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.exprtools import factor_terms
|
3 |
+
from sympy.core.function import expand_log, _mexpand
|
4 |
+
from sympy.core.power import Pow
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.sorting import ordered
|
7 |
+
from sympy.core.symbol import Dummy
|
8 |
+
from sympy.functions.elementary.exponential import (LambertW, exp, log)
|
9 |
+
from sympy.functions.elementary.miscellaneous import root
|
10 |
+
from sympy.polys.polyroots import roots
|
11 |
+
from sympy.polys.polytools import Poly, factor
|
12 |
+
from sympy.simplify.simplify import separatevars
|
13 |
+
from sympy.simplify.radsimp import collect
|
14 |
+
from sympy.simplify.simplify import powsimp
|
15 |
+
from sympy.solvers.solvers import solve, _invert
|
16 |
+
from sympy.utilities.iterables import uniq
|
17 |
+
|
18 |
+
|
19 |
+
def _filtered_gens(poly, symbol):
|
20 |
+
"""process the generators of ``poly``, returning the set of generators that
|
21 |
+
have ``symbol``. If there are two generators that are inverses of each other,
|
22 |
+
prefer the one that has no denominator.
|
23 |
+
|
24 |
+
Examples
|
25 |
+
========
|
26 |
+
|
27 |
+
>>> from sympy.solvers.bivariate import _filtered_gens
|
28 |
+
>>> from sympy import Poly, exp
|
29 |
+
>>> from sympy.abc import x
|
30 |
+
>>> _filtered_gens(Poly(x + 1/x + exp(x)), x)
|
31 |
+
{x, exp(x)}
|
32 |
+
|
33 |
+
"""
|
34 |
+
# TODO it would be good to pick the smallest divisible power
|
35 |
+
# instead of the base for something like x**4 + x**2 -->
|
36 |
+
# return x**2 not x
|
37 |
+
gens = {g for g in poly.gens if symbol in g.free_symbols}
|
38 |
+
for g in list(gens):
|
39 |
+
ag = 1/g
|
40 |
+
if g in gens and ag in gens:
|
41 |
+
if ag.as_numer_denom()[1] is not S.One:
|
42 |
+
g = ag
|
43 |
+
gens.remove(g)
|
44 |
+
return gens
|
45 |
+
|
46 |
+
|
47 |
+
def _mostfunc(lhs, func, X=None):
|
48 |
+
"""Returns the term in lhs which contains the most of the
|
49 |
+
func-type things e.g. log(log(x)) wins over log(x) if both terms appear.
|
50 |
+
|
51 |
+
``func`` can be a function (exp, log, etc...) or any other SymPy object,
|
52 |
+
like Pow.
|
53 |
+
|
54 |
+
If ``X`` is not ``None``, then the function returns the term composed with the
|
55 |
+
most ``func`` having the specified variable.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
========
|
59 |
+
|
60 |
+
>>> from sympy.solvers.bivariate import _mostfunc
|
61 |
+
>>> from sympy import exp
|
62 |
+
>>> from sympy.abc import x, y
|
63 |
+
>>> _mostfunc(exp(x) + exp(exp(x) + 2), exp)
|
64 |
+
exp(exp(x) + 2)
|
65 |
+
>>> _mostfunc(exp(x) + exp(exp(y) + 2), exp)
|
66 |
+
exp(exp(y) + 2)
|
67 |
+
>>> _mostfunc(exp(x) + exp(exp(y) + 2), exp, x)
|
68 |
+
exp(x)
|
69 |
+
>>> _mostfunc(x, exp, x) is None
|
70 |
+
True
|
71 |
+
>>> _mostfunc(exp(x) + exp(x*y), exp, x)
|
72 |
+
exp(x)
|
73 |
+
"""
|
74 |
+
fterms = [tmp for tmp in lhs.atoms(func) if (not X or
|
75 |
+
X.is_Symbol and X in tmp.free_symbols or
|
76 |
+
not X.is_Symbol and tmp.has(X))]
|
77 |
+
if len(fterms) == 1:
|
78 |
+
return fterms[0]
|
79 |
+
elif fterms:
|
80 |
+
return max(list(ordered(fterms)), key=lambda x: x.count(func))
|
81 |
+
return None
|
82 |
+
|
83 |
+
|
84 |
+
def _linab(arg, symbol):
|
85 |
+
"""Return ``a, b, X`` assuming ``arg`` can be written as ``a*X + b``
|
86 |
+
where ``X`` is a symbol-dependent factor and ``a`` and ``b`` are
|
87 |
+
independent of ``symbol``.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
========
|
91 |
+
|
92 |
+
>>> from sympy.solvers.bivariate import _linab
|
93 |
+
>>> from sympy.abc import x, y
|
94 |
+
>>> from sympy import exp, S
|
95 |
+
>>> _linab(S(2), x)
|
96 |
+
(2, 0, 1)
|
97 |
+
>>> _linab(2*x, x)
|
98 |
+
(2, 0, x)
|
99 |
+
>>> _linab(y + y*x + 2*x, x)
|
100 |
+
(y + 2, y, x)
|
101 |
+
>>> _linab(3 + 2*exp(x), x)
|
102 |
+
(2, 3, exp(x))
|
103 |
+
"""
|
104 |
+
arg = factor_terms(arg.expand())
|
105 |
+
ind, dep = arg.as_independent(symbol)
|
106 |
+
if arg.is_Mul and dep.is_Add:
|
107 |
+
a, b, x = _linab(dep, symbol)
|
108 |
+
return ind*a, ind*b, x
|
109 |
+
if not arg.is_Add:
|
110 |
+
b = 0
|
111 |
+
a, x = ind, dep
|
112 |
+
else:
|
113 |
+
b = ind
|
114 |
+
a, x = separatevars(dep).as_independent(symbol, as_Add=False)
|
115 |
+
if x.could_extract_minus_sign():
|
116 |
+
a = -a
|
117 |
+
x = -x
|
118 |
+
return a, b, x
|
119 |
+
|
120 |
+
|
121 |
+
def _lambert(eq, x):
|
122 |
+
"""
|
123 |
+
Given an expression assumed to be in the form
|
124 |
+
``F(X, a..f) = a*log(b*X + c) + d*X + f = 0``
|
125 |
+
where X = g(x) and x = g^-1(X), return the Lambert solution,
|
126 |
+
``x = g^-1(-c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(-f/a)))``.
|
127 |
+
"""
|
128 |
+
eq = _mexpand(expand_log(eq))
|
129 |
+
mainlog = _mostfunc(eq, log, x)
|
130 |
+
if not mainlog:
|
131 |
+
return [] # violated assumptions
|
132 |
+
other = eq.subs(mainlog, 0)
|
133 |
+
if isinstance(-other, log):
|
134 |
+
eq = (eq - other).subs(mainlog, mainlog.args[0])
|
135 |
+
mainlog = mainlog.args[0]
|
136 |
+
if not isinstance(mainlog, log):
|
137 |
+
return [] # violated assumptions
|
138 |
+
other = -(-other).args[0]
|
139 |
+
eq += other
|
140 |
+
if x not in other.free_symbols:
|
141 |
+
return [] # violated assumptions
|
142 |
+
d, f, X2 = _linab(other, x)
|
143 |
+
logterm = collect(eq - other, mainlog)
|
144 |
+
a = logterm.as_coefficient(mainlog)
|
145 |
+
if a is None or x in a.free_symbols:
|
146 |
+
return [] # violated assumptions
|
147 |
+
logarg = mainlog.args[0]
|
148 |
+
b, c, X1 = _linab(logarg, x)
|
149 |
+
if X1 != X2:
|
150 |
+
return [] # violated assumptions
|
151 |
+
|
152 |
+
# invert the generator X1 so we have x(u)
|
153 |
+
u = Dummy('rhs')
|
154 |
+
xusolns = solve(X1 - u, x)
|
155 |
+
|
156 |
+
# There are infinitely many branches for LambertW
|
157 |
+
# but only branches for k = -1 and 0 might be real. The k = 0
|
158 |
+
# branch is real and the k = -1 branch is real if the LambertW argumen
|
159 |
+
# in in range [-1/e, 0]. Since `solve` does not return infinite
|
160 |
+
# solutions we will only include the -1 branch if it tests as real.
|
161 |
+
# Otherwise, inclusion of any LambertW in the solution indicates to
|
162 |
+
# the user that there are imaginary solutions corresponding to
|
163 |
+
# different k values.
|
164 |
+
lambert_real_branches = [-1, 0]
|
165 |
+
sol = []
|
166 |
+
|
167 |
+
# solution of the given Lambert equation is like
|
168 |
+
# sol = -c/b + (a/d)*LambertW(arg, k),
|
169 |
+
# where arg = d/(a*b)*exp((c*d-b*f)/a/b) and k in lambert_real_branches.
|
170 |
+
# Instead of considering the single arg, `d/(a*b)*exp((c*d-b*f)/a/b)`,
|
171 |
+
# the individual `p` roots obtained when writing `exp((c*d-b*f)/a/b)`
|
172 |
+
# as `exp(A/p) = exp(A)**(1/p)`, where `p` is an Integer, are used.
|
173 |
+
|
174 |
+
# calculating args for LambertW
|
175 |
+
num, den = ((c*d-b*f)/a/b).as_numer_denom()
|
176 |
+
p, den = den.as_coeff_Mul()
|
177 |
+
e = exp(num/den)
|
178 |
+
t = Dummy('t')
|
179 |
+
args = [d/(a*b)*t for t in roots(t**p - e, t).keys()]
|
180 |
+
|
181 |
+
# calculating solutions from args
|
182 |
+
for arg in args:
|
183 |
+
for k in lambert_real_branches:
|
184 |
+
w = LambertW(arg, k)
|
185 |
+
if k and not w.is_real:
|
186 |
+
continue
|
187 |
+
rhs = -c/b + (a/d)*w
|
188 |
+
|
189 |
+
sol.extend(xu.subs(u, rhs) for xu in xusolns)
|
190 |
+
return sol
|
191 |
+
|
192 |
+
|
193 |
+
def _solve_lambert(f, symbol, gens):
|
194 |
+
"""Return solution to ``f`` if it is a Lambert-type expression
|
195 |
+
else raise NotImplementedError.
|
196 |
+
|
197 |
+
For ``f(X, a..f) = a*log(b*X + c) + d*X - f = 0`` the solution
|
198 |
+
for ``X`` is ``X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))``.
|
199 |
+
There are a variety of forms for `f(X, a..f)` as enumerated below:
|
200 |
+
|
201 |
+
1a1)
|
202 |
+
if B**B = R for R not in [0, 1] (since those cases would already
|
203 |
+
be solved before getting here) then log of both sides gives
|
204 |
+
log(B) + log(log(B)) = log(log(R)) and
|
205 |
+
X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R))
|
206 |
+
1a2)
|
207 |
+
if B*(b*log(B) + c)**a = R then log of both sides gives
|
208 |
+
log(B) + a*log(b*log(B) + c) = log(R) and
|
209 |
+
X = log(B), d=1, f=log(R)
|
210 |
+
1b)
|
211 |
+
if a*log(b*B + c) + d*B = R and
|
212 |
+
X = B, f = R
|
213 |
+
2a)
|
214 |
+
if (b*B + c)*exp(d*B + g) = R then log of both sides gives
|
215 |
+
log(b*B + c) + d*B + g = log(R) and
|
216 |
+
X = B, a = 1, f = log(R) - g
|
217 |
+
2b)
|
218 |
+
if g*exp(d*B + h) - b*B = c then the log form is
|
219 |
+
log(g) + d*B + h - log(b*B + c) = 0 and
|
220 |
+
X = B, a = -1, f = -h - log(g)
|
221 |
+
3)
|
222 |
+
if d*p**(a*B + g) - b*B = c then the log form is
|
223 |
+
log(d) + (a*B + g)*log(p) - log(b*B + c) = 0 and
|
224 |
+
X = B, a = -1, d = a*log(p), f = -log(d) - g*log(p)
|
225 |
+
"""
|
226 |
+
|
227 |
+
def _solve_even_degree_expr(expr, t, symbol):
|
228 |
+
"""Return the unique solutions of equations derived from
|
229 |
+
``expr`` by replacing ``t`` with ``+/- symbol``.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
==========
|
233 |
+
|
234 |
+
expr : Expr
|
235 |
+
The expression which includes a dummy variable t to be
|
236 |
+
replaced with +symbol and -symbol.
|
237 |
+
|
238 |
+
symbol : Symbol
|
239 |
+
The symbol for which a solution is being sought.
|
240 |
+
|
241 |
+
Returns
|
242 |
+
=======
|
243 |
+
|
244 |
+
List of unique solution of the two equations generated by
|
245 |
+
replacing ``t`` with positive and negative ``symbol``.
|
246 |
+
|
247 |
+
Notes
|
248 |
+
=====
|
249 |
+
|
250 |
+
If ``expr = 2*log(t) + x/2` then solutions for
|
251 |
+
``2*log(x) + x/2 = 0`` and ``2*log(-x) + x/2 = 0`` are
|
252 |
+
returned by this function. Though this may seem
|
253 |
+
counter-intuitive, one must note that the ``expr`` being
|
254 |
+
solved here has been derived from a different expression. For
|
255 |
+
an expression like ``eq = x**2*g(x) = 1``, if we take the
|
256 |
+
log of both sides we obtain ``log(x**2) + log(g(x)) = 0``. If
|
257 |
+
x is positive then this simplifies to
|
258 |
+
``2*log(x) + log(g(x)) = 0``; the Lambert-solving routines will
|
259 |
+
return solutions for this, but we must also consider the
|
260 |
+
solutions for ``2*log(-x) + log(g(x))`` since those must also
|
261 |
+
be a solution of ``eq`` which has the same value when the ``x``
|
262 |
+
in ``x**2`` is negated. If `g(x)` does not have even powers of
|
263 |
+
symbol then we do not want to replace the ``x`` there with
|
264 |
+
``-x``. So the role of the ``t`` in the expression received by
|
265 |
+
this function is to mark where ``+/-x`` should be inserted
|
266 |
+
before obtaining the Lambert solutions.
|
267 |
+
|
268 |
+
"""
|
269 |
+
nlhs, plhs = [
|
270 |
+
expr.xreplace({t: sgn*symbol}) for sgn in (-1, 1)]
|
271 |
+
sols = _solve_lambert(nlhs, symbol, gens)
|
272 |
+
if plhs != nlhs:
|
273 |
+
sols.extend(_solve_lambert(plhs, symbol, gens))
|
274 |
+
# uniq is needed for a case like
|
275 |
+
# 2*log(t) - log(-z**2) + log(z + log(x) + log(z))
|
276 |
+
# where substituting t with +/-x gives all the same solution;
|
277 |
+
# uniq, rather than list(set()), is used to maintain canonical
|
278 |
+
# order
|
279 |
+
return list(uniq(sols))
|
280 |
+
|
281 |
+
nrhs, lhs = f.as_independent(symbol, as_Add=True)
|
282 |
+
rhs = -nrhs
|
283 |
+
|
284 |
+
lamcheck = [tmp for tmp in gens
|
285 |
+
if (tmp.func in [exp, log] or
|
286 |
+
(tmp.is_Pow and symbol in tmp.exp.free_symbols))]
|
287 |
+
if not lamcheck:
|
288 |
+
raise NotImplementedError()
|
289 |
+
|
290 |
+
if lhs.is_Add or lhs.is_Mul:
|
291 |
+
# replacing all even_degrees of symbol with dummy variable t
|
292 |
+
# since these will need special handling; non-Add/Mul do not
|
293 |
+
# need this handling
|
294 |
+
t = Dummy('t', **symbol.assumptions0)
|
295 |
+
lhs = lhs.replace(
|
296 |
+
lambda i: # find symbol**even
|
297 |
+
i.is_Pow and i.base == symbol and i.exp.is_even,
|
298 |
+
lambda i: # replace t**even
|
299 |
+
t**i.exp)
|
300 |
+
|
301 |
+
if lhs.is_Add and lhs.has(t):
|
302 |
+
t_indep = lhs.subs(t, 0)
|
303 |
+
t_term = lhs - t_indep
|
304 |
+
_rhs = rhs - t_indep
|
305 |
+
if not t_term.is_Add and _rhs and not (
|
306 |
+
t_term.has(S.ComplexInfinity, S.NaN)):
|
307 |
+
eq = expand_log(log(t_term) - log(_rhs))
|
308 |
+
return _solve_even_degree_expr(eq, t, symbol)
|
309 |
+
elif lhs.is_Mul and rhs:
|
310 |
+
# this needs to happen whether t is present or not
|
311 |
+
lhs = expand_log(log(lhs), force=True)
|
312 |
+
rhs = log(rhs)
|
313 |
+
if lhs.has(t) and lhs.is_Add:
|
314 |
+
# it expanded from Mul to Add
|
315 |
+
eq = lhs - rhs
|
316 |
+
return _solve_even_degree_expr(eq, t, symbol)
|
317 |
+
|
318 |
+
# restore symbol in lhs
|
319 |
+
lhs = lhs.xreplace({t: symbol})
|
320 |
+
|
321 |
+
lhs = powsimp(factor(lhs, deep=True))
|
322 |
+
|
323 |
+
# make sure we have inverted as completely as possible
|
324 |
+
r = Dummy()
|
325 |
+
i, lhs = _invert(lhs - r, symbol)
|
326 |
+
rhs = i.xreplace({r: rhs})
|
327 |
+
|
328 |
+
# For the first forms:
|
329 |
+
#
|
330 |
+
# 1a1) B**B = R will arrive here as B*log(B) = log(R)
|
331 |
+
# lhs is Mul so take log of both sides:
|
332 |
+
# log(B) + log(log(B)) = log(log(R))
|
333 |
+
# 1a2) B*(b*log(B) + c)**a = R will arrive unchanged so
|
334 |
+
# lhs is Mul, so take log of both sides:
|
335 |
+
# log(B) + a*log(b*log(B) + c) = log(R)
|
336 |
+
# 1b) d*log(a*B + b) + c*B = R will arrive unchanged so
|
337 |
+
# lhs is Add, so isolate c*B and expand log of both sides:
|
338 |
+
# log(c) + log(B) = log(R - d*log(a*B + b))
|
339 |
+
|
340 |
+
soln = []
|
341 |
+
if not soln:
|
342 |
+
mainlog = _mostfunc(lhs, log, symbol)
|
343 |
+
if mainlog:
|
344 |
+
if lhs.is_Mul and rhs != 0:
|
345 |
+
soln = _lambert(log(lhs) - log(rhs), symbol)
|
346 |
+
elif lhs.is_Add:
|
347 |
+
other = lhs.subs(mainlog, 0)
|
348 |
+
if other and not other.is_Add and [
|
349 |
+
tmp for tmp in other.atoms(Pow)
|
350 |
+
if symbol in tmp.free_symbols]:
|
351 |
+
if not rhs:
|
352 |
+
diff = log(other) - log(other - lhs)
|
353 |
+
else:
|
354 |
+
diff = log(lhs - other) - log(rhs - other)
|
355 |
+
soln = _lambert(expand_log(diff), symbol)
|
356 |
+
else:
|
357 |
+
#it's ready to go
|
358 |
+
soln = _lambert(lhs - rhs, symbol)
|
359 |
+
|
360 |
+
# For the next forms,
|
361 |
+
#
|
362 |
+
# collect on main exp
|
363 |
+
# 2a) (b*B + c)*exp(d*B + g) = R
|
364 |
+
# lhs is mul, so take log of both sides:
|
365 |
+
# log(b*B + c) + d*B = log(R) - g
|
366 |
+
# 2b) g*exp(d*B + h) - b*B = R
|
367 |
+
# lhs is add, so add b*B to both sides,
|
368 |
+
# take the log of both sides and rearrange to give
|
369 |
+
# log(R + b*B) - d*B = log(g) + h
|
370 |
+
|
371 |
+
if not soln:
|
372 |
+
mainexp = _mostfunc(lhs, exp, symbol)
|
373 |
+
if mainexp:
|
374 |
+
lhs = collect(lhs, mainexp)
|
375 |
+
if lhs.is_Mul and rhs != 0:
|
376 |
+
soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
|
377 |
+
elif lhs.is_Add:
|
378 |
+
# move all but mainexp-containing term to rhs
|
379 |
+
other = lhs.subs(mainexp, 0)
|
380 |
+
mainterm = lhs - other
|
381 |
+
rhs = rhs - other
|
382 |
+
if (mainterm.could_extract_minus_sign() and
|
383 |
+
rhs.could_extract_minus_sign()):
|
384 |
+
mainterm *= -1
|
385 |
+
rhs *= -1
|
386 |
+
diff = log(mainterm) - log(rhs)
|
387 |
+
soln = _lambert(expand_log(diff), symbol)
|
388 |
+
|
389 |
+
# For the last form:
|
390 |
+
#
|
391 |
+
# 3) d*p**(a*B + g) - b*B = c
|
392 |
+
# collect on main pow, add b*B to both sides,
|
393 |
+
# take log of both sides and rearrange to give
|
394 |
+
# a*B*log(p) - log(b*B + c) = -log(d) - g*log(p)
|
395 |
+
if not soln:
|
396 |
+
mainpow = _mostfunc(lhs, Pow, symbol)
|
397 |
+
if mainpow and symbol in mainpow.exp.free_symbols:
|
398 |
+
lhs = collect(lhs, mainpow)
|
399 |
+
if lhs.is_Mul and rhs != 0:
|
400 |
+
# b*B = 0
|
401 |
+
soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
|
402 |
+
elif lhs.is_Add:
|
403 |
+
# move all but mainpow-containing term to rhs
|
404 |
+
other = lhs.subs(mainpow, 0)
|
405 |
+
mainterm = lhs - other
|
406 |
+
rhs = rhs - other
|
407 |
+
diff = log(mainterm) - log(rhs)
|
408 |
+
soln = _lambert(expand_log(diff), symbol)
|
409 |
+
|
410 |
+
if not soln:
|
411 |
+
raise NotImplementedError('%s does not appear to have a solution in '
|
412 |
+
'terms of LambertW' % f)
|
413 |
+
|
414 |
+
return list(ordered(soln))
|
415 |
+
|
416 |
+
|
417 |
+
def bivariate_type(f, x, y, *, first=True):
|
418 |
+
"""Given an expression, f, 3 tests will be done to see what type
|
419 |
+
of composite bivariate it might be, options for u(x, y) are::
|
420 |
+
|
421 |
+
x*y
|
422 |
+
x+y
|
423 |
+
x*y+x
|
424 |
+
x*y+y
|
425 |
+
|
426 |
+
If it matches one of these types, ``u(x, y)``, ``P(u)`` and dummy
|
427 |
+
variable ``u`` will be returned. Solving ``P(u)`` for ``u`` and
|
428 |
+
equating the solutions to ``u(x, y)`` and then solving for ``x`` or
|
429 |
+
``y`` is equivalent to solving the original expression for ``x`` or
|
430 |
+
``y``. If ``x`` and ``y`` represent two functions in the same
|
431 |
+
variable, e.g. ``x = g(t)`` and ``y = h(t)``, then if ``u(x, y) - p``
|
432 |
+
can be solved for ``t`` then these represent the solutions to
|
433 |
+
``P(u) = 0`` when ``p`` are the solutions of ``P(u) = 0``.
|
434 |
+
|
435 |
+
Only positive values of ``u`` are considered.
|
436 |
+
|
437 |
+
Examples
|
438 |
+
========
|
439 |
+
|
440 |
+
>>> from sympy import solve
|
441 |
+
>>> from sympy.solvers.bivariate import bivariate_type
|
442 |
+
>>> from sympy.abc import x, y
|
443 |
+
>>> eq = (x**2 - 3).subs(x, x + y)
|
444 |
+
>>> bivariate_type(eq, x, y)
|
445 |
+
(x + y, _u**2 - 3, _u)
|
446 |
+
>>> uxy, pu, u = _
|
447 |
+
>>> usol = solve(pu, u); usol
|
448 |
+
[sqrt(3)]
|
449 |
+
>>> [solve(uxy - s) for s in solve(pu, u)]
|
450 |
+
[[{x: -y + sqrt(3)}]]
|
451 |
+
>>> all(eq.subs(s).equals(0) for sol in _ for s in sol)
|
452 |
+
True
|
453 |
+
|
454 |
+
"""
|
455 |
+
|
456 |
+
u = Dummy('u', positive=True)
|
457 |
+
|
458 |
+
if first:
|
459 |
+
p = Poly(f, x, y)
|
460 |
+
f = p.as_expr()
|
461 |
+
_x = Dummy()
|
462 |
+
_y = Dummy()
|
463 |
+
rv = bivariate_type(Poly(f.subs({x: _x, y: _y}), _x, _y), _x, _y, first=False)
|
464 |
+
if rv:
|
465 |
+
reps = {_x: x, _y: y}
|
466 |
+
return rv[0].xreplace(reps), rv[1].xreplace(reps), rv[2]
|
467 |
+
return
|
468 |
+
|
469 |
+
p = f
|
470 |
+
f = p.as_expr()
|
471 |
+
|
472 |
+
# f(x*y)
|
473 |
+
args = Add.make_args(p.as_expr())
|
474 |
+
new = []
|
475 |
+
for a in args:
|
476 |
+
a = _mexpand(a.subs(x, u/y))
|
477 |
+
free = a.free_symbols
|
478 |
+
if x in free or y in free:
|
479 |
+
break
|
480 |
+
new.append(a)
|
481 |
+
else:
|
482 |
+
return x*y, Add(*new), u
|
483 |
+
|
484 |
+
def ok(f, v, c):
|
485 |
+
new = _mexpand(f.subs(v, c))
|
486 |
+
free = new.free_symbols
|
487 |
+
return None if (x in free or y in free) else new
|
488 |
+
|
489 |
+
# f(a*x + b*y)
|
490 |
+
new = []
|
491 |
+
d = p.degree(x)
|
492 |
+
if p.degree(y) == d:
|
493 |
+
a = root(p.coeff_monomial(x**d), d)
|
494 |
+
b = root(p.coeff_monomial(y**d), d)
|
495 |
+
new = ok(f, x, (u - b*y)/a)
|
496 |
+
if new is not None:
|
497 |
+
return a*x + b*y, new, u
|
498 |
+
|
499 |
+
# f(a*x*y + b*y)
|
500 |
+
new = []
|
501 |
+
d = p.degree(x)
|
502 |
+
if p.degree(y) == d:
|
503 |
+
for itry in range(2):
|
504 |
+
a = root(p.coeff_monomial(x**d*y**d), d)
|
505 |
+
b = root(p.coeff_monomial(y**d), d)
|
506 |
+
new = ok(f, x, (u - b*y)/a/y)
|
507 |
+
if new is not None:
|
508 |
+
return a*x*y + b*y, new, u
|
509 |
+
x, y = y, x
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/decompogen.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import (Function, Pow, sympify, Expr)
|
2 |
+
from sympy.core.relational import Relational
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.polys import Poly, decompose
|
5 |
+
from sympy.utilities.misc import func_name
|
6 |
+
from sympy.functions.elementary.miscellaneous import Min, Max
|
7 |
+
|
8 |
+
|
9 |
+
def decompogen(f, symbol):
|
10 |
+
"""
|
11 |
+
Computes General functional decomposition of ``f``.
|
12 |
+
Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``,
|
13 |
+
where::
|
14 |
+
f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))
|
15 |
+
|
16 |
+
Note: This is a General decomposition function. It also decomposes
|
17 |
+
Polynomials. For only Polynomial decomposition see ``decompose`` in polys.
|
18 |
+
|
19 |
+
Examples
|
20 |
+
========
|
21 |
+
|
22 |
+
>>> from sympy.abc import x
|
23 |
+
>>> from sympy import decompogen, sqrt, sin, cos
|
24 |
+
>>> decompogen(sin(cos(x)), x)
|
25 |
+
[sin(x), cos(x)]
|
26 |
+
>>> decompogen(sin(x)**2 + sin(x) + 1, x)
|
27 |
+
[x**2 + x + 1, sin(x)]
|
28 |
+
>>> decompogen(sqrt(6*x**2 - 5), x)
|
29 |
+
[sqrt(x), 6*x**2 - 5]
|
30 |
+
>>> decompogen(sin(sqrt(cos(x**2 + 1))), x)
|
31 |
+
[sin(x), sqrt(x), cos(x), x**2 + 1]
|
32 |
+
>>> decompogen(x**4 + 2*x**3 - x - 1, x)
|
33 |
+
[x**2 - x - 1, x**2 + x]
|
34 |
+
|
35 |
+
"""
|
36 |
+
f = sympify(f)
|
37 |
+
if not isinstance(f, Expr) or isinstance(f, Relational):
|
38 |
+
raise TypeError('expecting Expr but got: `%s`' % func_name(f))
|
39 |
+
if symbol not in f.free_symbols:
|
40 |
+
return [f]
|
41 |
+
|
42 |
+
|
43 |
+
# ===== Simple Functions ===== #
|
44 |
+
if isinstance(f, (Function, Pow)):
|
45 |
+
if f.is_Pow and f.base == S.Exp1:
|
46 |
+
arg = f.exp
|
47 |
+
else:
|
48 |
+
arg = f.args[0]
|
49 |
+
if arg == symbol:
|
50 |
+
return [f]
|
51 |
+
return [f.subs(arg, symbol)] + decompogen(arg, symbol)
|
52 |
+
|
53 |
+
# ===== Min/Max Functions ===== #
|
54 |
+
if isinstance(f, (Min, Max)):
|
55 |
+
args = list(f.args)
|
56 |
+
d0 = None
|
57 |
+
for i, a in enumerate(args):
|
58 |
+
if not a.has_free(symbol):
|
59 |
+
continue
|
60 |
+
d = decompogen(a, symbol)
|
61 |
+
if len(d) == 1:
|
62 |
+
d = [symbol] + d
|
63 |
+
if d0 is None:
|
64 |
+
d0 = d[1:]
|
65 |
+
elif d[1:] != d0:
|
66 |
+
# decomposition is not the same for each arg:
|
67 |
+
# mark as having no decomposition
|
68 |
+
d = [symbol]
|
69 |
+
break
|
70 |
+
args[i] = d[0]
|
71 |
+
if d[0] == symbol:
|
72 |
+
return [f]
|
73 |
+
return [f.func(*args)] + d0
|
74 |
+
|
75 |
+
# ===== Convert to Polynomial ===== #
|
76 |
+
fp = Poly(f)
|
77 |
+
gens = list(filter(lambda x: symbol in x.free_symbols, fp.gens))
|
78 |
+
|
79 |
+
if len(gens) == 1 and gens[0] != symbol:
|
80 |
+
f1 = f.subs(gens[0], symbol)
|
81 |
+
f2 = gens[0]
|
82 |
+
return [f1] + decompogen(f2, symbol)
|
83 |
+
|
84 |
+
# ===== Polynomial decompose() ====== #
|
85 |
+
try:
|
86 |
+
return decompose(f)
|
87 |
+
except ValueError:
|
88 |
+
return [f]
|
89 |
+
|
90 |
+
|
91 |
+
def compogen(g_s, symbol):
|
92 |
+
"""
|
93 |
+
Returns the composition of functions.
|
94 |
+
Given a list of functions ``g_s``, returns their composition ``f``,
|
95 |
+
where:
|
96 |
+
f = g_1 o g_2 o .. o g_n
|
97 |
+
|
98 |
+
Note: This is a General composition function. It also composes Polynomials.
|
99 |
+
For only Polynomial composition see ``compose`` in polys.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
========
|
103 |
+
|
104 |
+
>>> from sympy.solvers.decompogen import compogen
|
105 |
+
>>> from sympy.abc import x
|
106 |
+
>>> from sympy import sqrt, sin, cos
|
107 |
+
>>> compogen([sin(x), cos(x)], x)
|
108 |
+
sin(cos(x))
|
109 |
+
>>> compogen([x**2 + x + 1, sin(x)], x)
|
110 |
+
sin(x)**2 + sin(x) + 1
|
111 |
+
>>> compogen([sqrt(x), 6*x**2 - 5], x)
|
112 |
+
sqrt(6*x**2 - 5)
|
113 |
+
>>> compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x)
|
114 |
+
sin(sqrt(cos(x**2 + 1)))
|
115 |
+
>>> compogen([x**2 - x - 1, x**2 + x], x)
|
116 |
+
-x**2 - x + (x**2 + x)**2 - 1
|
117 |
+
"""
|
118 |
+
if len(g_s) == 1:
|
119 |
+
return g_s[0]
|
120 |
+
|
121 |
+
foo = g_s[0].subs(symbol, g_s[1])
|
122 |
+
|
123 |
+
if len(g_s) == 2:
|
124 |
+
return foo
|
125 |
+
|
126 |
+
return compogen([foo] + g_s[2:], symbol)
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .diophantine import diophantine, classify_diop, diop_solve
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
'diophantine', 'classify_diop', 'diop_solve'
|
5 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (288 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/__pycache__/diophantine.cpython-310.pyc
ADDED
Binary file (103 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/diophantine.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (196 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc
ADDED
Binary file (46 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/diophantine/tests/test_diophantine.py
ADDED
@@ -0,0 +1,1037 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.mul import Mul
|
3 |
+
from sympy.core.numbers import (Rational, oo, pi)
|
4 |
+
from sympy.core.relational import Eq
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import symbols
|
7 |
+
from sympy.matrices.dense import Matrix
|
8 |
+
from sympy.ntheory.factor_ import factorint
|
9 |
+
from sympy.simplify.powsimp import powsimp
|
10 |
+
from sympy.core.function import _mexpand
|
11 |
+
from sympy.core.sorting import default_sort_key, ordered
|
12 |
+
from sympy.functions.elementary.trigonometric import sin
|
13 |
+
from sympy.solvers.diophantine import diophantine
|
14 |
+
from sympy.solvers.diophantine.diophantine import (diop_DN,
|
15 |
+
diop_solve, diop_ternary_quadratic_normal,
|
16 |
+
diop_general_pythagorean, diop_ternary_quadratic, diop_linear,
|
17 |
+
diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers,
|
18 |
+
descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length,
|
19 |
+
reconstruct, partition, power_representation,
|
20 |
+
prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
|
21 |
+
sum_of_three_squares, transformation_to_DN, transformation_to_normal,
|
22 |
+
classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer,
|
23 |
+
check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares,
|
24 |
+
_diop_ternary_quadratic_normal, _nint_or_floor,
|
25 |
+
_odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet, GeneralPythagorean,
|
26 |
+
BinaryQuadratic)
|
27 |
+
|
28 |
+
from sympy.testing.pytest import slow, raises, XFAIL
|
29 |
+
from sympy.utilities.iterables import (
|
30 |
+
signed_permutations)
|
31 |
+
|
32 |
+
a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
|
33 |
+
"a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
|
34 |
+
t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
|
35 |
+
m1, m2, m3 = symbols('m1:4', integer=True)
|
36 |
+
n1 = symbols('n1', integer=True)
|
37 |
+
|
38 |
+
|
39 |
+
def diop_simplify(eq):
|
40 |
+
return _mexpand(powsimp(_mexpand(eq)))
|
41 |
+
|
42 |
+
|
43 |
+
def test_input_format():
|
44 |
+
raises(TypeError, lambda: diophantine(sin(x)))
|
45 |
+
raises(TypeError, lambda: diophantine(x/pi - 3))
|
46 |
+
|
47 |
+
|
48 |
+
def test_nosols():
|
49 |
+
# diophantine should sympify eq so that these are equivalent
|
50 |
+
assert diophantine(3) == set()
|
51 |
+
assert diophantine(S(3)) == set()
|
52 |
+
|
53 |
+
|
54 |
+
def test_univariate():
|
55 |
+
assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)}
|
56 |
+
assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)}
|
57 |
+
|
58 |
+
|
59 |
+
def test_classify_diop():
|
60 |
+
raises(TypeError, lambda: classify_diop(x**2/3 - 1))
|
61 |
+
raises(ValueError, lambda: classify_diop(1))
|
62 |
+
raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
|
63 |
+
raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
|
64 |
+
assert classify_diop(14*x**2 + 15*x - 42) == (
|
65 |
+
[x], {1: -42, x: 15, x**2: 14}, 'univariate')
|
66 |
+
assert classify_diop(x*y + z) == (
|
67 |
+
[x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
|
68 |
+
assert classify_diop(x*y + z + w + x**2) == (
|
69 |
+
[w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
|
70 |
+
assert classify_diop(x*y + x*z + x**2 + 1) == (
|
71 |
+
[x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
|
72 |
+
assert classify_diop(x*y + z + w + 42) == (
|
73 |
+
[w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
|
74 |
+
assert classify_diop(x*y + z*w) == (
|
75 |
+
[w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
|
76 |
+
assert classify_diop(x*y**2 + 1) == (
|
77 |
+
[x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
|
78 |
+
assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
|
79 |
+
[x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
|
80 |
+
assert classify_diop(x**2 + y**2 + z**2) == (
|
81 |
+
[x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal')
|
82 |
+
|
83 |
+
|
84 |
+
def test_linear():
|
85 |
+
assert diop_solve(x) == (0,)
|
86 |
+
assert diop_solve(1*x) == (0,)
|
87 |
+
assert diop_solve(3*x) == (0,)
|
88 |
+
assert diop_solve(x + 1) == (-1,)
|
89 |
+
assert diop_solve(2*x + 1) == (None,)
|
90 |
+
assert diop_solve(2*x + 4) == (-2,)
|
91 |
+
assert diop_solve(y + x) == (t_0, -t_0)
|
92 |
+
assert diop_solve(y + x + 0) == (t_0, -t_0)
|
93 |
+
assert diop_solve(y + x - 0) == (t_0, -t_0)
|
94 |
+
assert diop_solve(0*x - y - 5) == (-5,)
|
95 |
+
assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
|
96 |
+
assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
|
97 |
+
assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
|
98 |
+
assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
|
99 |
+
assert diop_solve(2*x + 4*y) == (2*t_0, -t_0)
|
100 |
+
assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
|
101 |
+
assert diop_solve(4*x + 6*y - 3) == (None, None)
|
102 |
+
assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
|
103 |
+
assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
|
104 |
+
assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
|
105 |
+
assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
|
106 |
+
assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
|
107 |
+
assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
|
108 |
+
assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
|
109 |
+
|
110 |
+
# to ignore constant factors, use diophantine
|
111 |
+
raises(TypeError, lambda: diop_solve(x/2))
|
112 |
+
|
113 |
+
|
114 |
+
def test_quadratic_simple_hyperbolic_case():
|
115 |
+
# Simple Hyperbolic case: A = C = 0 and B != 0
|
116 |
+
assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
|
117 |
+
{(-133, -11), (5, -57)}
|
118 |
+
assert diop_solve(6*x*y + 2*x + 3*y + 1) == set()
|
119 |
+
assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)}
|
120 |
+
assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)}
|
121 |
+
assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12),
|
122 |
+
(-29, -69), (-27, 64), (-21, 7),
|
123 |
+
(-9, 1), (105, -2)}
|
124 |
+
assert diop_solve(6*x*y + 9*x + 2*y + 3) == set()
|
125 |
+
assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)}
|
126 |
+
assert diophantine(48*x*y)
|
127 |
+
|
128 |
+
|
129 |
+
def test_quadratic_elliptical_case():
|
130 |
+
# Elliptical case: B**2 - 4AC < 0
|
131 |
+
|
132 |
+
assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)}
|
133 |
+
assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set()
|
134 |
+
assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)}
|
135 |
+
assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)}
|
136 |
+
assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
|
137 |
+
{(-1, -1), (-1, 2), (1, -2), (1, 1)}
|
138 |
+
|
139 |
+
|
140 |
+
def test_quadratic_parabolic_case():
|
141 |
+
# Parabolic case: B**2 - 4AC = 0
|
142 |
+
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
|
143 |
+
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
|
144 |
+
assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
|
145 |
+
assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
|
146 |
+
assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
|
147 |
+
assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
|
148 |
+
assert check_solutions(y**2 - 41*x + 40)
|
149 |
+
|
150 |
+
|
151 |
+
def test_quadratic_perfect_square():
|
152 |
+
# B**2 - 4*A*C > 0
|
153 |
+
# B**2 - 4*A*C is a perfect square
|
154 |
+
assert check_solutions(48*x*y)
|
155 |
+
assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
|
156 |
+
assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
|
157 |
+
assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
|
158 |
+
assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
|
159 |
+
assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
|
160 |
+
assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
|
161 |
+
assert check_solutions(x**2 - y**2 - 2*x - 2*y)
|
162 |
+
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
|
163 |
+
assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
|
164 |
+
|
165 |
+
|
166 |
+
def test_quadratic_non_perfect_square():
|
167 |
+
# B**2 - 4*A*C is not a perfect square
|
168 |
+
# Used check_solutions() since the solutions are complex expressions involving
|
169 |
+
# square roots and exponents
|
170 |
+
assert check_solutions(x**2 - 2*x - 5*y**2)
|
171 |
+
assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
|
172 |
+
assert check_solutions(x**2 - x*y - y**2 - 3*y)
|
173 |
+
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
|
174 |
+
assert BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2).solve() == {(-1, -1)}
|
175 |
+
|
176 |
+
|
177 |
+
def test_issue_9106():
|
178 |
+
eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
|
179 |
+
v = (x, y)
|
180 |
+
for sol in diophantine(eq):
|
181 |
+
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
|
182 |
+
|
183 |
+
|
184 |
+
def test_issue_18138():
|
185 |
+
eq = x**2 - x - y**2
|
186 |
+
v = (x, y)
|
187 |
+
for sol in diophantine(eq):
|
188 |
+
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
|
189 |
+
|
190 |
+
|
191 |
+
@slow
|
192 |
+
def test_quadratic_non_perfect_slow():
|
193 |
+
assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
|
194 |
+
# This leads to very large numbers.
|
195 |
+
# assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
|
196 |
+
assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
|
197 |
+
assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
|
198 |
+
assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
|
199 |
+
|
200 |
+
|
201 |
+
def test_DN():
|
202 |
+
# Most of the test cases were adapted from,
|
203 |
+
# Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
|
204 |
+
# https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
|
205 |
+
# others are verified using Wolfram Alpha.
|
206 |
+
|
207 |
+
# Covers cases where D <= 0 or D > 0 and D is a square or N = 0
|
208 |
+
# Solutions are straightforward in these cases.
|
209 |
+
assert diop_DN(3, 0) == [(0, 0)]
|
210 |
+
assert diop_DN(-17, -5) == []
|
211 |
+
assert diop_DN(-19, 23) == [(2, 1)]
|
212 |
+
assert diop_DN(-13, 17) == [(2, 1)]
|
213 |
+
assert diop_DN(-15, 13) == []
|
214 |
+
assert diop_DN(0, 5) == []
|
215 |
+
assert diop_DN(0, 9) == [(3, t)]
|
216 |
+
assert diop_DN(9, 0) == [(3*t, t)]
|
217 |
+
assert diop_DN(16, 24) == []
|
218 |
+
assert diop_DN(9, 180) == [(18, 4)]
|
219 |
+
assert diop_DN(9, -180) == [(12, 6)]
|
220 |
+
assert diop_DN(7, 0) == [(0, 0)]
|
221 |
+
|
222 |
+
# When equation is x**2 + y**2 = N
|
223 |
+
# Solutions are interchangeable
|
224 |
+
assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
|
225 |
+
assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
|
226 |
+
|
227 |
+
# D > 0 and D is not a square
|
228 |
+
|
229 |
+
# N = 1
|
230 |
+
assert diop_DN(13, 1) == [(649, 180)]
|
231 |
+
assert diop_DN(980, 1) == [(51841, 1656)]
|
232 |
+
assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
|
233 |
+
assert diop_DN(986, 1) == [(49299, 1570)]
|
234 |
+
assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
|
235 |
+
assert diop_DN(17, 1) == [(33, 8)]
|
236 |
+
assert diop_DN(19, 1) == [(170, 39)]
|
237 |
+
|
238 |
+
# N = -1
|
239 |
+
assert diop_DN(13, -1) == [(18, 5)]
|
240 |
+
assert diop_DN(991, -1) == []
|
241 |
+
assert diop_DN(41, -1) == [(32, 5)]
|
242 |
+
assert diop_DN(290, -1) == [(17, 1)]
|
243 |
+
assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
|
244 |
+
assert diop_DN(32, -1) == []
|
245 |
+
|
246 |
+
# |N| > 1
|
247 |
+
# Some tests were created using calculator at
|
248 |
+
# http://www.numbertheory.org/php/patz.html
|
249 |
+
|
250 |
+
assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
|
251 |
+
# Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
|
252 |
+
# So (-3, 1) and (393, 109) should be in the same equivalent class
|
253 |
+
assert equivalent(-3, 1, 393, 109, 13, -4) == True
|
254 |
+
|
255 |
+
assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
|
256 |
+
assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222),
|
257 |
+
(483790960, 38610722), (26277068347, 2097138361),
|
258 |
+
(21950079635497, 1751807067011)}
|
259 |
+
assert diop_DN(13, 25) == [(3245, 900)]
|
260 |
+
assert diop_DN(192, 18) == []
|
261 |
+
assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
|
262 |
+
assert diop_DN(167, 2) == [(13, 1)]
|
263 |
+
assert diop_DN(167, -2) == []
|
264 |
+
|
265 |
+
assert diop_DN(123, -2) == [(11, 1)]
|
266 |
+
# One calculator returned [(11, 1), (-11, 1)] but both of these are in
|
267 |
+
# the same equivalence class
|
268 |
+
assert equivalent(11, 1, -11, 1, 123, -2)
|
269 |
+
|
270 |
+
assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
|
271 |
+
|
272 |
+
assert diop_DN(0, 0, t) == [(0, t)]
|
273 |
+
assert diop_DN(0, -1, t) == []
|
274 |
+
|
275 |
+
|
276 |
+
def test_bf_pell():
|
277 |
+
assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
|
278 |
+
assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
|
279 |
+
assert diop_bf_DN(167, -2) == []
|
280 |
+
assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
|
281 |
+
assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
|
282 |
+
assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
|
283 |
+
assert diop_bf_DN(340, -4) == [(756, 41)]
|
284 |
+
assert diop_bf_DN(-1, 0, t) == [(0, 0)]
|
285 |
+
assert diop_bf_DN(0, 0, t) == [(0, t)]
|
286 |
+
assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
|
287 |
+
assert diop_bf_DN(3, 0, t) == [(0, 0)]
|
288 |
+
assert diop_bf_DN(1, -2, t) == []
|
289 |
+
|
290 |
+
|
291 |
+
def test_length():
|
292 |
+
assert length(2, 1, 0) == 1
|
293 |
+
assert length(-2, 4, 5) == 3
|
294 |
+
assert length(-5, 4, 17) == 4
|
295 |
+
assert length(0, 4, 13) == 6
|
296 |
+
assert length(7, 13, 11) == 23
|
297 |
+
assert length(1, 6, 4) == 2
|
298 |
+
|
299 |
+
|
300 |
+
def is_pell_transformation_ok(eq):
|
301 |
+
"""
|
302 |
+
Test whether X*Y, X, or Y terms are present in the equation
|
303 |
+
after transforming the equation using the transformation returned
|
304 |
+
by transformation_to_pell(). If they are not present we are good.
|
305 |
+
Moreover, coefficient of X**2 should be a divisor of coefficient of
|
306 |
+
Y**2 and the constant term.
|
307 |
+
"""
|
308 |
+
A, B = transformation_to_DN(eq)
|
309 |
+
u = (A*Matrix([X, Y]) + B)[0]
|
310 |
+
v = (A*Matrix([X, Y]) + B)[1]
|
311 |
+
simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
|
312 |
+
|
313 |
+
coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
|
314 |
+
|
315 |
+
for term in [X*Y, X, Y]:
|
316 |
+
if term in coeff.keys():
|
317 |
+
return False
|
318 |
+
|
319 |
+
for term in [X**2, Y**2, 1]:
|
320 |
+
if term not in coeff.keys():
|
321 |
+
coeff[term] = 0
|
322 |
+
|
323 |
+
if coeff[X**2] != 0:
|
324 |
+
return divisible(coeff[Y**2], coeff[X**2]) and \
|
325 |
+
divisible(coeff[1], coeff[X**2])
|
326 |
+
|
327 |
+
return True
|
328 |
+
|
329 |
+
|
330 |
+
def test_transformation_to_pell():
|
331 |
+
assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
|
332 |
+
assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
|
333 |
+
assert is_pell_transformation_ok(x**2 - y**2 + 17)
|
334 |
+
assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
|
335 |
+
assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
|
336 |
+
assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
|
337 |
+
assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
|
338 |
+
assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
|
339 |
+
|
340 |
+
|
341 |
+
def test_find_DN():
|
342 |
+
assert find_DN(x**2 - 2*x - y**2) == (1, 1)
|
343 |
+
assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
|
344 |
+
assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
|
345 |
+
assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
|
346 |
+
assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
|
347 |
+
assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
|
348 |
+
assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
|
349 |
+
|
350 |
+
|
351 |
+
def test_ldescent():
|
352 |
+
# Equations which have solutions
|
353 |
+
u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
|
354 |
+
(4, 32), (17, 13), (123689, 1), (19, -570)])
|
355 |
+
for a, b in u:
|
356 |
+
w, x, y = ldescent(a, b)
|
357 |
+
assert a*x**2 + b*y**2 == w**2
|
358 |
+
assert ldescent(-1, -1) is None
|
359 |
+
|
360 |
+
|
361 |
+
def test_diop_ternary_quadratic_normal():
|
362 |
+
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
|
363 |
+
assert check_solutions(23*x**2 + 616*y**2 - z**2)
|
364 |
+
assert check_solutions(5*x**2 + 4*y**2 - z**2)
|
365 |
+
assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
|
366 |
+
assert check_solutions(x**2 + 3*y**2 - z**2)
|
367 |
+
assert check_solutions(4*x**2 + 5*y**2 - z**2)
|
368 |
+
assert check_solutions(x**2 + y**2 - z**2)
|
369 |
+
assert check_solutions(16*x**2 + y**2 - 25*z**2)
|
370 |
+
assert check_solutions(6*x**2 - y**2 + 10*z**2)
|
371 |
+
assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
|
372 |
+
assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
|
373 |
+
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
|
374 |
+
|
375 |
+
|
376 |
+
def is_normal_transformation_ok(eq):
|
377 |
+
A = transformation_to_normal(eq)
|
378 |
+
X, Y, Z = A*Matrix([x, y, z])
|
379 |
+
simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
|
380 |
+
|
381 |
+
coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
|
382 |
+
for term in [X*Y, Y*Z, X*Z]:
|
383 |
+
if term in coeff.keys():
|
384 |
+
return False
|
385 |
+
|
386 |
+
return True
|
387 |
+
|
388 |
+
|
389 |
+
def test_transformation_to_normal():
|
390 |
+
assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
|
391 |
+
assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
|
392 |
+
assert is_normal_transformation_ok(x**2 + 23*y*z)
|
393 |
+
assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
|
394 |
+
assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
|
395 |
+
assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
|
396 |
+
assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
|
397 |
+
assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
|
398 |
+
assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
|
399 |
+
assert is_normal_transformation_ok(2*x*z + 3*y*z)
|
400 |
+
|
401 |
+
|
402 |
+
def test_diop_ternary_quadratic():
|
403 |
+
assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
|
404 |
+
assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
|
405 |
+
assert check_solutions(3*x**2 - x*y - y*z - x*z)
|
406 |
+
assert check_solutions(x**2 - y*z - x*z)
|
407 |
+
assert check_solutions(5*x**2 - 3*x*y - x*z)
|
408 |
+
assert check_solutions(4*x**2 - 5*y**2 - x*z)
|
409 |
+
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
|
410 |
+
assert check_solutions(8*x**2 - 12*y*z)
|
411 |
+
assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
|
412 |
+
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
|
413 |
+
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
|
414 |
+
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
|
415 |
+
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
|
416 |
+
assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
|
417 |
+
assert check_solutions(x*y - 7*y*z + 13*x*z)
|
418 |
+
|
419 |
+
assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
|
420 |
+
assert diop_ternary_quadratic_normal(x**2 + y**2) is None
|
421 |
+
raises(ValueError, lambda:
|
422 |
+
_diop_ternary_quadratic_normal((x, y, z),
|
423 |
+
{x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
|
424 |
+
eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
|
425 |
+
assert diop_ternary_quadratic(eq) == (7, 2, 0)
|
426 |
+
assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
|
427 |
+
(1, 0, 2)
|
428 |
+
assert diop_ternary_quadratic(x*y + 2*y*z) == \
|
429 |
+
(-2, 0, n1)
|
430 |
+
eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
|
431 |
+
assert parametrize_ternary_quadratic(eq) == \
|
432 |
+
(8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q)
|
433 |
+
# this cannot be tested with diophantine because it will
|
434 |
+
# factor into a product
|
435 |
+
assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q)
|
436 |
+
|
437 |
+
|
438 |
+
def test_square_factor():
|
439 |
+
assert square_factor(1) == square_factor(-1) == 1
|
440 |
+
assert square_factor(0) == 1
|
441 |
+
assert square_factor(5) == square_factor(-5) == 1
|
442 |
+
assert square_factor(4) == square_factor(-4) == 2
|
443 |
+
assert square_factor(12) == square_factor(-12) == 2
|
444 |
+
assert square_factor(6) == 1
|
445 |
+
assert square_factor(18) == 3
|
446 |
+
assert square_factor(52) == 2
|
447 |
+
assert square_factor(49) == 7
|
448 |
+
assert square_factor(392) == 14
|
449 |
+
assert square_factor(factorint(-12)) == 2
|
450 |
+
|
451 |
+
|
452 |
+
def test_parametrize_ternary_quadratic():
|
453 |
+
assert check_solutions(x**2 + y**2 - z**2)
|
454 |
+
assert check_solutions(x**2 + 2*x*y + z**2)
|
455 |
+
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
|
456 |
+
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
|
457 |
+
assert check_solutions(x**2 - y**2 - z**2)
|
458 |
+
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
|
459 |
+
assert check_solutions(8*x*y + z**2)
|
460 |
+
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
|
461 |
+
assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
|
462 |
+
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
|
463 |
+
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
|
464 |
+
|
465 |
+
|
466 |
+
def test_no_square_ternary_quadratic():
|
467 |
+
assert check_solutions(2*x*y + y*z - 3*x*z)
|
468 |
+
assert check_solutions(189*x*y - 345*y*z - 12*x*z)
|
469 |
+
assert check_solutions(23*x*y + 34*y*z)
|
470 |
+
assert check_solutions(x*y + y*z + z*x)
|
471 |
+
assert check_solutions(23*x*y + 23*y*z + 23*x*z)
|
472 |
+
|
473 |
+
|
474 |
+
def test_descent():
|
475 |
+
|
476 |
+
u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
|
477 |
+
for a, b in u:
|
478 |
+
w, x, y = descent(a, b)
|
479 |
+
assert a*x**2 + b*y**2 == w**2
|
480 |
+
# the docstring warns against bad input, so these are expected results
|
481 |
+
# - can't both be negative
|
482 |
+
raises(TypeError, lambda: descent(-1, -3))
|
483 |
+
# A can't be zero unless B != 1
|
484 |
+
raises(ZeroDivisionError, lambda: descent(0, 3))
|
485 |
+
# supposed to be square-free
|
486 |
+
raises(TypeError, lambda: descent(4, 3))
|
487 |
+
|
488 |
+
|
489 |
+
def test_diophantine():
|
490 |
+
assert check_solutions((x - y)*(y - z)*(z - x))
|
491 |
+
assert check_solutions((x - y)*(x**2 + y**2 - z**2))
|
492 |
+
assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
|
493 |
+
assert check_solutions(x**2 - 3*y**2 - 1)
|
494 |
+
assert check_solutions(y**2 + 7*x*y)
|
495 |
+
assert check_solutions(x**2 - 3*x*y + y**2)
|
496 |
+
assert check_solutions(z*(x**2 - y**2 - 15))
|
497 |
+
assert check_solutions(x*(2*y - 2*z + 5))
|
498 |
+
assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
|
499 |
+
assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
|
500 |
+
assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
|
501 |
+
# Following test case caused problems in parametric representation
|
502 |
+
# But this can be solved by factoring out y.
|
503 |
+
# No need to use methods for ternary quadratic equations.
|
504 |
+
assert check_solutions(y**2 - 7*x*y + 4*y*z)
|
505 |
+
assert check_solutions(x**2 - 2*x + 1)
|
506 |
+
|
507 |
+
assert diophantine(x - y) == diophantine(Eq(x, y))
|
508 |
+
# 18196
|
509 |
+
eq = x**4 + y**4 - 97
|
510 |
+
assert diophantine(eq, permute=True) == diophantine(-eq, permute=True)
|
511 |
+
assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)}
|
512 |
+
eq = x**2 + y**2 + z**2 - 14
|
513 |
+
base_sol = {(1, 2, 3)}
|
514 |
+
assert diophantine(eq) == base_sol
|
515 |
+
complete_soln = set(signed_permutations(base_sol.pop()))
|
516 |
+
assert diophantine(eq, permute=True) == complete_soln
|
517 |
+
|
518 |
+
assert diophantine(x**2 + x*Rational(15, 14) - 3) == set()
|
519 |
+
# test issue 11049
|
520 |
+
eq = 92*x**2 - 99*y**2 - z**2
|
521 |
+
coeff = eq.as_coefficients_dict()
|
522 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
523 |
+
{(9, 7, 51)}
|
524 |
+
assert diophantine(eq) == {(
|
525 |
+
891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
|
526 |
+
5049*p**2 - 1386*p*q - 51*q**2)}
|
527 |
+
eq = 2*x**2 + 2*y**2 - z**2
|
528 |
+
coeff = eq.as_coefficients_dict()
|
529 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
530 |
+
{(1, 1, 2)}
|
531 |
+
assert diophantine(eq) == {(
|
532 |
+
2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
|
533 |
+
4*p**2 - 4*p*q + 2*q**2)}
|
534 |
+
eq = 411*x**2+57*y**2-221*z**2
|
535 |
+
coeff = eq.as_coefficients_dict()
|
536 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
537 |
+
{(2021, 2645, 3066)}
|
538 |
+
assert diophantine(eq) == \
|
539 |
+
{(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
|
540 |
+
584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)}
|
541 |
+
eq = 573*x**2+267*y**2-984*z**2
|
542 |
+
coeff = eq.as_coefficients_dict()
|
543 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
544 |
+
{(49, 233, 127)}
|
545 |
+
assert diophantine(eq) == \
|
546 |
+
{(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
|
547 |
+
11303*p**2 - 41474*p*q + 41656*q**2)}
|
548 |
+
# this produces factors during reconstruction
|
549 |
+
eq = x**2 + 3*y**2 - 12*z**2
|
550 |
+
coeff = eq.as_coefficients_dict()
|
551 |
+
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
|
552 |
+
{(0, 2, 1)}
|
553 |
+
assert diophantine(eq) == \
|
554 |
+
{(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)}
|
555 |
+
# solvers have not been written for every type
|
556 |
+
raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
|
557 |
+
|
558 |
+
# rational expressions
|
559 |
+
assert diophantine(1/x) == set()
|
560 |
+
assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)}
|
561 |
+
assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
|
562 |
+
{(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)}
|
563 |
+
|
564 |
+
|
565 |
+
#test issue 18186
|
566 |
+
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \
|
567 |
+
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
|
568 |
+
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \
|
569 |
+
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
|
570 |
+
|
571 |
+
# issue 18122
|
572 |
+
assert check_solutions(x**2-y)
|
573 |
+
assert check_solutions(y**2-x)
|
574 |
+
assert diophantine((x**2-y), t) == {(t, t**2)}
|
575 |
+
assert diophantine((y**2-x), t) == {(t**2, -t)}
|
576 |
+
|
577 |
+
|
578 |
+
def test_general_pythagorean():
|
579 |
+
from sympy.abc import a, b, c, d, e
|
580 |
+
|
581 |
+
assert check_solutions(a**2 + b**2 + c**2 - d**2)
|
582 |
+
assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
|
583 |
+
assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
|
584 |
+
assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
|
585 |
+
assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
|
586 |
+
assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
|
587 |
+
assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
|
588 |
+
|
589 |
+
assert GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve(parameters=[x, y, z]) == \
|
590 |
+
{(x**2 + y**2 - z**2, 2*x*z, 2*y*z, x**2 + y**2 + z**2)}
|
591 |
+
|
592 |
+
|
593 |
+
def test_diop_general_sum_of_squares_quick():
|
594 |
+
for i in range(3, 10):
|
595 |
+
assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
|
596 |
+
|
597 |
+
assert diop_general_sum_of_squares(x**2 + y**2 - 2) is None
|
598 |
+
assert diop_general_sum_of_squares(x**2 + y**2 + z**2 + 2) == set()
|
599 |
+
eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
|
600 |
+
assert diop_general_sum_of_squares(eq) == \
|
601 |
+
{(1, 2, 3)}
|
602 |
+
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
|
603 |
+
assert len(diop_general_sum_of_squares(eq, 3)) == 3
|
604 |
+
# issue 11016
|
605 |
+
var = symbols(':5') + (symbols('6', negative=True),)
|
606 |
+
eq = Add(*[i**2 for i in var]) - 112
|
607 |
+
|
608 |
+
base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10),
|
609 |
+
(0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6),
|
610 |
+
(1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
|
611 |
+
(0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8),
|
612 |
+
(0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)}
|
613 |
+
assert diophantine(eq) == base_soln
|
614 |
+
assert len(diophantine(eq, permute=True)) == 196800
|
615 |
+
|
616 |
+
# handle negated squares with signsimp
|
617 |
+
assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)}
|
618 |
+
# diophantine handles simplification, so classify_diop should
|
619 |
+
# not have to look for additional patterns that are removed
|
620 |
+
# by diophantine
|
621 |
+
eq = a**2 + b**2 + c**2 + d**2 - 4
|
622 |
+
raises(NotImplementedError, lambda: classify_diop(-eq))
|
623 |
+
|
624 |
+
|
625 |
+
def test_issue_23807():
|
626 |
+
# fixes recursion error
|
627 |
+
eq = x**2 + y**2 + z**2 - 1000000
|
628 |
+
base_soln = {(0, 0, 1000), (0, 352, 936), (480, 600, 640), (24, 640, 768), (192, 640, 744),
|
629 |
+
(192, 480, 856), (168, 224, 960), (0, 600, 800), (280, 576, 768), (152, 480, 864),
|
630 |
+
(0, 280, 960), (352, 360, 864), (424, 480, 768), (360, 480, 800), (224, 600, 768),
|
631 |
+
(96, 360, 928), (168, 576, 800), (96, 480, 872)}
|
632 |
+
|
633 |
+
assert diophantine(eq) == base_soln
|
634 |
+
|
635 |
+
|
636 |
+
def test_diop_partition():
|
637 |
+
for n in [8, 10]:
|
638 |
+
for k in range(1, 8):
|
639 |
+
for p in partition(n, k):
|
640 |
+
assert len(p) == k
|
641 |
+
assert list(partition(3, 5)) == []
|
642 |
+
assert [list(p) for p in partition(3, 5, 1)] == [
|
643 |
+
[0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
|
644 |
+
assert list(partition(0)) == [()]
|
645 |
+
assert list(partition(1, 0)) == [()]
|
646 |
+
assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
|
647 |
+
|
648 |
+
|
649 |
+
def test_prime_as_sum_of_two_squares():
|
650 |
+
for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
|
651 |
+
a, b = prime_as_sum_of_two_squares(i)
|
652 |
+
assert a**2 + b**2 == i
|
653 |
+
assert prime_as_sum_of_two_squares(7) is None
|
654 |
+
ans = prime_as_sum_of_two_squares(800029)
|
655 |
+
assert ans == (450, 773) and type(ans[0]) is int
|
656 |
+
|
657 |
+
|
658 |
+
def test_sum_of_three_squares():
|
659 |
+
for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
|
660 |
+
800, 801, 802, 803, 804, 805, 806]:
|
661 |
+
a, b, c = sum_of_three_squares(i)
|
662 |
+
assert a**2 + b**2 + c**2 == i
|
663 |
+
|
664 |
+
assert sum_of_three_squares(7) is None
|
665 |
+
assert sum_of_three_squares((4**5)*15) is None
|
666 |
+
assert sum_of_three_squares(25) == (5, 0, 0)
|
667 |
+
assert sum_of_three_squares(4) == (0, 0, 2)
|
668 |
+
|
669 |
+
|
670 |
+
def test_sum_of_four_squares():
|
671 |
+
from sympy.core.random import randint
|
672 |
+
|
673 |
+
# this should never fail
|
674 |
+
n = randint(1, 100000000000000)
|
675 |
+
assert sum(i**2 for i in sum_of_four_squares(n)) == n
|
676 |
+
|
677 |
+
assert sum_of_four_squares(0) == (0, 0, 0, 0)
|
678 |
+
assert sum_of_four_squares(14) == (0, 1, 2, 3)
|
679 |
+
assert sum_of_four_squares(15) == (1, 1, 2, 3)
|
680 |
+
assert sum_of_four_squares(18) == (1, 2, 2, 3)
|
681 |
+
assert sum_of_four_squares(19) == (0, 1, 3, 3)
|
682 |
+
assert sum_of_four_squares(48) == (0, 4, 4, 4)
|
683 |
+
|
684 |
+
|
685 |
+
def test_power_representation():
|
686 |
+
tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
|
687 |
+
(32760, 2, 3)]
|
688 |
+
|
689 |
+
for test in tests:
|
690 |
+
n, p, k = test
|
691 |
+
f = power_representation(n, p, k)
|
692 |
+
|
693 |
+
while True:
|
694 |
+
try:
|
695 |
+
l = next(f)
|
696 |
+
assert len(l) == k
|
697 |
+
|
698 |
+
chk_sum = 0
|
699 |
+
for l_i in l:
|
700 |
+
chk_sum = chk_sum + l_i**p
|
701 |
+
assert chk_sum == n
|
702 |
+
|
703 |
+
except StopIteration:
|
704 |
+
break
|
705 |
+
|
706 |
+
assert list(power_representation(20, 2, 4, True)) == \
|
707 |
+
[(1, 1, 3, 3), (0, 0, 2, 4)]
|
708 |
+
raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
|
709 |
+
raises(ValueError, lambda: list(power_representation(2, 0, 2)))
|
710 |
+
raises(ValueError, lambda: list(power_representation(2, 2, 0)))
|
711 |
+
assert list(power_representation(-1, 2, 2)) == []
|
712 |
+
assert list(power_representation(1, 1, 1)) == [(1,)]
|
713 |
+
assert list(power_representation(3, 2, 1)) == []
|
714 |
+
assert list(power_representation(4, 2, 1)) == [(2,)]
|
715 |
+
assert list(power_representation(3**4, 4, 6, zeros=True)) == \
|
716 |
+
[(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
|
717 |
+
assert list(power_representation(3**4, 4, 5, zeros=False)) == []
|
718 |
+
assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
|
719 |
+
assert list(power_representation(-2, 4, 2)) == []
|
720 |
+
assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
|
721 |
+
assert list(power_representation(0, 3, 2, False)) == []
|
722 |
+
# when we are dealing with squares, do feasibility checks
|
723 |
+
assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
|
724 |
+
# there will be a recursion error if these aren't recognized
|
725 |
+
big = 2**30
|
726 |
+
for i in [13, 10, 7, 5, 4, 2, 1]:
|
727 |
+
assert list(sum_of_powers(big, 2, big - i)) == []
|
728 |
+
|
729 |
+
|
730 |
+
def test_assumptions():
|
731 |
+
"""
|
732 |
+
Test whether diophantine respects the assumptions.
|
733 |
+
"""
|
734 |
+
#Test case taken from the below so question regarding assumptions in diophantine module
|
735 |
+
#https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
|
736 |
+
m, n = symbols('m n', integer=True, positive=True)
|
737 |
+
diof = diophantine(n**2 + m*n - 500)
|
738 |
+
assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)}
|
739 |
+
|
740 |
+
a, b = symbols('a b', integer=True, positive=False)
|
741 |
+
diof = diophantine(a*b + 2*a + 3*b - 6)
|
742 |
+
assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)}
|
743 |
+
|
744 |
+
|
745 |
+
def check_solutions(eq):
|
746 |
+
"""
|
747 |
+
Determines whether solutions returned by diophantine() satisfy the original
|
748 |
+
equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
|
749 |
+
check_solutions_normal, check_solutions()
|
750 |
+
"""
|
751 |
+
s = diophantine(eq)
|
752 |
+
|
753 |
+
factors = Mul.make_args(eq)
|
754 |
+
|
755 |
+
var = list(eq.free_symbols)
|
756 |
+
var.sort(key=default_sort_key)
|
757 |
+
|
758 |
+
while s:
|
759 |
+
solution = s.pop()
|
760 |
+
for f in factors:
|
761 |
+
if diop_simplify(f.subs(zip(var, solution))) == 0:
|
762 |
+
break
|
763 |
+
else:
|
764 |
+
return False
|
765 |
+
return True
|
766 |
+
|
767 |
+
|
768 |
+
def test_diopcoverage():
|
769 |
+
eq = (2*x + y + 1)**2
|
770 |
+
assert diop_solve(eq) == {(t_0, -2*t_0 - 1)}
|
771 |
+
eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
|
772 |
+
assert diop_solve(eq) == {(t, -t - 3), (2*t - 3, -t)}
|
773 |
+
assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, -t)}
|
774 |
+
|
775 |
+
assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
|
776 |
+
|
777 |
+
assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
|
778 |
+
ans = (3*t - 1, -2*t + 1)
|
779 |
+
assert base_solution_linear(4, 8, 12, t) == ans
|
780 |
+
assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
|
781 |
+
|
782 |
+
assert cornacchia(1, 1, 20) is None
|
783 |
+
assert cornacchia(1, 1, 5) == {(2, 1)}
|
784 |
+
assert cornacchia(1, 2, 17) == {(3, 2)}
|
785 |
+
|
786 |
+
raises(ValueError, lambda: reconstruct(4, 20, 1))
|
787 |
+
|
788 |
+
assert gaussian_reduce(4, 1, 3) == (1, 1)
|
789 |
+
eq = -w**2 - x**2 - y**2 + z**2
|
790 |
+
|
791 |
+
assert diop_general_pythagorean(eq) == \
|
792 |
+
diop_general_pythagorean(-eq) == \
|
793 |
+
(m1**2 + m2**2 - m3**2, 2*m1*m3,
|
794 |
+
2*m2*m3, m1**2 + m2**2 + m3**2)
|
795 |
+
|
796 |
+
assert len(check_param(S(3) + x/3, S(4) + x/2, S(2), [x])) == 0
|
797 |
+
assert len(check_param(Rational(3, 2), S(4) + x, S(2), [x])) == 0
|
798 |
+
assert len(check_param(S(4) + x, Rational(3, 2), S(2), [x])) == 0
|
799 |
+
|
800 |
+
assert _nint_or_floor(16, 10) == 2
|
801 |
+
assert _odd(1) == (not _even(1)) == True
|
802 |
+
assert _odd(0) == (not _even(0)) == False
|
803 |
+
assert _remove_gcd(2, 4, 6) == (1, 2, 3)
|
804 |
+
raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
|
805 |
+
assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \
|
806 |
+
(11, 1, 5)
|
807 |
+
|
808 |
+
# it's ok if these pass some day when the solvers are implemented
|
809 |
+
raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
|
810 |
+
raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
|
811 |
+
assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
|
812 |
+
{(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)}
|
813 |
+
|
814 |
+
|
815 |
+
def test_holzer():
|
816 |
+
# if the input is good, don't let it diverge in holzer()
|
817 |
+
# (but see test_fail_holzer below)
|
818 |
+
assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
|
819 |
+
|
820 |
+
# None in uv condition met; solution is not Holzer reduced
|
821 |
+
# so this will hopefully change but is here for coverage
|
822 |
+
assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
|
823 |
+
|
824 |
+
raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
|
825 |
+
|
826 |
+
|
827 |
+
@XFAIL
|
828 |
+
def test_fail_holzer():
|
829 |
+
eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
|
830 |
+
a, b, c = 4, 79, 23
|
831 |
+
x, y, z = xyz = 26, 1, 11
|
832 |
+
X, Y, Z = ans = 2, 7, 13
|
833 |
+
assert eq(*xyz) == 0
|
834 |
+
assert eq(*ans) == 0
|
835 |
+
assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
|
836 |
+
assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
|
837 |
+
h = holzer(x, y, z, a, b, c)
|
838 |
+
assert h == ans # it would be nice to get the smaller soln
|
839 |
+
|
840 |
+
|
841 |
+
def test_issue_9539():
|
842 |
+
assert diophantine(6*w + 9*y + 20*x - z) == \
|
843 |
+
{(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)}
|
844 |
+
|
845 |
+
|
846 |
+
def test_issue_8943():
|
847 |
+
assert diophantine(
|
848 |
+
3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \
|
849 |
+
{(0, 0, 0)}
|
850 |
+
|
851 |
+
|
852 |
+
def test_diop_sum_of_even_powers():
|
853 |
+
eq = x**4 + y**4 + z**4 - 2673
|
854 |
+
assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)}
|
855 |
+
assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)}
|
856 |
+
raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
|
857 |
+
neg = symbols('neg', negative=True)
|
858 |
+
eq = x**4 + y**4 + neg**4 - 2673
|
859 |
+
assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)}
|
860 |
+
assert diophantine(x**4 + y**4 + 2) == set()
|
861 |
+
assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
|
862 |
+
|
863 |
+
|
864 |
+
def test_sum_of_squares_powers():
|
865 |
+
tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8),
|
866 |
+
(1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
|
867 |
+
(2, 3, 5, 6, 7), (3, 3, 4, 5, 8)}
|
868 |
+
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
|
869 |
+
ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
|
870 |
+
assert len(ans) == 14
|
871 |
+
assert ans == tru
|
872 |
+
|
873 |
+
raises(ValueError, lambda: list(sum_of_squares(10, -1)))
|
874 |
+
assert list(sum_of_squares(-10, 2)) == []
|
875 |
+
assert list(sum_of_squares(2, 3)) == []
|
876 |
+
assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
|
877 |
+
assert list(sum_of_squares(0, 3)) == []
|
878 |
+
assert list(sum_of_squares(4, 1)) == [(2,)]
|
879 |
+
assert list(sum_of_squares(5, 1)) == []
|
880 |
+
assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
|
881 |
+
assert list(sum_of_squares(11, 5, True)) == [
|
882 |
+
(1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
|
883 |
+
assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
|
884 |
+
|
885 |
+
assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
|
886 |
+
1, 1, 1, 1, 2,
|
887 |
+
2, 1, 1, 2, 2,
|
888 |
+
2, 2, 2, 3, 2,
|
889 |
+
1, 3, 3, 3, 3,
|
890 |
+
4, 3, 3, 2, 2,
|
891 |
+
4, 4, 4, 4, 5]
|
892 |
+
assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
|
893 |
+
0, 0, 0, 0, 0,
|
894 |
+
1, 0, 0, 1, 0,
|
895 |
+
0, 1, 0, 1, 1,
|
896 |
+
0, 1, 1, 0, 1,
|
897 |
+
2, 1, 1, 1, 1,
|
898 |
+
1, 1, 1, 1, 3]
|
899 |
+
for i in range(30):
|
900 |
+
s1 = set(sum_of_squares(i, 5, True))
|
901 |
+
assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
|
902 |
+
s2 = set(sum_of_squares(i, 5))
|
903 |
+
assert all(sum(j**2 for j in t) == i for t in s2)
|
904 |
+
|
905 |
+
raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
|
906 |
+
raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
|
907 |
+
assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
|
908 |
+
assert list(sum_of_powers(-2, 4, 2)) == []
|
909 |
+
assert list(sum_of_powers(2, 1, 1)) == [(2,)]
|
910 |
+
assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
|
911 |
+
assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
|
912 |
+
assert list(sum_of_powers(6, 2, 2)) == []
|
913 |
+
assert list(sum_of_powers(3**5, 3, 1)) == []
|
914 |
+
assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
|
915 |
+
assert list(sum_of_powers(2**1000, 5, 2)) == []
|
916 |
+
|
917 |
+
|
918 |
+
def test__can_do_sum_of_squares():
|
919 |
+
assert _can_do_sum_of_squares(3, -1) is False
|
920 |
+
assert _can_do_sum_of_squares(-3, 1) is False
|
921 |
+
assert _can_do_sum_of_squares(0, 1)
|
922 |
+
assert _can_do_sum_of_squares(4, 1)
|
923 |
+
assert _can_do_sum_of_squares(1, 2)
|
924 |
+
assert _can_do_sum_of_squares(2, 2)
|
925 |
+
assert _can_do_sum_of_squares(3, 2) is False
|
926 |
+
|
927 |
+
|
928 |
+
def test_diophantine_permute_sign():
|
929 |
+
from sympy.abc import a, b, c, d, e
|
930 |
+
eq = a**4 + b**4 - (2**4 + 3**4)
|
931 |
+
base_sol = {(2, 3)}
|
932 |
+
assert diophantine(eq) == base_sol
|
933 |
+
complete_soln = set(signed_permutations(base_sol.pop()))
|
934 |
+
assert diophantine(eq, permute=True) == complete_soln
|
935 |
+
|
936 |
+
eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
|
937 |
+
assert len(diophantine(eq)) == 35
|
938 |
+
assert len(diophantine(eq, permute=True)) == 62000
|
939 |
+
soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)}
|
940 |
+
assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
|
941 |
+
|
942 |
+
|
943 |
+
@XFAIL
|
944 |
+
def test_not_implemented():
|
945 |
+
eq = x**2 + y**4 - 1**2 - 3**4
|
946 |
+
assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)}
|
947 |
+
|
948 |
+
|
949 |
+
def test_issue_9538():
|
950 |
+
eq = x - 3*y + 2
|
951 |
+
assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)}
|
952 |
+
raises(TypeError, lambda: diophantine(eq, syms={y, x}))
|
953 |
+
|
954 |
+
|
955 |
+
def test_ternary_quadratic():
|
956 |
+
# solution with 3 parameters
|
957 |
+
s = diophantine(2*x**2 + y**2 - 2*z**2)
|
958 |
+
p, q, r = ordered(S(s).free_symbols)
|
959 |
+
assert s == {(
|
960 |
+
p**2 - 2*q**2,
|
961 |
+
-2*p**2 + 4*p*q - 4*p*r - 4*q**2,
|
962 |
+
p**2 - 4*p*q + 2*q**2 - 4*q*r)}
|
963 |
+
# solution with Mul in solution
|
964 |
+
s = diophantine(x**2 + 2*y**2 - 2*z**2)
|
965 |
+
assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)}
|
966 |
+
# solution with no Mul in solution
|
967 |
+
s = diophantine(2*x**2 + 2*y**2 - z**2)
|
968 |
+
assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
|
969 |
+
4*p**2 - 4*p*q + 2*q**2)}
|
970 |
+
# reduced form when parametrized
|
971 |
+
s = diophantine(3*x**2 + 72*y**2 - 27*z**2)
|
972 |
+
assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)}
|
973 |
+
assert parametrize_ternary_quadratic(
|
974 |
+
3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == (
|
975 |
+
2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 -
|
976 |
+
2*p*q + 3*q**2)
|
977 |
+
assert parametrize_ternary_quadratic(
|
978 |
+
124*x**2 - 30*y**2 - 7729*z**2) == (
|
979 |
+
-1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q -
|
980 |
+
695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
|
981 |
+
|
982 |
+
|
983 |
+
def test_diophantine_solution_set():
|
984 |
+
s1 = DiophantineSolutionSet([], [])
|
985 |
+
assert set(s1) == set()
|
986 |
+
assert s1.symbols == ()
|
987 |
+
assert s1.parameters == ()
|
988 |
+
raises(ValueError, lambda: s1.add((x,)))
|
989 |
+
assert list(s1.dict_iterator()) == []
|
990 |
+
|
991 |
+
s2 = DiophantineSolutionSet([x, y], [t, u])
|
992 |
+
assert s2.symbols == (x, y)
|
993 |
+
assert s2.parameters == (t, u)
|
994 |
+
raises(ValueError, lambda: s2.add((1,)))
|
995 |
+
s2.add((3, 4))
|
996 |
+
assert set(s2) == {(3, 4)}
|
997 |
+
s2.update((3, 4), (-1, u))
|
998 |
+
assert set(s2) == {(3, 4), (-1, u)}
|
999 |
+
raises(ValueError, lambda: s1.update(s2))
|
1000 |
+
assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}]
|
1001 |
+
|
1002 |
+
s3 = DiophantineSolutionSet([x, y, z], [t, u])
|
1003 |
+
assert len(s3.parameters) == 2
|
1004 |
+
s3.add((t**2 + u, t - u, 1))
|
1005 |
+
assert set(s3) == {(t**2 + u, t - u, 1)}
|
1006 |
+
assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)}
|
1007 |
+
assert s3(2) == {(u + 4, 2 - u, 1)}
|
1008 |
+
assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)}
|
1009 |
+
assert s3(7, 8) == {(57, -1, 1)}
|
1010 |
+
assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)}
|
1011 |
+
assert s3(5) == {(u + 25, 5 - u, 1)}
|
1012 |
+
assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)}
|
1013 |
+
assert s3(None, -3) == {(t**2 - 3, t + 3, 1)}
|
1014 |
+
assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)}
|
1015 |
+
assert s3(2, 8) == {(12, -6, 1)}
|
1016 |
+
assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)}
|
1017 |
+
assert s3(5, -3) == {(22, 8, 1)}
|
1018 |
+
raises(ValueError, lambda: s3.subs(x=1))
|
1019 |
+
raises(ValueError, lambda: s3.subs(1, 2, 3))
|
1020 |
+
raises(ValueError, lambda: s3.add(()))
|
1021 |
+
raises(ValueError, lambda: s3.add((1, 2, 3, 4)))
|
1022 |
+
raises(ValueError, lambda: s3.add((1, 2)))
|
1023 |
+
raises(ValueError, lambda: s3(1, 2, 3))
|
1024 |
+
raises(TypeError, lambda: s3(t=1))
|
1025 |
+
|
1026 |
+
s4 = DiophantineSolutionSet([x, y], [t, u])
|
1027 |
+
s4.add((t, 11*t))
|
1028 |
+
s4.add((-t, 22*t))
|
1029 |
+
assert s4(0, 0) == {(0, 0)}
|
1030 |
+
|
1031 |
+
|
1032 |
+
def test_quadratic_parameter_passing():
|
1033 |
+
eq = -33*x*y + 3*y**2
|
1034 |
+
solution = BinaryQuadratic(eq).solve(parameters=[t, u])
|
1035 |
+
# test that parameters are passed all the way to the final solution
|
1036 |
+
assert solution == {(t, 11*t), (-t, 22*t)}
|
1037 |
+
assert solution(0, 0) == {(0, 0)}
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ode import (allhints, checkinfsol, classify_ode,
|
2 |
+
constantsimp, dsolve, homogeneous_order)
|
3 |
+
|
4 |
+
from .lie_group import infinitesimals
|
5 |
+
|
6 |
+
from .subscheck import checkodesol
|
7 |
+
|
8 |
+
from .systems import (canonical_odes, linear_ode_to_matrix,
|
9 |
+
linodesolve)
|
10 |
+
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'allhints', 'checkinfsol', 'checkodesol', 'classify_ode', 'constantsimp',
|
14 |
+
'dsolve', 'homogeneous_order', 'infinitesimals', 'canonical_odes', 'linear_ode_to_matrix',
|
15 |
+
'linodesolve'
|
16 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (599 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/hypergeometric.cpython-310.pyc
ADDED
Binary file (7.07 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/lie_group.cpython-310.pyc
ADDED
Binary file (30.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/nonhomogeneous.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/ode.cpython-310.pyc
ADDED
Binary file (121 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/riccati.cpython-310.pyc
ADDED
Binary file (24.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/single.cpython-310.pyc
ADDED
Binary file (105 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/subscheck.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/__pycache__/systems.cpython-310.pyc
ADDED
Binary file (66.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/hypergeometric.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r'''
|
2 |
+
This module contains the implementation of the 2nd_hypergeometric hint for
|
3 |
+
dsolve. This is an incomplete implementation of the algorithm described in [1].
|
4 |
+
The algorithm solves 2nd order linear ODEs of the form
|
5 |
+
|
6 |
+
.. math:: y'' + A(x) y' + B(x) y = 0\text{,}
|
7 |
+
|
8 |
+
where `A` and `B` are rational functions. The algorithm should find any
|
9 |
+
solution of the form
|
10 |
+
|
11 |
+
.. math:: y = P(x) _pF_q(..; ..;\frac{\alpha x^k + \beta}{\gamma x^k + \delta})\text{,}
|
12 |
+
|
13 |
+
where pFq is any of 2F1, 1F1 or 0F1 and `P` is an "arbitrary function".
|
14 |
+
Currently only the 2F1 case is implemented in SymPy but the other cases are
|
15 |
+
described in the paper and could be implemented in future (contributions
|
16 |
+
welcome!).
|
17 |
+
|
18 |
+
References
|
19 |
+
==========
|
20 |
+
|
21 |
+
.. [1] L. Chan, E.S. Cheb-Terrab, Non-Liouvillian solutions for second order
|
22 |
+
linear ODEs, (2004).
|
23 |
+
https://arxiv.org/abs/math-ph/0402063
|
24 |
+
'''
|
25 |
+
|
26 |
+
from sympy.core import S, Pow
|
27 |
+
from sympy.core.function import expand
|
28 |
+
from sympy.core.relational import Eq
|
29 |
+
from sympy.core.symbol import Symbol, Wild
|
30 |
+
from sympy.functions import exp, sqrt, hyper
|
31 |
+
from sympy.integrals import Integral
|
32 |
+
from sympy.polys import roots, gcd
|
33 |
+
from sympy.polys.polytools import cancel, factor
|
34 |
+
from sympy.simplify import collect, simplify, logcombine # type: ignore
|
35 |
+
from sympy.simplify.powsimp import powdenest
|
36 |
+
from sympy.solvers.ode.ode import get_numbered_constants
|
37 |
+
|
38 |
+
|
39 |
+
def match_2nd_hypergeometric(eq, func):
|
40 |
+
x = func.args[0]
|
41 |
+
df = func.diff(x)
|
42 |
+
a3 = Wild('a3', exclude=[func, func.diff(x), func.diff(x, 2)])
|
43 |
+
b3 = Wild('b3', exclude=[func, func.diff(x), func.diff(x, 2)])
|
44 |
+
c3 = Wild('c3', exclude=[func, func.diff(x), func.diff(x, 2)])
|
45 |
+
deq = a3*(func.diff(x, 2)) + b3*df + c3*func
|
46 |
+
r = collect(eq,
|
47 |
+
[func.diff(x, 2), func.diff(x), func]).match(deq)
|
48 |
+
if r:
|
49 |
+
if not all(val.is_polynomial() for val in r.values()):
|
50 |
+
n, d = eq.as_numer_denom()
|
51 |
+
eq = expand(n)
|
52 |
+
r = collect(eq, [func.diff(x, 2), func.diff(x), func]).match(deq)
|
53 |
+
|
54 |
+
if r and r[a3]!=0:
|
55 |
+
A = cancel(r[b3]/r[a3])
|
56 |
+
B = cancel(r[c3]/r[a3])
|
57 |
+
return [A, B]
|
58 |
+
else:
|
59 |
+
return []
|
60 |
+
|
61 |
+
|
62 |
+
def equivalence_hypergeometric(A, B, func):
|
63 |
+
# This method for finding the equivalence is only for 2F1 type.
|
64 |
+
# We can extend it for 1F1 and 0F1 type also.
|
65 |
+
x = func.args[0]
|
66 |
+
|
67 |
+
# making given equation in normal form
|
68 |
+
I1 = factor(cancel(A.diff(x)/2 + A**2/4 - B))
|
69 |
+
|
70 |
+
# computing shifted invariant(J1) of the equation
|
71 |
+
J1 = factor(cancel(x**2*I1 + S(1)/4))
|
72 |
+
num, dem = J1.as_numer_denom()
|
73 |
+
num = powdenest(expand(num))
|
74 |
+
dem = powdenest(expand(dem))
|
75 |
+
# this function will compute the different powers of variable(x) in J1.
|
76 |
+
# then it will help in finding value of k. k is power of x such that we can express
|
77 |
+
# J1 = x**k * J0(x**k) then all the powers in J0 become integers.
|
78 |
+
def _power_counting(num):
|
79 |
+
_pow = {0}
|
80 |
+
for val in num:
|
81 |
+
if val.has(x):
|
82 |
+
if isinstance(val, Pow) and val.as_base_exp()[0] == x:
|
83 |
+
_pow.add(val.as_base_exp()[1])
|
84 |
+
elif val == x:
|
85 |
+
_pow.add(val.as_base_exp()[1])
|
86 |
+
else:
|
87 |
+
_pow.update(_power_counting(val.args))
|
88 |
+
return _pow
|
89 |
+
|
90 |
+
pow_num = _power_counting((num, ))
|
91 |
+
pow_dem = _power_counting((dem, ))
|
92 |
+
pow_dem.update(pow_num)
|
93 |
+
|
94 |
+
_pow = pow_dem
|
95 |
+
k = gcd(_pow)
|
96 |
+
|
97 |
+
# computing I0 of the given equation
|
98 |
+
I0 = powdenest(simplify(factor(((J1/k**2) - S(1)/4)/((x**k)**2))), force=True)
|
99 |
+
I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1)/k)), force=True)))
|
100 |
+
|
101 |
+
# Before this point I0, J1 might be functions of e.g. sqrt(x) but replacing
|
102 |
+
# x with x**(1/k) should result in I0 being a rational function of x or
|
103 |
+
# otherwise the hypergeometric solver cannot be used. Note that k can be a
|
104 |
+
# non-integer rational such as 2/7.
|
105 |
+
if not I0.is_rational_function(x):
|
106 |
+
return None
|
107 |
+
|
108 |
+
num, dem = I0.as_numer_denom()
|
109 |
+
|
110 |
+
max_num_pow = max(_power_counting((num, )))
|
111 |
+
dem_args = dem.args
|
112 |
+
sing_point = []
|
113 |
+
dem_pow = []
|
114 |
+
# calculating singular point of I0.
|
115 |
+
for arg in dem_args:
|
116 |
+
if arg.has(x):
|
117 |
+
if isinstance(arg, Pow):
|
118 |
+
# (x-a)**n
|
119 |
+
dem_pow.append(arg.as_base_exp()[1])
|
120 |
+
sing_point.append(list(roots(arg.as_base_exp()[0], x).keys())[0])
|
121 |
+
else:
|
122 |
+
# (x-a) type
|
123 |
+
dem_pow.append(arg.as_base_exp()[1])
|
124 |
+
sing_point.append(list(roots(arg, x).keys())[0])
|
125 |
+
|
126 |
+
dem_pow.sort()
|
127 |
+
# checking if equivalence is exists or not.
|
128 |
+
|
129 |
+
if equivalence(max_num_pow, dem_pow) == "2F1":
|
130 |
+
return {'I0':I0, 'k':k, 'sing_point':sing_point, 'type':"2F1"}
|
131 |
+
else:
|
132 |
+
return None
|
133 |
+
|
134 |
+
|
135 |
+
def match_2nd_2F1_hypergeometric(I, k, sing_point, func):
|
136 |
+
x = func.args[0]
|
137 |
+
a = Wild("a")
|
138 |
+
b = Wild("b")
|
139 |
+
c = Wild("c")
|
140 |
+
t = Wild("t")
|
141 |
+
s = Wild("s")
|
142 |
+
r = Wild("r")
|
143 |
+
alpha = Wild("alpha")
|
144 |
+
beta = Wild("beta")
|
145 |
+
gamma = Wild("gamma")
|
146 |
+
delta = Wild("delta")
|
147 |
+
# I0 of the standerd 2F1 equation.
|
148 |
+
I0 = ((a-b+1)*(a-b-1)*x**2 + 2*((1-a-b)*c + 2*a*b)*x + c*(c-2))/(4*x**2*(x-1)**2)
|
149 |
+
if sing_point != [0, 1]:
|
150 |
+
# If singular point is [0, 1] then we have standerd equation.
|
151 |
+
eqs = []
|
152 |
+
sing_eqs = [-beta/alpha, -delta/gamma, (delta-beta)/(alpha-gamma)]
|
153 |
+
# making equations for the finding the mobius transformation
|
154 |
+
for i in range(3):
|
155 |
+
if i<len(sing_point):
|
156 |
+
eqs.append(Eq(sing_eqs[i], sing_point[i]))
|
157 |
+
else:
|
158 |
+
eqs.append(Eq(1/sing_eqs[i], 0))
|
159 |
+
# solving above equations for the mobius transformation
|
160 |
+
_beta = -alpha*sing_point[0]
|
161 |
+
_delta = -gamma*sing_point[1]
|
162 |
+
_gamma = alpha
|
163 |
+
if len(sing_point) == 3:
|
164 |
+
_gamma = (_beta + sing_point[2]*alpha)/(sing_point[2] - sing_point[1])
|
165 |
+
mob = (alpha*x + beta)/(gamma*x + delta)
|
166 |
+
mob = mob.subs(beta, _beta)
|
167 |
+
mob = mob.subs(delta, _delta)
|
168 |
+
mob = mob.subs(gamma, _gamma)
|
169 |
+
mob = cancel(mob)
|
170 |
+
t = (beta - delta*x)/(gamma*x - alpha)
|
171 |
+
t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma))
|
172 |
+
else:
|
173 |
+
mob = x
|
174 |
+
t = x
|
175 |
+
|
176 |
+
# applying mobius transformation in I to make it into I0.
|
177 |
+
I = I.subs(x, t)
|
178 |
+
I = I*(t.diff(x))**2
|
179 |
+
I = factor(I)
|
180 |
+
dict_I = {x**2:0, x:0, 1:0}
|
181 |
+
I0_num, I0_dem = I0.as_numer_denom()
|
182 |
+
# collecting coeff of (x**2, x), of the standerd equation.
|
183 |
+
# substituting (a-b) = s, (a+b) = r
|
184 |
+
dict_I0 = {x**2:s**2 - 1, x:(2*(1-r)*c + (r+s)*(r-s)), 1:c*(c-2)}
|
185 |
+
# collecting coeff of (x**2, x) from I0 of the given equation.
|
186 |
+
dict_I.update(collect(expand(cancel(I*I0_dem)), [x**2, x], evaluate=False))
|
187 |
+
eqs = []
|
188 |
+
# We are comparing the coeff of powers of different x, for finding the values of
|
189 |
+
# parameters of standerd equation.
|
190 |
+
for key in [x**2, x, 1]:
|
191 |
+
eqs.append(Eq(dict_I[key], dict_I0[key]))
|
192 |
+
|
193 |
+
# We can have many possible roots for the equation.
|
194 |
+
# I am selecting the root on the basis that when we have
|
195 |
+
# standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x)
|
196 |
+
# then root should be a, b, c.
|
197 |
+
|
198 |
+
_c = 1 - factor(sqrt(1+eqs[2].lhs))
|
199 |
+
if not _c.has(Symbol):
|
200 |
+
_c = min(list(roots(eqs[2], c)))
|
201 |
+
_s = factor(sqrt(eqs[0].lhs + 1))
|
202 |
+
_r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2*_c))
|
203 |
+
_a = (_r + _s)/2
|
204 |
+
_b = (_r - _s)/2
|
205 |
+
|
206 |
+
rn = {'a':simplify(_a), 'b':simplify(_b), 'c':simplify(_c), 'k':k, 'mobius':mob, 'type':"2F1"}
|
207 |
+
return rn
|
208 |
+
|
209 |
+
|
210 |
+
def equivalence(max_num_pow, dem_pow):
|
211 |
+
# this function is made for checking the equivalence with 2F1 type of equation.
|
212 |
+
# max_num_pow is the value of maximum power of x in numerator
|
213 |
+
# and dem_pow is list of powers of different factor of form (a*x b).
|
214 |
+
# reference from table 1 in paper - "Non-Liouvillian solutions for second order
|
215 |
+
# linear ODEs" by L. Chan, E.S. Cheb-Terrab.
|
216 |
+
# We can extend it for 1F1 and 0F1 type also.
|
217 |
+
|
218 |
+
if max_num_pow == 2:
|
219 |
+
if dem_pow in [[2, 2], [2, 2, 2]]:
|
220 |
+
return "2F1"
|
221 |
+
elif max_num_pow == 1:
|
222 |
+
if dem_pow in [[1, 2, 2], [2, 2, 2], [1, 2], [2, 2]]:
|
223 |
+
return "2F1"
|
224 |
+
elif max_num_pow == 0:
|
225 |
+
if dem_pow in [[1, 1, 2], [2, 2], [1, 2, 2], [1, 1], [2], [1, 2], [2, 2]]:
|
226 |
+
return "2F1"
|
227 |
+
|
228 |
+
return None
|
229 |
+
|
230 |
+
|
231 |
+
def get_sol_2F1_hypergeometric(eq, func, match_object):
|
232 |
+
x = func.args[0]
|
233 |
+
from sympy.simplify.hyperexpand import hyperexpand
|
234 |
+
from sympy.polys.polytools import factor
|
235 |
+
C0, C1 = get_numbered_constants(eq, num=2)
|
236 |
+
a = match_object['a']
|
237 |
+
b = match_object['b']
|
238 |
+
c = match_object['c']
|
239 |
+
A = match_object['A']
|
240 |
+
|
241 |
+
sol = None
|
242 |
+
|
243 |
+
if c.is_integer == False:
|
244 |
+
sol = C0*hyper([a, b], [c], x) + C1*hyper([a-c+1, b-c+1], [2-c], x)*x**(1-c)
|
245 |
+
elif c == 1:
|
246 |
+
y2 = Integral(exp(Integral((-(a+b+1)*x + c)/(x**2-x), x))/(hyperexpand(hyper([a, b], [c], x))**2), x)*hyper([a, b], [c], x)
|
247 |
+
sol = C0*hyper([a, b], [c], x) + C1*y2
|
248 |
+
elif (c-a-b).is_integer == False:
|
249 |
+
sol = C0*hyper([a, b], [1+a+b-c], 1-x) + C1*hyper([c-a, c-b], [1+c-a-b], 1-x)*(1-x)**(c-a-b)
|
250 |
+
|
251 |
+
if sol:
|
252 |
+
# applying transformation in the solution
|
253 |
+
subs = match_object['mobius']
|
254 |
+
dtdx = simplify(1/(subs.diff(x)))
|
255 |
+
_B = ((a + b + 1)*x - c).subs(x, subs)*dtdx
|
256 |
+
_B = factor(_B + ((x**2 -x).subs(x, subs))*(dtdx.diff(x)*dtdx))
|
257 |
+
_A = factor((x**2 - x).subs(x, subs)*(dtdx**2))
|
258 |
+
e = exp(logcombine(Integral(cancel(_B/(2*_A)), x), force=True))
|
259 |
+
sol = sol.subs(x, match_object['mobius'])
|
260 |
+
sol = sol.subs(x, x**match_object['k'])
|
261 |
+
e = e.subs(x, x**match_object['k'])
|
262 |
+
|
263 |
+
if not A.is_zero:
|
264 |
+
e1 = Integral(A/2, x)
|
265 |
+
e1 = exp(logcombine(e1, force=True))
|
266 |
+
sol = cancel((e/e1)*x**((-match_object['k']+1)/2))*sol
|
267 |
+
sol = Eq(func, sol)
|
268 |
+
return sol
|
269 |
+
|
270 |
+
sol = cancel((e)*x**((-match_object['k']+1)/2))*sol
|
271 |
+
sol = Eq(func, sol)
|
272 |
+
return sol
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/lie_group.py
ADDED
@@ -0,0 +1,1101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This module contains the implementation of the internal helper functions for the lie_group hint for
|
3 |
+
dsolve. These helper functions apply different heuristics on the given equation
|
4 |
+
and return the solution. These functions are used by :py:meth:`sympy.solvers.ode.single.LieGroup`
|
5 |
+
|
6 |
+
References
|
7 |
+
=========
|
8 |
+
|
9 |
+
- `abaco1_simple`, `function_sum` and `chi` are referenced from E.S Cheb-Terrab, L.G.S Duarte
|
10 |
+
and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using
|
11 |
+
Symmetry Methods, pp. 7 - pp. 8
|
12 |
+
|
13 |
+
- `abaco1_product`, `abaco2_similar`, `abaco2_unique_unknown`, `linear` and `abaco2_unique_general`
|
14 |
+
are referenced from E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
|
15 |
+
ODE Patterns, pp. 7 - pp. 12
|
16 |
+
|
17 |
+
- `bivariate` from Lie Groups and Differential Equations pp. 327 - pp. 329
|
18 |
+
|
19 |
+
"""
|
20 |
+
from itertools import islice
|
21 |
+
|
22 |
+
from sympy.core import Add, S, Mul, Pow
|
23 |
+
from sympy.core.exprtools import factor_terms
|
24 |
+
from sympy.core.function import Function, AppliedUndef, expand
|
25 |
+
from sympy.core.relational import Equality, Eq
|
26 |
+
from sympy.core.symbol import Symbol, Wild, Dummy, symbols
|
27 |
+
from sympy.functions import exp, log
|
28 |
+
from sympy.integrals.integrals import integrate
|
29 |
+
from sympy.polys import Poly
|
30 |
+
from sympy.polys.polytools import cancel, div
|
31 |
+
from sympy.simplify import (collect, powsimp, # type: ignore
|
32 |
+
separatevars, simplify)
|
33 |
+
from sympy.solvers import solve
|
34 |
+
from sympy.solvers.pde import pdsolve
|
35 |
+
|
36 |
+
from sympy.utilities import numbered_symbols
|
37 |
+
from sympy.solvers.deutils import _preprocess, ode_order
|
38 |
+
from .ode import checkinfsol
|
39 |
+
|
40 |
+
|
41 |
+
lie_heuristics = (
|
42 |
+
"abaco1_simple",
|
43 |
+
"abaco1_product",
|
44 |
+
"abaco2_similar",
|
45 |
+
"abaco2_unique_unknown",
|
46 |
+
"abaco2_unique_general",
|
47 |
+
"linear",
|
48 |
+
"function_sum",
|
49 |
+
"bivariate",
|
50 |
+
"chi"
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf):
|
55 |
+
|
56 |
+
xi = Function("xi")
|
57 |
+
eta = Function("eta")
|
58 |
+
f = func.func
|
59 |
+
x = func.args[0]
|
60 |
+
y = match['y']
|
61 |
+
h = match['h']
|
62 |
+
tempsol = []
|
63 |
+
if not inf:
|
64 |
+
try:
|
65 |
+
inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match)
|
66 |
+
except ValueError:
|
67 |
+
return None
|
68 |
+
for infsim in inf:
|
69 |
+
xiinf = (infsim[xi(x, func)]).subs(func, y)
|
70 |
+
etainf = (infsim[eta(x, func)]).subs(func, y)
|
71 |
+
# This condition creates recursion while using pdsolve.
|
72 |
+
# Since the first step while solving a PDE of form
|
73 |
+
# a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0
|
74 |
+
# is to solve the ODE dy/dx = b/a
|
75 |
+
if simplify(etainf/xiinf) == h:
|
76 |
+
continue
|
77 |
+
rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf
|
78 |
+
r = pdsolve(rpde, func=f(x, y)).rhs
|
79 |
+
s = pdsolve(rpde - 1, func=f(x, y)).rhs
|
80 |
+
newcoord = [_lie_group_remove(coord) for coord in [r, s]]
|
81 |
+
r = Dummy("r")
|
82 |
+
s = Dummy("s")
|
83 |
+
C1 = Symbol("C1")
|
84 |
+
rcoord = newcoord[0]
|
85 |
+
scoord = newcoord[-1]
|
86 |
+
try:
|
87 |
+
sol = solve([r - rcoord, s - scoord], x, y, dict=True)
|
88 |
+
if sol == []:
|
89 |
+
continue
|
90 |
+
except NotImplementedError:
|
91 |
+
continue
|
92 |
+
else:
|
93 |
+
sol = sol[0]
|
94 |
+
xsub = sol[x]
|
95 |
+
ysub = sol[y]
|
96 |
+
num = simplify(scoord.diff(x) + scoord.diff(y)*h)
|
97 |
+
denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h)
|
98 |
+
if num and denom:
|
99 |
+
diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)]))
|
100 |
+
sep = separatevars(diffeq, symbols=[r, s], dict=True)
|
101 |
+
if sep:
|
102 |
+
# Trying to separate, r and s coordinates
|
103 |
+
deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r)
|
104 |
+
# Substituting and reverting back to original coordinates
|
105 |
+
deq = deq.subs([(r, rcoord), (s, scoord)])
|
106 |
+
try:
|
107 |
+
sdeq = solve(deq, y)
|
108 |
+
except NotImplementedError:
|
109 |
+
tempsol.append(deq)
|
110 |
+
else:
|
111 |
+
return [Eq(f(x), sol) for sol in sdeq]
|
112 |
+
|
113 |
+
|
114 |
+
elif denom: # (ds/dr) is zero which means s is constant
|
115 |
+
return [Eq(f(x), solve(scoord - C1, y)[0])]
|
116 |
+
|
117 |
+
elif num: # (dr/ds) is zero which means r is constant
|
118 |
+
return [Eq(f(x), solve(rcoord - C1, y)[0])]
|
119 |
+
|
120 |
+
# If nothing works, return solution as it is, without solving for y
|
121 |
+
if tempsol:
|
122 |
+
return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol]
|
123 |
+
return None
|
124 |
+
|
125 |
+
|
126 |
+
def _ode_lie_group( s, func, order, match):
|
127 |
+
|
128 |
+
heuristics = lie_heuristics
|
129 |
+
inf = {}
|
130 |
+
f = func.func
|
131 |
+
x = func.args[0]
|
132 |
+
df = func.diff(x)
|
133 |
+
xi = Function("xi")
|
134 |
+
eta = Function("eta")
|
135 |
+
xis = match['xi']
|
136 |
+
etas = match['eta']
|
137 |
+
y = match.pop('y', None)
|
138 |
+
if y:
|
139 |
+
h = -simplify(match[match['d']]/match[match['e']])
|
140 |
+
y = y
|
141 |
+
else:
|
142 |
+
y = Dummy("y")
|
143 |
+
h = s.subs(func, y)
|
144 |
+
|
145 |
+
if xis is not None and etas is not None:
|
146 |
+
inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}]
|
147 |
+
|
148 |
+
if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]:
|
149 |
+
heuristics = ["user_defined"] + list(heuristics)
|
150 |
+
|
151 |
+
match = {'h': h, 'y': y}
|
152 |
+
|
153 |
+
# This is done so that if any heuristic raises a ValueError
|
154 |
+
# another heuristic can be used.
|
155 |
+
sol = None
|
156 |
+
for heuristic in heuristics:
|
157 |
+
sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf)
|
158 |
+
if sol:
|
159 |
+
return sol
|
160 |
+
return sol
|
161 |
+
|
162 |
+
|
163 |
+
def infinitesimals(eq, func=None, order=None, hint='default', match=None):
|
164 |
+
r"""
|
165 |
+
The infinitesimal functions of an ordinary differential equation, `\xi(x,y)`
|
166 |
+
and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations
|
167 |
+
for which the differential equation is invariant. So, the ODE `y'=f(x,y)`
|
168 |
+
would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`,
|
169 |
+
`y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`.
|
170 |
+
A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group
|
171 |
+
becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`.
|
172 |
+
They are tangents to the coordinate curves of the new system.
|
173 |
+
|
174 |
+
Consider the transformation `(x, y) \to (X, Y)` such that the
|
175 |
+
differential equation remains invariant. `\xi` and `\eta` are the tangents to
|
176 |
+
the transformed coordinates `X` and `Y`, at `\varepsilon=0`.
|
177 |
+
|
178 |
+
.. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon
|
179 |
+
}\right)|_{\varepsilon=0} = \xi,
|
180 |
+
\left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon
|
181 |
+
}\right)|_{\varepsilon=0} = \eta,
|
182 |
+
|
183 |
+
The infinitesimals can be found by solving the following PDE:
|
184 |
+
|
185 |
+
>>> from sympy import Function, Eq, pprint
|
186 |
+
>>> from sympy.abc import x, y
|
187 |
+
>>> xi, eta, h = map(Function, ['xi', 'eta', 'h'])
|
188 |
+
>>> h = h(x, y) # dy/dx = h
|
189 |
+
>>> eta = eta(x, y)
|
190 |
+
>>> xi = xi(x, y)
|
191 |
+
>>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h
|
192 |
+
... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0)
|
193 |
+
>>> pprint(genform)
|
194 |
+
/d d \ d 2 d
|
195 |
+
|--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x
|
196 |
+
\dy dx / dy dy
|
197 |
+
<BLANKLINE>
|
198 |
+
d d
|
199 |
+
i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0
|
200 |
+
dx dx
|
201 |
+
|
202 |
+
Solving the above mentioned PDE is not trivial, and can be solved only by
|
203 |
+
making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an
|
204 |
+
infinitesimal is found, the attempt to find more heuristics stops. This is done to
|
205 |
+
optimise the speed of solving the differential equation. If a list of all the
|
206 |
+
infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives
|
207 |
+
the complete list of infinitesimals. If the infinitesimals for a particular
|
208 |
+
heuristic needs to be found, it can be passed as a flag to ``hint``.
|
209 |
+
|
210 |
+
Examples
|
211 |
+
========
|
212 |
+
|
213 |
+
>>> from sympy import Function
|
214 |
+
>>> from sympy.solvers.ode.lie_group import infinitesimals
|
215 |
+
>>> from sympy.abc import x
|
216 |
+
>>> f = Function('f')
|
217 |
+
>>> eq = f(x).diff(x) - x**2*f(x)
|
218 |
+
>>> infinitesimals(eq)
|
219 |
+
[{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}]
|
220 |
+
|
221 |
+
References
|
222 |
+
==========
|
223 |
+
|
224 |
+
- Solving differential equations by Symmetry Groups,
|
225 |
+
John Starrett, pp. 1 - pp. 14
|
226 |
+
|
227 |
+
"""
|
228 |
+
|
229 |
+
if isinstance(eq, Equality):
|
230 |
+
eq = eq.lhs - eq.rhs
|
231 |
+
if not func:
|
232 |
+
eq, func = _preprocess(eq)
|
233 |
+
variables = func.args
|
234 |
+
if len(variables) != 1:
|
235 |
+
raise ValueError("ODE's have only one independent variable")
|
236 |
+
else:
|
237 |
+
x = variables[0]
|
238 |
+
if not order:
|
239 |
+
order = ode_order(eq, func)
|
240 |
+
if order != 1:
|
241 |
+
raise NotImplementedError("Infinitesimals for only "
|
242 |
+
"first order ODE's have been implemented")
|
243 |
+
else:
|
244 |
+
df = func.diff(x)
|
245 |
+
# Matching differential equation of the form a*df + b
|
246 |
+
a = Wild('a', exclude = [df])
|
247 |
+
b = Wild('b', exclude = [df])
|
248 |
+
if match: # Used by lie_group hint
|
249 |
+
h = match['h']
|
250 |
+
y = match['y']
|
251 |
+
else:
|
252 |
+
match = collect(expand(eq), df).match(a*df + b)
|
253 |
+
if match:
|
254 |
+
h = -simplify(match[b]/match[a])
|
255 |
+
else:
|
256 |
+
try:
|
257 |
+
sol = solve(eq, df)
|
258 |
+
except NotImplementedError:
|
259 |
+
raise NotImplementedError("Infinitesimals for the "
|
260 |
+
"first order ODE could not be found")
|
261 |
+
else:
|
262 |
+
h = sol[0] # Find infinitesimals for one solution
|
263 |
+
y = Dummy("y")
|
264 |
+
h = h.subs(func, y)
|
265 |
+
|
266 |
+
u = Dummy("u")
|
267 |
+
hx = h.diff(x)
|
268 |
+
hy = h.diff(y)
|
269 |
+
hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE
|
270 |
+
match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv}
|
271 |
+
if hint == 'all':
|
272 |
+
xieta = []
|
273 |
+
for heuristic in lie_heuristics:
|
274 |
+
function = globals()['lie_heuristic_' + heuristic]
|
275 |
+
inflist = function(match, comp=True)
|
276 |
+
if inflist:
|
277 |
+
xieta.extend([inf for inf in inflist if inf not in xieta])
|
278 |
+
if xieta:
|
279 |
+
return xieta
|
280 |
+
else:
|
281 |
+
raise NotImplementedError("Infinitesimals could not be found for "
|
282 |
+
"the given ODE")
|
283 |
+
|
284 |
+
elif hint == 'default':
|
285 |
+
for heuristic in lie_heuristics:
|
286 |
+
function = globals()['lie_heuristic_' + heuristic]
|
287 |
+
xieta = function(match, comp=False)
|
288 |
+
if xieta:
|
289 |
+
return xieta
|
290 |
+
|
291 |
+
raise NotImplementedError("Infinitesimals could not be found for"
|
292 |
+
" the given ODE")
|
293 |
+
|
294 |
+
elif hint not in lie_heuristics:
|
295 |
+
raise ValueError("Heuristic not recognized: " + hint)
|
296 |
+
|
297 |
+
else:
|
298 |
+
function = globals()['lie_heuristic_' + hint]
|
299 |
+
xieta = function(match, comp=True)
|
300 |
+
if xieta:
|
301 |
+
return xieta
|
302 |
+
else:
|
303 |
+
raise ValueError("Infinitesimals could not be found using the"
|
304 |
+
" given heuristic")
|
305 |
+
|
306 |
+
|
307 |
+
def lie_heuristic_abaco1_simple(match, comp=False):
|
308 |
+
r"""
|
309 |
+
The first heuristic uses the following four sets of
|
310 |
+
assumptions on `\xi` and `\eta`
|
311 |
+
|
312 |
+
.. math:: \xi = 0, \eta = f(x)
|
313 |
+
|
314 |
+
.. math:: \xi = 0, \eta = f(y)
|
315 |
+
|
316 |
+
.. math:: \xi = f(x), \eta = 0
|
317 |
+
|
318 |
+
.. math:: \xi = f(y), \eta = 0
|
319 |
+
|
320 |
+
The success of this heuristic is determined by algebraic factorisation.
|
321 |
+
For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE
|
322 |
+
|
323 |
+
.. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y}
|
324 |
+
- \frac{\partial \xi}{\partial x})*h
|
325 |
+
- \frac{\partial \xi}{\partial y}*h^{2}
|
326 |
+
- \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0
|
327 |
+
|
328 |
+
reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0`
|
329 |
+
If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually
|
330 |
+
be integrated easily. A similar idea is applied to the other 3 assumptions as well.
|
331 |
+
|
332 |
+
|
333 |
+
References
|
334 |
+
==========
|
335 |
+
|
336 |
+
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
|
337 |
+
Solving of First Order ODEs Using Symmetry Methods, pp. 8
|
338 |
+
|
339 |
+
|
340 |
+
"""
|
341 |
+
|
342 |
+
xieta = []
|
343 |
+
y = match['y']
|
344 |
+
h = match['h']
|
345 |
+
func = match['func']
|
346 |
+
x = func.args[0]
|
347 |
+
hx = match['hx']
|
348 |
+
hy = match['hy']
|
349 |
+
xi = Function('xi')(x, func)
|
350 |
+
eta = Function('eta')(x, func)
|
351 |
+
|
352 |
+
hysym = hy.free_symbols
|
353 |
+
if y not in hysym:
|
354 |
+
try:
|
355 |
+
fx = exp(integrate(hy, x))
|
356 |
+
except NotImplementedError:
|
357 |
+
pass
|
358 |
+
else:
|
359 |
+
inf = {xi: S.Zero, eta: fx}
|
360 |
+
if not comp:
|
361 |
+
return [inf]
|
362 |
+
if comp and inf not in xieta:
|
363 |
+
xieta.append(inf)
|
364 |
+
|
365 |
+
factor = hy/h
|
366 |
+
facsym = factor.free_symbols
|
367 |
+
if x not in facsym:
|
368 |
+
try:
|
369 |
+
fy = exp(integrate(factor, y))
|
370 |
+
except NotImplementedError:
|
371 |
+
pass
|
372 |
+
else:
|
373 |
+
inf = {xi: S.Zero, eta: fy.subs(y, func)}
|
374 |
+
if not comp:
|
375 |
+
return [inf]
|
376 |
+
if comp and inf not in xieta:
|
377 |
+
xieta.append(inf)
|
378 |
+
|
379 |
+
factor = -hx/h
|
380 |
+
facsym = factor.free_symbols
|
381 |
+
if y not in facsym:
|
382 |
+
try:
|
383 |
+
fx = exp(integrate(factor, x))
|
384 |
+
except NotImplementedError:
|
385 |
+
pass
|
386 |
+
else:
|
387 |
+
inf = {xi: fx, eta: S.Zero}
|
388 |
+
if not comp:
|
389 |
+
return [inf]
|
390 |
+
if comp and inf not in xieta:
|
391 |
+
xieta.append(inf)
|
392 |
+
|
393 |
+
factor = -hx/(h**2)
|
394 |
+
facsym = factor.free_symbols
|
395 |
+
if x not in facsym:
|
396 |
+
try:
|
397 |
+
fy = exp(integrate(factor, y))
|
398 |
+
except NotImplementedError:
|
399 |
+
pass
|
400 |
+
else:
|
401 |
+
inf = {xi: fy.subs(y, func), eta: S.Zero}
|
402 |
+
if not comp:
|
403 |
+
return [inf]
|
404 |
+
if comp and inf not in xieta:
|
405 |
+
xieta.append(inf)
|
406 |
+
|
407 |
+
if xieta:
|
408 |
+
return xieta
|
409 |
+
|
410 |
+
def lie_heuristic_abaco1_product(match, comp=False):
|
411 |
+
r"""
|
412 |
+
The second heuristic uses the following two assumptions on `\xi` and `\eta`
|
413 |
+
|
414 |
+
.. math:: \eta = 0, \xi = f(x)*g(y)
|
415 |
+
|
416 |
+
.. math:: \eta = f(x)*g(y), \xi = 0
|
417 |
+
|
418 |
+
The first assumption of this heuristic holds good if
|
419 |
+
`\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is
|
420 |
+
separable in `x` and `y`, then the separated factors containing `x`
|
421 |
+
is `f(x)`, and `g(y)` is obtained by
|
422 |
+
|
423 |
+
.. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy}
|
424 |
+
|
425 |
+
provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function
|
426 |
+
of `y` only.
|
427 |
+
|
428 |
+
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
|
429 |
+
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
|
430 |
+
satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again
|
431 |
+
interchanged, to get `\eta` as `f(x)*g(y)`
|
432 |
+
|
433 |
+
|
434 |
+
References
|
435 |
+
==========
|
436 |
+
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
|
437 |
+
ODE Patterns, pp. 7 - pp. 8
|
438 |
+
|
439 |
+
"""
|
440 |
+
|
441 |
+
xieta = []
|
442 |
+
y = match['y']
|
443 |
+
h = match['h']
|
444 |
+
hinv = match['hinv']
|
445 |
+
func = match['func']
|
446 |
+
x = func.args[0]
|
447 |
+
xi = Function('xi')(x, func)
|
448 |
+
eta = Function('eta')(x, func)
|
449 |
+
|
450 |
+
|
451 |
+
inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y])
|
452 |
+
if inf and inf['coeff']:
|
453 |
+
fx = inf[x]
|
454 |
+
gy = simplify(fx*((1/(fx*h)).diff(x)))
|
455 |
+
gysyms = gy.free_symbols
|
456 |
+
if x not in gysyms:
|
457 |
+
gy = exp(integrate(gy, y))
|
458 |
+
inf = {eta: S.Zero, xi: (fx*gy).subs(y, func)}
|
459 |
+
if not comp:
|
460 |
+
return [inf]
|
461 |
+
if comp and inf not in xieta:
|
462 |
+
xieta.append(inf)
|
463 |
+
|
464 |
+
u1 = Dummy("u1")
|
465 |
+
inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y])
|
466 |
+
if inf and inf['coeff']:
|
467 |
+
fx = inf[x]
|
468 |
+
gy = simplify(fx*((1/(fx*hinv)).diff(x)))
|
469 |
+
gysyms = gy.free_symbols
|
470 |
+
if x not in gysyms:
|
471 |
+
gy = exp(integrate(gy, y))
|
472 |
+
etaval = fx*gy
|
473 |
+
etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y)
|
474 |
+
inf = {eta: etaval.subs(y, func), xi: S.Zero}
|
475 |
+
if not comp:
|
476 |
+
return [inf]
|
477 |
+
if comp and inf not in xieta:
|
478 |
+
xieta.append(inf)
|
479 |
+
|
480 |
+
if xieta:
|
481 |
+
return xieta
|
482 |
+
|
483 |
+
def lie_heuristic_bivariate(match, comp=False):
|
484 |
+
r"""
|
485 |
+
The third heuristic assumes the infinitesimals `\xi` and `\eta`
|
486 |
+
to be bi-variate polynomials in `x` and `y`. The assumption made here
|
487 |
+
for the logic below is that `h` is a rational function in `x` and `y`
|
488 |
+
though that may not be necessary for the infinitesimals to be
|
489 |
+
bivariate polynomials. The coefficients of the infinitesimals
|
490 |
+
are found out by substituting them in the PDE and grouping similar terms
|
491 |
+
that are polynomials and since they form a linear system, solve and check
|
492 |
+
for non trivial solutions. The degree of the assumed bivariates
|
493 |
+
are increased till a certain maximum value.
|
494 |
+
|
495 |
+
References
|
496 |
+
==========
|
497 |
+
- Lie Groups and Differential Equations
|
498 |
+
pp. 327 - pp. 329
|
499 |
+
|
500 |
+
"""
|
501 |
+
|
502 |
+
h = match['h']
|
503 |
+
hx = match['hx']
|
504 |
+
hy = match['hy']
|
505 |
+
func = match['func']
|
506 |
+
x = func.args[0]
|
507 |
+
y = match['y']
|
508 |
+
xi = Function('xi')(x, func)
|
509 |
+
eta = Function('eta')(x, func)
|
510 |
+
|
511 |
+
if h.is_rational_function():
|
512 |
+
# The maximum degree that the infinitesimals can take is
|
513 |
+
# calculated by this technique.
|
514 |
+
etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid")
|
515 |
+
ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy
|
516 |
+
num, denom = cancel(ipde).as_numer_denom()
|
517 |
+
deg = Poly(num, x, y).total_degree()
|
518 |
+
deta = Function('deta')(x, y)
|
519 |
+
dxi = Function('dxi')(x, y)
|
520 |
+
ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2
|
521 |
+
- dxi*hx - deta*hy)
|
522 |
+
xieq = Symbol("xi0")
|
523 |
+
etaeq = Symbol("eta0")
|
524 |
+
|
525 |
+
for i in range(deg + 1):
|
526 |
+
if i:
|
527 |
+
xieq += Add(*[
|
528 |
+
Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
|
529 |
+
for power in range(i + 1)])
|
530 |
+
etaeq += Add(*[
|
531 |
+
Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
|
532 |
+
for power in range(i + 1)])
|
533 |
+
pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom()
|
534 |
+
pden = expand(pden)
|
535 |
+
|
536 |
+
# If the individual terms are monomials, the coefficients
|
537 |
+
# are grouped
|
538 |
+
if pden.is_polynomial(x, y) and pden.is_Add:
|
539 |
+
polyy = Poly(pden, x, y).as_dict()
|
540 |
+
if polyy:
|
541 |
+
symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y}
|
542 |
+
soldict = solve(polyy.values(), *symset)
|
543 |
+
if isinstance(soldict, list):
|
544 |
+
soldict = soldict[0]
|
545 |
+
if any(soldict.values()):
|
546 |
+
xired = xieq.subs(soldict)
|
547 |
+
etared = etaeq.subs(soldict)
|
548 |
+
# Scaling is done by substituting one for the parameters
|
549 |
+
# This can be any number except zero.
|
550 |
+
dict_ = {sym: 1 for sym in symset}
|
551 |
+
inf = {eta: etared.subs(dict_).subs(y, func),
|
552 |
+
xi: xired.subs(dict_).subs(y, func)}
|
553 |
+
return [inf]
|
554 |
+
|
555 |
+
def lie_heuristic_chi(match, comp=False):
|
556 |
+
r"""
|
557 |
+
The aim of the fourth heuristic is to find the function `\chi(x, y)`
|
558 |
+
that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx}
|
559 |
+
- \frac{\partial h}{\partial y}\chi = 0`.
|
560 |
+
|
561 |
+
This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition,
|
562 |
+
`h` should be a rational function in `x` and `y`. The method used here is
|
563 |
+
to substitute a general binomial for `\chi` up to a certain maximum degree
|
564 |
+
is reached. The coefficients of the polynomials, are calculated by by collecting
|
565 |
+
terms of the same order in `x` and `y`.
|
566 |
+
|
567 |
+
After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to
|
568 |
+
determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h`
|
569 |
+
which would give `-\xi` as the quotient and `\eta` as the remainder.
|
570 |
+
|
571 |
+
|
572 |
+
References
|
573 |
+
==========
|
574 |
+
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
|
575 |
+
Solving of First Order ODEs Using Symmetry Methods, pp. 8
|
576 |
+
|
577 |
+
"""
|
578 |
+
|
579 |
+
h = match['h']
|
580 |
+
hy = match['hy']
|
581 |
+
func = match['func']
|
582 |
+
x = func.args[0]
|
583 |
+
y = match['y']
|
584 |
+
xi = Function('xi')(x, func)
|
585 |
+
eta = Function('eta')(x, func)
|
586 |
+
|
587 |
+
if h.is_rational_function():
|
588 |
+
schi, schix, schiy = symbols("schi, schix, schiy")
|
589 |
+
cpde = schix + h*schiy - hy*schi
|
590 |
+
num, denom = cancel(cpde).as_numer_denom()
|
591 |
+
deg = Poly(num, x, y).total_degree()
|
592 |
+
|
593 |
+
chi = Function('chi')(x, y)
|
594 |
+
chix = chi.diff(x)
|
595 |
+
chiy = chi.diff(y)
|
596 |
+
cpde = chix + h*chiy - hy*chi
|
597 |
+
chieq = Symbol("chi")
|
598 |
+
for i in range(1, deg + 1):
|
599 |
+
chieq += Add(*[
|
600 |
+
Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
|
601 |
+
for power in range(i + 1)])
|
602 |
+
cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom()
|
603 |
+
cnum = expand(cnum)
|
604 |
+
if cnum.is_polynomial(x, y) and cnum.is_Add:
|
605 |
+
cpoly = Poly(cnum, x, y).as_dict()
|
606 |
+
if cpoly:
|
607 |
+
solsyms = chieq.free_symbols - {x, y}
|
608 |
+
soldict = solve(cpoly.values(), *solsyms)
|
609 |
+
if isinstance(soldict, list):
|
610 |
+
soldict = soldict[0]
|
611 |
+
if any(soldict.values()):
|
612 |
+
chieq = chieq.subs(soldict)
|
613 |
+
dict_ = {sym: 1 for sym in solsyms}
|
614 |
+
chieq = chieq.subs(dict_)
|
615 |
+
# After finding chi, the main aim is to find out
|
616 |
+
# eta, xi by the equation eta = xi*h + chi
|
617 |
+
# One method to set xi, would be rearranging it to
|
618 |
+
# (eta/h) - xi = (chi/h). This would mean dividing
|
619 |
+
# chi by h would give -xi as the quotient and eta
|
620 |
+
# as the remainder. Thanks to Sean Vig for suggesting
|
621 |
+
# this method.
|
622 |
+
xic, etac = div(chieq, h)
|
623 |
+
inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)}
|
624 |
+
return [inf]
|
625 |
+
|
626 |
+
def lie_heuristic_function_sum(match, comp=False):
|
627 |
+
r"""
|
628 |
+
This heuristic uses the following two assumptions on `\xi` and `\eta`
|
629 |
+
|
630 |
+
.. math:: \eta = 0, \xi = f(x) + g(y)
|
631 |
+
|
632 |
+
.. math:: \eta = f(x) + g(y), \xi = 0
|
633 |
+
|
634 |
+
The first assumption of this heuristic holds good if
|
635 |
+
|
636 |
+
.. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{
|
637 |
+
\partial x^{2}}(h^{-1}))^{-1}]
|
638 |
+
|
639 |
+
is separable in `x` and `y`,
|
640 |
+
|
641 |
+
1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`.
|
642 |
+
From this `g(y)` can be determined.
|
643 |
+
2. The separated factors containing `x` is `f''(x)`.
|
644 |
+
3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals
|
645 |
+
`\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined.
|
646 |
+
|
647 |
+
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
|
648 |
+
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first
|
649 |
+
assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates
|
650 |
+
are again interchanged, to get `\eta` as `f(x) + g(y)`.
|
651 |
+
|
652 |
+
For both assumptions, the constant factors are separated among `g(y)`
|
653 |
+
and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that
|
654 |
+
obtained from 2]. If not possible, then this heuristic fails.
|
655 |
+
|
656 |
+
|
657 |
+
References
|
658 |
+
==========
|
659 |
+
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
|
660 |
+
ODE Patterns, pp. 7 - pp. 8
|
661 |
+
|
662 |
+
"""
|
663 |
+
|
664 |
+
xieta = []
|
665 |
+
h = match['h']
|
666 |
+
func = match['func']
|
667 |
+
hinv = match['hinv']
|
668 |
+
x = func.args[0]
|
669 |
+
y = match['y']
|
670 |
+
xi = Function('xi')(x, func)
|
671 |
+
eta = Function('eta')(x, func)
|
672 |
+
|
673 |
+
for odefac in [h, hinv]:
|
674 |
+
factor = odefac*((1/odefac).diff(x, 2))
|
675 |
+
sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y])
|
676 |
+
if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y):
|
677 |
+
k = Dummy("k")
|
678 |
+
try:
|
679 |
+
gy = k*integrate(sep[y], y)
|
680 |
+
except NotImplementedError:
|
681 |
+
pass
|
682 |
+
else:
|
683 |
+
fdd = 1/(k*sep[x]*sep['coeff'])
|
684 |
+
fx = simplify(fdd/factor - gy)
|
685 |
+
check = simplify(fx.diff(x, 2) - fdd)
|
686 |
+
if fx:
|
687 |
+
if not check:
|
688 |
+
fx = fx.subs(k, 1)
|
689 |
+
gy = (gy/k)
|
690 |
+
else:
|
691 |
+
sol = solve(check, k)
|
692 |
+
if sol:
|
693 |
+
sol = sol[0]
|
694 |
+
fx = fx.subs(k, sol)
|
695 |
+
gy = (gy/k)*sol
|
696 |
+
else:
|
697 |
+
continue
|
698 |
+
if odefac == hinv: # Inverse ODE
|
699 |
+
fx = fx.subs(x, y)
|
700 |
+
gy = gy.subs(y, x)
|
701 |
+
etaval = factor_terms(fx + gy)
|
702 |
+
if etaval.is_Mul:
|
703 |
+
etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)])
|
704 |
+
if odefac == hinv: # Inverse ODE
|
705 |
+
inf = {eta: etaval.subs(y, func), xi : S.Zero}
|
706 |
+
else:
|
707 |
+
inf = {xi: etaval.subs(y, func), eta : S.Zero}
|
708 |
+
if not comp:
|
709 |
+
return [inf]
|
710 |
+
else:
|
711 |
+
xieta.append(inf)
|
712 |
+
|
713 |
+
if xieta:
|
714 |
+
return xieta
|
715 |
+
|
716 |
+
def lie_heuristic_abaco2_similar(match, comp=False):
|
717 |
+
r"""
|
718 |
+
This heuristic uses the following two assumptions on `\xi` and `\eta`
|
719 |
+
|
720 |
+
.. math:: \eta = g(x), \xi = f(x)
|
721 |
+
|
722 |
+
.. math:: \eta = f(y), \xi = g(y)
|
723 |
+
|
724 |
+
For the first assumption,
|
725 |
+
|
726 |
+
1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{
|
727 |
+
\partial yy}}` is calculated. Let us say this value is A
|
728 |
+
|
729 |
+
2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{
|
730 |
+
\frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)`
|
731 |
+
and `A(x)*f(x)` gives `g(x)`
|
732 |
+
|
733 |
+
3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{
|
734 |
+
\partial Y}} = \gamma` is calculated. If
|
735 |
+
|
736 |
+
a] `\gamma` is a function of `x` alone
|
737 |
+
|
738 |
+
b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{
|
739 |
+
\partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone.
|
740 |
+
then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)`
|
741 |
+
|
742 |
+
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
|
743 |
+
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
|
744 |
+
satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again
|
745 |
+
interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)`
|
746 |
+
|
747 |
+
References
|
748 |
+
==========
|
749 |
+
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
|
750 |
+
ODE Patterns, pp. 10 - pp. 12
|
751 |
+
|
752 |
+
"""
|
753 |
+
|
754 |
+
h = match['h']
|
755 |
+
hx = match['hx']
|
756 |
+
hy = match['hy']
|
757 |
+
func = match['func']
|
758 |
+
hinv = match['hinv']
|
759 |
+
x = func.args[0]
|
760 |
+
y = match['y']
|
761 |
+
xi = Function('xi')(x, func)
|
762 |
+
eta = Function('eta')(x, func)
|
763 |
+
|
764 |
+
factor = cancel(h.diff(y)/h.diff(y, 2))
|
765 |
+
factorx = factor.diff(x)
|
766 |
+
factory = factor.diff(y)
|
767 |
+
if not factor.has(x) and not factor.has(y):
|
768 |
+
A = Wild('A', exclude=[y])
|
769 |
+
B = Wild('B', exclude=[y])
|
770 |
+
C = Wild('C', exclude=[x, y])
|
771 |
+
match = h.match(A + B*exp(y/C))
|
772 |
+
try:
|
773 |
+
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
|
774 |
+
except NotImplementedError:
|
775 |
+
pass
|
776 |
+
else:
|
777 |
+
gx = match[A]*tau
|
778 |
+
return [{xi: tau, eta: gx}]
|
779 |
+
|
780 |
+
else:
|
781 |
+
gamma = cancel(factorx/factory)
|
782 |
+
if not gamma.has(y):
|
783 |
+
tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma))
|
784 |
+
if not tauint.has(y):
|
785 |
+
try:
|
786 |
+
tau = exp(integrate(tauint, x))
|
787 |
+
except NotImplementedError:
|
788 |
+
pass
|
789 |
+
else:
|
790 |
+
gx = -tau*gamma
|
791 |
+
return [{xi: tau, eta: gx}]
|
792 |
+
|
793 |
+
factor = cancel(hinv.diff(y)/hinv.diff(y, 2))
|
794 |
+
factorx = factor.diff(x)
|
795 |
+
factory = factor.diff(y)
|
796 |
+
if not factor.has(x) and not factor.has(y):
|
797 |
+
A = Wild('A', exclude=[y])
|
798 |
+
B = Wild('B', exclude=[y])
|
799 |
+
C = Wild('C', exclude=[x, y])
|
800 |
+
match = h.match(A + B*exp(y/C))
|
801 |
+
try:
|
802 |
+
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
|
803 |
+
except NotImplementedError:
|
804 |
+
pass
|
805 |
+
else:
|
806 |
+
gx = match[A]*tau
|
807 |
+
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
|
808 |
+
|
809 |
+
else:
|
810 |
+
gamma = cancel(factorx/factory)
|
811 |
+
if not gamma.has(y):
|
812 |
+
tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/(
|
813 |
+
hinv + gamma))
|
814 |
+
if not tauint.has(y):
|
815 |
+
try:
|
816 |
+
tau = exp(integrate(tauint, x))
|
817 |
+
except NotImplementedError:
|
818 |
+
pass
|
819 |
+
else:
|
820 |
+
gx = -tau*gamma
|
821 |
+
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
|
822 |
+
|
823 |
+
|
824 |
+
def lie_heuristic_abaco2_unique_unknown(match, comp=False):
|
825 |
+
r"""
|
826 |
+
This heuristic assumes the presence of unknown functions or known functions
|
827 |
+
with non-integer powers.
|
828 |
+
|
829 |
+
1. A list of all functions and non-integer powers containing x and y
|
830 |
+
2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{
|
831 |
+
\frac{\partial f}{\partial x}} = R`
|
832 |
+
|
833 |
+
If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then
|
834 |
+
|
835 |
+
a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return
|
836 |
+
`\xi` and `\eta`
|
837 |
+
b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE.
|
838 |
+
If yes, then return `\xi` and `\eta`
|
839 |
+
|
840 |
+
If not, then check if
|
841 |
+
|
842 |
+
a] :math:`\xi = -R,\eta = 1`
|
843 |
+
|
844 |
+
b] :math:`\xi = 1, \eta = -\frac{1}{R}`
|
845 |
+
|
846 |
+
are solutions.
|
847 |
+
|
848 |
+
References
|
849 |
+
==========
|
850 |
+
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
|
851 |
+
ODE Patterns, pp. 10 - pp. 12
|
852 |
+
|
853 |
+
"""
|
854 |
+
|
855 |
+
h = match['h']
|
856 |
+
hx = match['hx']
|
857 |
+
hy = match['hy']
|
858 |
+
func = match['func']
|
859 |
+
x = func.args[0]
|
860 |
+
y = match['y']
|
861 |
+
xi = Function('xi')(x, func)
|
862 |
+
eta = Function('eta')(x, func)
|
863 |
+
|
864 |
+
funclist = []
|
865 |
+
for atom in h.atoms(Pow):
|
866 |
+
base, exp = atom.as_base_exp()
|
867 |
+
if base.has(x) and base.has(y):
|
868 |
+
if not exp.is_Integer:
|
869 |
+
funclist.append(atom)
|
870 |
+
|
871 |
+
for function in h.atoms(AppliedUndef):
|
872 |
+
syms = function.free_symbols
|
873 |
+
if x in syms and y in syms:
|
874 |
+
funclist.append(function)
|
875 |
+
|
876 |
+
for f in funclist:
|
877 |
+
frac = cancel(f.diff(y)/f.diff(x))
|
878 |
+
sep = separatevars(frac, dict=True, symbols=[x, y])
|
879 |
+
if sep and sep['coeff']:
|
880 |
+
xitry1 = sep[x]
|
881 |
+
etatry1 = -1/(sep[y]*sep['coeff'])
|
882 |
+
pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy
|
883 |
+
if not simplify(pde1):
|
884 |
+
return [{xi: xitry1, eta: etatry1.subs(y, func)}]
|
885 |
+
xitry2 = 1/etatry1
|
886 |
+
etatry2 = 1/xitry1
|
887 |
+
pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy
|
888 |
+
if not simplify(expand(pde2)):
|
889 |
+
return [{xi: xitry2.subs(y, func), eta: etatry2}]
|
890 |
+
|
891 |
+
else:
|
892 |
+
etatry = -1/frac
|
893 |
+
pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy
|
894 |
+
if not simplify(pde):
|
895 |
+
return [{xi: S.One, eta: etatry.subs(y, func)}]
|
896 |
+
xitry = -frac
|
897 |
+
pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy
|
898 |
+
if not simplify(expand(pde)):
|
899 |
+
return [{xi: xitry.subs(y, func), eta: S.One}]
|
900 |
+
|
901 |
+
|
902 |
+
def lie_heuristic_abaco2_unique_general(match, comp=False):
|
903 |
+
r"""
|
904 |
+
This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)`
|
905 |
+
without making any assumptions on `h`.
|
906 |
+
|
907 |
+
The complete sequence of steps is given in the paper mentioned below.
|
908 |
+
|
909 |
+
References
|
910 |
+
==========
|
911 |
+
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
|
912 |
+
ODE Patterns, pp. 10 - pp. 12
|
913 |
+
|
914 |
+
"""
|
915 |
+
hx = match['hx']
|
916 |
+
hy = match['hy']
|
917 |
+
func = match['func']
|
918 |
+
x = func.args[0]
|
919 |
+
y = match['y']
|
920 |
+
xi = Function('xi')(x, func)
|
921 |
+
eta = Function('eta')(x, func)
|
922 |
+
|
923 |
+
A = hx.diff(y)
|
924 |
+
B = hy.diff(y) + hy**2
|
925 |
+
C = hx.diff(x) - hx**2
|
926 |
+
|
927 |
+
if not (A and B and C):
|
928 |
+
return
|
929 |
+
|
930 |
+
Ax = A.diff(x)
|
931 |
+
Ay = A.diff(y)
|
932 |
+
Axy = Ax.diff(y)
|
933 |
+
Axx = Ax.diff(x)
|
934 |
+
Ayy = Ay.diff(y)
|
935 |
+
D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay
|
936 |
+
if not D:
|
937 |
+
E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A)
|
938 |
+
if E1:
|
939 |
+
E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
|
940 |
+
if not E2:
|
941 |
+
E3 = simplify(
|
942 |
+
E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4)
|
943 |
+
if not E3:
|
944 |
+
etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1))
|
945 |
+
if x not in etaval:
|
946 |
+
try:
|
947 |
+
etaval = exp(integrate(etaval, y))
|
948 |
+
except NotImplementedError:
|
949 |
+
pass
|
950 |
+
else:
|
951 |
+
xival = -4*A**3*etaval/E1
|
952 |
+
if y not in xival:
|
953 |
+
return [{xi: xival, eta: etaval.subs(y, func)}]
|
954 |
+
|
955 |
+
else:
|
956 |
+
E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
|
957 |
+
if E1:
|
958 |
+
E2 = simplify(
|
959 |
+
4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2))
|
960 |
+
if not E2:
|
961 |
+
E3 = simplify(
|
962 |
+
-(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D +
|
963 |
+
(A*hx - 3*Ax)*E1)*E1)
|
964 |
+
if not E3:
|
965 |
+
etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D))
|
966 |
+
if x not in etaval:
|
967 |
+
try:
|
968 |
+
etaval = exp(integrate(etaval, y))
|
969 |
+
except NotImplementedError:
|
970 |
+
pass
|
971 |
+
else:
|
972 |
+
xival = -E1*etaval/D
|
973 |
+
if y not in xival:
|
974 |
+
return [{xi: xival, eta: etaval.subs(y, func)}]
|
975 |
+
|
976 |
+
|
977 |
+
def lie_heuristic_linear(match, comp=False):
|
978 |
+
r"""
|
979 |
+
This heuristic assumes
|
980 |
+
|
981 |
+
1. `\xi = ax + by + c` and
|
982 |
+
2. `\eta = fx + gy + h`
|
983 |
+
|
984 |
+
After substituting the following assumptions in the determining PDE, it
|
985 |
+
reduces to
|
986 |
+
|
987 |
+
.. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x}
|
988 |
+
- (fx + gy + c)\frac{\partial h}{\partial y}
|
989 |
+
|
990 |
+
Solving the reduced PDE obtained, using the method of characteristics, becomes
|
991 |
+
impractical. The method followed is grouping similar terms and solving the system
|
992 |
+
of linear equations obtained. The difference between the bivariate heuristic is that
|
993 |
+
`h` need not be a rational function in this case.
|
994 |
+
|
995 |
+
References
|
996 |
+
==========
|
997 |
+
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
|
998 |
+
ODE Patterns, pp. 10 - pp. 12
|
999 |
+
|
1000 |
+
"""
|
1001 |
+
h = match['h']
|
1002 |
+
hx = match['hx']
|
1003 |
+
hy = match['hy']
|
1004 |
+
func = match['func']
|
1005 |
+
x = func.args[0]
|
1006 |
+
y = match['y']
|
1007 |
+
xi = Function('xi')(x, func)
|
1008 |
+
eta = Function('eta')(x, func)
|
1009 |
+
|
1010 |
+
coeffdict = {}
|
1011 |
+
symbols = numbered_symbols("c", cls=Dummy)
|
1012 |
+
symlist = [next(symbols) for _ in islice(symbols, 6)]
|
1013 |
+
C0, C1, C2, C3, C4, C5 = symlist
|
1014 |
+
pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2
|
1015 |
+
pde, denom = pde.as_numer_denom()
|
1016 |
+
pde = powsimp(expand(pde))
|
1017 |
+
if pde.is_Add:
|
1018 |
+
terms = pde.args
|
1019 |
+
for term in terms:
|
1020 |
+
if term.is_Mul:
|
1021 |
+
rem = Mul(*[m for m in term.args if not m.has(x, y)])
|
1022 |
+
xypart = term/rem
|
1023 |
+
if xypart not in coeffdict:
|
1024 |
+
coeffdict[xypart] = rem
|
1025 |
+
else:
|
1026 |
+
coeffdict[xypart] += rem
|
1027 |
+
else:
|
1028 |
+
if term not in coeffdict:
|
1029 |
+
coeffdict[term] = S.One
|
1030 |
+
else:
|
1031 |
+
coeffdict[term] += S.One
|
1032 |
+
|
1033 |
+
sollist = coeffdict.values()
|
1034 |
+
soldict = solve(sollist, symlist)
|
1035 |
+
if soldict:
|
1036 |
+
if isinstance(soldict, list):
|
1037 |
+
soldict = soldict[0]
|
1038 |
+
subval = soldict.values()
|
1039 |
+
if any(t for t in subval):
|
1040 |
+
onedict = dict(zip(symlist, [1]*6))
|
1041 |
+
xival = C0*x + C1*func + C2
|
1042 |
+
etaval = C3*x + C4*func + C5
|
1043 |
+
xival = xival.subs(soldict)
|
1044 |
+
etaval = etaval.subs(soldict)
|
1045 |
+
xival = xival.subs(onedict)
|
1046 |
+
etaval = etaval.subs(onedict)
|
1047 |
+
return [{xi: xival, eta: etaval}]
|
1048 |
+
|
1049 |
+
|
1050 |
+
def _lie_group_remove(coords):
|
1051 |
+
r"""
|
1052 |
+
This function is strictly meant for internal use by the Lie group ODE solving
|
1053 |
+
method. It replaces arbitrary functions returned by pdsolve as follows:
|
1054 |
+
|
1055 |
+
1] If coords is an arbitrary function, then its argument is returned.
|
1056 |
+
2] An arbitrary function in an Add object is replaced by zero.
|
1057 |
+
3] An arbitrary function in a Mul object is replaced by one.
|
1058 |
+
4] If there is no arbitrary function coords is returned unchanged.
|
1059 |
+
|
1060 |
+
Examples
|
1061 |
+
========
|
1062 |
+
|
1063 |
+
>>> from sympy.solvers.ode.lie_group import _lie_group_remove
|
1064 |
+
>>> from sympy import Function
|
1065 |
+
>>> from sympy.abc import x, y
|
1066 |
+
>>> F = Function("F")
|
1067 |
+
>>> eq = x**2*y
|
1068 |
+
>>> _lie_group_remove(eq)
|
1069 |
+
x**2*y
|
1070 |
+
>>> eq = F(x**2*y)
|
1071 |
+
>>> _lie_group_remove(eq)
|
1072 |
+
x**2*y
|
1073 |
+
>>> eq = x*y**2 + F(x**3)
|
1074 |
+
>>> _lie_group_remove(eq)
|
1075 |
+
x*y**2
|
1076 |
+
>>> eq = (F(x**3) + y)*x**4
|
1077 |
+
>>> _lie_group_remove(eq)
|
1078 |
+
x**4*y
|
1079 |
+
|
1080 |
+
"""
|
1081 |
+
if isinstance(coords, AppliedUndef):
|
1082 |
+
return coords.args[0]
|
1083 |
+
elif coords.is_Add:
|
1084 |
+
subfunc = coords.atoms(AppliedUndef)
|
1085 |
+
if subfunc:
|
1086 |
+
for func in subfunc:
|
1087 |
+
coords = coords.subs(func, 0)
|
1088 |
+
return coords
|
1089 |
+
elif coords.is_Pow:
|
1090 |
+
base, expr = coords.as_base_exp()
|
1091 |
+
base = _lie_group_remove(base)
|
1092 |
+
expr = _lie_group_remove(expr)
|
1093 |
+
return base**expr
|
1094 |
+
elif coords.is_Mul:
|
1095 |
+
mulargs = []
|
1096 |
+
coordargs = coords.args
|
1097 |
+
for arg in coordargs:
|
1098 |
+
if not isinstance(coords, AppliedUndef):
|
1099 |
+
mulargs.append(_lie_group_remove(arg))
|
1100 |
+
return Mul(*mulargs)
|
1101 |
+
return coords
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/nonhomogeneous.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This File contains helper functions for nth_linear_constant_coeff_undetermined_coefficients,
|
3 |
+
nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients,
|
4 |
+
nth_linear_constant_coeff_variation_of_parameters,
|
5 |
+
and nth_linear_euler_eq_nonhomogeneous_variation_of_parameters.
|
6 |
+
|
7 |
+
All the functions in this file are used by more than one solvers so, instead of creating
|
8 |
+
instances in other classes for using them it is better to keep it here as separate helpers.
|
9 |
+
|
10 |
+
"""
|
11 |
+
from collections import defaultdict
|
12 |
+
from sympy.core import Add, S
|
13 |
+
from sympy.core.function import diff, expand, _mexpand, expand_mul
|
14 |
+
from sympy.core.relational import Eq
|
15 |
+
from sympy.core.sorting import default_sort_key
|
16 |
+
from sympy.core.symbol import Dummy, Wild
|
17 |
+
from sympy.functions import exp, cos, cosh, im, log, re, sin, sinh, \
|
18 |
+
atan2, conjugate
|
19 |
+
from sympy.integrals import Integral
|
20 |
+
from sympy.polys import (Poly, RootOf, rootof, roots)
|
21 |
+
from sympy.simplify import collect, simplify, separatevars, powsimp, trigsimp # type: ignore
|
22 |
+
from sympy.utilities import numbered_symbols
|
23 |
+
from sympy.solvers.solvers import solve
|
24 |
+
from sympy.matrices import wronskian
|
25 |
+
from .subscheck import sub_func_doit
|
26 |
+
from sympy.solvers.ode.ode import get_numbered_constants
|
27 |
+
|
28 |
+
|
29 |
+
def _test_term(coeff, func, order):
|
30 |
+
r"""
|
31 |
+
Linear Euler ODEs have the form K*x**order*diff(y(x), x, order) = F(x),
|
32 |
+
where K is independent of x and y(x), order>= 0.
|
33 |
+
So we need to check that for each term, coeff == K*x**order from
|
34 |
+
some K. We have a few cases, since coeff may have several
|
35 |
+
different types.
|
36 |
+
"""
|
37 |
+
x = func.args[0]
|
38 |
+
f = func.func
|
39 |
+
if order < 0:
|
40 |
+
raise ValueError("order should be greater than 0")
|
41 |
+
if coeff == 0:
|
42 |
+
return True
|
43 |
+
if order == 0:
|
44 |
+
if x in coeff.free_symbols:
|
45 |
+
return False
|
46 |
+
return True
|
47 |
+
if coeff.is_Mul:
|
48 |
+
if coeff.has(f(x)):
|
49 |
+
return False
|
50 |
+
return x**order in coeff.args
|
51 |
+
elif coeff.is_Pow:
|
52 |
+
return coeff.as_base_exp() == (x, order)
|
53 |
+
elif order == 1:
|
54 |
+
return x == coeff
|
55 |
+
return False
|
56 |
+
|
57 |
+
|
58 |
+
def _get_euler_characteristic_eq_sols(eq, func, match_obj):
|
59 |
+
r"""
|
60 |
+
Returns the solution of homogeneous part of the linear euler ODE and
|
61 |
+
the list of roots of characteristic equation.
|
62 |
+
|
63 |
+
The parameter ``match_obj`` is a dict of order:coeff terms, where order is the order
|
64 |
+
of the derivative on each term, and coeff is the coefficient of that derivative.
|
65 |
+
|
66 |
+
"""
|
67 |
+
x = func.args[0]
|
68 |
+
f = func.func
|
69 |
+
|
70 |
+
# First, set up characteristic equation.
|
71 |
+
chareq, symbol = S.Zero, Dummy('x')
|
72 |
+
|
73 |
+
for i in match_obj:
|
74 |
+
if i >= 0:
|
75 |
+
chareq += (match_obj[i]*diff(x**symbol, x, i)*x**-symbol).expand()
|
76 |
+
|
77 |
+
chareq = Poly(chareq, symbol)
|
78 |
+
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
|
79 |
+
collectterms = []
|
80 |
+
|
81 |
+
# A generator of constants
|
82 |
+
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
|
83 |
+
constants.reverse()
|
84 |
+
|
85 |
+
# Create a dict root: multiplicity or charroots
|
86 |
+
charroots = defaultdict(int)
|
87 |
+
for root in chareqroots:
|
88 |
+
charroots[root] += 1
|
89 |
+
gsol = S.Zero
|
90 |
+
ln = log
|
91 |
+
for root, multiplicity in charroots.items():
|
92 |
+
for i in range(multiplicity):
|
93 |
+
if isinstance(root, RootOf):
|
94 |
+
gsol += (x**root) * constants.pop()
|
95 |
+
if multiplicity != 1:
|
96 |
+
raise ValueError("Value should be 1")
|
97 |
+
collectterms = [(0, root, 0)] + collectterms
|
98 |
+
elif root.is_real:
|
99 |
+
gsol += ln(x)**i*(x**root) * constants.pop()
|
100 |
+
collectterms = [(i, root, 0)] + collectterms
|
101 |
+
else:
|
102 |
+
reroot = re(root)
|
103 |
+
imroot = im(root)
|
104 |
+
gsol += ln(x)**i * (x**reroot) * (
|
105 |
+
constants.pop() * sin(abs(imroot)*ln(x))
|
106 |
+
+ constants.pop() * cos(imroot*ln(x)))
|
107 |
+
collectterms = [(i, reroot, imroot)] + collectterms
|
108 |
+
|
109 |
+
gsol = Eq(f(x), gsol)
|
110 |
+
|
111 |
+
gensols = []
|
112 |
+
# Keep track of when to use sin or cos for nonzero imroot
|
113 |
+
for i, reroot, imroot in collectterms:
|
114 |
+
if imroot == 0:
|
115 |
+
gensols.append(ln(x)**i*x**reroot)
|
116 |
+
else:
|
117 |
+
sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x))
|
118 |
+
if sin_form in gensols:
|
119 |
+
cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x))
|
120 |
+
gensols.append(cos_form)
|
121 |
+
else:
|
122 |
+
gensols.append(sin_form)
|
123 |
+
return gsol, gensols
|
124 |
+
|
125 |
+
|
126 |
+
def _solve_variation_of_parameters(eq, func, roots, homogen_sol, order, match_obj, simplify_flag=True):
|
127 |
+
r"""
|
128 |
+
Helper function for the method of variation of parameters and nonhomogeneous euler eq.
|
129 |
+
|
130 |
+
See the
|
131 |
+
:py:meth:`~sympy.solvers.ode.single.NthLinearConstantCoeffVariationOfParameters`
|
132 |
+
docstring for more information on this method.
|
133 |
+
|
134 |
+
The parameter are ``match_obj`` should be a dictionary that has the following
|
135 |
+
keys:
|
136 |
+
|
137 |
+
``list``
|
138 |
+
A list of solutions to the homogeneous equation.
|
139 |
+
|
140 |
+
``sol``
|
141 |
+
The general solution.
|
142 |
+
|
143 |
+
"""
|
144 |
+
f = func.func
|
145 |
+
x = func.args[0]
|
146 |
+
r = match_obj
|
147 |
+
psol = 0
|
148 |
+
wr = wronskian(roots, x)
|
149 |
+
|
150 |
+
if simplify_flag:
|
151 |
+
wr = simplify(wr) # We need much better simplification for
|
152 |
+
# some ODEs. See issue 4662, for example.
|
153 |
+
# To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1
|
154 |
+
wr = trigsimp(wr, deep=True, recursive=True)
|
155 |
+
if not wr:
|
156 |
+
# The wronskian will be 0 iff the solutions are not linearly
|
157 |
+
# independent.
|
158 |
+
raise NotImplementedError("Cannot find " + str(order) +
|
159 |
+
" solutions to the homogeneous equation necessary to apply " +
|
160 |
+
"variation of parameters to " + str(eq) + " (Wronskian == 0)")
|
161 |
+
if len(roots) != order:
|
162 |
+
raise NotImplementedError("Cannot find " + str(order) +
|
163 |
+
" solutions to the homogeneous equation necessary to apply " +
|
164 |
+
"variation of parameters to " +
|
165 |
+
str(eq) + " (number of terms != order)")
|
166 |
+
negoneterm = S.NegativeOne**(order)
|
167 |
+
for i in roots:
|
168 |
+
psol += negoneterm*Integral(wronskian([sol for sol in roots if sol != i], x)*r[-1]/wr, x)*i/r[order]
|
169 |
+
negoneterm *= -1
|
170 |
+
|
171 |
+
if simplify_flag:
|
172 |
+
psol = simplify(psol)
|
173 |
+
psol = trigsimp(psol, deep=True)
|
174 |
+
return Eq(f(x), homogen_sol.rhs + psol)
|
175 |
+
|
176 |
+
|
177 |
+
def _get_const_characteristic_eq_sols(r, func, order):
|
178 |
+
r"""
|
179 |
+
Returns the roots of characteristic equation of constant coefficient
|
180 |
+
linear ODE and list of collectterms which is later on used by simplification
|
181 |
+
to use collect on solution.
|
182 |
+
|
183 |
+
The parameter `r` is a dict of order:coeff terms, where order is the order of the
|
184 |
+
derivative on each term, and coeff is the coefficient of that derivative.
|
185 |
+
|
186 |
+
"""
|
187 |
+
x = func.args[0]
|
188 |
+
# First, set up characteristic equation.
|
189 |
+
chareq, symbol = S.Zero, Dummy('x')
|
190 |
+
|
191 |
+
for i in r.keys():
|
192 |
+
if isinstance(i, str) or i < 0:
|
193 |
+
pass
|
194 |
+
else:
|
195 |
+
chareq += r[i]*symbol**i
|
196 |
+
|
197 |
+
chareq = Poly(chareq, symbol)
|
198 |
+
# Can't just call roots because it doesn't return rootof for unsolveable
|
199 |
+
# polynomials.
|
200 |
+
chareqroots = roots(chareq, multiple=True)
|
201 |
+
if len(chareqroots) != order:
|
202 |
+
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
|
203 |
+
|
204 |
+
chareq_is_complex = not all(i.is_real for i in chareq.all_coeffs())
|
205 |
+
|
206 |
+
# Create a dict root: multiplicity or charroots
|
207 |
+
charroots = defaultdict(int)
|
208 |
+
for root in chareqroots:
|
209 |
+
charroots[root] += 1
|
210 |
+
# We need to keep track of terms so we can run collect() at the end.
|
211 |
+
# This is necessary for constantsimp to work properly.
|
212 |
+
collectterms = []
|
213 |
+
gensols = []
|
214 |
+
conjugate_roots = [] # used to prevent double-use of conjugate roots
|
215 |
+
# Loop over roots in theorder provided by roots/rootof...
|
216 |
+
for root in chareqroots:
|
217 |
+
# but don't repoeat multiple roots.
|
218 |
+
if root not in charroots:
|
219 |
+
continue
|
220 |
+
multiplicity = charroots.pop(root)
|
221 |
+
for i in range(multiplicity):
|
222 |
+
if chareq_is_complex:
|
223 |
+
gensols.append(x**i*exp(root*x))
|
224 |
+
collectterms = [(i, root, 0)] + collectterms
|
225 |
+
continue
|
226 |
+
reroot = re(root)
|
227 |
+
imroot = im(root)
|
228 |
+
if imroot.has(atan2) and reroot.has(atan2):
|
229 |
+
# Remove this condition when re and im stop returning
|
230 |
+
# circular atan2 usages.
|
231 |
+
gensols.append(x**i*exp(root*x))
|
232 |
+
collectterms = [(i, root, 0)] + collectterms
|
233 |
+
else:
|
234 |
+
if root in conjugate_roots:
|
235 |
+
collectterms = [(i, reroot, imroot)] + collectterms
|
236 |
+
continue
|
237 |
+
if imroot == 0:
|
238 |
+
gensols.append(x**i*exp(reroot*x))
|
239 |
+
collectterms = [(i, reroot, 0)] + collectterms
|
240 |
+
continue
|
241 |
+
conjugate_roots.append(conjugate(root))
|
242 |
+
gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x))
|
243 |
+
gensols.append(x**i*exp(reroot*x) * cos( imroot * x))
|
244 |
+
|
245 |
+
# This ordering is important
|
246 |
+
collectterms = [(i, reroot, imroot)] + collectterms
|
247 |
+
return gensols, collectterms
|
248 |
+
|
249 |
+
|
250 |
+
# Ideally these kind of simplification functions shouldn't be part of solvers.
|
251 |
+
# odesimp should be improved to handle these kind of specific simplifications.
|
252 |
+
def _get_simplified_sol(sol, func, collectterms):
|
253 |
+
r"""
|
254 |
+
Helper function which collects the solution on
|
255 |
+
collectterms. Ideally this should be handled by odesimp.It is used
|
256 |
+
only when the simplify is set to True in dsolve.
|
257 |
+
|
258 |
+
The parameter ``collectterms`` is a list of tuple (i, reroot, imroot) where `i` is
|
259 |
+
the multiplicity of the root, reroot is real part and imroot being the imaginary part.
|
260 |
+
|
261 |
+
"""
|
262 |
+
f = func.func
|
263 |
+
x = func.args[0]
|
264 |
+
collectterms.sort(key=default_sort_key)
|
265 |
+
collectterms.reverse()
|
266 |
+
assert len(sol) == 1 and sol[0].lhs == f(x)
|
267 |
+
sol = sol[0].rhs
|
268 |
+
sol = expand_mul(sol)
|
269 |
+
for i, reroot, imroot in collectterms:
|
270 |
+
sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x))
|
271 |
+
sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x))
|
272 |
+
for i, reroot, imroot in collectterms:
|
273 |
+
sol = collect(sol, x**i*exp(reroot*x))
|
274 |
+
sol = powsimp(sol)
|
275 |
+
return Eq(f(x), sol)
|
276 |
+
|
277 |
+
|
278 |
+
def _undetermined_coefficients_match(expr, x, func=None, eq_homogeneous=S.Zero):
|
279 |
+
r"""
|
280 |
+
Returns a trial function match if undetermined coefficients can be applied
|
281 |
+
to ``expr``, and ``None`` otherwise.
|
282 |
+
|
283 |
+
A trial expression can be found for an expression for use with the method
|
284 |
+
of undetermined coefficients if the expression is an
|
285 |
+
additive/multiplicative combination of constants, polynomials in `x` (the
|
286 |
+
independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and
|
287 |
+
`e^{a x}` terms (in other words, it has a finite number of linearly
|
288 |
+
independent derivatives).
|
289 |
+
|
290 |
+
Note that you may still need to multiply each term returned here by
|
291 |
+
sufficient `x` to make it linearly independent with the solutions to the
|
292 |
+
homogeneous equation.
|
293 |
+
|
294 |
+
This is intended for internal use by ``undetermined_coefficients`` hints.
|
295 |
+
|
296 |
+
SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of
|
297 |
+
only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So,
|
298 |
+
for example, you will need to manually convert `\sin^2(x)` into `[1 +
|
299 |
+
\cos(2 x)]/2` to properly apply the method of undetermined coefficients on
|
300 |
+
it.
|
301 |
+
|
302 |
+
Examples
|
303 |
+
========
|
304 |
+
|
305 |
+
>>> from sympy import log, exp
|
306 |
+
>>> from sympy.solvers.ode.nonhomogeneous import _undetermined_coefficients_match
|
307 |
+
>>> from sympy.abc import x
|
308 |
+
>>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x)
|
309 |
+
{'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}}
|
310 |
+
>>> _undetermined_coefficients_match(log(x), x)
|
311 |
+
{'test': False}
|
312 |
+
|
313 |
+
"""
|
314 |
+
a = Wild('a', exclude=[x])
|
315 |
+
b = Wild('b', exclude=[x])
|
316 |
+
expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1)
|
317 |
+
retdict = {}
|
318 |
+
|
319 |
+
def _test_term(expr, x):
|
320 |
+
r"""
|
321 |
+
Test if ``expr`` fits the proper form for undetermined coefficients.
|
322 |
+
"""
|
323 |
+
if not expr.has(x):
|
324 |
+
return True
|
325 |
+
elif expr.is_Add:
|
326 |
+
return all(_test_term(i, x) for i in expr.args)
|
327 |
+
elif expr.is_Mul:
|
328 |
+
if expr.has(sin, cos):
|
329 |
+
foundtrig = False
|
330 |
+
# Make sure that there is only one trig function in the args.
|
331 |
+
# See the docstring.
|
332 |
+
for i in expr.args:
|
333 |
+
if i.has(sin, cos):
|
334 |
+
if foundtrig:
|
335 |
+
return False
|
336 |
+
else:
|
337 |
+
foundtrig = True
|
338 |
+
return all(_test_term(i, x) for i in expr.args)
|
339 |
+
elif expr.is_Function:
|
340 |
+
if expr.func in (sin, cos, exp, sinh, cosh):
|
341 |
+
if expr.args[0].match(a*x + b):
|
342 |
+
return True
|
343 |
+
else:
|
344 |
+
return False
|
345 |
+
else:
|
346 |
+
return False
|
347 |
+
elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \
|
348 |
+
expr.exp >= 0:
|
349 |
+
return True
|
350 |
+
elif expr.is_Pow and expr.base.is_number:
|
351 |
+
if expr.exp.match(a*x + b):
|
352 |
+
return True
|
353 |
+
else:
|
354 |
+
return False
|
355 |
+
elif expr.is_Symbol or expr.is_number:
|
356 |
+
return True
|
357 |
+
else:
|
358 |
+
return False
|
359 |
+
|
360 |
+
def _get_trial_set(expr, x, exprs=set()):
|
361 |
+
r"""
|
362 |
+
Returns a set of trial terms for undetermined coefficients.
|
363 |
+
|
364 |
+
The idea behind undetermined coefficients is that the terms expression
|
365 |
+
repeat themselves after a finite number of derivatives, except for the
|
366 |
+
coefficients (they are linearly dependent). So if we collect these,
|
367 |
+
we should have the terms of our trial function.
|
368 |
+
"""
|
369 |
+
def _remove_coefficient(expr, x):
|
370 |
+
r"""
|
371 |
+
Returns the expression without a coefficient.
|
372 |
+
|
373 |
+
Similar to expr.as_independent(x)[1], except it only works
|
374 |
+
multiplicatively.
|
375 |
+
"""
|
376 |
+
term = S.One
|
377 |
+
if expr.is_Mul:
|
378 |
+
for i in expr.args:
|
379 |
+
if i.has(x):
|
380 |
+
term *= i
|
381 |
+
elif expr.has(x):
|
382 |
+
term = expr
|
383 |
+
return term
|
384 |
+
|
385 |
+
expr = expand_mul(expr)
|
386 |
+
if expr.is_Add:
|
387 |
+
for term in expr.args:
|
388 |
+
if _remove_coefficient(term, x) in exprs:
|
389 |
+
pass
|
390 |
+
else:
|
391 |
+
exprs.add(_remove_coefficient(term, x))
|
392 |
+
exprs = exprs.union(_get_trial_set(term, x, exprs))
|
393 |
+
else:
|
394 |
+
term = _remove_coefficient(expr, x)
|
395 |
+
tmpset = exprs.union({term})
|
396 |
+
oldset = set()
|
397 |
+
while tmpset != oldset:
|
398 |
+
# If you get stuck in this loop, then _test_term is probably
|
399 |
+
# broken
|
400 |
+
oldset = tmpset.copy()
|
401 |
+
expr = expr.diff(x)
|
402 |
+
term = _remove_coefficient(expr, x)
|
403 |
+
if term.is_Add:
|
404 |
+
tmpset = tmpset.union(_get_trial_set(term, x, tmpset))
|
405 |
+
else:
|
406 |
+
tmpset.add(term)
|
407 |
+
exprs = tmpset
|
408 |
+
return exprs
|
409 |
+
|
410 |
+
def is_homogeneous_solution(term):
|
411 |
+
r""" This function checks whether the given trialset contains any root
|
412 |
+
of homogeneous equation"""
|
413 |
+
return expand(sub_func_doit(eq_homogeneous, func, term)).is_zero
|
414 |
+
|
415 |
+
retdict['test'] = _test_term(expr, x)
|
416 |
+
if retdict['test']:
|
417 |
+
# Try to generate a list of trial solutions that will have the
|
418 |
+
# undetermined coefficients. Note that if any of these are not linearly
|
419 |
+
# independent with any of the solutions to the homogeneous equation,
|
420 |
+
# then they will need to be multiplied by sufficient x to make them so.
|
421 |
+
# This function DOES NOT do that (it doesn't even look at the
|
422 |
+
# homogeneous equation).
|
423 |
+
temp_set = set()
|
424 |
+
for i in Add.make_args(expr):
|
425 |
+
act = _get_trial_set(i, x)
|
426 |
+
if eq_homogeneous is not S.Zero:
|
427 |
+
while any(is_homogeneous_solution(ts) for ts in act):
|
428 |
+
act = {x*ts for ts in act}
|
429 |
+
temp_set = temp_set.union(act)
|
430 |
+
|
431 |
+
retdict['trialset'] = temp_set
|
432 |
+
return retdict
|
433 |
+
|
434 |
+
|
435 |
+
def _solve_undetermined_coefficients(eq, func, order, match, trialset):
|
436 |
+
r"""
|
437 |
+
Helper function for the method of undetermined coefficients.
|
438 |
+
|
439 |
+
See the
|
440 |
+
:py:meth:`~sympy.solvers.ode.single.NthLinearConstantCoeffUndeterminedCoefficients`
|
441 |
+
docstring for more information on this method.
|
442 |
+
|
443 |
+
The parameter ``trialset`` is the set of trial functions as returned by
|
444 |
+
``_undetermined_coefficients_match()['trialset']``.
|
445 |
+
|
446 |
+
The parameter ``match`` should be a dictionary that has the following
|
447 |
+
keys:
|
448 |
+
|
449 |
+
``list``
|
450 |
+
A list of solutions to the homogeneous equation.
|
451 |
+
|
452 |
+
``sol``
|
453 |
+
The general solution.
|
454 |
+
|
455 |
+
"""
|
456 |
+
r = match
|
457 |
+
coeffs = numbered_symbols('a', cls=Dummy)
|
458 |
+
coefflist = []
|
459 |
+
gensols = r['list']
|
460 |
+
gsol = r['sol']
|
461 |
+
f = func.func
|
462 |
+
x = func.args[0]
|
463 |
+
|
464 |
+
if len(gensols) != order:
|
465 |
+
raise NotImplementedError("Cannot find " + str(order) +
|
466 |
+
" solutions to the homogeneous equation necessary to apply" +
|
467 |
+
" undetermined coefficients to " + str(eq) +
|
468 |
+
" (number of terms != order)")
|
469 |
+
|
470 |
+
trialfunc = 0
|
471 |
+
for i in trialset:
|
472 |
+
c = next(coeffs)
|
473 |
+
coefflist.append(c)
|
474 |
+
trialfunc += c*i
|
475 |
+
|
476 |
+
eqs = sub_func_doit(eq, f(x), trialfunc)
|
477 |
+
|
478 |
+
coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1))))
|
479 |
+
|
480 |
+
eqs = _mexpand(eqs)
|
481 |
+
|
482 |
+
for i in Add.make_args(eqs):
|
483 |
+
s = separatevars(i, dict=True, symbols=[x])
|
484 |
+
if coeffsdict.get(s[x]):
|
485 |
+
coeffsdict[s[x]] += s['coeff']
|
486 |
+
else:
|
487 |
+
coeffsdict[s[x]] = s['coeff']
|
488 |
+
|
489 |
+
coeffvals = solve(list(coeffsdict.values()), coefflist)
|
490 |
+
|
491 |
+
if not coeffvals:
|
492 |
+
raise NotImplementedError(
|
493 |
+
"Could not solve `%s` using the "
|
494 |
+
"method of undetermined coefficients "
|
495 |
+
"(unable to solve for coefficients)." % eq)
|
496 |
+
|
497 |
+
psol = trialfunc.subs(coeffvals)
|
498 |
+
|
499 |
+
return Eq(f(x), gsol.rhs + psol)
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/ode.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/riccati.py
ADDED
@@ -0,0 +1,893 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This module contains :py:meth:`~sympy.solvers.ode.riccati.solve_riccati`,
|
3 |
+
a function which gives all rational particular solutions to first order
|
4 |
+
Riccati ODEs. A general first order Riccati ODE is given by -
|
5 |
+
|
6 |
+
.. math:: y' = b_0(x) + b_1(x)w + b_2(x)w^2
|
7 |
+
|
8 |
+
where `b_0, b_1` and `b_2` can be arbitrary rational functions of `x`
|
9 |
+
with `b_2 \ne 0`. When `b_2 = 0`, the equation is not a Riccati ODE
|
10 |
+
anymore and becomes a Linear ODE. Similarly, when `b_0 = 0`, the equation
|
11 |
+
is a Bernoulli ODE. The algorithm presented below can find rational
|
12 |
+
solution(s) to all ODEs with `b_2 \ne 0` that have a rational solution,
|
13 |
+
or prove that no rational solution exists for the equation.
|
14 |
+
|
15 |
+
Background
|
16 |
+
==========
|
17 |
+
|
18 |
+
A Riccati equation can be transformed to its normal form
|
19 |
+
|
20 |
+
.. math:: y' + y^2 = a(x)
|
21 |
+
|
22 |
+
using the transformation
|
23 |
+
|
24 |
+
.. math:: y = -b_2(x) - \frac{b'_2(x)}{2 b_2(x)} - \frac{b_1(x)}{2}
|
25 |
+
|
26 |
+
where `a(x)` is given by
|
27 |
+
|
28 |
+
.. math:: a(x) = \frac{1}{4}\left(\frac{b_2'}{b_2} + b_1\right)^2 - \frac{1}{2}\left(\frac{b_2'}{b_2} + b_1\right)' - b_0 b_2
|
29 |
+
|
30 |
+
Thus, we can develop an algorithm to solve for the Riccati equation
|
31 |
+
in its normal form, which would in turn give us the solution for
|
32 |
+
the original Riccati equation.
|
33 |
+
|
34 |
+
Algorithm
|
35 |
+
=========
|
36 |
+
|
37 |
+
The algorithm implemented here is presented in the Ph.D thesis
|
38 |
+
"Rational and Algebraic Solutions of First-Order Algebraic ODEs"
|
39 |
+
by N. Thieu Vo. The entire thesis can be found here -
|
40 |
+
https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf
|
41 |
+
|
42 |
+
We have only implemented the Rational Riccati solver (Algorithm 11,
|
43 |
+
Pg 78-82 in Thesis). Before we proceed towards the implementation
|
44 |
+
of the algorithm, a few definitions to understand are -
|
45 |
+
|
46 |
+
1. Valuation of a Rational Function at `\infty`:
|
47 |
+
The valuation of a rational function `p(x)` at `\infty` is equal
|
48 |
+
to the difference between the degree of the denominator and the
|
49 |
+
numerator of `p(x)`.
|
50 |
+
|
51 |
+
NOTE: A general definition of valuation of a rational function
|
52 |
+
at any value of `x` can be found in Pg 63 of the thesis, but
|
53 |
+
is not of any interest for this algorithm.
|
54 |
+
|
55 |
+
2. Zeros and Poles of a Rational Function:
|
56 |
+
Let `a(x) = \frac{S(x)}{T(x)}, T \ne 0` be a rational function
|
57 |
+
of `x`. Then -
|
58 |
+
|
59 |
+
a. The Zeros of `a(x)` are the roots of `S(x)`.
|
60 |
+
b. The Poles of `a(x)` are the roots of `T(x)`. However, `\infty`
|
61 |
+
can also be a pole of a(x). We say that `a(x)` has a pole at
|
62 |
+
`\infty` if `a(\frac{1}{x})` has a pole at 0.
|
63 |
+
|
64 |
+
Every pole is associated with an order that is equal to the multiplicity
|
65 |
+
of its appearance as a root of `T(x)`. A pole is called a simple pole if
|
66 |
+
it has an order 1. Similarly, a pole is called a multiple pole if it has
|
67 |
+
an order `\ge` 2.
|
68 |
+
|
69 |
+
Necessary Conditions
|
70 |
+
====================
|
71 |
+
|
72 |
+
For a Riccati equation in its normal form,
|
73 |
+
|
74 |
+
.. math:: y' + y^2 = a(x)
|
75 |
+
|
76 |
+
we can define
|
77 |
+
|
78 |
+
a. A pole is called a movable pole if it is a pole of `y(x)` and is not
|
79 |
+
a pole of `a(x)`.
|
80 |
+
b. Similarly, a pole is called a non-movable pole if it is a pole of both
|
81 |
+
`y(x)` and `a(x)`.
|
82 |
+
|
83 |
+
Then, the algorithm states that a rational solution exists only if -
|
84 |
+
|
85 |
+
a. Every pole of `a(x)` must be either a simple pole or a multiple pole
|
86 |
+
of even order.
|
87 |
+
b. The valuation of `a(x)` at `\infty` must be even or be `\ge` 2.
|
88 |
+
|
89 |
+
This algorithm finds all possible rational solutions for the Riccati ODE.
|
90 |
+
If no rational solutions are found, it means that no rational solutions
|
91 |
+
exist.
|
92 |
+
|
93 |
+
The algorithm works for Riccati ODEs where the coefficients are rational
|
94 |
+
functions in the independent variable `x` with rational number coefficients
|
95 |
+
i.e. in `Q(x)`. The coefficients in the rational function cannot be floats,
|
96 |
+
irrational numbers, symbols or any other kind of expression. The reasons
|
97 |
+
for this are -
|
98 |
+
|
99 |
+
1. When using symbols, different symbols could take the same value and this
|
100 |
+
would affect the multiplicity of poles if symbols are present here.
|
101 |
+
|
102 |
+
2. An integer degree bound is required to calculate a polynomial solution
|
103 |
+
to an auxiliary differential equation, which in turn gives the particular
|
104 |
+
solution for the original ODE. If symbols/floats/irrational numbers are
|
105 |
+
present, we cannot determine if the expression for the degree bound is an
|
106 |
+
integer or not.
|
107 |
+
|
108 |
+
Solution
|
109 |
+
========
|
110 |
+
|
111 |
+
With these definitions, we can state a general form for the solution of
|
112 |
+
the equation. `y(x)` must have the form -
|
113 |
+
|
114 |
+
.. math:: y(x) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \frac{c_{ij}}{(x - x_i)^j} + \sum_{i=1}^{m} \frac{1}{x - \chi_i} + \sum_{i=0}^{N} d_i x^i
|
115 |
+
|
116 |
+
where `x_1, x_2, \dots, x_n` are non-movable poles of `a(x)`,
|
117 |
+
`\chi_1, \chi_2, \dots, \chi_m` are movable poles of `a(x)`, and the values
|
118 |
+
of `N, n, r_1, r_2, \dots, r_n` can be determined from `a(x)`. The
|
119 |
+
coefficient vectors `(d_0, d_1, \dots, d_N)` and `(c_{i1}, c_{i2}, \dots, c_{i r_i})`
|
120 |
+
can be determined from `a(x)`. We will have 2 choices each of these vectors
|
121 |
+
and part of the procedure is figuring out which of the 2 should be used
|
122 |
+
to get the solution correctly.
|
123 |
+
|
124 |
+
Implementation
|
125 |
+
==============
|
126 |
+
|
127 |
+
In this implementation, we use ``Poly`` to represent a rational function
|
128 |
+
rather than using ``Expr`` since ``Poly`` is much faster. Since we cannot
|
129 |
+
represent rational functions directly using ``Poly``, we instead represent
|
130 |
+
a rational function with 2 ``Poly`` objects - one for its numerator and
|
131 |
+
the other for its denominator.
|
132 |
+
|
133 |
+
The code is written to match the steps given in the thesis (Pg 82)
|
134 |
+
|
135 |
+
Step 0 : Match the equation -
|
136 |
+
Find `b_0, b_1` and `b_2`. If `b_2 = 0` or no such functions exist, raise
|
137 |
+
an error
|
138 |
+
|
139 |
+
Step 1 : Transform the equation to its normal form as explained in the
|
140 |
+
theory section.
|
141 |
+
|
142 |
+
Step 2 : Initialize an empty set of solutions, ``sol``.
|
143 |
+
|
144 |
+
Step 3 : If `a(x) = 0`, append `\frac{1}/{(x - C1)}` to ``sol``.
|
145 |
+
|
146 |
+
Step 4 : If `a(x)` is a rational non-zero number, append `\pm \sqrt{a}`
|
147 |
+
to ``sol``.
|
148 |
+
|
149 |
+
Step 5 : Find the poles and their multiplicities of `a(x)`. Let
|
150 |
+
the number of poles be `n`. Also find the valuation of `a(x)` at
|
151 |
+
`\infty` using ``val_at_inf``.
|
152 |
+
|
153 |
+
NOTE: Although the algorithm considers `\infty` as a pole, it is
|
154 |
+
not mentioned if it a part of the set of finite poles. `\infty`
|
155 |
+
is NOT a part of the set of finite poles. If a pole exists at
|
156 |
+
`\infty`, we use its multiplicity to find the laurent series of
|
157 |
+
`a(x)` about `\infty`.
|
158 |
+
|
159 |
+
Step 6 : Find `n` c-vectors (one for each pole) and 1 d-vector using
|
160 |
+
``construct_c`` and ``construct_d``. Now, determine all the ``2**(n + 1)``
|
161 |
+
combinations of choosing between 2 choices for each of the `n` c-vectors
|
162 |
+
and 1 d-vector.
|
163 |
+
|
164 |
+
NOTE: The equation for `d_{-1}` in Case 4 (Pg 80) has a printinig
|
165 |
+
mistake. The term `- d_N` must be replaced with `-N d_N`. The same
|
166 |
+
has been explained in the code as well.
|
167 |
+
|
168 |
+
For each of these above combinations, do
|
169 |
+
|
170 |
+
Step 8 : Compute `m` in ``compute_m_ybar``. `m` is the degree bound of
|
171 |
+
the polynomial solution we must find for the auxiliary equation.
|
172 |
+
|
173 |
+
Step 9 : In ``compute_m_ybar``, compute ybar as well where ``ybar`` is
|
174 |
+
one part of y(x) -
|
175 |
+
|
176 |
+
.. math:: \overline{y}(x) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \frac{c_{ij}}{(x - x_i)^j} + \sum_{i=0}^{N} d_i x^i
|
177 |
+
|
178 |
+
Step 10 : If `m` is a non-negative integer -
|
179 |
+
|
180 |
+
Step 11: Find a polynomial solution of degree `m` for the auxiliary equation.
|
181 |
+
|
182 |
+
There are 2 cases possible -
|
183 |
+
|
184 |
+
a. `m` is a non-negative integer: We can solve for the coefficients
|
185 |
+
in `p(x)` using Undetermined Coefficients.
|
186 |
+
|
187 |
+
b. `m` is not a non-negative integer: In this case, we cannot find
|
188 |
+
a polynomial solution to the auxiliary equation, and hence, we ignore
|
189 |
+
this value of `m`.
|
190 |
+
|
191 |
+
Step 12 : For each `p(x)` that exists, append `ybar + \frac{p'(x)}{p(x)}`
|
192 |
+
to ``sol``.
|
193 |
+
|
194 |
+
Step 13 : For each solution in ``sol``, apply an inverse transformation,
|
195 |
+
so that the solutions of the original equation are found using the
|
196 |
+
solutions of the equation in its normal form.
|
197 |
+
"""
|
198 |
+
|
199 |
+
|
200 |
+
from itertools import product
|
201 |
+
from sympy.core import S
|
202 |
+
from sympy.core.add import Add
|
203 |
+
from sympy.core.numbers import oo, Float
|
204 |
+
from sympy.core.function import count_ops
|
205 |
+
from sympy.core.relational import Eq
|
206 |
+
from sympy.core.symbol import symbols, Symbol, Dummy
|
207 |
+
from sympy.functions import sqrt, exp
|
208 |
+
from sympy.functions.elementary.complexes import sign
|
209 |
+
from sympy.integrals.integrals import Integral
|
210 |
+
from sympy.polys.domains import ZZ
|
211 |
+
from sympy.polys.polytools import Poly
|
212 |
+
from sympy.polys.polyroots import roots
|
213 |
+
from sympy.solvers.solveset import linsolve
|
214 |
+
|
215 |
+
|
216 |
+
def riccati_normal(w, x, b1, b2):
|
217 |
+
"""
|
218 |
+
Given a solution `w(x)` to the equation
|
219 |
+
|
220 |
+
.. math:: w'(x) = b_0(x) + b_1(x)*w(x) + b_2(x)*w(x)^2
|
221 |
+
|
222 |
+
and rational function coefficients `b_1(x)` and
|
223 |
+
`b_2(x)`, this function transforms the solution to
|
224 |
+
give a solution `y(x)` for its corresponding normal
|
225 |
+
Riccati ODE
|
226 |
+
|
227 |
+
.. math:: y'(x) + y(x)^2 = a(x)
|
228 |
+
|
229 |
+
using the transformation
|
230 |
+
|
231 |
+
.. math:: y(x) = -b_2(x)*w(x) - b'_2(x)/(2*b_2(x)) - b_1(x)/2
|
232 |
+
"""
|
233 |
+
return -b2*w - b2.diff(x)/(2*b2) - b1/2
|
234 |
+
|
235 |
+
|
236 |
+
def riccati_inverse_normal(y, x, b1, b2, bp=None):
|
237 |
+
"""
|
238 |
+
Inverse transforming the solution to the normal
|
239 |
+
Riccati ODE to get the solution to the Riccati ODE.
|
240 |
+
"""
|
241 |
+
# bp is the expression which is independent of the solution
|
242 |
+
# and hence, it need not be computed again
|
243 |
+
if bp is None:
|
244 |
+
bp = -b2.diff(x)/(2*b2**2) - b1/(2*b2)
|
245 |
+
# w(x) = -y(x)/b2(x) - b2'(x)/(2*b2(x)^2) - b1(x)/(2*b2(x))
|
246 |
+
return -y/b2 + bp
|
247 |
+
|
248 |
+
|
249 |
+
def riccati_reduced(eq, f, x):
|
250 |
+
"""
|
251 |
+
Convert a Riccati ODE into its corresponding
|
252 |
+
normal Riccati ODE.
|
253 |
+
"""
|
254 |
+
match, funcs = match_riccati(eq, f, x)
|
255 |
+
# If equation is not a Riccati ODE, exit
|
256 |
+
if not match:
|
257 |
+
return False
|
258 |
+
# Using the rational functions, find the expression for a(x)
|
259 |
+
b0, b1, b2 = funcs
|
260 |
+
a = -b0*b2 + b1**2/4 - b1.diff(x)/2 + 3*b2.diff(x)**2/(4*b2**2) + b1*b2.diff(x)/(2*b2) - \
|
261 |
+
b2.diff(x, 2)/(2*b2)
|
262 |
+
# Normal form of Riccati ODE is f'(x) + f(x)^2 = a(x)
|
263 |
+
return f(x).diff(x) + f(x)**2 - a
|
264 |
+
|
265 |
+
def linsolve_dict(eq, syms):
|
266 |
+
"""
|
267 |
+
Get the output of linsolve as a dict
|
268 |
+
"""
|
269 |
+
# Convert tuple type return value of linsolve
|
270 |
+
# to a dictionary for ease of use
|
271 |
+
sol = linsolve(eq, syms)
|
272 |
+
if not sol:
|
273 |
+
return {}
|
274 |
+
return {k:v for k, v in zip(syms, list(sol)[0])}
|
275 |
+
|
276 |
+
|
277 |
+
def match_riccati(eq, f, x):
|
278 |
+
"""
|
279 |
+
A function that matches and returns the coefficients
|
280 |
+
if an equation is a Riccati ODE
|
281 |
+
|
282 |
+
Parameters
|
283 |
+
==========
|
284 |
+
|
285 |
+
eq: Equation to be matched
|
286 |
+
f: Dependent variable
|
287 |
+
x: Independent variable
|
288 |
+
|
289 |
+
Returns
|
290 |
+
=======
|
291 |
+
|
292 |
+
match: True if equation is a Riccati ODE, False otherwise
|
293 |
+
funcs: [b0, b1, b2] if match is True, [] otherwise. Here,
|
294 |
+
b0, b1 and b2 are rational functions which match the equation.
|
295 |
+
"""
|
296 |
+
# Group terms based on f(x)
|
297 |
+
if isinstance(eq, Eq):
|
298 |
+
eq = eq.lhs - eq.rhs
|
299 |
+
eq = eq.expand().collect(f(x))
|
300 |
+
cf = eq.coeff(f(x).diff(x))
|
301 |
+
|
302 |
+
# There must be an f(x).diff(x) term.
|
303 |
+
# eq must be an Add object since we are using the expanded
|
304 |
+
# equation and it must have atleast 2 terms (b2 != 0)
|
305 |
+
if cf != 0 and isinstance(eq, Add):
|
306 |
+
|
307 |
+
# Divide all coefficients by the coefficient of f(x).diff(x)
|
308 |
+
# and add the terms again to get the same equation
|
309 |
+
eq = Add(*((x/cf).cancel() for x in eq.args)).collect(f(x))
|
310 |
+
|
311 |
+
# Match the equation with the pattern
|
312 |
+
b1 = -eq.coeff(f(x))
|
313 |
+
b2 = -eq.coeff(f(x)**2)
|
314 |
+
b0 = (f(x).diff(x) - b1*f(x) - b2*f(x)**2 - eq).expand()
|
315 |
+
funcs = [b0, b1, b2]
|
316 |
+
|
317 |
+
# Check if coefficients are not symbols and floats
|
318 |
+
if any(len(x.atoms(Symbol)) > 1 or len(x.atoms(Float)) for x in funcs):
|
319 |
+
return False, []
|
320 |
+
|
321 |
+
# If b_0(x) contains f(x), it is not a Riccati ODE
|
322 |
+
if len(b0.atoms(f)) or not all((b2 != 0, b0.is_rational_function(x),
|
323 |
+
b1.is_rational_function(x), b2.is_rational_function(x))):
|
324 |
+
return False, []
|
325 |
+
return True, funcs
|
326 |
+
return False, []
|
327 |
+
|
328 |
+
|
329 |
+
def val_at_inf(num, den, x):
|
330 |
+
# Valuation of a rational function at oo = deg(denom) - deg(numer)
|
331 |
+
return den.degree(x) - num.degree(x)
|
332 |
+
|
333 |
+
|
334 |
+
def check_necessary_conds(val_inf, muls):
|
335 |
+
"""
|
336 |
+
The necessary conditions for a rational solution
|
337 |
+
to exist are as follows -
|
338 |
+
|
339 |
+
i) Every pole of a(x) must be either a simple pole
|
340 |
+
or a multiple pole of even order.
|
341 |
+
|
342 |
+
ii) The valuation of a(x) at infinity must be even
|
343 |
+
or be greater than or equal to 2.
|
344 |
+
|
345 |
+
Here, a simple pole is a pole with multiplicity 1
|
346 |
+
and a multiple pole is a pole with multiplicity
|
347 |
+
greater than 1.
|
348 |
+
"""
|
349 |
+
return (val_inf >= 2 or (val_inf <= 0 and val_inf%2 == 0)) and \
|
350 |
+
all(mul == 1 or (mul%2 == 0 and mul >= 2) for mul in muls)
|
351 |
+
|
352 |
+
|
353 |
+
def inverse_transform_poly(num, den, x):
|
354 |
+
"""
|
355 |
+
A function to make the substitution
|
356 |
+
x -> 1/x in a rational function that
|
357 |
+
is represented using Poly objects for
|
358 |
+
numerator and denominator.
|
359 |
+
"""
|
360 |
+
# Declare for reuse
|
361 |
+
one = Poly(1, x)
|
362 |
+
xpoly = Poly(x, x)
|
363 |
+
|
364 |
+
# Check if degree of numerator is same as denominator
|
365 |
+
pwr = val_at_inf(num, den, x)
|
366 |
+
if pwr >= 0:
|
367 |
+
# Denominator has greater degree. Substituting x with
|
368 |
+
# 1/x would make the extra power go to the numerator
|
369 |
+
if num.expr != 0:
|
370 |
+
num = num.transform(one, xpoly) * x**pwr
|
371 |
+
den = den.transform(one, xpoly)
|
372 |
+
else:
|
373 |
+
# Numerator has greater degree. Substituting x with
|
374 |
+
# 1/x would make the extra power go to the denominator
|
375 |
+
num = num.transform(one, xpoly)
|
376 |
+
den = den.transform(one, xpoly) * x**(-pwr)
|
377 |
+
return num.cancel(den, include=True)
|
378 |
+
|
379 |
+
|
380 |
+
def limit_at_inf(num, den, x):
|
381 |
+
"""
|
382 |
+
Find the limit of a rational function
|
383 |
+
at oo
|
384 |
+
"""
|
385 |
+
# pwr = degree(num) - degree(den)
|
386 |
+
pwr = -val_at_inf(num, den, x)
|
387 |
+
# Numerator has a greater degree than denominator
|
388 |
+
# Limit at infinity would depend on the sign of the
|
389 |
+
# leading coefficients of numerator and denominator
|
390 |
+
if pwr > 0:
|
391 |
+
return oo*sign(num.LC()/den.LC())
|
392 |
+
# Degree of numerator is equal to that of denominator
|
393 |
+
# Limit at infinity is just the ratio of leading coeffs
|
394 |
+
elif pwr == 0:
|
395 |
+
return num.LC()/den.LC()
|
396 |
+
# Degree of numerator is less than that of denominator
|
397 |
+
# Limit at infinity is just 0
|
398 |
+
else:
|
399 |
+
return 0
|
400 |
+
|
401 |
+
|
402 |
+
def construct_c_case_1(num, den, x, pole):
|
403 |
+
# Find the coefficient of 1/(x - pole)**2 in the
|
404 |
+
# Laurent series expansion of a(x) about pole.
|
405 |
+
num1, den1 = (num*Poly((x - pole)**2, x, extension=True)).cancel(den, include=True)
|
406 |
+
r = (num1.subs(x, pole))/(den1.subs(x, pole))
|
407 |
+
|
408 |
+
# If multiplicity is 2, the coefficient to be added
|
409 |
+
# in the c-vector is c = (1 +- sqrt(1 + 4*r))/2
|
410 |
+
if r != -S(1)/4:
|
411 |
+
return [[(1 + sqrt(1 + 4*r))/2], [(1 - sqrt(1 + 4*r))/2]]
|
412 |
+
return [[S.Half]]
|
413 |
+
|
414 |
+
|
415 |
+
def construct_c_case_2(num, den, x, pole, mul):
|
416 |
+
# Generate the coefficients using the recurrence
|
417 |
+
# relation mentioned in (5.14) in the thesis (Pg 80)
|
418 |
+
|
419 |
+
# r_i = mul/2
|
420 |
+
ri = mul//2
|
421 |
+
|
422 |
+
# Find the Laurent series coefficients about the pole
|
423 |
+
ser = rational_laurent_series(num, den, x, pole, mul, 6)
|
424 |
+
|
425 |
+
# Start with an empty memo to store the coefficients
|
426 |
+
# This is for the plus case
|
427 |
+
cplus = [0 for i in range(ri)]
|
428 |
+
|
429 |
+
# Base Case
|
430 |
+
cplus[ri-1] = sqrt(ser[2*ri])
|
431 |
+
|
432 |
+
# Iterate backwards to find all coefficients
|
433 |
+
s = ri - 1
|
434 |
+
sm = 0
|
435 |
+
for s in range(ri-1, 0, -1):
|
436 |
+
sm = 0
|
437 |
+
for j in range(s+1, ri):
|
438 |
+
sm += cplus[j-1]*cplus[ri+s-j-1]
|
439 |
+
if s!= 1:
|
440 |
+
cplus[s-1] = (ser[ri+s] - sm)/(2*cplus[ri-1])
|
441 |
+
|
442 |
+
# Memo for the minus case
|
443 |
+
cminus = [-x for x in cplus]
|
444 |
+
|
445 |
+
# Find the 0th coefficient in the recurrence
|
446 |
+
cplus[0] = (ser[ri+s] - sm - ri*cplus[ri-1])/(2*cplus[ri-1])
|
447 |
+
cminus[0] = (ser[ri+s] - sm - ri*cminus[ri-1])/(2*cminus[ri-1])
|
448 |
+
|
449 |
+
# Add both the plus and minus cases' coefficients
|
450 |
+
if cplus != cminus:
|
451 |
+
return [cplus, cminus]
|
452 |
+
return cplus
|
453 |
+
|
454 |
+
|
455 |
+
def construct_c_case_3():
|
456 |
+
# If multiplicity is 1, the coefficient to be added
|
457 |
+
# in the c-vector is 1 (no choice)
|
458 |
+
return [[1]]
|
459 |
+
|
460 |
+
|
461 |
+
def construct_c(num, den, x, poles, muls):
|
462 |
+
"""
|
463 |
+
Helper function to calculate the coefficients
|
464 |
+
in the c-vector for each pole.
|
465 |
+
"""
|
466 |
+
c = []
|
467 |
+
for pole, mul in zip(poles, muls):
|
468 |
+
c.append([])
|
469 |
+
|
470 |
+
# Case 3
|
471 |
+
if mul == 1:
|
472 |
+
# Add the coefficients from Case 3
|
473 |
+
c[-1].extend(construct_c_case_3())
|
474 |
+
|
475 |
+
# Case 1
|
476 |
+
elif mul == 2:
|
477 |
+
# Add the coefficients from Case 1
|
478 |
+
c[-1].extend(construct_c_case_1(num, den, x, pole))
|
479 |
+
|
480 |
+
# Case 2
|
481 |
+
else:
|
482 |
+
# Add the coefficients from Case 2
|
483 |
+
c[-1].extend(construct_c_case_2(num, den, x, pole, mul))
|
484 |
+
|
485 |
+
return c
|
486 |
+
|
487 |
+
|
488 |
+
def construct_d_case_4(ser, N):
|
489 |
+
# Initialize an empty vector
|
490 |
+
dplus = [0 for i in range(N+2)]
|
491 |
+
# d_N = sqrt(a_{2*N})
|
492 |
+
dplus[N] = sqrt(ser[2*N])
|
493 |
+
|
494 |
+
# Use the recurrence relations to find
|
495 |
+
# the value of d_s
|
496 |
+
for s in range(N-1, -2, -1):
|
497 |
+
sm = 0
|
498 |
+
for j in range(s+1, N):
|
499 |
+
sm += dplus[j]*dplus[N+s-j]
|
500 |
+
if s != -1:
|
501 |
+
dplus[s] = (ser[N+s] - sm)/(2*dplus[N])
|
502 |
+
|
503 |
+
# Coefficients for the case of d_N = -sqrt(a_{2*N})
|
504 |
+
dminus = [-x for x in dplus]
|
505 |
+
|
506 |
+
# The third equation in Eq 5.15 of the thesis is WRONG!
|
507 |
+
# d_N must be replaced with N*d_N in that equation.
|
508 |
+
dplus[-1] = (ser[N+s] - N*dplus[N] - sm)/(2*dplus[N])
|
509 |
+
dminus[-1] = (ser[N+s] - N*dminus[N] - sm)/(2*dminus[N])
|
510 |
+
|
511 |
+
if dplus != dminus:
|
512 |
+
return [dplus, dminus]
|
513 |
+
return dplus
|
514 |
+
|
515 |
+
|
516 |
+
def construct_d_case_5(ser):
|
517 |
+
# List to store coefficients for plus case
|
518 |
+
dplus = [0, 0]
|
519 |
+
|
520 |
+
# d_0 = sqrt(a_0)
|
521 |
+
dplus[0] = sqrt(ser[0])
|
522 |
+
|
523 |
+
# d_(-1) = a_(-1)/(2*d_0)
|
524 |
+
dplus[-1] = ser[-1]/(2*dplus[0])
|
525 |
+
|
526 |
+
# Coefficients for the minus case are just the negative
|
527 |
+
# of the coefficients for the positive case.
|
528 |
+
dminus = [-x for x in dplus]
|
529 |
+
|
530 |
+
if dplus != dminus:
|
531 |
+
return [dplus, dminus]
|
532 |
+
return dplus
|
533 |
+
|
534 |
+
|
535 |
+
def construct_d_case_6(num, den, x):
|
536 |
+
# s_oo = lim x->0 1/x**2 * a(1/x) which is equivalent to
|
537 |
+
# s_oo = lim x->oo x**2 * a(x)
|
538 |
+
s_inf = limit_at_inf(Poly(x**2, x)*num, den, x)
|
539 |
+
|
540 |
+
# d_(-1) = (1 +- sqrt(1 + 4*s_oo))/2
|
541 |
+
if s_inf != -S(1)/4:
|
542 |
+
return [[(1 + sqrt(1 + 4*s_inf))/2], [(1 - sqrt(1 + 4*s_inf))/2]]
|
543 |
+
return [[S.Half]]
|
544 |
+
|
545 |
+
|
546 |
+
def construct_d(num, den, x, val_inf):
|
547 |
+
"""
|
548 |
+
Helper function to calculate the coefficients
|
549 |
+
in the d-vector based on the valuation of the
|
550 |
+
function at oo.
|
551 |
+
"""
|
552 |
+
N = -val_inf//2
|
553 |
+
# Multiplicity of oo as a pole
|
554 |
+
mul = -val_inf if val_inf < 0 else 0
|
555 |
+
ser = rational_laurent_series(num, den, x, oo, mul, 1)
|
556 |
+
|
557 |
+
# Case 4
|
558 |
+
if val_inf < 0:
|
559 |
+
d = construct_d_case_4(ser, N)
|
560 |
+
|
561 |
+
# Case 5
|
562 |
+
elif val_inf == 0:
|
563 |
+
d = construct_d_case_5(ser)
|
564 |
+
|
565 |
+
# Case 6
|
566 |
+
else:
|
567 |
+
d = construct_d_case_6(num, den, x)
|
568 |
+
|
569 |
+
return d
|
570 |
+
|
571 |
+
|
572 |
+
def rational_laurent_series(num, den, x, r, m, n):
|
573 |
+
r"""
|
574 |
+
The function computes the Laurent series coefficients
|
575 |
+
of a rational function.
|
576 |
+
|
577 |
+
Parameters
|
578 |
+
==========
|
579 |
+
|
580 |
+
num: A Poly object that is the numerator of `f(x)`.
|
581 |
+
den: A Poly object that is the denominator of `f(x)`.
|
582 |
+
x: The variable of expansion of the series.
|
583 |
+
r: The point of expansion of the series.
|
584 |
+
m: Multiplicity of r if r is a pole of `f(x)`. Should
|
585 |
+
be zero otherwise.
|
586 |
+
n: Order of the term upto which the series is expanded.
|
587 |
+
|
588 |
+
Returns
|
589 |
+
=======
|
590 |
+
|
591 |
+
series: A dictionary that has power of the term as key
|
592 |
+
and coefficient of that term as value.
|
593 |
+
|
594 |
+
Below is a basic outline of how the Laurent series of a
|
595 |
+
rational function `f(x)` about `x_0` is being calculated -
|
596 |
+
|
597 |
+
1. Substitute `x + x_0` in place of `x`. If `x_0`
|
598 |
+
is a pole of `f(x)`, multiply the expression by `x^m`
|
599 |
+
where `m` is the multiplicity of `x_0`. Denote the
|
600 |
+
the resulting expression as g(x). We do this substitution
|
601 |
+
so that we can now find the Laurent series of g(x) about
|
602 |
+
`x = 0`.
|
603 |
+
|
604 |
+
2. We can then assume that the Laurent series of `g(x)`
|
605 |
+
takes the following form -
|
606 |
+
|
607 |
+
.. math:: g(x) = \frac{num(x)}{den(x)} = \sum_{m = 0}^{\infty} a_m x^m
|
608 |
+
|
609 |
+
where `a_m` denotes the Laurent series coefficients.
|
610 |
+
|
611 |
+
3. Multiply the denominator to the RHS of the equation
|
612 |
+
and form a recurrence relation for the coefficients `a_m`.
|
613 |
+
"""
|
614 |
+
one = Poly(1, x, extension=True)
|
615 |
+
|
616 |
+
if r == oo:
|
617 |
+
# Series at x = oo is equal to first transforming
|
618 |
+
# the function from x -> 1/x and finding the
|
619 |
+
# series at x = 0
|
620 |
+
num, den = inverse_transform_poly(num, den, x)
|
621 |
+
r = S(0)
|
622 |
+
|
623 |
+
if r:
|
624 |
+
# For an expansion about a non-zero point, a
|
625 |
+
# transformation from x -> x + r must be made
|
626 |
+
num = num.transform(Poly(x + r, x, extension=True), one)
|
627 |
+
den = den.transform(Poly(x + r, x, extension=True), one)
|
628 |
+
|
629 |
+
# Remove the pole from the denominator if the series
|
630 |
+
# expansion is about one of the poles
|
631 |
+
num, den = (num*x**m).cancel(den, include=True)
|
632 |
+
|
633 |
+
# Equate coefficients for the first terms (base case)
|
634 |
+
maxdegree = 1 + max(num.degree(), den.degree())
|
635 |
+
syms = symbols(f'a:{maxdegree}', cls=Dummy)
|
636 |
+
diff = num - den * Poly(syms[::-1], x)
|
637 |
+
coeff_diffs = diff.all_coeffs()[::-1][:maxdegree]
|
638 |
+
(coeffs, ) = linsolve(coeff_diffs, syms)
|
639 |
+
|
640 |
+
# Use the recursion relation for the rest
|
641 |
+
recursion = den.all_coeffs()[::-1]
|
642 |
+
div, rec_rhs = recursion[0], recursion[1:]
|
643 |
+
series = list(coeffs)
|
644 |
+
while len(series) < n:
|
645 |
+
next_coeff = Add(*(c*series[-1-n] for n, c in enumerate(rec_rhs))) / div
|
646 |
+
series.append(-next_coeff)
|
647 |
+
series = {m - i: val for i, val in enumerate(series)}
|
648 |
+
return series
|
649 |
+
|
650 |
+
def compute_m_ybar(x, poles, choice, N):
|
651 |
+
"""
|
652 |
+
Helper function to calculate -
|
653 |
+
|
654 |
+
1. m - The degree bound for the polynomial
|
655 |
+
solution that must be found for the auxiliary
|
656 |
+
differential equation.
|
657 |
+
|
658 |
+
2. ybar - Part of the solution which can be
|
659 |
+
computed using the poles, c and d vectors.
|
660 |
+
"""
|
661 |
+
ybar = 0
|
662 |
+
m = Poly(choice[-1][-1], x, extension=True)
|
663 |
+
|
664 |
+
# Calculate the first (nested) summation for ybar
|
665 |
+
# as given in Step 9 of the Thesis (Pg 82)
|
666 |
+
dybar = []
|
667 |
+
for i, polei in enumerate(poles):
|
668 |
+
for j, cij in enumerate(choice[i]):
|
669 |
+
dybar.append(cij/(x - polei)**(j + 1))
|
670 |
+
m -=Poly(choice[i][0], x, extension=True) # can't accumulate Poly and use with Add
|
671 |
+
ybar += Add(*dybar)
|
672 |
+
|
673 |
+
# Calculate the second summation for ybar
|
674 |
+
for i in range(N+1):
|
675 |
+
ybar += choice[-1][i]*x**i
|
676 |
+
return (m.expr, ybar)
|
677 |
+
|
678 |
+
|
679 |
+
def solve_aux_eq(numa, dena, numy, deny, x, m):
|
680 |
+
"""
|
681 |
+
Helper function to find a polynomial solution
|
682 |
+
of degree m for the auxiliary differential
|
683 |
+
equation.
|
684 |
+
"""
|
685 |
+
# Assume that the solution is of the type
|
686 |
+
# p(x) = C_0 + C_1*x + ... + C_{m-1}*x**(m-1) + x**m
|
687 |
+
psyms = symbols(f'C0:{m}', cls=Dummy)
|
688 |
+
K = ZZ[psyms]
|
689 |
+
psol = Poly(K.gens, x, domain=K) + Poly(x**m, x, domain=K)
|
690 |
+
|
691 |
+
# Eq (5.16) in Thesis - Pg 81
|
692 |
+
auxeq = (dena*(numy.diff(x)*deny - numy*deny.diff(x) + numy**2) - numa*deny**2)*psol
|
693 |
+
if m >= 1:
|
694 |
+
px = psol.diff(x)
|
695 |
+
auxeq += px*(2*numy*deny*dena)
|
696 |
+
if m >= 2:
|
697 |
+
auxeq += px.diff(x)*(deny**2*dena)
|
698 |
+
if m != 0:
|
699 |
+
# m is a non-zero integer. Find the constant terms using undetermined coefficients
|
700 |
+
return psol, linsolve_dict(auxeq.all_coeffs(), psyms), True
|
701 |
+
else:
|
702 |
+
# m == 0 . Check if 1 (x**0) is a solution to the auxiliary equation
|
703 |
+
return S.One, auxeq, auxeq == 0
|
704 |
+
|
705 |
+
|
706 |
+
def remove_redundant_sols(sol1, sol2, x):
|
707 |
+
"""
|
708 |
+
Helper function to remove redundant
|
709 |
+
solutions to the differential equation.
|
710 |
+
"""
|
711 |
+
# If y1 and y2 are redundant solutions, there is
|
712 |
+
# some value of the arbitrary constant for which
|
713 |
+
# they will be equal
|
714 |
+
|
715 |
+
syms1 = sol1.atoms(Symbol, Dummy)
|
716 |
+
syms2 = sol2.atoms(Symbol, Dummy)
|
717 |
+
num1, den1 = [Poly(e, x, extension=True) for e in sol1.together().as_numer_denom()]
|
718 |
+
num2, den2 = [Poly(e, x, extension=True) for e in sol2.together().as_numer_denom()]
|
719 |
+
# Cross multiply
|
720 |
+
e = num1*den2 - den1*num2
|
721 |
+
# Check if there are any constants
|
722 |
+
syms = list(e.atoms(Symbol, Dummy))
|
723 |
+
if len(syms):
|
724 |
+
# Find values of constants for which solutions are equal
|
725 |
+
redn = linsolve(e.all_coeffs(), syms)
|
726 |
+
if len(redn):
|
727 |
+
# Return the general solution over a particular solution
|
728 |
+
if len(syms1) > len(syms2):
|
729 |
+
return sol2
|
730 |
+
# If both have constants, return the lesser complex solution
|
731 |
+
elif len(syms1) == len(syms2):
|
732 |
+
return sol1 if count_ops(syms1) >= count_ops(syms2) else sol2
|
733 |
+
else:
|
734 |
+
return sol1
|
735 |
+
|
736 |
+
|
737 |
+
def get_gen_sol_from_part_sol(part_sols, a, x):
|
738 |
+
""""
|
739 |
+
Helper function which computes the general
|
740 |
+
solution for a Riccati ODE from its particular
|
741 |
+
solutions.
|
742 |
+
|
743 |
+
There are 3 cases to find the general solution
|
744 |
+
from the particular solutions for a Riccati ODE
|
745 |
+
depending on the number of particular solution(s)
|
746 |
+
we have - 1, 2 or 3.
|
747 |
+
|
748 |
+
For more information, see Section 6 of
|
749 |
+
"Methods of Solution of the Riccati Differential Equation"
|
750 |
+
by D. R. Haaheim and F. M. Stein
|
751 |
+
"""
|
752 |
+
|
753 |
+
# If no particular solutions are found, a general
|
754 |
+
# solution cannot be found
|
755 |
+
if len(part_sols) == 0:
|
756 |
+
return []
|
757 |
+
|
758 |
+
# In case of a single particular solution, the general
|
759 |
+
# solution can be found by using the substitution
|
760 |
+
# y = y1 + 1/z and solving a Bernoulli ODE to find z.
|
761 |
+
elif len(part_sols) == 1:
|
762 |
+
y1 = part_sols[0]
|
763 |
+
i = exp(Integral(2*y1, x))
|
764 |
+
z = i * Integral(a/i, x)
|
765 |
+
z = z.doit()
|
766 |
+
if a == 0 or z == 0:
|
767 |
+
return y1
|
768 |
+
return y1 + 1/z
|
769 |
+
|
770 |
+
# In case of 2 particular solutions, the general solution
|
771 |
+
# can be found by solving a separable equation. This is
|
772 |
+
# the most common case, i.e. most Riccati ODEs have 2
|
773 |
+
# rational particular solutions.
|
774 |
+
elif len(part_sols) == 2:
|
775 |
+
y1, y2 = part_sols
|
776 |
+
# One of them already has a constant
|
777 |
+
if len(y1.atoms(Dummy)) + len(y2.atoms(Dummy)) > 0:
|
778 |
+
u = exp(Integral(y2 - y1, x)).doit()
|
779 |
+
# Introduce a constant
|
780 |
+
else:
|
781 |
+
C1 = Dummy('C1')
|
782 |
+
u = C1*exp(Integral(y2 - y1, x)).doit()
|
783 |
+
if u == 1:
|
784 |
+
return y2
|
785 |
+
return (y2*u - y1)/(u - 1)
|
786 |
+
|
787 |
+
# In case of 3 particular solutions, a closed form
|
788 |
+
# of the general solution can be obtained directly
|
789 |
+
else:
|
790 |
+
y1, y2, y3 = part_sols[:3]
|
791 |
+
C1 = Dummy('C1')
|
792 |
+
return (C1 + 1)*y2*(y1 - y3)/(C1*y1 + y2 - (C1 + 1)*y3)
|
793 |
+
|
794 |
+
|
795 |
+
def solve_riccati(fx, x, b0, b1, b2, gensol=False):
|
796 |
+
"""
|
797 |
+
The main function that gives particular/general
|
798 |
+
solutions to Riccati ODEs that have atleast 1
|
799 |
+
rational particular solution.
|
800 |
+
"""
|
801 |
+
# Step 1 : Convert to Normal Form
|
802 |
+
a = -b0*b2 + b1**2/4 - b1.diff(x)/2 + 3*b2.diff(x)**2/(4*b2**2) + b1*b2.diff(x)/(2*b2) - \
|
803 |
+
b2.diff(x, 2)/(2*b2)
|
804 |
+
a_t = a.together()
|
805 |
+
num, den = [Poly(e, x, extension=True) for e in a_t.as_numer_denom()]
|
806 |
+
num, den = num.cancel(den, include=True)
|
807 |
+
|
808 |
+
# Step 2
|
809 |
+
presol = []
|
810 |
+
|
811 |
+
# Step 3 : a(x) is 0
|
812 |
+
if num == 0:
|
813 |
+
presol.append(1/(x + Dummy('C1')))
|
814 |
+
|
815 |
+
# Step 4 : a(x) is a non-zero constant
|
816 |
+
elif x not in num.free_symbols.union(den.free_symbols):
|
817 |
+
presol.extend([sqrt(a), -sqrt(a)])
|
818 |
+
|
819 |
+
# Step 5 : Find poles and valuation at infinity
|
820 |
+
poles = roots(den, x)
|
821 |
+
poles, muls = list(poles.keys()), list(poles.values())
|
822 |
+
val_inf = val_at_inf(num, den, x)
|
823 |
+
|
824 |
+
if len(poles):
|
825 |
+
# Check necessary conditions (outlined in the module docstring)
|
826 |
+
if not check_necessary_conds(val_inf, muls):
|
827 |
+
raise ValueError("Rational Solution doesn't exist")
|
828 |
+
|
829 |
+
# Step 6
|
830 |
+
# Construct c-vectors for each singular point
|
831 |
+
c = construct_c(num, den, x, poles, muls)
|
832 |
+
|
833 |
+
# Construct d vectors for each singular point
|
834 |
+
d = construct_d(num, den, x, val_inf)
|
835 |
+
|
836 |
+
# Step 7 : Iterate over all possible combinations and return solutions
|
837 |
+
# For each possible combination, generate an array of 0's and 1's
|
838 |
+
# where 0 means pick 1st choice and 1 means pick the second choice.
|
839 |
+
|
840 |
+
# NOTE: We could exit from the loop if we find 3 particular solutions,
|
841 |
+
# but it is not implemented here as -
|
842 |
+
# a. Finding 3 particular solutions is very rare. Most of the time,
|
843 |
+
# only 2 particular solutions are found.
|
844 |
+
# b. In case we exit after finding 3 particular solutions, it might
|
845 |
+
# happen that 1 or 2 of them are redundant solutions. So, instead of
|
846 |
+
# spending some more time in computing the particular solutions,
|
847 |
+
# we will end up computing the general solution from a single
|
848 |
+
# particular solution which is usually slower than computing the
|
849 |
+
# general solution from 2 or 3 particular solutions.
|
850 |
+
c.append(d)
|
851 |
+
choices = product(*c)
|
852 |
+
for choice in choices:
|
853 |
+
m, ybar = compute_m_ybar(x, poles, choice, -val_inf//2)
|
854 |
+
numy, deny = [Poly(e, x, extension=True) for e in ybar.together().as_numer_denom()]
|
855 |
+
# Step 10 : Check if a valid solution exists. If yes, also check
|
856 |
+
# if m is a non-negative integer
|
857 |
+
if m.is_nonnegative == True and m.is_integer == True:
|
858 |
+
|
859 |
+
# Step 11 : Find polynomial solutions of degree m for the auxiliary equation
|
860 |
+
psol, coeffs, exists = solve_aux_eq(num, den, numy, deny, x, m)
|
861 |
+
|
862 |
+
# Step 12 : If valid polynomial solution exists, append solution.
|
863 |
+
if exists:
|
864 |
+
# m == 0 case
|
865 |
+
if psol == 1 and coeffs == 0:
|
866 |
+
# p(x) = 1, so p'(x)/p(x) term need not be added
|
867 |
+
presol.append(ybar)
|
868 |
+
# m is a positive integer and there are valid coefficients
|
869 |
+
elif len(coeffs):
|
870 |
+
# Substitute the valid coefficients to get p(x)
|
871 |
+
psol = psol.xreplace(coeffs)
|
872 |
+
# y(x) = ybar(x) + p'(x)/p(x)
|
873 |
+
presol.append(ybar + psol.diff(x)/psol)
|
874 |
+
|
875 |
+
# Remove redundant solutions from the list of existing solutions
|
876 |
+
remove = set()
|
877 |
+
for i in range(len(presol)):
|
878 |
+
for j in range(i+1, len(presol)):
|
879 |
+
rem = remove_redundant_sols(presol[i], presol[j], x)
|
880 |
+
if rem is not None:
|
881 |
+
remove.add(rem)
|
882 |
+
sols = [x for x in presol if x not in remove]
|
883 |
+
|
884 |
+
# Step 15 : Inverse transform the solutions of the equation in normal form
|
885 |
+
bp = -b2.diff(x)/(2*b2**2) - b1/(2*b2)
|
886 |
+
|
887 |
+
# If general solution is required, compute it from the particular solutions
|
888 |
+
if gensol:
|
889 |
+
sols = [get_gen_sol_from_part_sol(sols, a, x)]
|
890 |
+
|
891 |
+
# Inverse transform the particular solutions
|
892 |
+
presol = [Eq(fx, riccati_inverse_normal(y, x, b1, b2, bp).cancel(extension=True)) for y in sols]
|
893 |
+
return presol
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/single.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/subscheck.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, Pow
|
2 |
+
from sympy.core.function import (Derivative, AppliedUndef, diff)
|
3 |
+
from sympy.core.relational import Equality, Eq
|
4 |
+
from sympy.core.symbol import Dummy
|
5 |
+
from sympy.core.sympify import sympify
|
6 |
+
|
7 |
+
from sympy.logic.boolalg import BooleanAtom
|
8 |
+
from sympy.functions import exp
|
9 |
+
from sympy.series import Order
|
10 |
+
from sympy.simplify.simplify import simplify, posify, besselsimp
|
11 |
+
from sympy.simplify.trigsimp import trigsimp
|
12 |
+
from sympy.simplify.sqrtdenest import sqrtdenest
|
13 |
+
from sympy.solvers import solve
|
14 |
+
from sympy.solvers.deutils import _preprocess, ode_order
|
15 |
+
from sympy.utilities.iterables import iterable, is_sequence
|
16 |
+
|
17 |
+
|
18 |
+
def sub_func_doit(eq, func, new):
|
19 |
+
r"""
|
20 |
+
When replacing the func with something else, we usually want the
|
21 |
+
derivative evaluated, so this function helps in making that happen.
|
22 |
+
|
23 |
+
Examples
|
24 |
+
========
|
25 |
+
|
26 |
+
>>> from sympy import Derivative, symbols, Function
|
27 |
+
>>> from sympy.solvers.ode.subscheck import sub_func_doit
|
28 |
+
>>> x, z = symbols('x, z')
|
29 |
+
>>> y = Function('y')
|
30 |
+
|
31 |
+
>>> sub_func_doit(3*Derivative(y(x), x) - 1, y(x), x)
|
32 |
+
2
|
33 |
+
|
34 |
+
>>> sub_func_doit(x*Derivative(y(x), x) - y(x)**2 + y(x), y(x),
|
35 |
+
... 1/(x*(z + 1/x)))
|
36 |
+
x*(-1/(x**2*(z + 1/x)) + 1/(x**3*(z + 1/x)**2)) + 1/(x*(z + 1/x))
|
37 |
+
...- 1/(x**2*(z + 1/x)**2)
|
38 |
+
"""
|
39 |
+
reps= {func: new}
|
40 |
+
for d in eq.atoms(Derivative):
|
41 |
+
if d.expr == func:
|
42 |
+
reps[d] = new.diff(*d.variable_count)
|
43 |
+
else:
|
44 |
+
reps[d] = d.xreplace({func: new}).doit(deep=False)
|
45 |
+
return eq.xreplace(reps)
|
46 |
+
|
47 |
+
|
48 |
+
def checkodesol(ode, sol, func=None, order='auto', solve_for_func=True):
|
49 |
+
r"""
|
50 |
+
Substitutes ``sol`` into ``ode`` and checks that the result is ``0``.
|
51 |
+
|
52 |
+
This works when ``func`` is one function, like `f(x)` or a list of
|
53 |
+
functions like `[f(x), g(x)]` when `ode` is a system of ODEs. ``sol`` can
|
54 |
+
be a single solution or a list of solutions. Each solution may be an
|
55 |
+
:py:class:`~sympy.core.relational.Equality` that the solution satisfies,
|
56 |
+
e.g. ``Eq(f(x), C1), Eq(f(x) + C1, 0)``; or simply an
|
57 |
+
:py:class:`~sympy.core.expr.Expr`, e.g. ``f(x) - C1``. In most cases it
|
58 |
+
will not be necessary to explicitly identify the function, but if the
|
59 |
+
function cannot be inferred from the original equation it can be supplied
|
60 |
+
through the ``func`` argument.
|
61 |
+
|
62 |
+
If a sequence of solutions is passed, the same sort of container will be
|
63 |
+
used to return the result for each solution.
|
64 |
+
|
65 |
+
It tries the following methods, in order, until it finds zero equivalence:
|
66 |
+
|
67 |
+
1. Substitute the solution for `f` in the original equation. This only
|
68 |
+
works if ``ode`` is solved for `f`. It will attempt to solve it first
|
69 |
+
unless ``solve_for_func == False``.
|
70 |
+
2. Take `n` derivatives of the solution, where `n` is the order of
|
71 |
+
``ode``, and check to see if that is equal to the solution. This only
|
72 |
+
works on exact ODEs.
|
73 |
+
3. Take the 1st, 2nd, ..., `n`\th derivatives of the solution, each time
|
74 |
+
solving for the derivative of `f` of that order (this will always be
|
75 |
+
possible because `f` is a linear operator). Then back substitute each
|
76 |
+
derivative into ``ode`` in reverse order.
|
77 |
+
|
78 |
+
This function returns a tuple. The first item in the tuple is ``True`` if
|
79 |
+
the substitution results in ``0``, and ``False`` otherwise. The second
|
80 |
+
item in the tuple is what the substitution results in. It should always
|
81 |
+
be ``0`` if the first item is ``True``. Sometimes this function will
|
82 |
+
return ``False`` even when an expression is identically equal to ``0``.
|
83 |
+
This happens when :py:meth:`~sympy.simplify.simplify.simplify` does not
|
84 |
+
reduce the expression to ``0``. If an expression returned by this
|
85 |
+
function vanishes identically, then ``sol`` really is a solution to
|
86 |
+
the ``ode``.
|
87 |
+
|
88 |
+
If this function seems to hang, it is probably because of a hard
|
89 |
+
simplification.
|
90 |
+
|
91 |
+
To use this function to test, test the first item of the tuple.
|
92 |
+
|
93 |
+
Examples
|
94 |
+
========
|
95 |
+
|
96 |
+
>>> from sympy import (Eq, Function, checkodesol, symbols,
|
97 |
+
... Derivative, exp)
|
98 |
+
>>> x, C1, C2 = symbols('x,C1,C2')
|
99 |
+
>>> f, g = symbols('f g', cls=Function)
|
100 |
+
>>> checkodesol(f(x).diff(x), Eq(f(x), C1))
|
101 |
+
(True, 0)
|
102 |
+
>>> assert checkodesol(f(x).diff(x), C1)[0]
|
103 |
+
>>> assert not checkodesol(f(x).diff(x), x)[0]
|
104 |
+
>>> checkodesol(f(x).diff(x, 2), x**2)
|
105 |
+
(False, 2)
|
106 |
+
|
107 |
+
>>> eqs = [Eq(Derivative(f(x), x), f(x)), Eq(Derivative(g(x), x), g(x))]
|
108 |
+
>>> sol = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))]
|
109 |
+
>>> checkodesol(eqs, sol)
|
110 |
+
(True, [0, 0])
|
111 |
+
|
112 |
+
"""
|
113 |
+
if iterable(ode):
|
114 |
+
return checksysodesol(ode, sol, func=func)
|
115 |
+
|
116 |
+
if not isinstance(ode, Equality):
|
117 |
+
ode = Eq(ode, 0)
|
118 |
+
if func is None:
|
119 |
+
try:
|
120 |
+
_, func = _preprocess(ode.lhs)
|
121 |
+
except ValueError:
|
122 |
+
funcs = [s.atoms(AppliedUndef) for s in (
|
123 |
+
sol if is_sequence(sol, set) else [sol])]
|
124 |
+
funcs = set().union(*funcs)
|
125 |
+
if len(funcs) != 1:
|
126 |
+
raise ValueError(
|
127 |
+
'must pass func arg to checkodesol for this case.')
|
128 |
+
func = funcs.pop()
|
129 |
+
if not isinstance(func, AppliedUndef) or len(func.args) != 1:
|
130 |
+
raise ValueError(
|
131 |
+
"func must be a function of one variable, not %s" % func)
|
132 |
+
if is_sequence(sol, set):
|
133 |
+
return type(sol)([checkodesol(ode, i, order=order, solve_for_func=solve_for_func) for i in sol])
|
134 |
+
|
135 |
+
if not isinstance(sol, Equality):
|
136 |
+
sol = Eq(func, sol)
|
137 |
+
elif sol.rhs == func:
|
138 |
+
sol = sol.reversed
|
139 |
+
|
140 |
+
if order == 'auto':
|
141 |
+
order = ode_order(ode, func)
|
142 |
+
solved = sol.lhs == func and not sol.rhs.has(func)
|
143 |
+
if solve_for_func and not solved:
|
144 |
+
rhs = solve(sol, func)
|
145 |
+
if rhs:
|
146 |
+
eqs = [Eq(func, t) for t in rhs]
|
147 |
+
if len(rhs) == 1:
|
148 |
+
eqs = eqs[0]
|
149 |
+
return checkodesol(ode, eqs, order=order,
|
150 |
+
solve_for_func=False)
|
151 |
+
|
152 |
+
x = func.args[0]
|
153 |
+
|
154 |
+
# Handle series solutions here
|
155 |
+
if sol.has(Order):
|
156 |
+
assert sol.lhs == func
|
157 |
+
Oterm = sol.rhs.getO()
|
158 |
+
solrhs = sol.rhs.removeO()
|
159 |
+
|
160 |
+
Oexpr = Oterm.expr
|
161 |
+
assert isinstance(Oexpr, Pow)
|
162 |
+
sorder = Oexpr.exp
|
163 |
+
assert Oterm == Order(x**sorder)
|
164 |
+
|
165 |
+
odesubs = (ode.lhs-ode.rhs).subs(func, solrhs).doit().expand()
|
166 |
+
|
167 |
+
neworder = Order(x**(sorder - order))
|
168 |
+
odesubs = odesubs + neworder
|
169 |
+
assert odesubs.getO() == neworder
|
170 |
+
residual = odesubs.removeO()
|
171 |
+
|
172 |
+
return (residual == 0, residual)
|
173 |
+
|
174 |
+
s = True
|
175 |
+
testnum = 0
|
176 |
+
while s:
|
177 |
+
if testnum == 0:
|
178 |
+
# First pass, try substituting a solved solution directly into the
|
179 |
+
# ODE. This has the highest chance of succeeding.
|
180 |
+
ode_diff = ode.lhs - ode.rhs
|
181 |
+
|
182 |
+
if sol.lhs == func:
|
183 |
+
s = sub_func_doit(ode_diff, func, sol.rhs)
|
184 |
+
s = besselsimp(s)
|
185 |
+
else:
|
186 |
+
testnum += 1
|
187 |
+
continue
|
188 |
+
ss = simplify(s.rewrite(exp))
|
189 |
+
if ss:
|
190 |
+
# with the new numer_denom in power.py, if we do a simple
|
191 |
+
# expansion then testnum == 0 verifies all solutions.
|
192 |
+
s = ss.expand(force=True)
|
193 |
+
else:
|
194 |
+
s = 0
|
195 |
+
testnum += 1
|
196 |
+
elif testnum == 1:
|
197 |
+
# Second pass. If we cannot substitute f, try seeing if the nth
|
198 |
+
# derivative is equal, this will only work for odes that are exact,
|
199 |
+
# by definition.
|
200 |
+
s = simplify(
|
201 |
+
trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) -
|
202 |
+
trigsimp(ode.lhs) + trigsimp(ode.rhs))
|
203 |
+
# s2 = simplify(
|
204 |
+
# diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \
|
205 |
+
# ode.lhs + ode.rhs)
|
206 |
+
testnum += 1
|
207 |
+
elif testnum == 2:
|
208 |
+
# Third pass. Try solving for df/dx and substituting that into the
|
209 |
+
# ODE. Thanks to Chris Smith for suggesting this method. Many of
|
210 |
+
# the comments below are his, too.
|
211 |
+
# The method:
|
212 |
+
# - Take each of 1..n derivatives of the solution.
|
213 |
+
# - Solve each nth derivative for d^(n)f/dx^(n)
|
214 |
+
# (the differential of that order)
|
215 |
+
# - Back substitute into the ODE in decreasing order
|
216 |
+
# (i.e., n, n-1, ...)
|
217 |
+
# - Check the result for zero equivalence
|
218 |
+
if sol.lhs == func and not sol.rhs.has(func):
|
219 |
+
diffsols = {0: sol.rhs}
|
220 |
+
elif sol.rhs == func and not sol.lhs.has(func):
|
221 |
+
diffsols = {0: sol.lhs}
|
222 |
+
else:
|
223 |
+
diffsols = {}
|
224 |
+
sol = sol.lhs - sol.rhs
|
225 |
+
for i in range(1, order + 1):
|
226 |
+
# Differentiation is a linear operator, so there should always
|
227 |
+
# be 1 solution. Nonetheless, we test just to make sure.
|
228 |
+
# We only need to solve once. After that, we automatically
|
229 |
+
# have the solution to the differential in the order we want.
|
230 |
+
if i == 1:
|
231 |
+
ds = sol.diff(x)
|
232 |
+
try:
|
233 |
+
sdf = solve(ds, func.diff(x, i))
|
234 |
+
if not sdf:
|
235 |
+
raise NotImplementedError
|
236 |
+
except NotImplementedError:
|
237 |
+
testnum += 1
|
238 |
+
break
|
239 |
+
else:
|
240 |
+
diffsols[i] = sdf[0]
|
241 |
+
else:
|
242 |
+
# This is what the solution says df/dx should be.
|
243 |
+
diffsols[i] = diffsols[i - 1].diff(x)
|
244 |
+
|
245 |
+
# Make sure the above didn't fail.
|
246 |
+
if testnum > 2:
|
247 |
+
continue
|
248 |
+
else:
|
249 |
+
# Substitute it into ODE to check for self consistency.
|
250 |
+
lhs, rhs = ode.lhs, ode.rhs
|
251 |
+
for i in range(order, -1, -1):
|
252 |
+
if i == 0 and 0 not in diffsols:
|
253 |
+
# We can only substitute f(x) if the solution was
|
254 |
+
# solved for f(x).
|
255 |
+
break
|
256 |
+
lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i])
|
257 |
+
rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i])
|
258 |
+
ode_or_bool = Eq(lhs, rhs)
|
259 |
+
ode_or_bool = simplify(ode_or_bool)
|
260 |
+
|
261 |
+
if isinstance(ode_or_bool, (bool, BooleanAtom)):
|
262 |
+
if ode_or_bool:
|
263 |
+
lhs = rhs = S.Zero
|
264 |
+
else:
|
265 |
+
lhs = ode_or_bool.lhs
|
266 |
+
rhs = ode_or_bool.rhs
|
267 |
+
# No sense in overworking simplify -- just prove that the
|
268 |
+
# numerator goes to zero
|
269 |
+
num = trigsimp((lhs - rhs).as_numer_denom()[0])
|
270 |
+
# since solutions are obtained using force=True we test
|
271 |
+
# using the same level of assumptions
|
272 |
+
## replace function with dummy so assumptions will work
|
273 |
+
_func = Dummy('func')
|
274 |
+
num = num.subs(func, _func)
|
275 |
+
## posify the expression
|
276 |
+
num, reps = posify(num)
|
277 |
+
s = simplify(num).xreplace(reps).xreplace({_func: func})
|
278 |
+
testnum += 1
|
279 |
+
else:
|
280 |
+
break
|
281 |
+
|
282 |
+
if not s:
|
283 |
+
return (True, s)
|
284 |
+
elif s is True: # The code above never was able to change s
|
285 |
+
raise NotImplementedError("Unable to test if " + str(sol) +
|
286 |
+
" is a solution to " + str(ode) + ".")
|
287 |
+
else:
|
288 |
+
return (False, s)
|
289 |
+
|
290 |
+
|
291 |
+
def checksysodesol(eqs, sols, func=None):
|
292 |
+
r"""
|
293 |
+
Substitutes corresponding ``sols`` for each functions into each ``eqs`` and
|
294 |
+
checks that the result of substitutions for each equation is ``0``. The
|
295 |
+
equations and solutions passed can be any iterable.
|
296 |
+
|
297 |
+
This only works when each ``sols`` have one function only, like `x(t)` or `y(t)`.
|
298 |
+
For each function, ``sols`` can have a single solution or a list of solutions.
|
299 |
+
In most cases it will not be necessary to explicitly identify the function,
|
300 |
+
but if the function cannot be inferred from the original equation it
|
301 |
+
can be supplied through the ``func`` argument.
|
302 |
+
|
303 |
+
When a sequence of equations is passed, the same sequence is used to return
|
304 |
+
the result for each equation with each function substituted with corresponding
|
305 |
+
solutions.
|
306 |
+
|
307 |
+
It tries the following method to find zero equivalence for each equation:
|
308 |
+
|
309 |
+
Substitute the solutions for functions, like `x(t)` and `y(t)` into the
|
310 |
+
original equations containing those functions.
|
311 |
+
This function returns a tuple. The first item in the tuple is ``True`` if
|
312 |
+
the substitution results for each equation is ``0``, and ``False`` otherwise.
|
313 |
+
The second item in the tuple is what the substitution results in. Each element
|
314 |
+
of the ``list`` should always be ``0`` corresponding to each equation if the
|
315 |
+
first item is ``True``. Note that sometimes this function may return ``False``,
|
316 |
+
but with an expression that is identically equal to ``0``, instead of returning
|
317 |
+
``True``. This is because :py:meth:`~sympy.simplify.simplify.simplify` cannot
|
318 |
+
reduce the expression to ``0``. If an expression returned by each function
|
319 |
+
vanishes identically, then ``sols`` really is a solution to ``eqs``.
|
320 |
+
|
321 |
+
If this function seems to hang, it is probably because of a difficult simplification.
|
322 |
+
|
323 |
+
Examples
|
324 |
+
========
|
325 |
+
|
326 |
+
>>> from sympy import Eq, diff, symbols, sin, cos, exp, sqrt, S, Function
|
327 |
+
>>> from sympy.solvers.ode.subscheck import checksysodesol
|
328 |
+
>>> C1, C2 = symbols('C1:3')
|
329 |
+
>>> t = symbols('t')
|
330 |
+
>>> x, y = symbols('x, y', cls=Function)
|
331 |
+
>>> eq = (Eq(diff(x(t),t), x(t) + y(t) + 17), Eq(diff(y(t),t), -2*x(t) + y(t) + 12))
|
332 |
+
>>> sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(5)/3),
|
333 |
+
... Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(46)/3)]
|
334 |
+
>>> checksysodesol(eq, sol)
|
335 |
+
(True, [0, 0])
|
336 |
+
>>> eq = (Eq(diff(x(t),t),x(t)*y(t)**4), Eq(diff(y(t),t),y(t)**3))
|
337 |
+
>>> sol = [Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), -sqrt(2)*sqrt(-1/(C2 + t))/2),
|
338 |
+
... Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), sqrt(2)*sqrt(-1/(C2 + t))/2)]
|
339 |
+
>>> checksysodesol(eq, sol)
|
340 |
+
(True, [0, 0])
|
341 |
+
|
342 |
+
"""
|
343 |
+
def _sympify(eq):
|
344 |
+
return list(map(sympify, eq if iterable(eq) else [eq]))
|
345 |
+
eqs = _sympify(eqs)
|
346 |
+
for i in range(len(eqs)):
|
347 |
+
if isinstance(eqs[i], Equality):
|
348 |
+
eqs[i] = eqs[i].lhs - eqs[i].rhs
|
349 |
+
if func is None:
|
350 |
+
funcs = []
|
351 |
+
for eq in eqs:
|
352 |
+
derivs = eq.atoms(Derivative)
|
353 |
+
func = set().union(*[d.atoms(AppliedUndef) for d in derivs])
|
354 |
+
funcs.extend(func)
|
355 |
+
funcs = list(set(funcs))
|
356 |
+
if not all(isinstance(func, AppliedUndef) and len(func.args) == 1 for func in funcs)\
|
357 |
+
and len({func.args for func in funcs})!=1:
|
358 |
+
raise ValueError("func must be a function of one variable, not %s" % func)
|
359 |
+
for sol in sols:
|
360 |
+
if len(sol.atoms(AppliedUndef)) != 1:
|
361 |
+
raise ValueError("solutions should have one function only")
|
362 |
+
if len(funcs) != len({sol.lhs for sol in sols}):
|
363 |
+
raise ValueError("number of solutions provided does not match the number of equations")
|
364 |
+
dictsol = {}
|
365 |
+
for sol in sols:
|
366 |
+
func = list(sol.atoms(AppliedUndef))[0]
|
367 |
+
if sol.rhs == func:
|
368 |
+
sol = sol.reversed
|
369 |
+
solved = sol.lhs == func and not sol.rhs.has(func)
|
370 |
+
if not solved:
|
371 |
+
rhs = solve(sol, func)
|
372 |
+
if not rhs:
|
373 |
+
raise NotImplementedError
|
374 |
+
else:
|
375 |
+
rhs = sol.rhs
|
376 |
+
dictsol[func] = rhs
|
377 |
+
checkeq = []
|
378 |
+
for eq in eqs:
|
379 |
+
for func in funcs:
|
380 |
+
eq = sub_func_doit(eq, func, dictsol[func])
|
381 |
+
ss = simplify(eq)
|
382 |
+
if ss != 0:
|
383 |
+
eq = ss.expand(force=True)
|
384 |
+
if eq != 0:
|
385 |
+
eq = sqrtdenest(eq).simplify()
|
386 |
+
else:
|
387 |
+
eq = 0
|
388 |
+
checkeq.append(eq)
|
389 |
+
if len(set(checkeq)) == 1 and list(set(checkeq))[0] == 0:
|
390 |
+
return (True, checkeq)
|
391 |
+
else:
|
392 |
+
return (False, checkeq)
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/systems.py
ADDED
@@ -0,0 +1,2135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Add, Mul, S
|
2 |
+
from sympy.core.containers import Tuple
|
3 |
+
from sympy.core.exprtools import factor_terms
|
4 |
+
from sympy.core.numbers import I
|
5 |
+
from sympy.core.relational import Eq, Equality
|
6 |
+
from sympy.core.sorting import default_sort_key, ordered
|
7 |
+
from sympy.core.symbol import Dummy, Symbol
|
8 |
+
from sympy.core.function import (expand_mul, expand, Derivative,
|
9 |
+
AppliedUndef, Function, Subs)
|
10 |
+
from sympy.functions import (exp, im, cos, sin, re, Piecewise,
|
11 |
+
piecewise_fold, sqrt, log)
|
12 |
+
from sympy.functions.combinatorial.factorials import factorial
|
13 |
+
from sympy.matrices import zeros, Matrix, NonSquareMatrixError, MatrixBase, eye
|
14 |
+
from sympy.polys import Poly, together
|
15 |
+
from sympy.simplify import collect, radsimp, signsimp # type: ignore
|
16 |
+
from sympy.simplify.powsimp import powdenest, powsimp
|
17 |
+
from sympy.simplify.ratsimp import ratsimp
|
18 |
+
from sympy.simplify.simplify import simplify
|
19 |
+
from sympy.sets.sets import FiniteSet
|
20 |
+
from sympy.solvers.deutils import ode_order
|
21 |
+
from sympy.solvers.solveset import NonlinearError, solveset
|
22 |
+
from sympy.utilities.iterables import (connected_components, iterable,
|
23 |
+
strongly_connected_components)
|
24 |
+
from sympy.utilities.misc import filldedent
|
25 |
+
from sympy.integrals.integrals import Integral, integrate
|
26 |
+
|
27 |
+
|
28 |
+
def _get_func_order(eqs, funcs):
|
29 |
+
return {func: max(ode_order(eq, func) for eq in eqs) for func in funcs}
|
30 |
+
|
31 |
+
|
32 |
+
class ODEOrderError(ValueError):
|
33 |
+
"""Raised by linear_ode_to_matrix if the system has the wrong order"""
|
34 |
+
pass
|
35 |
+
|
36 |
+
|
37 |
+
class ODENonlinearError(NonlinearError):
|
38 |
+
"""Raised by linear_ode_to_matrix if the system is nonlinear"""
|
39 |
+
pass
|
40 |
+
|
41 |
+
|
42 |
+
def _simpsol(soleq):
|
43 |
+
lhs = soleq.lhs
|
44 |
+
sol = soleq.rhs
|
45 |
+
sol = powsimp(sol)
|
46 |
+
gens = list(sol.atoms(exp))
|
47 |
+
p = Poly(sol, *gens, expand=False)
|
48 |
+
gens = [factor_terms(g) for g in gens]
|
49 |
+
if not gens:
|
50 |
+
gens = p.gens
|
51 |
+
syms = [Symbol('C1'), Symbol('C2')]
|
52 |
+
terms = []
|
53 |
+
for coeff, monom in zip(p.coeffs(), p.monoms()):
|
54 |
+
coeff = piecewise_fold(coeff)
|
55 |
+
if isinstance(coeff, Piecewise):
|
56 |
+
coeff = Piecewise(*((ratsimp(coef).collect(syms), cond) for coef, cond in coeff.args))
|
57 |
+
else:
|
58 |
+
coeff = ratsimp(coeff).collect(syms)
|
59 |
+
monom = Mul(*(g ** i for g, i in zip(gens, monom)))
|
60 |
+
terms.append(coeff * monom)
|
61 |
+
return Eq(lhs, Add(*terms))
|
62 |
+
|
63 |
+
|
64 |
+
def _solsimp(e, t):
|
65 |
+
no_t, has_t = powsimp(expand_mul(e)).as_independent(t)
|
66 |
+
|
67 |
+
no_t = ratsimp(no_t)
|
68 |
+
has_t = has_t.replace(exp, lambda a: exp(factor_terms(a)))
|
69 |
+
|
70 |
+
return no_t + has_t
|
71 |
+
|
72 |
+
|
73 |
+
def simpsol(sol, wrt1, wrt2, doit=True):
|
74 |
+
"""Simplify solutions from dsolve_system."""
|
75 |
+
|
76 |
+
# The parameter sol is the solution as returned by dsolve (list of Eq).
|
77 |
+
#
|
78 |
+
# The parameters wrt1 and wrt2 are lists of symbols to be collected for
|
79 |
+
# with those in wrt1 being collected for first. This allows for collecting
|
80 |
+
# on any factors involving the independent variable before collecting on
|
81 |
+
# the integration constants or vice versa using e.g.:
|
82 |
+
#
|
83 |
+
# sol = simpsol(sol, [t], [C1, C2]) # t first, constants after
|
84 |
+
# sol = simpsol(sol, [C1, C2], [t]) # constants first, t after
|
85 |
+
#
|
86 |
+
# If doit=True (default) then simpsol will begin by evaluating any
|
87 |
+
# unevaluated integrals. Since many integrals will appear multiple times
|
88 |
+
# in the solutions this is done intelligently by computing each integral
|
89 |
+
# only once.
|
90 |
+
#
|
91 |
+
# The strategy is to first perform simple cancellation with factor_terms
|
92 |
+
# and then multiply out all brackets with expand_mul. This gives an Add
|
93 |
+
# with many terms.
|
94 |
+
#
|
95 |
+
# We split each term into two multiplicative factors dep and coeff where
|
96 |
+
# all factors that involve wrt1 are in dep and any constant factors are in
|
97 |
+
# coeff e.g.
|
98 |
+
# sqrt(2)*C1*exp(t) -> ( exp(t), sqrt(2)*C1 )
|
99 |
+
#
|
100 |
+
# The dep factors are simplified using powsimp to combine expanded
|
101 |
+
# exponential factors e.g.
|
102 |
+
# exp(a*t)*exp(b*t) -> exp(t*(a+b))
|
103 |
+
#
|
104 |
+
# We then collect coefficients for all terms having the same (simplified)
|
105 |
+
# dep. The coefficients are then simplified using together and ratsimp and
|
106 |
+
# lastly by recursively applying the same transformation to the
|
107 |
+
# coefficients to collect on wrt2.
|
108 |
+
#
|
109 |
+
# Finally the result is recombined into an Add and signsimp is used to
|
110 |
+
# normalise any minus signs.
|
111 |
+
|
112 |
+
def simprhs(rhs, rep, wrt1, wrt2):
|
113 |
+
"""Simplify the rhs of an ODE solution"""
|
114 |
+
if rep:
|
115 |
+
rhs = rhs.subs(rep)
|
116 |
+
rhs = factor_terms(rhs)
|
117 |
+
rhs = simp_coeff_dep(rhs, wrt1, wrt2)
|
118 |
+
rhs = signsimp(rhs)
|
119 |
+
return rhs
|
120 |
+
|
121 |
+
def simp_coeff_dep(expr, wrt1, wrt2=None):
|
122 |
+
"""Split rhs into terms, split terms into dep and coeff and collect on dep"""
|
123 |
+
add_dep_terms = lambda e: e.is_Add and e.has(*wrt1)
|
124 |
+
expandable = lambda e: e.is_Mul and any(map(add_dep_terms, e.args))
|
125 |
+
expand_func = lambda e: expand_mul(e, deep=False)
|
126 |
+
expand_mul_mod = lambda e: e.replace(expandable, expand_func)
|
127 |
+
terms = Add.make_args(expand_mul_mod(expr))
|
128 |
+
dc = {}
|
129 |
+
for term in terms:
|
130 |
+
coeff, dep = term.as_independent(*wrt1, as_Add=False)
|
131 |
+
# Collect together the coefficients for terms that have the same
|
132 |
+
# dependence on wrt1 (after dep is normalised using simpdep).
|
133 |
+
dep = simpdep(dep, wrt1)
|
134 |
+
|
135 |
+
# See if the dependence on t cancels out...
|
136 |
+
if dep is not S.One:
|
137 |
+
dep2 = factor_terms(dep)
|
138 |
+
if not dep2.has(*wrt1):
|
139 |
+
coeff *= dep2
|
140 |
+
dep = S.One
|
141 |
+
|
142 |
+
if dep not in dc:
|
143 |
+
dc[dep] = coeff
|
144 |
+
else:
|
145 |
+
dc[dep] += coeff
|
146 |
+
# Apply the method recursively to the coefficients but this time
|
147 |
+
# collecting on wrt2 rather than wrt2.
|
148 |
+
termpairs = ((simpcoeff(c, wrt2), d) for d, c in dc.items())
|
149 |
+
if wrt2 is not None:
|
150 |
+
termpairs = ((simp_coeff_dep(c, wrt2), d) for c, d in termpairs)
|
151 |
+
return Add(*(c * d for c, d in termpairs))
|
152 |
+
|
153 |
+
def simpdep(term, wrt1):
|
154 |
+
"""Normalise factors involving t with powsimp and recombine exp"""
|
155 |
+
def canonicalise(a):
|
156 |
+
# Using factor_terms here isn't quite right because it leads to things
|
157 |
+
# like exp(t*(1+t)) that we don't want. We do want to cancel factors
|
158 |
+
# and pull out a common denominator but ideally the numerator would be
|
159 |
+
# expressed as a standard form polynomial in t so we expand_mul
|
160 |
+
# and collect afterwards.
|
161 |
+
a = factor_terms(a)
|
162 |
+
num, den = a.as_numer_denom()
|
163 |
+
num = expand_mul(num)
|
164 |
+
num = collect(num, wrt1)
|
165 |
+
return num / den
|
166 |
+
|
167 |
+
term = powsimp(term)
|
168 |
+
rep = {e: exp(canonicalise(e.args[0])) for e in term.atoms(exp)}
|
169 |
+
term = term.subs(rep)
|
170 |
+
return term
|
171 |
+
|
172 |
+
def simpcoeff(coeff, wrt2):
|
173 |
+
"""Bring to a common fraction and cancel with ratsimp"""
|
174 |
+
coeff = together(coeff)
|
175 |
+
if coeff.is_polynomial():
|
176 |
+
# Calling ratsimp can be expensive. The main reason is to simplify
|
177 |
+
# sums of terms with irrational denominators so we limit ourselves
|
178 |
+
# to the case where the expression is polynomial in any symbols.
|
179 |
+
# Maybe there's a better approach...
|
180 |
+
coeff = ratsimp(radsimp(coeff))
|
181 |
+
# collect on secondary variables first and any remaining symbols after
|
182 |
+
if wrt2 is not None:
|
183 |
+
syms = list(wrt2) + list(ordered(coeff.free_symbols - set(wrt2)))
|
184 |
+
else:
|
185 |
+
syms = list(ordered(coeff.free_symbols))
|
186 |
+
coeff = collect(coeff, syms)
|
187 |
+
coeff = together(coeff)
|
188 |
+
return coeff
|
189 |
+
|
190 |
+
# There are often repeated integrals. Collect unique integrals and
|
191 |
+
# evaluate each once and then substitute into the final result to replace
|
192 |
+
# all occurrences in each of the solution equations.
|
193 |
+
if doit:
|
194 |
+
integrals = set().union(*(s.atoms(Integral) for s in sol))
|
195 |
+
rep = {i: factor_terms(i).doit() for i in integrals}
|
196 |
+
else:
|
197 |
+
rep = {}
|
198 |
+
|
199 |
+
sol = [Eq(s.lhs, simprhs(s.rhs, rep, wrt1, wrt2)) for s in sol]
|
200 |
+
return sol
|
201 |
+
|
202 |
+
|
203 |
+
def linodesolve_type(A, t, b=None):
|
204 |
+
r"""
|
205 |
+
Helper function that determines the type of the system of ODEs for solving with :obj:`sympy.solvers.ode.systems.linodesolve()`
|
206 |
+
|
207 |
+
Explanation
|
208 |
+
===========
|
209 |
+
|
210 |
+
This function takes in the coefficient matrix and/or the non-homogeneous term
|
211 |
+
and returns the type of the equation that can be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`.
|
212 |
+
|
213 |
+
If the system is constant coefficient homogeneous, then "type1" is returned
|
214 |
+
|
215 |
+
If the system is constant coefficient non-homogeneous, then "type2" is returned
|
216 |
+
|
217 |
+
If the system is non-constant coefficient homogeneous, then "type3" is returned
|
218 |
+
|
219 |
+
If the system is non-constant coefficient non-homogeneous, then "type4" is returned
|
220 |
+
|
221 |
+
If the system has a non-constant coefficient matrix which can be factorized into constant
|
222 |
+
coefficient matrix, then "type5" or "type6" is returned for when the system is homogeneous or
|
223 |
+
non-homogeneous respectively.
|
224 |
+
|
225 |
+
Note that, if the system of ODEs is of "type3" or "type4", then along with the type,
|
226 |
+
the commutative antiderivative of the coefficient matrix is also returned.
|
227 |
+
|
228 |
+
If the system cannot be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`, then
|
229 |
+
NotImplementedError is raised.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
==========
|
233 |
+
|
234 |
+
A : Matrix
|
235 |
+
Coefficient matrix of the system of ODEs
|
236 |
+
b : Matrix or None
|
237 |
+
Non-homogeneous term of the system. The default value is None.
|
238 |
+
If this argument is None, then the system is assumed to be homogeneous.
|
239 |
+
|
240 |
+
Examples
|
241 |
+
========
|
242 |
+
|
243 |
+
>>> from sympy import symbols, Matrix
|
244 |
+
>>> from sympy.solvers.ode.systems import linodesolve_type
|
245 |
+
>>> t = symbols("t")
|
246 |
+
>>> A = Matrix([[1, 1], [2, 3]])
|
247 |
+
>>> b = Matrix([t, 1])
|
248 |
+
|
249 |
+
>>> linodesolve_type(A, t)
|
250 |
+
{'antiderivative': None, 'type_of_equation': 'type1'}
|
251 |
+
|
252 |
+
>>> linodesolve_type(A, t, b=b)
|
253 |
+
{'antiderivative': None, 'type_of_equation': 'type2'}
|
254 |
+
|
255 |
+
>>> A_t = Matrix([[1, t], [-t, 1]])
|
256 |
+
|
257 |
+
>>> linodesolve_type(A_t, t)
|
258 |
+
{'antiderivative': Matrix([
|
259 |
+
[ t, t**2/2],
|
260 |
+
[-t**2/2, t]]), 'type_of_equation': 'type3'}
|
261 |
+
|
262 |
+
>>> linodesolve_type(A_t, t, b=b)
|
263 |
+
{'antiderivative': Matrix([
|
264 |
+
[ t, t**2/2],
|
265 |
+
[-t**2/2, t]]), 'type_of_equation': 'type4'}
|
266 |
+
|
267 |
+
>>> A_non_commutative = Matrix([[1, t], [t, -1]])
|
268 |
+
>>> linodesolve_type(A_non_commutative, t)
|
269 |
+
Traceback (most recent call last):
|
270 |
+
...
|
271 |
+
NotImplementedError:
|
272 |
+
The system does not have a commutative antiderivative, it cannot be
|
273 |
+
solved by linodesolve.
|
274 |
+
|
275 |
+
Returns
|
276 |
+
=======
|
277 |
+
|
278 |
+
Dict
|
279 |
+
|
280 |
+
Raises
|
281 |
+
======
|
282 |
+
|
283 |
+
NotImplementedError
|
284 |
+
When the coefficient matrix does not have a commutative antiderivative
|
285 |
+
|
286 |
+
See Also
|
287 |
+
========
|
288 |
+
|
289 |
+
linodesolve: Function for which linodesolve_type gets the information
|
290 |
+
|
291 |
+
"""
|
292 |
+
|
293 |
+
match = {}
|
294 |
+
is_non_constant = not _matrix_is_constant(A, t)
|
295 |
+
is_non_homogeneous = not (b is None or b.is_zero_matrix)
|
296 |
+
type = "type{}".format(int("{}{}".format(int(is_non_constant), int(is_non_homogeneous)), 2) + 1)
|
297 |
+
|
298 |
+
B = None
|
299 |
+
match.update({"type_of_equation": type, "antiderivative": B})
|
300 |
+
|
301 |
+
if is_non_constant:
|
302 |
+
B, is_commuting = _is_commutative_anti_derivative(A, t)
|
303 |
+
if not is_commuting:
|
304 |
+
raise NotImplementedError(filldedent('''
|
305 |
+
The system does not have a commutative antiderivative, it cannot be solved
|
306 |
+
by linodesolve.
|
307 |
+
'''))
|
308 |
+
|
309 |
+
match['antiderivative'] = B
|
310 |
+
match.update(_first_order_type5_6_subs(A, t, b=b))
|
311 |
+
|
312 |
+
return match
|
313 |
+
|
314 |
+
|
315 |
+
def _first_order_type5_6_subs(A, t, b=None):
|
316 |
+
match = {}
|
317 |
+
|
318 |
+
factor_terms = _factor_matrix(A, t)
|
319 |
+
is_homogeneous = b is None or b.is_zero_matrix
|
320 |
+
|
321 |
+
if factor_terms is not None:
|
322 |
+
t_ = Symbol("{}_".format(t))
|
323 |
+
F_t = integrate(factor_terms[0], t)
|
324 |
+
inverse = solveset(Eq(t_, F_t), t)
|
325 |
+
|
326 |
+
# Note: A simple way to check if a function is invertible
|
327 |
+
# or not.
|
328 |
+
if isinstance(inverse, FiniteSet) and not inverse.has(Piecewise)\
|
329 |
+
and len(inverse) == 1:
|
330 |
+
|
331 |
+
A = factor_terms[1]
|
332 |
+
if not is_homogeneous:
|
333 |
+
b = b / factor_terms[0]
|
334 |
+
b = b.subs(t, list(inverse)[0])
|
335 |
+
type = "type{}".format(5 + (not is_homogeneous))
|
336 |
+
match.update({'func_coeff': A, 'tau': F_t,
|
337 |
+
't_': t_, 'type_of_equation': type, 'rhs': b})
|
338 |
+
|
339 |
+
return match
|
340 |
+
|
341 |
+
|
342 |
+
def linear_ode_to_matrix(eqs, funcs, t, order):
|
343 |
+
r"""
|
344 |
+
Convert a linear system of ODEs to matrix form
|
345 |
+
|
346 |
+
Explanation
|
347 |
+
===========
|
348 |
+
|
349 |
+
Express a system of linear ordinary differential equations as a single
|
350 |
+
matrix differential equation [1]. For example the system $x' = x + y + 1$
|
351 |
+
and $y' = x - y$ can be represented as
|
352 |
+
|
353 |
+
.. math:: A_1 X' = A_0 X + b
|
354 |
+
|
355 |
+
where $A_1$ and $A_0$ are $2 \times 2$ matrices and $b$, $X$ and $X'$ are
|
356 |
+
$2 \times 1$ matrices with $X = [x, y]^T$.
|
357 |
+
|
358 |
+
Higher-order systems are represented with additional matrices e.g. a
|
359 |
+
second-order system would look like
|
360 |
+
|
361 |
+
.. math:: A_2 X'' = A_1 X' + A_0 X + b
|
362 |
+
|
363 |
+
Examples
|
364 |
+
========
|
365 |
+
|
366 |
+
>>> from sympy import Function, Symbol, Matrix, Eq
|
367 |
+
>>> from sympy.solvers.ode.systems import linear_ode_to_matrix
|
368 |
+
>>> t = Symbol('t')
|
369 |
+
>>> x = Function('x')
|
370 |
+
>>> y = Function('y')
|
371 |
+
|
372 |
+
We can create a system of linear ODEs like
|
373 |
+
|
374 |
+
>>> eqs = [
|
375 |
+
... Eq(x(t).diff(t), x(t) + y(t) + 1),
|
376 |
+
... Eq(y(t).diff(t), x(t) - y(t)),
|
377 |
+
... ]
|
378 |
+
>>> funcs = [x(t), y(t)]
|
379 |
+
>>> order = 1 # 1st order system
|
380 |
+
|
381 |
+
Now ``linear_ode_to_matrix`` can represent this as a matrix
|
382 |
+
differential equation.
|
383 |
+
|
384 |
+
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, order)
|
385 |
+
>>> A1
|
386 |
+
Matrix([
|
387 |
+
[1, 0],
|
388 |
+
[0, 1]])
|
389 |
+
>>> A0
|
390 |
+
Matrix([
|
391 |
+
[1, 1],
|
392 |
+
[1, -1]])
|
393 |
+
>>> b
|
394 |
+
Matrix([
|
395 |
+
[1],
|
396 |
+
[0]])
|
397 |
+
|
398 |
+
The original equations can be recovered from these matrices:
|
399 |
+
|
400 |
+
>>> eqs_mat = Matrix([eq.lhs - eq.rhs for eq in eqs])
|
401 |
+
>>> X = Matrix(funcs)
|
402 |
+
>>> A1 * X.diff(t) - A0 * X - b == eqs_mat
|
403 |
+
True
|
404 |
+
|
405 |
+
If the system of equations has a maximum order greater than the
|
406 |
+
order of the system specified, a ODEOrderError exception is raised.
|
407 |
+
|
408 |
+
>>> eqs = [Eq(x(t).diff(t, 2), x(t).diff(t) + x(t)), Eq(y(t).diff(t), y(t) + x(t))]
|
409 |
+
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
|
410 |
+
Traceback (most recent call last):
|
411 |
+
...
|
412 |
+
ODEOrderError: Cannot represent system in 1-order form
|
413 |
+
|
414 |
+
If the system of equations is nonlinear, then ODENonlinearError is
|
415 |
+
raised.
|
416 |
+
|
417 |
+
>>> eqs = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), y(t)**2 + x(t))]
|
418 |
+
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
|
419 |
+
Traceback (most recent call last):
|
420 |
+
...
|
421 |
+
ODENonlinearError: The system of ODEs is nonlinear.
|
422 |
+
|
423 |
+
Parameters
|
424 |
+
==========
|
425 |
+
|
426 |
+
eqs : list of SymPy expressions or equalities
|
427 |
+
The equations as expressions (assumed equal to zero).
|
428 |
+
funcs : list of applied functions
|
429 |
+
The dependent variables of the system of ODEs.
|
430 |
+
t : symbol
|
431 |
+
The independent variable.
|
432 |
+
order : int
|
433 |
+
The order of the system of ODEs.
|
434 |
+
|
435 |
+
Returns
|
436 |
+
=======
|
437 |
+
|
438 |
+
The tuple ``(As, b)`` where ``As`` is a tuple of matrices and ``b`` is the
|
439 |
+
the matrix representing the rhs of the matrix equation.
|
440 |
+
|
441 |
+
Raises
|
442 |
+
======
|
443 |
+
|
444 |
+
ODEOrderError
|
445 |
+
When the system of ODEs have an order greater than what was specified
|
446 |
+
ODENonlinearError
|
447 |
+
When the system of ODEs is nonlinear
|
448 |
+
|
449 |
+
See Also
|
450 |
+
========
|
451 |
+
|
452 |
+
linear_eq_to_matrix: for systems of linear algebraic equations.
|
453 |
+
|
454 |
+
References
|
455 |
+
==========
|
456 |
+
|
457 |
+
.. [1] https://en.wikipedia.org/wiki/Matrix_differential_equation
|
458 |
+
|
459 |
+
"""
|
460 |
+
from sympy.solvers.solveset import linear_eq_to_matrix
|
461 |
+
|
462 |
+
if any(ode_order(eq, func) > order for eq in eqs for func in funcs):
|
463 |
+
msg = "Cannot represent system in {}-order form"
|
464 |
+
raise ODEOrderError(msg.format(order))
|
465 |
+
|
466 |
+
As = []
|
467 |
+
|
468 |
+
for o in range(order, -1, -1):
|
469 |
+
# Work from the highest derivative down
|
470 |
+
syms = [func.diff(t, o) for func in funcs]
|
471 |
+
|
472 |
+
# Ai is the matrix for X(t).diff(t, o)
|
473 |
+
# eqs is minus the remainder of the equations.
|
474 |
+
try:
|
475 |
+
Ai, b = linear_eq_to_matrix(eqs, syms)
|
476 |
+
except NonlinearError:
|
477 |
+
raise ODENonlinearError("The system of ODEs is nonlinear.")
|
478 |
+
|
479 |
+
Ai = Ai.applyfunc(expand_mul)
|
480 |
+
|
481 |
+
As.append(Ai if o == order else -Ai)
|
482 |
+
|
483 |
+
if o:
|
484 |
+
eqs = [-eq for eq in b]
|
485 |
+
else:
|
486 |
+
rhs = b
|
487 |
+
|
488 |
+
return As, rhs
|
489 |
+
|
490 |
+
|
491 |
+
def matrix_exp(A, t):
|
492 |
+
r"""
|
493 |
+
Matrix exponential $\exp(A*t)$ for the matrix ``A`` and scalar ``t``.
|
494 |
+
|
495 |
+
Explanation
|
496 |
+
===========
|
497 |
+
|
498 |
+
This functions returns the $\exp(A*t)$ by doing a simple
|
499 |
+
matrix multiplication:
|
500 |
+
|
501 |
+
.. math:: \exp(A*t) = P * expJ * P^{-1}
|
502 |
+
|
503 |
+
where $expJ$ is $\exp(J*t)$. $J$ is the Jordan normal
|
504 |
+
form of $A$ and $P$ is matrix such that:
|
505 |
+
|
506 |
+
.. math:: A = P * J * P^{-1}
|
507 |
+
|
508 |
+
The matrix exponential $\exp(A*t)$ appears in the solution of linear
|
509 |
+
differential equations. For example if $x$ is a vector and $A$ is a matrix
|
510 |
+
then the initial value problem
|
511 |
+
|
512 |
+
.. math:: \frac{dx(t)}{dt} = A \times x(t), x(0) = x0
|
513 |
+
|
514 |
+
has the unique solution
|
515 |
+
|
516 |
+
.. math:: x(t) = \exp(A t) x0
|
517 |
+
|
518 |
+
Examples
|
519 |
+
========
|
520 |
+
|
521 |
+
>>> from sympy import Symbol, Matrix, pprint
|
522 |
+
>>> from sympy.solvers.ode.systems import matrix_exp
|
523 |
+
>>> t = Symbol('t')
|
524 |
+
|
525 |
+
We will consider a 2x2 matrix for comupting the exponential
|
526 |
+
|
527 |
+
>>> A = Matrix([[2, -5], [2, -4]])
|
528 |
+
>>> pprint(A)
|
529 |
+
[2 -5]
|
530 |
+
[ ]
|
531 |
+
[2 -4]
|
532 |
+
|
533 |
+
Now, exp(A*t) is given as follows:
|
534 |
+
|
535 |
+
>>> pprint(matrix_exp(A, t))
|
536 |
+
[ -t -t -t ]
|
537 |
+
[3*e *sin(t) + e *cos(t) -5*e *sin(t) ]
|
538 |
+
[ ]
|
539 |
+
[ -t -t -t ]
|
540 |
+
[ 2*e *sin(t) - 3*e *sin(t) + e *cos(t)]
|
541 |
+
|
542 |
+
Parameters
|
543 |
+
==========
|
544 |
+
|
545 |
+
A : Matrix
|
546 |
+
The matrix $A$ in the expression $\exp(A*t)$
|
547 |
+
t : Symbol
|
548 |
+
The independent variable
|
549 |
+
|
550 |
+
See Also
|
551 |
+
========
|
552 |
+
|
553 |
+
matrix_exp_jordan_form: For exponential of Jordan normal form
|
554 |
+
|
555 |
+
References
|
556 |
+
==========
|
557 |
+
|
558 |
+
.. [1] https://en.wikipedia.org/wiki/Jordan_normal_form
|
559 |
+
.. [2] https://en.wikipedia.org/wiki/Matrix_exponential
|
560 |
+
|
561 |
+
"""
|
562 |
+
P, expJ = matrix_exp_jordan_form(A, t)
|
563 |
+
return P * expJ * P.inv()
|
564 |
+
|
565 |
+
|
566 |
+
def matrix_exp_jordan_form(A, t):
|
567 |
+
r"""
|
568 |
+
Matrix exponential $\exp(A*t)$ for the matrix *A* and scalar *t*.
|
569 |
+
|
570 |
+
Explanation
|
571 |
+
===========
|
572 |
+
|
573 |
+
Returns the Jordan form of the $\exp(A*t)$ along with the matrix $P$ such that:
|
574 |
+
|
575 |
+
.. math::
|
576 |
+
\exp(A*t) = P * expJ * P^{-1}
|
577 |
+
|
578 |
+
Examples
|
579 |
+
========
|
580 |
+
|
581 |
+
>>> from sympy import Matrix, Symbol
|
582 |
+
>>> from sympy.solvers.ode.systems import matrix_exp, matrix_exp_jordan_form
|
583 |
+
>>> t = Symbol('t')
|
584 |
+
|
585 |
+
We will consider a 2x2 defective matrix. This shows that our method
|
586 |
+
works even for defective matrices.
|
587 |
+
|
588 |
+
>>> A = Matrix([[1, 1], [0, 1]])
|
589 |
+
|
590 |
+
It can be observed that this function gives us the Jordan normal form
|
591 |
+
and the required invertible matrix P.
|
592 |
+
|
593 |
+
>>> P, expJ = matrix_exp_jordan_form(A, t)
|
594 |
+
|
595 |
+
Here, it is shown that P and expJ returned by this function is correct
|
596 |
+
as they satisfy the formula: P * expJ * P_inverse = exp(A*t).
|
597 |
+
|
598 |
+
>>> P * expJ * P.inv() == matrix_exp(A, t)
|
599 |
+
True
|
600 |
+
|
601 |
+
Parameters
|
602 |
+
==========
|
603 |
+
|
604 |
+
A : Matrix
|
605 |
+
The matrix $A$ in the expression $\exp(A*t)$
|
606 |
+
t : Symbol
|
607 |
+
The independent variable
|
608 |
+
|
609 |
+
References
|
610 |
+
==========
|
611 |
+
|
612 |
+
.. [1] https://en.wikipedia.org/wiki/Defective_matrix
|
613 |
+
.. [2] https://en.wikipedia.org/wiki/Jordan_matrix
|
614 |
+
.. [3] https://en.wikipedia.org/wiki/Jordan_normal_form
|
615 |
+
|
616 |
+
"""
|
617 |
+
|
618 |
+
N, M = A.shape
|
619 |
+
if N != M:
|
620 |
+
raise ValueError('Needed square matrix but got shape (%s, %s)' % (N, M))
|
621 |
+
elif A.has(t):
|
622 |
+
raise ValueError('Matrix A should not depend on t')
|
623 |
+
|
624 |
+
def jordan_chains(A):
|
625 |
+
'''Chains from Jordan normal form analogous to M.eigenvects().
|
626 |
+
Returns a dict with eignevalues as keys like:
|
627 |
+
{e1: [[v111,v112,...], [v121, v122,...]], e2:...}
|
628 |
+
where vijk is the kth vector in the jth chain for eigenvalue i.
|
629 |
+
'''
|
630 |
+
P, blocks = A.jordan_cells()
|
631 |
+
basis = [P[:,i] for i in range(P.shape[1])]
|
632 |
+
n = 0
|
633 |
+
chains = {}
|
634 |
+
for b in blocks:
|
635 |
+
eigval = b[0, 0]
|
636 |
+
size = b.shape[0]
|
637 |
+
if eigval not in chains:
|
638 |
+
chains[eigval] = []
|
639 |
+
chains[eigval].append(basis[n:n+size])
|
640 |
+
n += size
|
641 |
+
return chains
|
642 |
+
|
643 |
+
eigenchains = jordan_chains(A)
|
644 |
+
|
645 |
+
# Needed for consistency across Python versions
|
646 |
+
eigenchains_iter = sorted(eigenchains.items(), key=default_sort_key)
|
647 |
+
isreal = not A.has(I)
|
648 |
+
|
649 |
+
blocks = []
|
650 |
+
vectors = []
|
651 |
+
seen_conjugate = set()
|
652 |
+
for e, chains in eigenchains_iter:
|
653 |
+
for chain in chains:
|
654 |
+
n = len(chain)
|
655 |
+
if isreal and e != e.conjugate() and e.conjugate() in eigenchains:
|
656 |
+
if e in seen_conjugate:
|
657 |
+
continue
|
658 |
+
seen_conjugate.add(e.conjugate())
|
659 |
+
exprt = exp(re(e) * t)
|
660 |
+
imrt = im(e) * t
|
661 |
+
imblock = Matrix([[cos(imrt), sin(imrt)],
|
662 |
+
[-sin(imrt), cos(imrt)]])
|
663 |
+
expJblock2 = Matrix(n, n, lambda i,j:
|
664 |
+
imblock * t**(j-i) / factorial(j-i) if j >= i
|
665 |
+
else zeros(2, 2))
|
666 |
+
expJblock = Matrix(2*n, 2*n, lambda i,j: expJblock2[i//2,j//2][i%2,j%2])
|
667 |
+
|
668 |
+
blocks.append(exprt * expJblock)
|
669 |
+
for i in range(n):
|
670 |
+
vectors.append(re(chain[i]))
|
671 |
+
vectors.append(im(chain[i]))
|
672 |
+
else:
|
673 |
+
vectors.extend(chain)
|
674 |
+
fun = lambda i,j: t**(j-i)/factorial(j-i) if j >= i else 0
|
675 |
+
expJblock = Matrix(n, n, fun)
|
676 |
+
blocks.append(exp(e * t) * expJblock)
|
677 |
+
|
678 |
+
expJ = Matrix.diag(*blocks)
|
679 |
+
P = Matrix(N, N, lambda i,j: vectors[j][i])
|
680 |
+
|
681 |
+
return P, expJ
|
682 |
+
|
683 |
+
|
684 |
+
# Note: To add a docstring example with tau
|
685 |
+
def linodesolve(A, t, b=None, B=None, type="auto", doit=False,
|
686 |
+
tau=None):
|
687 |
+
r"""
|
688 |
+
System of n equations linear first-order differential equations
|
689 |
+
|
690 |
+
Explanation
|
691 |
+
===========
|
692 |
+
|
693 |
+
This solver solves the system of ODEs of the following form:
|
694 |
+
|
695 |
+
.. math::
|
696 |
+
X'(t) = A(t) X(t) + b(t)
|
697 |
+
|
698 |
+
Here, $A(t)$ is the coefficient matrix, $X(t)$ is the vector of n independent variables,
|
699 |
+
$b(t)$ is the non-homogeneous term and $X'(t)$ is the derivative of $X(t)$
|
700 |
+
|
701 |
+
Depending on the properties of $A(t)$ and $b(t)$, this solver evaluates the solution
|
702 |
+
differently.
|
703 |
+
|
704 |
+
When $A(t)$ is constant coefficient matrix and $b(t)$ is zero vector i.e. system is homogeneous,
|
705 |
+
the system is "type1". The solution is:
|
706 |
+
|
707 |
+
.. math::
|
708 |
+
X(t) = \exp(A t) C
|
709 |
+
|
710 |
+
Here, $C$ is a vector of constants and $A$ is the constant coefficient matrix.
|
711 |
+
|
712 |
+
When $A(t)$ is constant coefficient matrix and $b(t)$ is non-zero i.e. system is non-homogeneous,
|
713 |
+
the system is "type2". The solution is:
|
714 |
+
|
715 |
+
.. math::
|
716 |
+
X(t) = e^{A t} ( \int e^{- A t} b \,dt + C)
|
717 |
+
|
718 |
+
When $A(t)$ is coefficient matrix such that its commutative with its antiderivative $B(t)$ and
|
719 |
+
$b(t)$ is a zero vector i.e. system is homogeneous, the system is "type3". The solution is:
|
720 |
+
|
721 |
+
.. math::
|
722 |
+
X(t) = \exp(B(t)) C
|
723 |
+
|
724 |
+
When $A(t)$ is commutative with its antiderivative $B(t)$ and $b(t)$ is non-zero i.e. system is
|
725 |
+
non-homogeneous, the system is "type4". The solution is:
|
726 |
+
|
727 |
+
.. math::
|
728 |
+
X(t) = e^{B(t)} ( \int e^{-B(t)} b(t) \,dt + C)
|
729 |
+
|
730 |
+
When $A(t)$ is a coefficient matrix such that it can be factorized into a scalar and a constant
|
731 |
+
coefficient matrix:
|
732 |
+
|
733 |
+
.. math::
|
734 |
+
A(t) = f(t) * A
|
735 |
+
|
736 |
+
Where $f(t)$ is a scalar expression in the independent variable $t$ and $A$ is a constant matrix,
|
737 |
+
then we can do the following substitutions:
|
738 |
+
|
739 |
+
.. math::
|
740 |
+
tau = \int f(t) dt, X(t) = Y(tau), b(t) = b(f^{-1}(tau))
|
741 |
+
|
742 |
+
Here, the substitution for the non-homogeneous term is done only when its non-zero.
|
743 |
+
Using these substitutions, our original system becomes:
|
744 |
+
|
745 |
+
.. math::
|
746 |
+
Y'(tau) = A * Y(tau) + b(tau)/f(tau)
|
747 |
+
|
748 |
+
The above system can be easily solved using the solution for "type1" or "type2" depending
|
749 |
+
on the homogeneity of the system. After we get the solution for $Y(tau)$, we substitute the
|
750 |
+
solution for $tau$ as $t$ to get back $X(t)$
|
751 |
+
|
752 |
+
.. math::
|
753 |
+
X(t) = Y(tau)
|
754 |
+
|
755 |
+
Systems of "type5" and "type6" have a commutative antiderivative but we use this solution
|
756 |
+
because its faster to compute.
|
757 |
+
|
758 |
+
The final solution is the general solution for all the four equations since a constant coefficient
|
759 |
+
matrix is always commutative with its antidervative.
|
760 |
+
|
761 |
+
An additional feature of this function is, if someone wants to substitute for value of the independent
|
762 |
+
variable, they can pass the substitution `tau` and the solution will have the independent variable
|
763 |
+
substituted with the passed expression(`tau`).
|
764 |
+
|
765 |
+
Parameters
|
766 |
+
==========
|
767 |
+
|
768 |
+
A : Matrix
|
769 |
+
Coefficient matrix of the system of linear first order ODEs.
|
770 |
+
t : Symbol
|
771 |
+
Independent variable in the system of ODEs.
|
772 |
+
b : Matrix or None
|
773 |
+
Non-homogeneous term in the system of ODEs. If None is passed,
|
774 |
+
a homogeneous system of ODEs is assumed.
|
775 |
+
B : Matrix or None
|
776 |
+
Antiderivative of the coefficient matrix. If the antiderivative
|
777 |
+
is not passed and the solution requires the term, then the solver
|
778 |
+
would compute it internally.
|
779 |
+
type : String
|
780 |
+
Type of the system of ODEs passed. Depending on the type, the
|
781 |
+
solution is evaluated. The type values allowed and the corresponding
|
782 |
+
system it solves are: "type1" for constant coefficient homogeneous
|
783 |
+
"type2" for constant coefficient non-homogeneous, "type3" for non-constant
|
784 |
+
coefficient homogeneous, "type4" for non-constant coefficient non-homogeneous,
|
785 |
+
"type5" and "type6" for non-constant coefficient homogeneous and non-homogeneous
|
786 |
+
systems respectively where the coefficient matrix can be factorized to a constant
|
787 |
+
coefficient matrix.
|
788 |
+
The default value is "auto" which will let the solver decide the correct type of
|
789 |
+
the system passed.
|
790 |
+
doit : Boolean
|
791 |
+
Evaluate the solution if True, default value is False
|
792 |
+
tau: Expression
|
793 |
+
Used to substitute for the value of `t` after we get the solution of the system.
|
794 |
+
|
795 |
+
Examples
|
796 |
+
========
|
797 |
+
|
798 |
+
To solve the system of ODEs using this function directly, several things must be
|
799 |
+
done in the right order. Wrong inputs to the function will lead to incorrect results.
|
800 |
+
|
801 |
+
>>> from sympy import symbols, Function, Eq
|
802 |
+
>>> from sympy.solvers.ode.systems import canonical_odes, linear_ode_to_matrix, linodesolve, linodesolve_type
|
803 |
+
>>> from sympy.solvers.ode.subscheck import checkodesol
|
804 |
+
>>> f, g = symbols("f, g", cls=Function)
|
805 |
+
>>> x, a = symbols("x, a")
|
806 |
+
>>> funcs = [f(x), g(x)]
|
807 |
+
>>> eqs = [Eq(f(x).diff(x) - f(x), a*g(x) + 1), Eq(g(x).diff(x) + g(x), a*f(x))]
|
808 |
+
|
809 |
+
Here, it is important to note that before we derive the coefficient matrix, it is
|
810 |
+
important to get the system of ODEs into the desired form. For that we will use
|
811 |
+
:obj:`sympy.solvers.ode.systems.canonical_odes()`.
|
812 |
+
|
813 |
+
>>> eqs = canonical_odes(eqs, funcs, x)
|
814 |
+
>>> eqs
|
815 |
+
[[Eq(Derivative(f(x), x), a*g(x) + f(x) + 1), Eq(Derivative(g(x), x), a*f(x) - g(x))]]
|
816 |
+
|
817 |
+
Now, we will use :obj:`sympy.solvers.ode.systems.linear_ode_to_matrix()` to get the coefficient matrix and the
|
818 |
+
non-homogeneous term if it is there.
|
819 |
+
|
820 |
+
>>> eqs = eqs[0]
|
821 |
+
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
|
822 |
+
>>> A = A0
|
823 |
+
|
824 |
+
We have the coefficient matrices and the non-homogeneous term ready. Now, we can use
|
825 |
+
:obj:`sympy.solvers.ode.systems.linodesolve_type()` to get the information for the system of ODEs
|
826 |
+
to finally pass it to the solver.
|
827 |
+
|
828 |
+
>>> system_info = linodesolve_type(A, x, b=b)
|
829 |
+
>>> sol_vector = linodesolve(A, x, b=b, B=system_info['antiderivative'], type=system_info['type_of_equation'])
|
830 |
+
|
831 |
+
Now, we can prove if the solution is correct or not by using :obj:`sympy.solvers.ode.checkodesol()`
|
832 |
+
|
833 |
+
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
|
834 |
+
>>> checkodesol(eqs, sol)
|
835 |
+
(True, [0, 0])
|
836 |
+
|
837 |
+
We can also use the doit method to evaluate the solutions passed by the function.
|
838 |
+
|
839 |
+
>>> sol_vector_evaluated = linodesolve(A, x, b=b, type="type2", doit=True)
|
840 |
+
|
841 |
+
Now, we will look at a system of ODEs which is non-constant.
|
842 |
+
|
843 |
+
>>> eqs = [Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), -x*f(x) + g(x))]
|
844 |
+
|
845 |
+
The system defined above is already in the desired form, so we do not have to convert it.
|
846 |
+
|
847 |
+
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
|
848 |
+
>>> A = A0
|
849 |
+
|
850 |
+
A user can also pass the commutative antiderivative required for type3 and type4 system of ODEs.
|
851 |
+
Passing an incorrect one will lead to incorrect results. If the coefficient matrix is not commutative
|
852 |
+
with its antiderivative, then :obj:`sympy.solvers.ode.systems.linodesolve_type()` raises a NotImplementedError.
|
853 |
+
If it does have a commutative antiderivative, then the function just returns the information about the system.
|
854 |
+
|
855 |
+
>>> system_info = linodesolve_type(A, x, b=b)
|
856 |
+
|
857 |
+
Now, we can pass the antiderivative as an argument to get the solution. If the system information is not
|
858 |
+
passed, then the solver will compute the required arguments internally.
|
859 |
+
|
860 |
+
>>> sol_vector = linodesolve(A, x, b=b)
|
861 |
+
|
862 |
+
Once again, we can verify the solution obtained.
|
863 |
+
|
864 |
+
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
|
865 |
+
>>> checkodesol(eqs, sol)
|
866 |
+
(True, [0, 0])
|
867 |
+
|
868 |
+
Returns
|
869 |
+
=======
|
870 |
+
|
871 |
+
List
|
872 |
+
|
873 |
+
Raises
|
874 |
+
======
|
875 |
+
|
876 |
+
ValueError
|
877 |
+
This error is raised when the coefficient matrix, non-homogeneous term
|
878 |
+
or the antiderivative, if passed, are not a matrix or
|
879 |
+
do not have correct dimensions
|
880 |
+
NonSquareMatrixError
|
881 |
+
When the coefficient matrix or its antiderivative, if passed is not a
|
882 |
+
square matrix
|
883 |
+
NotImplementedError
|
884 |
+
If the coefficient matrix does not have a commutative antiderivative
|
885 |
+
|
886 |
+
See Also
|
887 |
+
========
|
888 |
+
|
889 |
+
linear_ode_to_matrix: Coefficient matrix computation function
|
890 |
+
canonical_odes: System of ODEs representation change
|
891 |
+
linodesolve_type: Getting information about systems of ODEs to pass in this solver
|
892 |
+
|
893 |
+
"""
|
894 |
+
|
895 |
+
if not isinstance(A, MatrixBase):
|
896 |
+
raise ValueError(filldedent('''\
|
897 |
+
The coefficients of the system of ODEs should be of type Matrix
|
898 |
+
'''))
|
899 |
+
|
900 |
+
if not A.is_square:
|
901 |
+
raise NonSquareMatrixError(filldedent('''\
|
902 |
+
The coefficient matrix must be a square
|
903 |
+
'''))
|
904 |
+
|
905 |
+
if b is not None:
|
906 |
+
if not isinstance(b, MatrixBase):
|
907 |
+
raise ValueError(filldedent('''\
|
908 |
+
The non-homogeneous terms of the system of ODEs should be of type Matrix
|
909 |
+
'''))
|
910 |
+
|
911 |
+
if A.rows != b.rows:
|
912 |
+
raise ValueError(filldedent('''\
|
913 |
+
The system of ODEs should have the same number of non-homogeneous terms and the number of
|
914 |
+
equations
|
915 |
+
'''))
|
916 |
+
|
917 |
+
if B is not None:
|
918 |
+
if not isinstance(B, MatrixBase):
|
919 |
+
raise ValueError(filldedent('''\
|
920 |
+
The antiderivative of coefficients of the system of ODEs should be of type Matrix
|
921 |
+
'''))
|
922 |
+
|
923 |
+
if not B.is_square:
|
924 |
+
raise NonSquareMatrixError(filldedent('''\
|
925 |
+
The antiderivative of the coefficient matrix must be a square
|
926 |
+
'''))
|
927 |
+
|
928 |
+
if A.rows != B.rows:
|
929 |
+
raise ValueError(filldedent('''\
|
930 |
+
The coefficient matrix and its antiderivative should have same dimensions
|
931 |
+
'''))
|
932 |
+
|
933 |
+
if not any(type == "type{}".format(i) for i in range(1, 7)) and not type == "auto":
|
934 |
+
raise ValueError(filldedent('''\
|
935 |
+
The input type should be a valid one
|
936 |
+
'''))
|
937 |
+
|
938 |
+
n = A.rows
|
939 |
+
|
940 |
+
# constants = numbered_symbols(prefix='C', cls=Dummy, start=const_idx+1)
|
941 |
+
Cvect = Matrix([Dummy() for _ in range(n)])
|
942 |
+
|
943 |
+
if b is None and any(type == typ for typ in ["type2", "type4", "type6"]):
|
944 |
+
b = zeros(n, 1)
|
945 |
+
|
946 |
+
is_transformed = tau is not None
|
947 |
+
passed_type = type
|
948 |
+
|
949 |
+
if type == "auto":
|
950 |
+
system_info = linodesolve_type(A, t, b=b)
|
951 |
+
type = system_info["type_of_equation"]
|
952 |
+
B = system_info["antiderivative"]
|
953 |
+
|
954 |
+
if type in ("type5", "type6"):
|
955 |
+
is_transformed = True
|
956 |
+
if passed_type != "auto":
|
957 |
+
if tau is None:
|
958 |
+
system_info = _first_order_type5_6_subs(A, t, b=b)
|
959 |
+
if not system_info:
|
960 |
+
raise ValueError(filldedent('''
|
961 |
+
The system passed isn't {}.
|
962 |
+
'''.format(type)))
|
963 |
+
|
964 |
+
tau = system_info['tau']
|
965 |
+
t = system_info['t_']
|
966 |
+
A = system_info['A']
|
967 |
+
b = system_info['b']
|
968 |
+
|
969 |
+
intx_wrtt = lambda x: Integral(x, t) if x else 0
|
970 |
+
if type in ("type1", "type2", "type5", "type6"):
|
971 |
+
P, J = matrix_exp_jordan_form(A, t)
|
972 |
+
P = simplify(P)
|
973 |
+
|
974 |
+
if type in ("type1", "type5"):
|
975 |
+
sol_vector = P * (J * Cvect)
|
976 |
+
else:
|
977 |
+
Jinv = J.subs(t, -t)
|
978 |
+
sol_vector = P * J * ((Jinv * P.inv() * b).applyfunc(intx_wrtt) + Cvect)
|
979 |
+
else:
|
980 |
+
if B is None:
|
981 |
+
B, _ = _is_commutative_anti_derivative(A, t)
|
982 |
+
|
983 |
+
if type == "type3":
|
984 |
+
sol_vector = B.exp() * Cvect
|
985 |
+
else:
|
986 |
+
sol_vector = B.exp() * (((-B).exp() * b).applyfunc(intx_wrtt) + Cvect)
|
987 |
+
|
988 |
+
if is_transformed:
|
989 |
+
sol_vector = sol_vector.subs(t, tau)
|
990 |
+
|
991 |
+
gens = sol_vector.atoms(exp)
|
992 |
+
|
993 |
+
if type != "type1":
|
994 |
+
sol_vector = [expand_mul(s) for s in sol_vector]
|
995 |
+
|
996 |
+
sol_vector = [collect(s, ordered(gens), exact=True) for s in sol_vector]
|
997 |
+
|
998 |
+
if doit:
|
999 |
+
sol_vector = [s.doit() for s in sol_vector]
|
1000 |
+
|
1001 |
+
return sol_vector
|
1002 |
+
|
1003 |
+
|
1004 |
+
def _matrix_is_constant(M, t):
|
1005 |
+
"""Checks if the matrix M is independent of t or not."""
|
1006 |
+
return all(coef.as_independent(t, as_Add=True)[1] == 0 for coef in M)
|
1007 |
+
|
1008 |
+
|
1009 |
+
def canonical_odes(eqs, funcs, t):
|
1010 |
+
r"""
|
1011 |
+
Function that solves for highest order derivatives in a system
|
1012 |
+
|
1013 |
+
Explanation
|
1014 |
+
===========
|
1015 |
+
|
1016 |
+
This function inputs a system of ODEs and based on the system,
|
1017 |
+
the dependent variables and their highest order, returns the system
|
1018 |
+
in the following form:
|
1019 |
+
|
1020 |
+
.. math::
|
1021 |
+
X'(t) = A(t) X(t) + b(t)
|
1022 |
+
|
1023 |
+
Here, $X(t)$ is the vector of dependent variables of lower order, $A(t)$ is
|
1024 |
+
the coefficient matrix, $b(t)$ is the non-homogeneous term and $X'(t)$ is the
|
1025 |
+
vector of dependent variables in their respective highest order. We use the term
|
1026 |
+
canonical form to imply the system of ODEs which is of the above form.
|
1027 |
+
|
1028 |
+
If the system passed has a non-linear term with multiple solutions, then a list of
|
1029 |
+
systems is returned in its canonical form.
|
1030 |
+
|
1031 |
+
Parameters
|
1032 |
+
==========
|
1033 |
+
|
1034 |
+
eqs : List
|
1035 |
+
List of the ODEs
|
1036 |
+
funcs : List
|
1037 |
+
List of dependent variables
|
1038 |
+
t : Symbol
|
1039 |
+
Independent variable
|
1040 |
+
|
1041 |
+
Examples
|
1042 |
+
========
|
1043 |
+
|
1044 |
+
>>> from sympy import symbols, Function, Eq, Derivative
|
1045 |
+
>>> from sympy.solvers.ode.systems import canonical_odes
|
1046 |
+
>>> f, g = symbols("f g", cls=Function)
|
1047 |
+
>>> x, y = symbols("x y")
|
1048 |
+
>>> funcs = [f(x), g(x)]
|
1049 |
+
>>> eqs = [Eq(f(x).diff(x) - 7*f(x), 12*g(x)), Eq(g(x).diff(x) + g(x), 20*f(x))]
|
1050 |
+
|
1051 |
+
>>> canonical_eqs = canonical_odes(eqs, funcs, x)
|
1052 |
+
>>> canonical_eqs
|
1053 |
+
[[Eq(Derivative(f(x), x), 7*f(x) + 12*g(x)), Eq(Derivative(g(x), x), 20*f(x) - g(x))]]
|
1054 |
+
|
1055 |
+
>>> system = [Eq(Derivative(f(x), x)**2 - 2*Derivative(f(x), x) + 1, 4), Eq(-y*f(x) + Derivative(g(x), x), 0)]
|
1056 |
+
|
1057 |
+
>>> canonical_system = canonical_odes(system, funcs, x)
|
1058 |
+
>>> canonical_system
|
1059 |
+
[[Eq(Derivative(f(x), x), -1), Eq(Derivative(g(x), x), y*f(x))], [Eq(Derivative(f(x), x), 3), Eq(Derivative(g(x), x), y*f(x))]]
|
1060 |
+
|
1061 |
+
Returns
|
1062 |
+
=======
|
1063 |
+
|
1064 |
+
List
|
1065 |
+
|
1066 |
+
"""
|
1067 |
+
from sympy.solvers.solvers import solve
|
1068 |
+
|
1069 |
+
order = _get_func_order(eqs, funcs)
|
1070 |
+
|
1071 |
+
canon_eqs = solve(eqs, *[func.diff(t, order[func]) for func in funcs], dict=True)
|
1072 |
+
|
1073 |
+
systems = []
|
1074 |
+
for eq in canon_eqs:
|
1075 |
+
system = [Eq(func.diff(t, order[func]), eq[func.diff(t, order[func])]) for func in funcs]
|
1076 |
+
systems.append(system)
|
1077 |
+
|
1078 |
+
return systems
|
1079 |
+
|
1080 |
+
|
1081 |
+
def _is_commutative_anti_derivative(A, t):
|
1082 |
+
r"""
|
1083 |
+
Helper function for determining if the Matrix passed is commutative with its antiderivative
|
1084 |
+
|
1085 |
+
Explanation
|
1086 |
+
===========
|
1087 |
+
|
1088 |
+
This function checks if the Matrix $A$ passed is commutative with its antiderivative with respect
|
1089 |
+
to the independent variable $t$.
|
1090 |
+
|
1091 |
+
.. math::
|
1092 |
+
B(t) = \int A(t) dt
|
1093 |
+
|
1094 |
+
The function outputs two values, first one being the antiderivative $B(t)$, second one being a
|
1095 |
+
boolean value, if True, then the matrix $A(t)$ passed is commutative with $B(t)$, else the matrix
|
1096 |
+
passed isn't commutative with $B(t)$.
|
1097 |
+
|
1098 |
+
Parameters
|
1099 |
+
==========
|
1100 |
+
|
1101 |
+
A : Matrix
|
1102 |
+
The matrix which has to be checked
|
1103 |
+
t : Symbol
|
1104 |
+
Independent variable
|
1105 |
+
|
1106 |
+
Examples
|
1107 |
+
========
|
1108 |
+
|
1109 |
+
>>> from sympy import symbols, Matrix
|
1110 |
+
>>> from sympy.solvers.ode.systems import _is_commutative_anti_derivative
|
1111 |
+
>>> t = symbols("t")
|
1112 |
+
>>> A = Matrix([[1, t], [-t, 1]])
|
1113 |
+
|
1114 |
+
>>> B, is_commuting = _is_commutative_anti_derivative(A, t)
|
1115 |
+
>>> is_commuting
|
1116 |
+
True
|
1117 |
+
|
1118 |
+
Returns
|
1119 |
+
=======
|
1120 |
+
|
1121 |
+
Matrix, Boolean
|
1122 |
+
|
1123 |
+
"""
|
1124 |
+
B = integrate(A, t)
|
1125 |
+
is_commuting = (B*A - A*B).applyfunc(expand).applyfunc(factor_terms).is_zero_matrix
|
1126 |
+
|
1127 |
+
is_commuting = False if is_commuting is None else is_commuting
|
1128 |
+
|
1129 |
+
return B, is_commuting
|
1130 |
+
|
1131 |
+
|
1132 |
+
def _factor_matrix(A, t):
|
1133 |
+
term = None
|
1134 |
+
for element in A:
|
1135 |
+
temp_term = element.as_independent(t)[1]
|
1136 |
+
if temp_term.has(t):
|
1137 |
+
term = temp_term
|
1138 |
+
break
|
1139 |
+
|
1140 |
+
if term is not None:
|
1141 |
+
A_factored = (A/term).applyfunc(ratsimp)
|
1142 |
+
can_factor = _matrix_is_constant(A_factored, t)
|
1143 |
+
term = (term, A_factored) if can_factor else None
|
1144 |
+
|
1145 |
+
return term
|
1146 |
+
|
1147 |
+
|
1148 |
+
def _is_second_order_type2(A, t):
|
1149 |
+
term = _factor_matrix(A, t)
|
1150 |
+
is_type2 = False
|
1151 |
+
|
1152 |
+
if term is not None:
|
1153 |
+
term = 1/term[0]
|
1154 |
+
is_type2 = term.is_polynomial()
|
1155 |
+
|
1156 |
+
if is_type2:
|
1157 |
+
poly = Poly(term.expand(), t)
|
1158 |
+
monoms = poly.monoms()
|
1159 |
+
|
1160 |
+
if monoms[0][0] in (2, 4):
|
1161 |
+
cs = _get_poly_coeffs(poly, 4)
|
1162 |
+
a, b, c, d, e = cs
|
1163 |
+
|
1164 |
+
a1 = powdenest(sqrt(a), force=True)
|
1165 |
+
c1 = powdenest(sqrt(e), force=True)
|
1166 |
+
b1 = powdenest(sqrt(c - 2*a1*c1), force=True)
|
1167 |
+
|
1168 |
+
is_type2 = (b == 2*a1*b1) and (d == 2*b1*c1)
|
1169 |
+
term = a1*t**2 + b1*t + c1
|
1170 |
+
|
1171 |
+
else:
|
1172 |
+
is_type2 = False
|
1173 |
+
|
1174 |
+
return is_type2, term
|
1175 |
+
|
1176 |
+
|
1177 |
+
def _get_poly_coeffs(poly, order):
|
1178 |
+
cs = [0 for _ in range(order+1)]
|
1179 |
+
for c, m in zip(poly.coeffs(), poly.monoms()):
|
1180 |
+
cs[-1-m[0]] = c
|
1181 |
+
return cs
|
1182 |
+
|
1183 |
+
|
1184 |
+
def _match_second_order_type(A1, A0, t, b=None):
|
1185 |
+
r"""
|
1186 |
+
Works only for second order system in its canonical form.
|
1187 |
+
|
1188 |
+
Type 0: Constant coefficient matrix, can be simply solved by
|
1189 |
+
introducing dummy variables.
|
1190 |
+
Type 1: When the substitution: $U = t*X' - X$ works for reducing
|
1191 |
+
the second order system to first order system.
|
1192 |
+
Type 2: When the system is of the form: $poly * X'' = A*X$ where
|
1193 |
+
$poly$ is square of a quadratic polynomial with respect to
|
1194 |
+
*t* and $A$ is a constant coefficient matrix.
|
1195 |
+
|
1196 |
+
"""
|
1197 |
+
match = {"type_of_equation": "type0"}
|
1198 |
+
n = A1.shape[0]
|
1199 |
+
|
1200 |
+
if _matrix_is_constant(A1, t) and _matrix_is_constant(A0, t):
|
1201 |
+
return match
|
1202 |
+
|
1203 |
+
if (A1 + A0*t).applyfunc(expand_mul).is_zero_matrix:
|
1204 |
+
match.update({"type_of_equation": "type1", "A1": A1})
|
1205 |
+
|
1206 |
+
elif A1.is_zero_matrix and (b is None or b.is_zero_matrix):
|
1207 |
+
is_type2, term = _is_second_order_type2(A0, t)
|
1208 |
+
if is_type2:
|
1209 |
+
a, b, c = _get_poly_coeffs(Poly(term, t), 2)
|
1210 |
+
A = (A0*(term**2).expand()).applyfunc(ratsimp) + (b**2/4 - a*c)*eye(n, n)
|
1211 |
+
tau = integrate(1/term, t)
|
1212 |
+
t_ = Symbol("{}_".format(t))
|
1213 |
+
match.update({"type_of_equation": "type2", "A0": A,
|
1214 |
+
"g(t)": sqrt(term), "tau": tau, "is_transformed": True,
|
1215 |
+
"t_": t_})
|
1216 |
+
|
1217 |
+
return match
|
1218 |
+
|
1219 |
+
|
1220 |
+
def _second_order_subs_type1(A, b, funcs, t):
|
1221 |
+
r"""
|
1222 |
+
For a linear, second order system of ODEs, a particular substitution.
|
1223 |
+
|
1224 |
+
A system of the below form can be reduced to a linear first order system of
|
1225 |
+
ODEs:
|
1226 |
+
.. math::
|
1227 |
+
X'' = A(t) * (t*X' - X) + b(t)
|
1228 |
+
|
1229 |
+
By substituting:
|
1230 |
+
.. math:: U = t*X' - X
|
1231 |
+
|
1232 |
+
To get the system:
|
1233 |
+
.. math:: U' = t*(A(t)*U + b(t))
|
1234 |
+
|
1235 |
+
Where $U$ is the vector of dependent variables, $X$ is the vector of dependent
|
1236 |
+
variables in `funcs` and $X'$ is the first order derivative of $X$ with respect to
|
1237 |
+
$t$. It may or may not reduce the system into linear first order system of ODEs.
|
1238 |
+
|
1239 |
+
Then a check is made to determine if the system passed can be reduced or not, if
|
1240 |
+
this substitution works, then the system is reduced and its solved for the new
|
1241 |
+
substitution. After we get the solution for $U$:
|
1242 |
+
|
1243 |
+
.. math:: U = a(t)
|
1244 |
+
|
1245 |
+
We substitute and return the reduced system:
|
1246 |
+
|
1247 |
+
.. math::
|
1248 |
+
a(t) = t*X' - X
|
1249 |
+
|
1250 |
+
Parameters
|
1251 |
+
==========
|
1252 |
+
|
1253 |
+
A: Matrix
|
1254 |
+
Coefficient matrix($A(t)*t$) of the second order system of this form.
|
1255 |
+
b: Matrix
|
1256 |
+
Non-homogeneous term($b(t)$) of the system of ODEs.
|
1257 |
+
funcs: List
|
1258 |
+
List of dependent variables
|
1259 |
+
t: Symbol
|
1260 |
+
Independent variable of the system of ODEs.
|
1261 |
+
|
1262 |
+
Returns
|
1263 |
+
=======
|
1264 |
+
|
1265 |
+
List
|
1266 |
+
|
1267 |
+
"""
|
1268 |
+
|
1269 |
+
U = Matrix([t*func.diff(t) - func for func in funcs])
|
1270 |
+
|
1271 |
+
sol = linodesolve(A, t, t*b)
|
1272 |
+
reduced_eqs = [Eq(u, s) for s, u in zip(sol, U)]
|
1273 |
+
reduced_eqs = canonical_odes(reduced_eqs, funcs, t)[0]
|
1274 |
+
|
1275 |
+
return reduced_eqs
|
1276 |
+
|
1277 |
+
|
1278 |
+
def _second_order_subs_type2(A, funcs, t_):
|
1279 |
+
r"""
|
1280 |
+
Returns a second order system based on the coefficient matrix passed.
|
1281 |
+
|
1282 |
+
Explanation
|
1283 |
+
===========
|
1284 |
+
|
1285 |
+
This function returns a system of second order ODE of the following form:
|
1286 |
+
|
1287 |
+
.. math::
|
1288 |
+
X'' = A * X
|
1289 |
+
|
1290 |
+
Here, $X$ is the vector of dependent variables, but a bit modified, $A$ is the
|
1291 |
+
coefficient matrix passed.
|
1292 |
+
|
1293 |
+
Along with returning the second order system, this function also returns the new
|
1294 |
+
dependent variables with the new independent variable `t_` passed.
|
1295 |
+
|
1296 |
+
Parameters
|
1297 |
+
==========
|
1298 |
+
|
1299 |
+
A: Matrix
|
1300 |
+
Coefficient matrix of the system
|
1301 |
+
funcs: List
|
1302 |
+
List of old dependent variables
|
1303 |
+
t_: Symbol
|
1304 |
+
New independent variable
|
1305 |
+
|
1306 |
+
Returns
|
1307 |
+
=======
|
1308 |
+
|
1309 |
+
List, List
|
1310 |
+
|
1311 |
+
"""
|
1312 |
+
func_names = [func.func.__name__ for func in funcs]
|
1313 |
+
new_funcs = [Function(Dummy("{}_".format(name)))(t_) for name in func_names]
|
1314 |
+
rhss = A * Matrix(new_funcs)
|
1315 |
+
new_eqs = [Eq(func.diff(t_, 2), rhs) for func, rhs in zip(new_funcs, rhss)]
|
1316 |
+
|
1317 |
+
return new_eqs, new_funcs
|
1318 |
+
|
1319 |
+
|
1320 |
+
def _is_euler_system(As, t):
|
1321 |
+
return all(_matrix_is_constant((A*t**i).applyfunc(ratsimp), t) for i, A in enumerate(As))
|
1322 |
+
|
1323 |
+
|
1324 |
+
def _classify_linear_system(eqs, funcs, t, is_canon=False):
|
1325 |
+
r"""
|
1326 |
+
Returns a dictionary with details of the eqs if the system passed is linear
|
1327 |
+
and can be classified by this function else returns None
|
1328 |
+
|
1329 |
+
Explanation
|
1330 |
+
===========
|
1331 |
+
|
1332 |
+
This function takes the eqs, converts it into a form Ax = b where x is a vector of terms
|
1333 |
+
containing dependent variables and their derivatives till their maximum order. If it is
|
1334 |
+
possible to convert eqs into Ax = b, then all the equations in eqs are linear otherwise
|
1335 |
+
they are non-linear.
|
1336 |
+
|
1337 |
+
To check if the equations are constant coefficient, we need to check if all the terms in
|
1338 |
+
A obtained above are constant or not.
|
1339 |
+
|
1340 |
+
To check if the equations are homogeneous or not, we need to check if b is a zero matrix
|
1341 |
+
or not.
|
1342 |
+
|
1343 |
+
Parameters
|
1344 |
+
==========
|
1345 |
+
|
1346 |
+
eqs: List
|
1347 |
+
List of ODEs
|
1348 |
+
funcs: List
|
1349 |
+
List of dependent variables
|
1350 |
+
t: Symbol
|
1351 |
+
Independent variable of the equations in eqs
|
1352 |
+
is_canon: Boolean
|
1353 |
+
If True, then this function will not try to get the
|
1354 |
+
system in canonical form. Default value is False
|
1355 |
+
|
1356 |
+
Returns
|
1357 |
+
=======
|
1358 |
+
|
1359 |
+
match = {
|
1360 |
+
'no_of_equation': len(eqs),
|
1361 |
+
'eq': eqs,
|
1362 |
+
'func': funcs,
|
1363 |
+
'order': order,
|
1364 |
+
'is_linear': is_linear,
|
1365 |
+
'is_constant': is_constant,
|
1366 |
+
'is_homogeneous': is_homogeneous,
|
1367 |
+
}
|
1368 |
+
|
1369 |
+
Dict or list of Dicts or None
|
1370 |
+
Dict with values for keys:
|
1371 |
+
1. no_of_equation: Number of equations
|
1372 |
+
2. eq: The set of equations
|
1373 |
+
3. func: List of dependent variables
|
1374 |
+
4. order: A dictionary that gives the order of the
|
1375 |
+
dependent variable in eqs
|
1376 |
+
5. is_linear: Boolean value indicating if the set of
|
1377 |
+
equations are linear or not.
|
1378 |
+
6. is_constant: Boolean value indicating if the set of
|
1379 |
+
equations have constant coefficients or not.
|
1380 |
+
7. is_homogeneous: Boolean value indicating if the set of
|
1381 |
+
equations are homogeneous or not.
|
1382 |
+
8. commutative_antiderivative: Antiderivative of the coefficient
|
1383 |
+
matrix if the coefficient matrix is non-constant
|
1384 |
+
and commutative with its antiderivative. This key
|
1385 |
+
may or may not exist.
|
1386 |
+
9. is_general: Boolean value indicating if the system of ODEs is
|
1387 |
+
solvable using one of the general case solvers or not.
|
1388 |
+
10. rhs: rhs of the non-homogeneous system of ODEs in Matrix form. This
|
1389 |
+
key may or may not exist.
|
1390 |
+
11. is_higher_order: True if the system passed has an order greater than 1.
|
1391 |
+
This key may or may not exist.
|
1392 |
+
12. is_second_order: True if the system passed is a second order ODE. This
|
1393 |
+
key may or may not exist.
|
1394 |
+
This Dict is the answer returned if the eqs are linear and constant
|
1395 |
+
coefficient. Otherwise, None is returned.
|
1396 |
+
|
1397 |
+
"""
|
1398 |
+
|
1399 |
+
# Error for i == 0 can be added but isn't for now
|
1400 |
+
|
1401 |
+
# Check for len(funcs) == len(eqs)
|
1402 |
+
if len(funcs) != len(eqs):
|
1403 |
+
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
|
1404 |
+
|
1405 |
+
# ValueError when functions have more than one arguments
|
1406 |
+
for func in funcs:
|
1407 |
+
if len(func.args) != 1:
|
1408 |
+
raise ValueError("dsolve() and classify_sysode() work with "
|
1409 |
+
"functions of one variable only, not %s" % func)
|
1410 |
+
|
1411 |
+
# Getting the func_dict and order using the helper
|
1412 |
+
# function
|
1413 |
+
order = _get_func_order(eqs, funcs)
|
1414 |
+
system_order = max(order[func] for func in funcs)
|
1415 |
+
is_higher_order = system_order > 1
|
1416 |
+
is_second_order = system_order == 2 and all(order[func] == 2 for func in funcs)
|
1417 |
+
|
1418 |
+
# Not adding the check if the len(func.args) for
|
1419 |
+
# every func in funcs is 1
|
1420 |
+
|
1421 |
+
# Linearity check
|
1422 |
+
try:
|
1423 |
+
|
1424 |
+
canon_eqs = canonical_odes(eqs, funcs, t) if not is_canon else [eqs]
|
1425 |
+
if len(canon_eqs) == 1:
|
1426 |
+
As, b = linear_ode_to_matrix(canon_eqs[0], funcs, t, system_order)
|
1427 |
+
else:
|
1428 |
+
|
1429 |
+
match = {
|
1430 |
+
'is_implicit': True,
|
1431 |
+
'canon_eqs': canon_eqs
|
1432 |
+
}
|
1433 |
+
|
1434 |
+
return match
|
1435 |
+
|
1436 |
+
# When the system of ODEs is non-linear, an ODENonlinearError is raised.
|
1437 |
+
# This function catches the error and None is returned.
|
1438 |
+
except ODENonlinearError:
|
1439 |
+
return None
|
1440 |
+
|
1441 |
+
is_linear = True
|
1442 |
+
|
1443 |
+
# Homogeneous check
|
1444 |
+
is_homogeneous = True if b.is_zero_matrix else False
|
1445 |
+
|
1446 |
+
# Is general key is used to identify if the system of ODEs can be solved by
|
1447 |
+
# one of the general case solvers or not.
|
1448 |
+
match = {
|
1449 |
+
'no_of_equation': len(eqs),
|
1450 |
+
'eq': eqs,
|
1451 |
+
'func': funcs,
|
1452 |
+
'order': order,
|
1453 |
+
'is_linear': is_linear,
|
1454 |
+
'is_homogeneous': is_homogeneous,
|
1455 |
+
'is_general': True
|
1456 |
+
}
|
1457 |
+
|
1458 |
+
if not is_homogeneous:
|
1459 |
+
match['rhs'] = b
|
1460 |
+
|
1461 |
+
is_constant = all(_matrix_is_constant(A_, t) for A_ in As)
|
1462 |
+
|
1463 |
+
# The match['is_linear'] check will be added in the future when this
|
1464 |
+
# function becomes ready to deal with non-linear systems of ODEs
|
1465 |
+
|
1466 |
+
if not is_higher_order:
|
1467 |
+
A = As[1]
|
1468 |
+
match['func_coeff'] = A
|
1469 |
+
|
1470 |
+
# Constant coefficient check
|
1471 |
+
is_constant = _matrix_is_constant(A, t)
|
1472 |
+
match['is_constant'] = is_constant
|
1473 |
+
|
1474 |
+
try:
|
1475 |
+
system_info = linodesolve_type(A, t, b=b)
|
1476 |
+
except NotImplementedError:
|
1477 |
+
return None
|
1478 |
+
|
1479 |
+
match.update(system_info)
|
1480 |
+
antiderivative = match.pop("antiderivative")
|
1481 |
+
|
1482 |
+
if not is_constant:
|
1483 |
+
match['commutative_antiderivative'] = antiderivative
|
1484 |
+
|
1485 |
+
return match
|
1486 |
+
else:
|
1487 |
+
match['type_of_equation'] = "type0"
|
1488 |
+
|
1489 |
+
if is_second_order:
|
1490 |
+
A1, A0 = As[1:]
|
1491 |
+
|
1492 |
+
match_second_order = _match_second_order_type(A1, A0, t)
|
1493 |
+
match.update(match_second_order)
|
1494 |
+
|
1495 |
+
match['is_second_order'] = True
|
1496 |
+
|
1497 |
+
# If system is constant, then no need to check if its in euler
|
1498 |
+
# form or not. It will be easier and faster to directly proceed
|
1499 |
+
# to solve it.
|
1500 |
+
if match['type_of_equation'] == "type0" and not is_constant:
|
1501 |
+
is_euler = _is_euler_system(As, t)
|
1502 |
+
if is_euler:
|
1503 |
+
t_ = Symbol('{}_'.format(t))
|
1504 |
+
match.update({'is_transformed': True, 'type_of_equation': 'type1',
|
1505 |
+
't_': t_})
|
1506 |
+
else:
|
1507 |
+
is_jordan = lambda M: M == Matrix.jordan_block(M.shape[0], M[0, 0])
|
1508 |
+
terms = _factor_matrix(As[-1], t)
|
1509 |
+
if all(A.is_zero_matrix for A in As[1:-1]) and terms is not None and not is_jordan(terms[1]):
|
1510 |
+
P, J = terms[1].jordan_form()
|
1511 |
+
match.update({'type_of_equation': 'type2', 'J': J,
|
1512 |
+
'f(t)': terms[0], 'P': P, 'is_transformed': True})
|
1513 |
+
|
1514 |
+
if match['type_of_equation'] != 'type0' and is_second_order:
|
1515 |
+
match.pop('is_second_order', None)
|
1516 |
+
|
1517 |
+
match['is_higher_order'] = is_higher_order
|
1518 |
+
|
1519 |
+
return match
|
1520 |
+
|
1521 |
+
def _preprocess_eqs(eqs):
|
1522 |
+
processed_eqs = []
|
1523 |
+
for eq in eqs:
|
1524 |
+
processed_eqs.append(eq if isinstance(eq, Equality) else Eq(eq, 0))
|
1525 |
+
|
1526 |
+
return processed_eqs
|
1527 |
+
|
1528 |
+
|
1529 |
+
def _eqs2dict(eqs, funcs):
|
1530 |
+
eqsorig = {}
|
1531 |
+
eqsmap = {}
|
1532 |
+
funcset = set(funcs)
|
1533 |
+
for eq in eqs:
|
1534 |
+
f1, = eq.lhs.atoms(AppliedUndef)
|
1535 |
+
f2s = (eq.rhs.atoms(AppliedUndef) - {f1}) & funcset
|
1536 |
+
eqsmap[f1] = f2s
|
1537 |
+
eqsorig[f1] = eq
|
1538 |
+
return eqsmap, eqsorig
|
1539 |
+
|
1540 |
+
|
1541 |
+
def _dict2graph(d):
|
1542 |
+
nodes = list(d)
|
1543 |
+
edges = [(f1, f2) for f1, f2s in d.items() for f2 in f2s]
|
1544 |
+
G = (nodes, edges)
|
1545 |
+
return G
|
1546 |
+
|
1547 |
+
|
1548 |
+
def _is_type1(scc, t):
|
1549 |
+
eqs, funcs = scc
|
1550 |
+
|
1551 |
+
try:
|
1552 |
+
(A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 1)
|
1553 |
+
except (ODENonlinearError, ODEOrderError):
|
1554 |
+
return False
|
1555 |
+
|
1556 |
+
if _matrix_is_constant(A0, t) and b.is_zero_matrix:
|
1557 |
+
return True
|
1558 |
+
|
1559 |
+
return False
|
1560 |
+
|
1561 |
+
|
1562 |
+
def _combine_type1_subsystems(subsystem, funcs, t):
|
1563 |
+
indices = [i for i, sys in enumerate(zip(subsystem, funcs)) if _is_type1(sys, t)]
|
1564 |
+
remove = set()
|
1565 |
+
for ip, i in enumerate(indices):
|
1566 |
+
for j in indices[ip+1:]:
|
1567 |
+
if any(eq2.has(funcs[i]) for eq2 in subsystem[j]):
|
1568 |
+
subsystem[j] = subsystem[i] + subsystem[j]
|
1569 |
+
remove.add(i)
|
1570 |
+
subsystem = [sys for i, sys in enumerate(subsystem) if i not in remove]
|
1571 |
+
return subsystem
|
1572 |
+
|
1573 |
+
|
1574 |
+
def _component_division(eqs, funcs, t):
|
1575 |
+
|
1576 |
+
# Assuming that each eq in eqs is in canonical form,
|
1577 |
+
# that is, [f(x).diff(x) = .., g(x).diff(x) = .., etc]
|
1578 |
+
# and that the system passed is in its first order
|
1579 |
+
eqsmap, eqsorig = _eqs2dict(eqs, funcs)
|
1580 |
+
|
1581 |
+
subsystems = []
|
1582 |
+
for cc in connected_components(_dict2graph(eqsmap)):
|
1583 |
+
eqsmap_c = {f: eqsmap[f] for f in cc}
|
1584 |
+
sccs = strongly_connected_components(_dict2graph(eqsmap_c))
|
1585 |
+
subsystem = [[eqsorig[f] for f in scc] for scc in sccs]
|
1586 |
+
subsystem = _combine_type1_subsystems(subsystem, sccs, t)
|
1587 |
+
subsystems.append(subsystem)
|
1588 |
+
|
1589 |
+
return subsystems
|
1590 |
+
|
1591 |
+
|
1592 |
+
# Returns: List of equations
|
1593 |
+
def _linear_ode_solver(match):
|
1594 |
+
t = match['t']
|
1595 |
+
funcs = match['func']
|
1596 |
+
|
1597 |
+
rhs = match.get('rhs', None)
|
1598 |
+
tau = match.get('tau', None)
|
1599 |
+
t = match['t_'] if 't_' in match else t
|
1600 |
+
A = match['func_coeff']
|
1601 |
+
|
1602 |
+
# Note: To make B None when the matrix has constant
|
1603 |
+
# coefficient
|
1604 |
+
B = match.get('commutative_antiderivative', None)
|
1605 |
+
type = match['type_of_equation']
|
1606 |
+
|
1607 |
+
sol_vector = linodesolve(A, t, b=rhs, B=B,
|
1608 |
+
type=type, tau=tau)
|
1609 |
+
|
1610 |
+
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
|
1611 |
+
|
1612 |
+
return sol
|
1613 |
+
|
1614 |
+
|
1615 |
+
def _select_equations(eqs, funcs, key=lambda x: x):
|
1616 |
+
eq_dict = {e.lhs: e.rhs for e in eqs}
|
1617 |
+
return [Eq(f, eq_dict[key(f)]) for f in funcs]
|
1618 |
+
|
1619 |
+
|
1620 |
+
def _higher_order_ode_solver(match):
|
1621 |
+
eqs = match["eq"]
|
1622 |
+
funcs = match["func"]
|
1623 |
+
t = match["t"]
|
1624 |
+
sysorder = match['order']
|
1625 |
+
type = match.get('type_of_equation', "type0")
|
1626 |
+
|
1627 |
+
is_second_order = match.get('is_second_order', False)
|
1628 |
+
is_transformed = match.get('is_transformed', False)
|
1629 |
+
is_euler = is_transformed and type == "type1"
|
1630 |
+
is_higher_order_type2 = is_transformed and type == "type2" and 'P' in match
|
1631 |
+
|
1632 |
+
if is_second_order:
|
1633 |
+
new_eqs, new_funcs = _second_order_to_first_order(eqs, funcs, t,
|
1634 |
+
A1=match.get("A1", None), A0=match.get("A0", None),
|
1635 |
+
b=match.get("rhs", None), type=type,
|
1636 |
+
t_=match.get("t_", None))
|
1637 |
+
else:
|
1638 |
+
new_eqs, new_funcs = _higher_order_to_first_order(eqs, sysorder, t, funcs=funcs,
|
1639 |
+
type=type, J=match.get('J', None),
|
1640 |
+
f_t=match.get('f(t)', None),
|
1641 |
+
P=match.get('P', None), b=match.get('rhs', None))
|
1642 |
+
|
1643 |
+
if is_transformed:
|
1644 |
+
t = match.get('t_', t)
|
1645 |
+
|
1646 |
+
if not is_higher_order_type2:
|
1647 |
+
new_eqs = _select_equations(new_eqs, [f.diff(t) for f in new_funcs])
|
1648 |
+
|
1649 |
+
sol = None
|
1650 |
+
|
1651 |
+
# NotImplementedError may be raised when the system may be actually
|
1652 |
+
# solvable if it can be just divided into sub-systems
|
1653 |
+
try:
|
1654 |
+
if not is_higher_order_type2:
|
1655 |
+
sol = _strong_component_solver(new_eqs, new_funcs, t)
|
1656 |
+
except NotImplementedError:
|
1657 |
+
sol = None
|
1658 |
+
|
1659 |
+
# Dividing the system only when it becomes essential
|
1660 |
+
if sol is None:
|
1661 |
+
try:
|
1662 |
+
sol = _component_solver(new_eqs, new_funcs, t)
|
1663 |
+
except NotImplementedError:
|
1664 |
+
sol = None
|
1665 |
+
|
1666 |
+
if sol is None:
|
1667 |
+
return sol
|
1668 |
+
|
1669 |
+
is_second_order_type2 = is_second_order and type == "type2"
|
1670 |
+
|
1671 |
+
underscores = '__' if is_transformed else '_'
|
1672 |
+
|
1673 |
+
sol = _select_equations(sol, funcs,
|
1674 |
+
key=lambda x: Function(Dummy('{}{}0'.format(x.func.__name__, underscores)))(t))
|
1675 |
+
|
1676 |
+
if match.get("is_transformed", False):
|
1677 |
+
if is_second_order_type2:
|
1678 |
+
g_t = match["g(t)"]
|
1679 |
+
tau = match["tau"]
|
1680 |
+
sol = [Eq(s.lhs, s.rhs.subs(t, tau) * g_t) for s in sol]
|
1681 |
+
elif is_euler:
|
1682 |
+
t = match['t']
|
1683 |
+
tau = match['t_']
|
1684 |
+
sol = [s.subs(tau, log(t)) for s in sol]
|
1685 |
+
elif is_higher_order_type2:
|
1686 |
+
P = match['P']
|
1687 |
+
sol_vector = P * Matrix([s.rhs for s in sol])
|
1688 |
+
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
|
1689 |
+
|
1690 |
+
return sol
|
1691 |
+
|
1692 |
+
|
1693 |
+
# Returns: List of equations or None
|
1694 |
+
# If None is returned by this solver, then the system
|
1695 |
+
# of ODEs cannot be solved directly by dsolve_system.
|
1696 |
+
def _strong_component_solver(eqs, funcs, t):
|
1697 |
+
from sympy.solvers.ode.ode import dsolve, constant_renumber
|
1698 |
+
|
1699 |
+
match = _classify_linear_system(eqs, funcs, t, is_canon=True)
|
1700 |
+
sol = None
|
1701 |
+
|
1702 |
+
# Assuming that we can't get an implicit system
|
1703 |
+
# since we are already canonical equations from
|
1704 |
+
# dsolve_system
|
1705 |
+
if match:
|
1706 |
+
match['t'] = t
|
1707 |
+
|
1708 |
+
if match.get('is_higher_order', False):
|
1709 |
+
sol = _higher_order_ode_solver(match)
|
1710 |
+
|
1711 |
+
elif match.get('is_linear', False):
|
1712 |
+
sol = _linear_ode_solver(match)
|
1713 |
+
|
1714 |
+
# Note: For now, only linear systems are handled by this function
|
1715 |
+
# hence, the match condition is added. This can be removed later.
|
1716 |
+
if sol is None and len(eqs) == 1:
|
1717 |
+
sol = dsolve(eqs[0], func=funcs[0])
|
1718 |
+
variables = Tuple(eqs[0]).free_symbols
|
1719 |
+
new_constants = [Dummy() for _ in range(ode_order(eqs[0], funcs[0]))]
|
1720 |
+
sol = constant_renumber(sol, variables=variables, newconstants=new_constants)
|
1721 |
+
sol = [sol]
|
1722 |
+
|
1723 |
+
# To add non-linear case here in future
|
1724 |
+
|
1725 |
+
return sol
|
1726 |
+
|
1727 |
+
|
1728 |
+
def _get_funcs_from_canon(eqs):
|
1729 |
+
return [eq.lhs.args[0] for eq in eqs]
|
1730 |
+
|
1731 |
+
|
1732 |
+
# Returns: List of Equations(a solution)
|
1733 |
+
def _weak_component_solver(wcc, t):
|
1734 |
+
|
1735 |
+
# We will divide the systems into sccs
|
1736 |
+
# only when the wcc cannot be solved as
|
1737 |
+
# a whole
|
1738 |
+
eqs = []
|
1739 |
+
for scc in wcc:
|
1740 |
+
eqs += scc
|
1741 |
+
funcs = _get_funcs_from_canon(eqs)
|
1742 |
+
|
1743 |
+
sol = _strong_component_solver(eqs, funcs, t)
|
1744 |
+
if sol:
|
1745 |
+
return sol
|
1746 |
+
|
1747 |
+
sol = []
|
1748 |
+
|
1749 |
+
for j, scc in enumerate(wcc):
|
1750 |
+
eqs = scc
|
1751 |
+
funcs = _get_funcs_from_canon(eqs)
|
1752 |
+
|
1753 |
+
# Substituting solutions for the dependent
|
1754 |
+
# variables solved in previous SCC, if any solved.
|
1755 |
+
comp_eqs = [eq.subs({s.lhs: s.rhs for s in sol}) for eq in eqs]
|
1756 |
+
scc_sol = _strong_component_solver(comp_eqs, funcs, t)
|
1757 |
+
|
1758 |
+
if scc_sol is None:
|
1759 |
+
raise NotImplementedError(filldedent('''
|
1760 |
+
The system of ODEs passed cannot be solved by dsolve_system.
|
1761 |
+
'''))
|
1762 |
+
|
1763 |
+
# scc_sol: List of equations
|
1764 |
+
# scc_sol is a solution
|
1765 |
+
sol += scc_sol
|
1766 |
+
|
1767 |
+
return sol
|
1768 |
+
|
1769 |
+
|
1770 |
+
# Returns: List of Equations(a solution)
|
1771 |
+
def _component_solver(eqs, funcs, t):
|
1772 |
+
components = _component_division(eqs, funcs, t)
|
1773 |
+
sol = []
|
1774 |
+
|
1775 |
+
for wcc in components:
|
1776 |
+
|
1777 |
+
# wcc_sol: List of Equations
|
1778 |
+
sol += _weak_component_solver(wcc, t)
|
1779 |
+
|
1780 |
+
# sol: List of Equations
|
1781 |
+
return sol
|
1782 |
+
|
1783 |
+
|
1784 |
+
def _second_order_to_first_order(eqs, funcs, t, type="auto", A1=None,
|
1785 |
+
A0=None, b=None, t_=None):
|
1786 |
+
r"""
|
1787 |
+
Expects the system to be in second order and in canonical form
|
1788 |
+
|
1789 |
+
Explanation
|
1790 |
+
===========
|
1791 |
+
|
1792 |
+
Reduces a second order system into a first order one depending on the type of second
|
1793 |
+
order system.
|
1794 |
+
1. "type0": If this is passed, then the system will be reduced to first order by
|
1795 |
+
introducing dummy variables.
|
1796 |
+
2. "type1": If this is passed, then a particular substitution will be used to reduce the
|
1797 |
+
the system into first order.
|
1798 |
+
3. "type2": If this is passed, then the system will be transformed with new dependent
|
1799 |
+
variables and independent variables. This transformation is a part of solving
|
1800 |
+
the corresponding system of ODEs.
|
1801 |
+
|
1802 |
+
`A1` and `A0` are the coefficient matrices from the system and it is assumed that the
|
1803 |
+
second order system has the form given below:
|
1804 |
+
|
1805 |
+
.. math::
|
1806 |
+
A2 * X'' = A1 * X' + A0 * X + b
|
1807 |
+
|
1808 |
+
Here, $A2$ is the coefficient matrix for the vector $X''$ and $b$ is the non-homogeneous
|
1809 |
+
term.
|
1810 |
+
|
1811 |
+
Default value for `b` is None but if `A1` and `A0` are passed and `b` is not passed, then the
|
1812 |
+
system will be assumed homogeneous.
|
1813 |
+
|
1814 |
+
"""
|
1815 |
+
is_a1 = A1 is None
|
1816 |
+
is_a0 = A0 is None
|
1817 |
+
|
1818 |
+
if (type == "type1" and is_a1) or (type == "type2" and is_a0)\
|
1819 |
+
or (type == "auto" and (is_a1 or is_a0)):
|
1820 |
+
(A2, A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 2)
|
1821 |
+
|
1822 |
+
if not A2.is_Identity:
|
1823 |
+
raise ValueError(filldedent('''
|
1824 |
+
The system must be in its canonical form.
|
1825 |
+
'''))
|
1826 |
+
|
1827 |
+
if type == "auto":
|
1828 |
+
match = _match_second_order_type(A1, A0, t)
|
1829 |
+
type = match["type_of_equation"]
|
1830 |
+
A1 = match.get("A1", None)
|
1831 |
+
A0 = match.get("A0", None)
|
1832 |
+
|
1833 |
+
sys_order = {func: 2 for func in funcs}
|
1834 |
+
|
1835 |
+
if type == "type1":
|
1836 |
+
if b is None:
|
1837 |
+
b = zeros(len(eqs))
|
1838 |
+
eqs = _second_order_subs_type1(A1, b, funcs, t)
|
1839 |
+
sys_order = {func: 1 for func in funcs}
|
1840 |
+
|
1841 |
+
if type == "type2":
|
1842 |
+
if t_ is None:
|
1843 |
+
t_ = Symbol("{}_".format(t))
|
1844 |
+
t = t_
|
1845 |
+
eqs, funcs = _second_order_subs_type2(A0, funcs, t_)
|
1846 |
+
sys_order = {func: 2 for func in funcs}
|
1847 |
+
|
1848 |
+
return _higher_order_to_first_order(eqs, sys_order, t, funcs=funcs)
|
1849 |
+
|
1850 |
+
|
1851 |
+
def _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, b=None, P=None):
|
1852 |
+
|
1853 |
+
# Note: To add a test for this ValueError
|
1854 |
+
if J is None or f_t is None or not _matrix_is_constant(J, t):
|
1855 |
+
raise ValueError(filldedent('''
|
1856 |
+
Correctly input for args 'A' and 'f_t' for Linear, Higher Order,
|
1857 |
+
Type 2
|
1858 |
+
'''))
|
1859 |
+
|
1860 |
+
if P is None and b is not None and not b.is_zero_matrix:
|
1861 |
+
raise ValueError(filldedent('''
|
1862 |
+
Provide the keyword 'P' for matrix P in A = P * J * P-1.
|
1863 |
+
'''))
|
1864 |
+
|
1865 |
+
new_funcs = Matrix([Function(Dummy('{}__0'.format(f.func.__name__)))(t) for f in funcs])
|
1866 |
+
new_eqs = new_funcs.diff(t, max_order) - f_t * J * new_funcs
|
1867 |
+
|
1868 |
+
if b is not None and not b.is_zero_matrix:
|
1869 |
+
new_eqs -= P.inv() * b
|
1870 |
+
|
1871 |
+
new_eqs = canonical_odes(new_eqs, new_funcs, t)[0]
|
1872 |
+
|
1873 |
+
return new_eqs, new_funcs
|
1874 |
+
|
1875 |
+
|
1876 |
+
def _higher_order_to_first_order(eqs, sys_order, t, funcs=None, type="type0", **kwargs):
|
1877 |
+
if funcs is None:
|
1878 |
+
funcs = sys_order.keys()
|
1879 |
+
|
1880 |
+
# Standard Cauchy Euler system
|
1881 |
+
if type == "type1":
|
1882 |
+
t_ = Symbol('{}_'.format(t))
|
1883 |
+
new_funcs = [Function(Dummy('{}_'.format(f.func.__name__)))(t_) for f in funcs]
|
1884 |
+
max_order = max(sys_order[func] for func in funcs)
|
1885 |
+
subs_dict = {func: new_func for func, new_func in zip(funcs, new_funcs)}
|
1886 |
+
subs_dict[t] = exp(t_)
|
1887 |
+
|
1888 |
+
free_function = Function(Dummy())
|
1889 |
+
|
1890 |
+
def _get_coeffs_from_subs_expression(expr):
|
1891 |
+
if isinstance(expr, Subs):
|
1892 |
+
free_symbol = expr.args[1][0]
|
1893 |
+
term = expr.args[0]
|
1894 |
+
return {ode_order(term, free_symbol): 1}
|
1895 |
+
|
1896 |
+
if isinstance(expr, Mul):
|
1897 |
+
coeff = expr.args[0]
|
1898 |
+
order = list(_get_coeffs_from_subs_expression(expr.args[1]).keys())[0]
|
1899 |
+
return {order: coeff}
|
1900 |
+
|
1901 |
+
if isinstance(expr, Add):
|
1902 |
+
coeffs = {}
|
1903 |
+
for arg in expr.args:
|
1904 |
+
|
1905 |
+
if isinstance(arg, Mul):
|
1906 |
+
coeffs.update(_get_coeffs_from_subs_expression(arg))
|
1907 |
+
|
1908 |
+
else:
|
1909 |
+
order = list(_get_coeffs_from_subs_expression(arg).keys())[0]
|
1910 |
+
coeffs[order] = 1
|
1911 |
+
|
1912 |
+
return coeffs
|
1913 |
+
|
1914 |
+
for o in range(1, max_order + 1):
|
1915 |
+
expr = free_function(log(t_)).diff(t_, o)*t_**o
|
1916 |
+
coeff_dict = _get_coeffs_from_subs_expression(expr)
|
1917 |
+
coeffs = [coeff_dict[order] if order in coeff_dict else 0 for order in range(o + 1)]
|
1918 |
+
expr_to_subs = sum(free_function(t_).diff(t_, i) * c for i, c in
|
1919 |
+
enumerate(coeffs)) / t**o
|
1920 |
+
subs_dict.update({f.diff(t, o): expr_to_subs.subs(free_function(t_), nf)
|
1921 |
+
for f, nf in zip(funcs, new_funcs)})
|
1922 |
+
|
1923 |
+
new_eqs = [eq.subs(subs_dict) for eq in eqs]
|
1924 |
+
new_sys_order = {nf: sys_order[f] for f, nf in zip(funcs, new_funcs)}
|
1925 |
+
|
1926 |
+
new_eqs = canonical_odes(new_eqs, new_funcs, t_)[0]
|
1927 |
+
|
1928 |
+
return _higher_order_to_first_order(new_eqs, new_sys_order, t_, funcs=new_funcs)
|
1929 |
+
|
1930 |
+
# Systems of the form: X(n)(t) = f(t)*A*X + b
|
1931 |
+
# where X(n)(t) is the nth derivative of the vector of dependent variables
|
1932 |
+
# with respect to the independent variable and A is a constant matrix.
|
1933 |
+
if type == "type2":
|
1934 |
+
J = kwargs.get('J', None)
|
1935 |
+
f_t = kwargs.get('f_t', None)
|
1936 |
+
b = kwargs.get('b', None)
|
1937 |
+
P = kwargs.get('P', None)
|
1938 |
+
max_order = max(sys_order[func] for func in funcs)
|
1939 |
+
|
1940 |
+
return _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, P=P, b=b)
|
1941 |
+
|
1942 |
+
# Note: To be changed to this after doit option is disabled for default cases
|
1943 |
+
# new_sysorder = _get_func_order(new_eqs, new_funcs)
|
1944 |
+
#
|
1945 |
+
# return _higher_order_to_first_order(new_eqs, new_sysorder, t, funcs=new_funcs)
|
1946 |
+
|
1947 |
+
new_funcs = []
|
1948 |
+
|
1949 |
+
for prev_func in funcs:
|
1950 |
+
func_name = prev_func.func.__name__
|
1951 |
+
func = Function(Dummy('{}_0'.format(func_name)))(t)
|
1952 |
+
new_funcs.append(func)
|
1953 |
+
subs_dict = {prev_func: func}
|
1954 |
+
new_eqs = []
|
1955 |
+
|
1956 |
+
for i in range(1, sys_order[prev_func]):
|
1957 |
+
new_func = Function(Dummy('{}_{}'.format(func_name, i)))(t)
|
1958 |
+
subs_dict[prev_func.diff(t, i)] = new_func
|
1959 |
+
new_funcs.append(new_func)
|
1960 |
+
|
1961 |
+
prev_f = subs_dict[prev_func.diff(t, i-1)]
|
1962 |
+
new_eq = Eq(prev_f.diff(t), new_func)
|
1963 |
+
new_eqs.append(new_eq)
|
1964 |
+
|
1965 |
+
eqs = [eq.subs(subs_dict) for eq in eqs] + new_eqs
|
1966 |
+
|
1967 |
+
return eqs, new_funcs
|
1968 |
+
|
1969 |
+
|
1970 |
+
def dsolve_system(eqs, funcs=None, t=None, ics=None, doit=False, simplify=True):
|
1971 |
+
r"""
|
1972 |
+
Solves any(supported) system of Ordinary Differential Equations
|
1973 |
+
|
1974 |
+
Explanation
|
1975 |
+
===========
|
1976 |
+
|
1977 |
+
This function takes a system of ODEs as an input, determines if the
|
1978 |
+
it is solvable by this function, and returns the solution if found any.
|
1979 |
+
|
1980 |
+
This function can handle:
|
1981 |
+
1. Linear, First Order, Constant coefficient homogeneous system of ODEs
|
1982 |
+
2. Linear, First Order, Constant coefficient non-homogeneous system of ODEs
|
1983 |
+
3. Linear, First Order, non-constant coefficient homogeneous system of ODEs
|
1984 |
+
4. Linear, First Order, non-constant coefficient non-homogeneous system of ODEs
|
1985 |
+
5. Any implicit system which can be divided into system of ODEs which is of the above 4 forms
|
1986 |
+
6. Any higher order linear system of ODEs that can be reduced to one of the 5 forms of systems described above.
|
1987 |
+
|
1988 |
+
The types of systems described above are not limited by the number of equations, i.e. this
|
1989 |
+
function can solve the above types irrespective of the number of equations in the system passed.
|
1990 |
+
But, the bigger the system, the more time it will take to solve the system.
|
1991 |
+
|
1992 |
+
This function returns a list of solutions. Each solution is a list of equations where LHS is
|
1993 |
+
the dependent variable and RHS is an expression in terms of the independent variable.
|
1994 |
+
|
1995 |
+
Among the non constant coefficient types, not all the systems are solvable by this function. Only
|
1996 |
+
those which have either a coefficient matrix with a commutative antiderivative or those systems which
|
1997 |
+
may be divided further so that the divided systems may have coefficient matrix with commutative antiderivative.
|
1998 |
+
|
1999 |
+
Parameters
|
2000 |
+
==========
|
2001 |
+
|
2002 |
+
eqs : List
|
2003 |
+
system of ODEs to be solved
|
2004 |
+
funcs : List or None
|
2005 |
+
List of dependent variables that make up the system of ODEs
|
2006 |
+
t : Symbol or None
|
2007 |
+
Independent variable in the system of ODEs
|
2008 |
+
ics : Dict or None
|
2009 |
+
Set of initial boundary/conditions for the system of ODEs
|
2010 |
+
doit : Boolean
|
2011 |
+
Evaluate the solutions if True. Default value is True. Can be
|
2012 |
+
set to false if the integral evaluation takes too much time and/or
|
2013 |
+
is not required.
|
2014 |
+
simplify: Boolean
|
2015 |
+
Simplify the solutions for the systems. Default value is True.
|
2016 |
+
Can be set to false if simplification takes too much time and/or
|
2017 |
+
is not required.
|
2018 |
+
|
2019 |
+
Examples
|
2020 |
+
========
|
2021 |
+
|
2022 |
+
>>> from sympy import symbols, Eq, Function
|
2023 |
+
>>> from sympy.solvers.ode.systems import dsolve_system
|
2024 |
+
>>> f, g = symbols("f g", cls=Function)
|
2025 |
+
>>> x = symbols("x")
|
2026 |
+
|
2027 |
+
>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
|
2028 |
+
>>> dsolve_system(eqs)
|
2029 |
+
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
|
2030 |
+
|
2031 |
+
You can also pass the initial conditions for the system of ODEs:
|
2032 |
+
|
2033 |
+
>>> dsolve_system(eqs, ics={f(0): 1, g(0): 0})
|
2034 |
+
[[Eq(f(x), exp(x)/2 + exp(-x)/2), Eq(g(x), exp(x)/2 - exp(-x)/2)]]
|
2035 |
+
|
2036 |
+
Optionally, you can pass the dependent variables and the independent
|
2037 |
+
variable for which the system is to be solved:
|
2038 |
+
|
2039 |
+
>>> funcs = [f(x), g(x)]
|
2040 |
+
>>> dsolve_system(eqs, funcs=funcs, t=x)
|
2041 |
+
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
|
2042 |
+
|
2043 |
+
Lets look at an implicit system of ODEs:
|
2044 |
+
|
2045 |
+
>>> eqs = [Eq(f(x).diff(x)**2, g(x)**2), Eq(g(x).diff(x), g(x))]
|
2046 |
+
>>> dsolve_system(eqs)
|
2047 |
+
[[Eq(f(x), C1 - C2*exp(x)), Eq(g(x), C2*exp(x))], [Eq(f(x), C1 + C2*exp(x)), Eq(g(x), C2*exp(x))]]
|
2048 |
+
|
2049 |
+
Returns
|
2050 |
+
=======
|
2051 |
+
|
2052 |
+
List of List of Equations
|
2053 |
+
|
2054 |
+
Raises
|
2055 |
+
======
|
2056 |
+
|
2057 |
+
NotImplementedError
|
2058 |
+
When the system of ODEs is not solvable by this function.
|
2059 |
+
ValueError
|
2060 |
+
When the parameters passed are not in the required form.
|
2061 |
+
|
2062 |
+
"""
|
2063 |
+
from sympy.solvers.ode.ode import solve_ics, _extract_funcs, constant_renumber
|
2064 |
+
|
2065 |
+
if not iterable(eqs):
|
2066 |
+
raise ValueError(filldedent('''
|
2067 |
+
List of equations should be passed. The input is not valid.
|
2068 |
+
'''))
|
2069 |
+
|
2070 |
+
eqs = _preprocess_eqs(eqs)
|
2071 |
+
|
2072 |
+
if funcs is not None and not isinstance(funcs, list):
|
2073 |
+
raise ValueError(filldedent('''
|
2074 |
+
Input to the funcs should be a list of functions.
|
2075 |
+
'''))
|
2076 |
+
|
2077 |
+
if funcs is None:
|
2078 |
+
funcs = _extract_funcs(eqs)
|
2079 |
+
|
2080 |
+
if any(len(func.args) != 1 for func in funcs):
|
2081 |
+
raise ValueError(filldedent('''
|
2082 |
+
dsolve_system can solve a system of ODEs with only one independent
|
2083 |
+
variable.
|
2084 |
+
'''))
|
2085 |
+
|
2086 |
+
if len(eqs) != len(funcs):
|
2087 |
+
raise ValueError(filldedent('''
|
2088 |
+
Number of equations and number of functions do not match
|
2089 |
+
'''))
|
2090 |
+
|
2091 |
+
if t is not None and not isinstance(t, Symbol):
|
2092 |
+
raise ValueError(filldedent('''
|
2093 |
+
The independent variable must be of type Symbol
|
2094 |
+
'''))
|
2095 |
+
|
2096 |
+
if t is None:
|
2097 |
+
t = list(list(eqs[0].atoms(Derivative))[0].atoms(Symbol))[0]
|
2098 |
+
|
2099 |
+
sols = []
|
2100 |
+
canon_eqs = canonical_odes(eqs, funcs, t)
|
2101 |
+
|
2102 |
+
for canon_eq in canon_eqs:
|
2103 |
+
try:
|
2104 |
+
sol = _strong_component_solver(canon_eq, funcs, t)
|
2105 |
+
except NotImplementedError:
|
2106 |
+
sol = None
|
2107 |
+
|
2108 |
+
if sol is None:
|
2109 |
+
sol = _component_solver(canon_eq, funcs, t)
|
2110 |
+
|
2111 |
+
sols.append(sol)
|
2112 |
+
|
2113 |
+
if sols:
|
2114 |
+
final_sols = []
|
2115 |
+
variables = Tuple(*eqs).free_symbols
|
2116 |
+
|
2117 |
+
for sol in sols:
|
2118 |
+
|
2119 |
+
sol = _select_equations(sol, funcs)
|
2120 |
+
sol = constant_renumber(sol, variables=variables)
|
2121 |
+
|
2122 |
+
if ics:
|
2123 |
+
constants = Tuple(*sol).free_symbols - variables
|
2124 |
+
solved_constants = solve_ics(sol, funcs, constants, ics)
|
2125 |
+
sol = [s.subs(solved_constants) for s in sol]
|
2126 |
+
|
2127 |
+
if simplify:
|
2128 |
+
constants = Tuple(*sol).free_symbols - variables
|
2129 |
+
sol = simpsol(sol, [t], constants, doit=doit)
|
2130 |
+
|
2131 |
+
final_sols.append(sol)
|
2132 |
+
|
2133 |
+
sols = final_sols
|
2134 |
+
|
2135 |
+
return sols
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/test_lie_group.cpython-310.pyc
ADDED
Binary file (5.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/test_ode.cpython-310.pyc
ADDED
Binary file (37.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/tests/__pycache__/test_riccati.cpython-310.pyc
ADDED
Binary file (29.3 kB). View file
|
|