peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/networkx
/utils
/backends.py
""" | |
NetworkX utilizes a plugin-dispatch architecture, which means we can plug in and | |
out of backends with minimal code changes. A valid NetworkX backend specifies | |
`entry points <https://packaging.python.org/en/latest/specifications/entry-points>`_, | |
named ``networkx.backends`` and an optional ``networkx.backend_info`` when it is | |
installed (not imported). This allows NetworkX to dispatch (redirect) function calls | |
to the backend so the execution flows to the designated backend | |
implementation, similar to how plugging a charger into a socket redirects the | |
electricity to your phone. This design enhances flexibility and integration, making | |
NetworkX more adaptable and efficient. | |
There are three main ways to use a backend after the package is installed. | |
You can set environment variables and run the exact same code you run for | |
NetworkX. You can use a keyword argument ``backend=...`` with the NetworkX | |
function. Or, you can convert the NetworkX Graph to a backend graph type and | |
call a NetworkX function supported by that backend. Environment variables | |
and backend keywords automatically convert your NetworkX Graph to the | |
backend type. Manually converting it yourself allows you to use that same | |
backend graph for more than one function call, reducing conversion time. | |
For example, you can set an environment variable before starting python to request | |
all dispatchable functions automatically dispatch to the given backend:: | |
bash> NETWORKX_AUTOMATIC_BACKENDS=cugraph python my_networkx_script.py | |
or you can specify the backend as a kwarg:: | |
nx.betweenness_centrality(G, k=10, backend="parallel") | |
or you can convert the NetworkX Graph object ``G`` into a Graph-like | |
object specific to the backend and then pass that in the NetworkX function:: | |
H = nx_parallel.ParallelGraph(G) | |
nx.betweenness_centrality(H, k=10) | |
How it works: You might have seen the ``@nx._dispatchable`` decorator on | |
many of the NetworkX functions in the codebase. It decorates the function | |
with code that redirects execution to the function's backend implementation. | |
The code also manages any ``backend_kwargs`` you provide to the backend | |
version of the function. The code looks for the environment variable or | |
a ``backend`` keyword argument and if found, converts the input NetworkX | |
graph to the backend format before calling the backend's version of the | |
function. If no environment variable or backend keyword are found, the | |
dispatching code checks the input graph object for an attribute | |
called ``__networkx_backend__`` which tells it which backend provides this | |
graph type. That backend's version of the function is then called. | |
The backend system relies on Python ``entry_point`` system to signal | |
NetworkX that a backend is installed (even if not imported yet). Thus no | |
code needs to be changed between running with NetworkX and running with | |
a backend to NetworkX. The attribute ``__networkx_backend__`` holds a | |
string with the name of the ``entry_point``. If none of these options | |
are being used, the decorator code simply calls the NetworkX function | |
on the NetworkX graph as usual. | |
The NetworkX library does not need to know that a backend exists for it | |
to work. So long as the backend package creates the entry_point, and | |
provides the correct interface, it will be called when the user requests | |
it using one of the three approaches described above. Some backends have | |
been working with the NetworkX developers to ensure smooth operation. | |
They are the following:: | |
- `graphblas <https://github.com/python-graphblas/graphblas-algorithms>`_ | |
- `cugraph <https://github.com/rapidsai/cugraph/tree/branch-24.04/python/nx-cugraph>`_ | |
- `parallel <https://github.com/networkx/nx-parallel>`_ | |
- ``loopback`` is for testing purposes only and is not a real backend. | |
Note that the ``backend_name`` is e.g. ``parallel``, the package installed | |
is ``nx-parallel``, and we use ``nx_parallel`` while importing the package. | |
Creating a Custom backend | |
------------------------- | |
1. To be a valid backend that is discoverable by NetworkX, your package must | |
register an `entry-point <https://packaging.python.org/en/latest/specifications/entry-points/#entry-points>`_ | |
``networkx.backends`` in the package's metadata, with a `key pointing to your | |
dispatch object <https://packaging.python.org/en/latest/guides/creating-and-discovering-plugins/#using-package-metadata>`_ . | |
For example, if you are using ``setuptools`` to manage your backend package, | |
you can `add the following to your pyproject.toml file <https://setuptools.pypa.io/en/latest/userguide/entry_point.html>`_:: | |
[project.entry-points."networkx.backends"] | |
backend_name = "your_dispatcher_class" | |
You can also add the ``backend_info`` entry-point. It points towards the ``get_info`` | |
function that returns all the backend information, which is then used to build the | |
"Additional Backend Implementation" box at the end of algorithm's documentation | |
page (e.g. `nx-cugraph's get_info function <https://github.com/rapidsai/cugraph/blob/branch-24.04/python/nx-cugraph/_nx_cugraph/__init__.py>`_):: | |
[project.entry-points."networkx.backend_info"] | |
backend_name = "your_get_info_function" | |
Note that this would only work if your backend is a trusted backend of NetworkX, | |
and is present in the `.circleci/config.yml` and | |
`.github/workflows/deploy-docs.yml` files in the NetworkX repository. | |
2. The backend must create an ``nx.Graph``-like object which contains an attribute | |
``__networkx_backend__`` with a value of the entry point name:: | |
class BackendGraph: | |
__networkx_backend__ = "backend_name" | |
... | |
Testing the Custom backend | |
-------------------------- | |
To test your custom backend, you can run the NetworkX test suite with your backend. | |
This also ensures that the custom backend is compatible with NetworkX's API. | |
Testing Environment Setup | |
~~~~~~~~~~~~~~~~~~~~~~~~~ | |
To enable automatic testing with your custom backend, follow these steps: | |
1. Set Backend Environment Variables: | |
- ``NETWORKX_TEST_BACKEND`` : Setting this to your registered backend key will let | |
the NetworkX's dispatch machinery automatically convert a regular NetworkX | |
``Graph``, ``DiGraph``, ``MultiGraph``, etc. to their backend equivalents, using | |
``your_dispatcher_class.convert_from_nx(G, ...)`` function. | |
- ``NETWORKX_FALLBACK_TO_NX`` (default=False) : Setting this variable to `True` will | |
instruct tests to use a NetworkX ``Graph`` for algorithms not implemented by your | |
custom backend. Setting this to `False` will only run the tests for algorithms | |
implemented by your custom backend and tests for other algorithms will ``xfail``. | |
2. Defining ``convert_from_nx`` and ``convert_to_nx`` methods: | |
The arguments to ``convert_from_nx`` are: | |
- ``G`` : NetworkX Graph | |
- ``edge_attrs`` : dict, optional | |
Dictionary mapping edge attributes to default values if missing in ``G``. | |
If None, then no edge attributes will be converted and default may be 1. | |
- ``node_attrs``: dict, optional | |
Dictionary mapping node attributes to default values if missing in ``G``. | |
If None, then no node attributes will be converted. | |
- ``preserve_edge_attrs`` : bool | |
Whether to preserve all edge attributes. | |
- ``preserve_node_attrs`` : bool | |
Whether to preserve all node attributes. | |
- ``preserve_graph_attrs`` : bool | |
Whether to preserve all graph attributes. | |
- ``preserve_all_attrs`` : bool | |
Whether to preserve all graph, node, and edge attributes. | |
- ``name`` : str | |
The name of the algorithm. | |
- ``graph_name`` : str | |
The name of the graph argument being converted. | |
Running Tests | |
~~~~~~~~~~~~~ | |
You can invoke NetworkX tests for your custom backend with the following commands:: | |
NETWORKX_TEST_BACKEND=<backend_name> | |
NETWORKX_FALLBACK_TO_NX=True # or False | |
pytest --pyargs networkx | |
Conversions while running tests : | |
- Convert NetworkX graphs using ``<your_dispatcher_class>.convert_from_nx(G, ...)`` into | |
the backend graph. | |
- Pass the backend graph objects to the backend implementation of the algorithm. | |
- Convert the result back to a form expected by NetworkX tests using | |
``<your_dispatcher_class>.convert_to_nx(result, ...)``. | |
Notes | |
~~~~~ | |
- Dispatchable algorithms that are not implemented by the backend | |
will cause a ``pytest.xfail``, giving some indication that not all | |
tests are running, while avoiding causing an explicit failure. | |
- If a backend only partially implements some algorithms, it can define | |
a ``can_run(name, args, kwargs)`` function that returns True or False | |
indicating whether it can run the algorithm with the given arguments. | |
It may also return a string indicating why the algorithm can't be run; | |
this string may be used in the future to give helpful info to the user. | |
- A backend may also define ``should_run(name, args, kwargs)`` that is similar | |
to ``can_run``, but answers whether the backend *should* be run (converting | |
if necessary). Like ``can_run``, it receives the original arguments so it | |
can decide whether it should be run by inspecting the arguments. ``can_run`` | |
runs before ``should_run``, so ``should_run`` may assume ``can_run`` is True. | |
If not implemented by the backend, ``can_run`` and ``should_run`` are | |
assumed to always return True if the backend implements the algorithm. | |
- A special ``on_start_tests(items)`` function may be defined by the backend. | |
It will be called with the list of NetworkX tests discovered. Each item | |
is a test object that can be marked as xfail if the backend does not support | |
the test using ``item.add_marker(pytest.mark.xfail(reason=...))``. | |
- A backend graph instance may have a ``G.__networkx_cache__`` dict to enable | |
caching, and care should be taken to clear the cache when appropriate. | |
""" | |
import inspect | |
import itertools | |
import os | |
import warnings | |
from functools import partial | |
from importlib.metadata import entry_points | |
import networkx as nx | |
from .decorators import argmap | |
__all__ = ["_dispatchable"] | |
def _do_nothing(): | |
"""This does nothing at all, yet it helps turn `_dispatchable` into functions.""" | |
def _get_backends(group, *, load_and_call=False): | |
""" | |
Retrieve NetworkX ``backends`` and ``backend_info`` from the entry points. | |
Parameters | |
----------- | |
group : str | |
The entry_point to be retrieved. | |
load_and_call : bool, optional | |
If True, load and call the backend. Defaults to False. | |
Returns | |
-------- | |
dict | |
A dictionary mapping backend names to their respective backend objects. | |
Notes | |
------ | |
If a backend is defined more than once, a warning is issued. | |
The `nx-loopback` backend is removed if it exists, as it is only available during testing. | |
A warning is displayed if an error occurs while loading a backend. | |
""" | |
items = entry_points(group=group) | |
rv = {} | |
for ep in items: | |
if ep.name in rv: | |
warnings.warn( | |
f"networkx backend defined more than once: {ep.name}", | |
RuntimeWarning, | |
stacklevel=2, | |
) | |
elif load_and_call: | |
try: | |
rv[ep.name] = ep.load()() | |
except Exception as exc: | |
warnings.warn( | |
f"Error encountered when loading info for backend {ep.name}: {exc}", | |
RuntimeWarning, | |
stacklevel=2, | |
) | |
else: | |
rv[ep.name] = ep | |
rv.pop("nx-loopback", None) | |
return rv | |
backends = _get_backends("networkx.backends") | |
backend_info = _get_backends("networkx.backend_info", load_and_call=True) | |
# We must import from config after defining `backends` above | |
from .configs import Config, config | |
# Get default configuration from environment variables at import time | |
config.backend_priority = [ | |
x.strip() | |
for x in os.environ.get( | |
"NETWORKX_BACKEND_PRIORITY", | |
os.environ.get("NETWORKX_AUTOMATIC_BACKENDS", ""), | |
).split(",") | |
if x.strip() | |
] | |
# Initialize default configuration for backends | |
config.backends = Config( | |
**{ | |
backend: ( | |
cfg if isinstance(cfg := info["default_config"], Config) else Config(**cfg) | |
) | |
if "default_config" in info | |
else Config() | |
for backend, info in backend_info.items() | |
} | |
) | |
type(config.backends).__doc__ = "All installed NetworkX backends and their configs." | |
# Load and cache backends on-demand | |
_loaded_backends = {} # type: ignore[var-annotated] | |
def _always_run(name, args, kwargs): | |
return True | |
def _load_backend(backend_name): | |
if backend_name in _loaded_backends: | |
return _loaded_backends[backend_name] | |
rv = _loaded_backends[backend_name] = backends[backend_name].load() | |
if not hasattr(rv, "can_run"): | |
rv.can_run = _always_run | |
if not hasattr(rv, "should_run"): | |
rv.should_run = _always_run | |
return rv | |
_registered_algorithms = {} | |
class _dispatchable: | |
"""Allow any of the following decorator forms: | |
- @_dispatchable | |
- @_dispatchable() | |
- @_dispatchable(name="override_name") | |
- @_dispatchable(graphs="graph") | |
- @_dispatchable(edge_attrs="weight") | |
- @_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"}) | |
These class attributes are currently used to allow backends to run networkx tests. | |
For example: `PYTHONPATH=. pytest --backend graphblas --fallback-to-nx` | |
Future work: add configuration to control these. | |
""" | |
_is_testing = False | |
_fallback_to_nx = ( | |
os.environ.get("NETWORKX_FALLBACK_TO_NX", "true").strip().lower() == "true" | |
) | |
def __new__( | |
cls, | |
func=None, | |
*, | |
name=None, | |
graphs="G", | |
edge_attrs=None, | |
node_attrs=None, | |
preserve_edge_attrs=False, | |
preserve_node_attrs=False, | |
preserve_graph_attrs=False, | |
preserve_all_attrs=False, | |
mutates_input=False, | |
returns_graph=False, | |
): | |
"""A decorator that makes certain input graph types dispatch to ``func``'s | |
backend implementation. | |
Usage can be any of the following decorator forms: | |
- @_dispatchable | |
- @_dispatchable() | |
- @_dispatchable(name="override_name") | |
- @_dispatchable(graphs="graph_var_name") | |
- @_dispatchable(edge_attrs="weight") | |
- @_dispatchable(graphs={"G": 0, "H": 1}, edge_attrs={"weight": "default"}) | |
with 0 and 1 giving the position in the signature function for graph objects. | |
When edge_attrs is a dict, keys are keyword names and values are defaults. | |
The class attributes are used to allow backends to run networkx tests. | |
For example: `PYTHONPATH=. pytest --backend graphblas --fallback-to-nx` | |
Future work: add configuration to control these. | |
Parameters | |
---------- | |
func : callable, optional | |
The function to be decorated. If ``func`` is not provided, returns a | |
partial object that can be used to decorate a function later. If ``func`` | |
is provided, returns a new callable object that dispatches to a backend | |
algorithm based on input graph types. | |
name : str, optional | |
The name of the algorithm to use for dispatching. If not provided, | |
the name of ``func`` will be used. ``name`` is useful to avoid name | |
conflicts, as all dispatched algorithms live in a single namespace. | |
For example, ``tournament.is_strongly_connected`` had a name conflict | |
with the standard ``nx.is_strongly_connected``, so we used | |
``@_dispatchable(name="tournament_is_strongly_connected")``. | |
graphs : str or dict or None, default "G" | |
If a string, the parameter name of the graph, which must be the first | |
argument of the wrapped function. If more than one graph is required | |
for the algorithm (or if the graph is not the first argument), provide | |
a dict of parameter name to argument position for each graph argument. | |
For example, ``@_dispatchable(graphs={"G": 0, "auxiliary?": 4})`` | |
indicates the 0th parameter ``G`` of the function is a required graph, | |
and the 4th parameter ``auxiliary`` is an optional graph. | |
To indicate an argument is a list of graphs, do e.g. ``"[graphs]"``. | |
Use ``graphs=None`` if *no* arguments are NetworkX graphs such as for | |
graph generators, readers, and conversion functions. | |
edge_attrs : str or dict, optional | |
``edge_attrs`` holds information about edge attribute arguments | |
and default values for those edge attributes. | |
If a string, ``edge_attrs`` holds the function argument name that | |
indicates a single edge attribute to include in the converted graph. | |
The default value for this attribute is 1. To indicate that an argument | |
is a list of attributes (all with default value 1), use e.g. ``"[attrs]"``. | |
If a dict, ``edge_attrs`` holds a dict keyed by argument names, with | |
values that are either the default value or, if a string, the argument | |
name that indicates the default value. | |
node_attrs : str or dict, optional | |
Like ``edge_attrs``, but for node attributes. | |
preserve_edge_attrs : bool or str or dict, optional | |
For bool, whether to preserve all edge attributes. | |
For str, the parameter name that may indicate (with ``True`` or a | |
callable argument) whether all edge attributes should be preserved | |
when converting. | |
For dict of ``{graph_name: {attr: default}}``, indicate pre-determined | |
edge attributes (and defaults) to preserve for input graphs. | |
preserve_node_attrs : bool or str or dict, optional | |
Like ``preserve_edge_attrs``, but for node attributes. | |
preserve_graph_attrs : bool or set | |
For bool, whether to preserve all graph attributes. | |
For set, which input graph arguments to preserve graph attributes. | |
preserve_all_attrs : bool | |
Whether to preserve all edge, node and graph attributes. | |
This overrides all the other preserve_*_attrs. | |
mutates_input : bool or dict, default False | |
For bool, whether the functions mutates an input graph argument. | |
For dict of ``{arg_name: arg_pos}``, arguments that indicates whether an | |
input graph will be mutated, and ``arg_name`` may begin with ``"not "`` | |
to negate the logic (for example, this is used by ``copy=`` arguments). | |
By default, dispatching doesn't convert input graphs to a different | |
backend for functions that mutate input graphs. | |
returns_graph : bool, default False | |
Whether the function can return or yield a graph object. By default, | |
dispatching doesn't convert input graphs to a different backend for | |
functions that return graphs. | |
""" | |
if func is None: | |
return partial( | |
_dispatchable, | |
name=name, | |
graphs=graphs, | |
edge_attrs=edge_attrs, | |
node_attrs=node_attrs, | |
preserve_edge_attrs=preserve_edge_attrs, | |
preserve_node_attrs=preserve_node_attrs, | |
preserve_graph_attrs=preserve_graph_attrs, | |
preserve_all_attrs=preserve_all_attrs, | |
mutates_input=mutates_input, | |
returns_graph=returns_graph, | |
) | |
if isinstance(func, str): | |
raise TypeError("'name' and 'graphs' must be passed by keyword") from None | |
# If name not provided, use the name of the function | |
if name is None: | |
name = func.__name__ | |
self = object.__new__(cls) | |
# standard function-wrapping stuff | |
# __annotations__ not used | |
self.__name__ = func.__name__ | |
# self.__doc__ = func.__doc__ # __doc__ handled as cached property | |
self.__defaults__ = func.__defaults__ | |
# We "magically" add `backend=` keyword argument to allow backend to be specified | |
if func.__kwdefaults__: | |
self.__kwdefaults__ = {**func.__kwdefaults__, "backend": None} | |
else: | |
self.__kwdefaults__ = {"backend": None} | |
self.__module__ = func.__module__ | |
self.__qualname__ = func.__qualname__ | |
self.__dict__.update(func.__dict__) | |
self.__wrapped__ = func | |
# Supplement docstring with backend info; compute and cache when needed | |
self._orig_doc = func.__doc__ | |
self._cached_doc = None | |
self.orig_func = func | |
self.name = name | |
self.edge_attrs = edge_attrs | |
self.node_attrs = node_attrs | |
self.preserve_edge_attrs = preserve_edge_attrs or preserve_all_attrs | |
self.preserve_node_attrs = preserve_node_attrs or preserve_all_attrs | |
self.preserve_graph_attrs = preserve_graph_attrs or preserve_all_attrs | |
self.mutates_input = mutates_input | |
# Keep `returns_graph` private for now, b/c we may extend info on return types | |
self._returns_graph = returns_graph | |
if edge_attrs is not None and not isinstance(edge_attrs, str | dict): | |
raise TypeError( | |
f"Bad type for edge_attrs: {type(edge_attrs)}. Expected str or dict." | |
) from None | |
if node_attrs is not None and not isinstance(node_attrs, str | dict): | |
raise TypeError( | |
f"Bad type for node_attrs: {type(node_attrs)}. Expected str or dict." | |
) from None | |
if not isinstance(self.preserve_edge_attrs, bool | str | dict): | |
raise TypeError( | |
f"Bad type for preserve_edge_attrs: {type(self.preserve_edge_attrs)}." | |
" Expected bool, str, or dict." | |
) from None | |
if not isinstance(self.preserve_node_attrs, bool | str | dict): | |
raise TypeError( | |
f"Bad type for preserve_node_attrs: {type(self.preserve_node_attrs)}." | |
" Expected bool, str, or dict." | |
) from None | |
if not isinstance(self.preserve_graph_attrs, bool | set): | |
raise TypeError( | |
f"Bad type for preserve_graph_attrs: {type(self.preserve_graph_attrs)}." | |
" Expected bool or set." | |
) from None | |
if not isinstance(self.mutates_input, bool | dict): | |
raise TypeError( | |
f"Bad type for mutates_input: {type(self.mutates_input)}." | |
" Expected bool or dict." | |
) from None | |
if not isinstance(self._returns_graph, bool): | |
raise TypeError( | |
f"Bad type for returns_graph: {type(self._returns_graph)}." | |
" Expected bool." | |
) from None | |
if isinstance(graphs, str): | |
graphs = {graphs: 0} | |
elif graphs is None: | |
pass | |
elif not isinstance(graphs, dict): | |
raise TypeError( | |
f"Bad type for graphs: {type(graphs)}. Expected str or dict." | |
) from None | |
elif len(graphs) == 0: | |
raise KeyError("'graphs' must contain at least one variable name") from None | |
# This dict comprehension is complicated for better performance; equivalent shown below. | |
self.optional_graphs = set() | |
self.list_graphs = set() | |
if graphs is None: | |
self.graphs = {} | |
else: | |
self.graphs = { | |
self.optional_graphs.add(val := k[:-1]) or val | |
if (last := k[-1]) == "?" | |
else self.list_graphs.add(val := k[1:-1]) or val | |
if last == "]" | |
else k: v | |
for k, v in graphs.items() | |
} | |
# The above is equivalent to: | |
# self.optional_graphs = {k[:-1] for k in graphs if k[-1] == "?"} | |
# self.list_graphs = {k[1:-1] for k in graphs if k[-1] == "]"} | |
# self.graphs = {k[:-1] if k[-1] == "?" else k: v for k, v in graphs.items()} | |
# Compute and cache the signature on-demand | |
self._sig = None | |
# Which backends implement this function? | |
self.backends = { | |
backend | |
for backend, info in backend_info.items() | |
if "functions" in info and name in info["functions"] | |
} | |
if name in _registered_algorithms: | |
raise KeyError( | |
f"Algorithm already exists in dispatch registry: {name}" | |
) from None | |
# Use the magic of `argmap` to turn `self` into a function. This does result | |
# in small additional overhead compared to calling `_dispatchable` directly, | |
# but `argmap` has the magical property that it can stack with other `argmap` | |
# decorators "for free". Being a function is better for REPRs and type-checkers. | |
self = argmap(_do_nothing)(self) | |
_registered_algorithms[name] = self | |
return self | |
def __doc__(self): | |
"""If the cached documentation exists, it is returned. | |
Otherwise, the documentation is generated using _make_doc() method, | |
cached, and then returned.""" | |
if (rv := self._cached_doc) is not None: | |
return rv | |
rv = self._cached_doc = self._make_doc() | |
return rv | |
def __doc__(self, val): | |
"""Sets the original documentation to the given value and resets the | |
cached documentation.""" | |
self._orig_doc = val | |
self._cached_doc = None | |
def __signature__(self): | |
"""Return the signature of the original function, with the addition of | |
the `backend` and `backend_kwargs` parameters.""" | |
if self._sig is None: | |
sig = inspect.signature(self.orig_func) | |
# `backend` is now a reserved argument used by dispatching. | |
# assert "backend" not in sig.parameters | |
if not any( | |
p.kind == inspect.Parameter.VAR_KEYWORD for p in sig.parameters.values() | |
): | |
sig = sig.replace( | |
parameters=[ | |
*sig.parameters.values(), | |
inspect.Parameter( | |
"backend", inspect.Parameter.KEYWORD_ONLY, default=None | |
), | |
inspect.Parameter( | |
"backend_kwargs", inspect.Parameter.VAR_KEYWORD | |
), | |
] | |
) | |
else: | |
*parameters, var_keyword = sig.parameters.values() | |
sig = sig.replace( | |
parameters=[ | |
*parameters, | |
inspect.Parameter( | |
"backend", inspect.Parameter.KEYWORD_ONLY, default=None | |
), | |
var_keyword, | |
] | |
) | |
self._sig = sig | |
return self._sig | |
def __call__(self, /, *args, backend=None, **kwargs): | |
"""Returns the result of the original function, or the backend function if | |
the backend is specified and that backend implements `func`.""" | |
if not backends: | |
# Fast path if no backends are installed | |
return self.orig_func(*args, **kwargs) | |
# Use `backend_name` in this function instead of `backend` | |
backend_name = backend | |
if backend_name is not None and backend_name not in backends: | |
raise ImportError(f"Unable to load backend: {backend_name}") | |
graphs_resolved = {} | |
for gname, pos in self.graphs.items(): | |
if pos < len(args): | |
if gname in kwargs: | |
raise TypeError(f"{self.name}() got multiple values for {gname!r}") | |
val = args[pos] | |
elif gname in kwargs: | |
val = kwargs[gname] | |
elif gname not in self.optional_graphs: | |
raise TypeError( | |
f"{self.name}() missing required graph argument: {gname}" | |
) | |
else: | |
continue | |
if val is None: | |
if gname not in self.optional_graphs: | |
raise TypeError( | |
f"{self.name}() required graph argument {gname!r} is None; must be a graph" | |
) | |
else: | |
graphs_resolved[gname] = val | |
# Alternative to the above that does not check duplicated args or missing required graphs. | |
# graphs_resolved = { | |
# val | |
# for gname, pos in self.graphs.items() | |
# if (val := args[pos] if pos < len(args) else kwargs.get(gname)) is not None | |
# } | |
# Check if any graph comes from a backend | |
if self.list_graphs: | |
# Make sure we don't lose values by consuming an iterator | |
args = list(args) | |
for gname in self.list_graphs & graphs_resolved.keys(): | |
val = list(graphs_resolved[gname]) | |
graphs_resolved[gname] = val | |
if gname in kwargs: | |
kwargs[gname] = val | |
else: | |
args[self.graphs[gname]] = val | |
has_backends = any( | |
hasattr(g, "__networkx_backend__") | |
if gname not in self.list_graphs | |
else any(hasattr(g2, "__networkx_backend__") for g2 in g) | |
for gname, g in graphs_resolved.items() | |
) | |
if has_backends: | |
graph_backend_names = { | |
getattr(g, "__networkx_backend__", "networkx") | |
for gname, g in graphs_resolved.items() | |
if gname not in self.list_graphs | |
} | |
for gname in self.list_graphs & graphs_resolved.keys(): | |
graph_backend_names.update( | |
getattr(g, "__networkx_backend__", "networkx") | |
for g in graphs_resolved[gname] | |
) | |
else: | |
has_backends = any( | |
hasattr(g, "__networkx_backend__") for g in graphs_resolved.values() | |
) | |
if has_backends: | |
graph_backend_names = { | |
getattr(g, "__networkx_backend__", "networkx") | |
for g in graphs_resolved.values() | |
} | |
backend_priority = config.backend_priority | |
if self._is_testing and backend_priority and backend_name is None: | |
# Special path if we are running networkx tests with a backend. | |
# This even runs for (and handles) functions that mutate input graphs. | |
return self._convert_and_call_for_tests( | |
backend_priority[0], | |
args, | |
kwargs, | |
fallback_to_nx=self._fallback_to_nx, | |
) | |
if has_backends: | |
# Dispatchable graphs found! Dispatch to backend function. | |
# We don't handle calls with different backend graphs yet, | |
# but we may be able to convert additional networkx graphs. | |
backend_names = graph_backend_names - {"networkx"} | |
if len(backend_names) != 1: | |
# Future work: convert between backends and run if multiple backends found | |
raise TypeError( | |
f"{self.name}() graphs must all be from the same backend, found {backend_names}" | |
) | |
[graph_backend_name] = backend_names | |
if backend_name is not None and backend_name != graph_backend_name: | |
# Future work: convert between backends to `backend_name` backend | |
raise TypeError( | |
f"{self.name}() is unable to convert graph from backend {graph_backend_name!r} " | |
f"to the specified backend {backend_name!r}." | |
) | |
if graph_backend_name not in backends: | |
raise ImportError(f"Unable to load backend: {graph_backend_name}") | |
if ( | |
"networkx" in graph_backend_names | |
and graph_backend_name not in backend_priority | |
): | |
# Not configured to convert networkx graphs to this backend | |
raise TypeError( | |
f"Unable to convert inputs and run {self.name}. " | |
f"{self.name}() has networkx and {graph_backend_name} graphs, but NetworkX is not " | |
f"configured to automatically convert graphs from networkx to {graph_backend_name}." | |
) | |
backend = _load_backend(graph_backend_name) | |
if hasattr(backend, self.name): | |
if "networkx" in graph_backend_names: | |
# We need to convert networkx graphs to backend graphs. | |
# There is currently no need to check `self.mutates_input` here. | |
return self._convert_and_call( | |
graph_backend_name, | |
args, | |
kwargs, | |
fallback_to_nx=self._fallback_to_nx, | |
) | |
# All graphs are backend graphs--no need to convert! | |
return getattr(backend, self.name)(*args, **kwargs) | |
# Future work: try to convert and run with other backends in backend_priority | |
raise nx.NetworkXNotImplemented( | |
f"'{self.name}' not implemented by {graph_backend_name}" | |
) | |
# If backend was explicitly given by the user, so we need to use it no matter what | |
if backend_name is not None: | |
return self._convert_and_call( | |
backend_name, args, kwargs, fallback_to_nx=False | |
) | |
# Only networkx graphs; try to convert and run with a backend with automatic | |
# conversion, but don't do this by default for graph generators or loaders, | |
# or if the functions mutates an input graph or returns a graph. | |
# Only convert and run if `backend.should_run(...)` returns True. | |
if ( | |
not self._returns_graph | |
and ( | |
not self.mutates_input | |
or isinstance(self.mutates_input, dict) | |
# If `mutates_input` begins with "not ", then assume the argument is boolean, | |
# otherwise treat it as a node or edge attribute if it's not None. | |
and any( | |
not ( | |
args[arg_pos] | |
if len(args) > arg_pos | |
else kwargs.get(arg_name[4:], True) | |
) | |
if arg_name.startswith("not ") | |
else ( | |
args[arg_pos] if len(args) > arg_pos else kwargs.get(arg_name) | |
) | |
is not None | |
for arg_name, arg_pos in self.mutates_input.items() | |
) | |
) | |
): | |
# Should we warn or log if we don't convert b/c the input will be mutated? | |
for backend_name in backend_priority: | |
if self._should_backend_run(backend_name, *args, **kwargs): | |
return self._convert_and_call( | |
backend_name, | |
args, | |
kwargs, | |
fallback_to_nx=self._fallback_to_nx, | |
) | |
# Default: run with networkx on networkx inputs | |
return self.orig_func(*args, **kwargs) | |
def _can_backend_run(self, backend_name, /, *args, **kwargs): | |
"""Can the specified backend run this algorithm with these arguments?""" | |
backend = _load_backend(backend_name) | |
# `backend.can_run` and `backend.should_run` may return strings that describe | |
# why they can't or shouldn't be run. We plan to use the strings in the future. | |
return ( | |
hasattr(backend, self.name) | |
and (can_run := backend.can_run(self.name, args, kwargs)) | |
and not isinstance(can_run, str) | |
) | |
def _should_backend_run(self, backend_name, /, *args, **kwargs): | |
"""Can/should the specified backend run this algorithm with these arguments?""" | |
backend = _load_backend(backend_name) | |
# `backend.can_run` and `backend.should_run` may return strings that describe | |
# why they can't or shouldn't be run. We plan to use the strings in the future. | |
return ( | |
hasattr(backend, self.name) | |
and (can_run := backend.can_run(self.name, args, kwargs)) | |
and not isinstance(can_run, str) | |
and (should_run := backend.should_run(self.name, args, kwargs)) | |
and not isinstance(should_run, str) | |
) | |
def _convert_arguments(self, backend_name, args, kwargs, *, use_cache): | |
"""Convert graph arguments to the specified backend. | |
Returns | |
------- | |
args tuple and kwargs dict | |
""" | |
bound = self.__signature__.bind(*args, **kwargs) | |
bound.apply_defaults() | |
if not self.graphs: | |
bound_kwargs = bound.kwargs | |
del bound_kwargs["backend"] | |
return bound.args, bound_kwargs | |
# Convert graphs into backend graph-like object | |
# Include the edge and/or node labels if provided to the algorithm | |
preserve_edge_attrs = self.preserve_edge_attrs | |
edge_attrs = self.edge_attrs | |
if preserve_edge_attrs is False: | |
# e.g. `preserve_edge_attrs=False` | |
pass | |
elif preserve_edge_attrs is True: | |
# e.g. `preserve_edge_attrs=True` | |
edge_attrs = None | |
elif isinstance(preserve_edge_attrs, str): | |
if bound.arguments[preserve_edge_attrs] is True or callable( | |
bound.arguments[preserve_edge_attrs] | |
): | |
# e.g. `preserve_edge_attrs="attr"` and `func(attr=True)` | |
# e.g. `preserve_edge_attrs="attr"` and `func(attr=myfunc)` | |
preserve_edge_attrs = True | |
edge_attrs = None | |
elif bound.arguments[preserve_edge_attrs] is False and ( | |
isinstance(edge_attrs, str) | |
and edge_attrs == preserve_edge_attrs | |
or isinstance(edge_attrs, dict) | |
and preserve_edge_attrs in edge_attrs | |
): | |
# e.g. `preserve_edge_attrs="attr"` and `func(attr=False)` | |
# Treat `False` argument as meaning "preserve_edge_data=False" | |
# and not `False` as the edge attribute to use. | |
preserve_edge_attrs = False | |
edge_attrs = None | |
else: | |
# e.g. `preserve_edge_attrs="attr"` and `func(attr="weight")` | |
preserve_edge_attrs = False | |
# Else: e.g. `preserve_edge_attrs={"G": {"weight": 1}}` | |
if edge_attrs is None: | |
# May have been set to None above b/c all attributes are preserved | |
pass | |
elif isinstance(edge_attrs, str): | |
if edge_attrs[0] == "[": | |
# e.g. `edge_attrs="[edge_attributes]"` (argument of list of attributes) | |
# e.g. `func(edge_attributes=["foo", "bar"])` | |
edge_attrs = { | |
edge_attr: 1 for edge_attr in bound.arguments[edge_attrs[1:-1]] | |
} | |
elif callable(bound.arguments[edge_attrs]): | |
# e.g. `edge_attrs="weight"` and `func(weight=myfunc)` | |
preserve_edge_attrs = True | |
edge_attrs = None | |
elif bound.arguments[edge_attrs] is not None: | |
# e.g. `edge_attrs="weight"` and `func(weight="foo")` (default of 1) | |
edge_attrs = {bound.arguments[edge_attrs]: 1} | |
elif self.name == "to_numpy_array" and hasattr( | |
bound.arguments["dtype"], "names" | |
): | |
# Custom handling: attributes may be obtained from `dtype` | |
edge_attrs = { | |
edge_attr: 1 for edge_attr in bound.arguments["dtype"].names | |
} | |
else: | |
# e.g. `edge_attrs="weight"` and `func(weight=None)` | |
edge_attrs = None | |
else: | |
# e.g. `edge_attrs={"attr": "default"}` and `func(attr="foo", default=7)` | |
# e.g. `edge_attrs={"attr": 0}` and `func(attr="foo")` | |
edge_attrs = { | |
edge_attr: bound.arguments.get(val, 1) if isinstance(val, str) else val | |
for key, val in edge_attrs.items() | |
if (edge_attr := bound.arguments[key]) is not None | |
} | |
preserve_node_attrs = self.preserve_node_attrs | |
node_attrs = self.node_attrs | |
if preserve_node_attrs is False: | |
# e.g. `preserve_node_attrs=False` | |
pass | |
elif preserve_node_attrs is True: | |
# e.g. `preserve_node_attrs=True` | |
node_attrs = None | |
elif isinstance(preserve_node_attrs, str): | |
if bound.arguments[preserve_node_attrs] is True or callable( | |
bound.arguments[preserve_node_attrs] | |
): | |
# e.g. `preserve_node_attrs="attr"` and `func(attr=True)` | |
# e.g. `preserve_node_attrs="attr"` and `func(attr=myfunc)` | |
preserve_node_attrs = True | |
node_attrs = None | |
elif bound.arguments[preserve_node_attrs] is False and ( | |
isinstance(node_attrs, str) | |
and node_attrs == preserve_node_attrs | |
or isinstance(node_attrs, dict) | |
and preserve_node_attrs in node_attrs | |
): | |
# e.g. `preserve_node_attrs="attr"` and `func(attr=False)` | |
# Treat `False` argument as meaning "preserve_node_data=False" | |
# and not `False` as the node attribute to use. Is this used? | |
preserve_node_attrs = False | |
node_attrs = None | |
else: | |
# e.g. `preserve_node_attrs="attr"` and `func(attr="weight")` | |
preserve_node_attrs = False | |
# Else: e.g. `preserve_node_attrs={"G": {"pos": None}}` | |
if node_attrs is None: | |
# May have been set to None above b/c all attributes are preserved | |
pass | |
elif isinstance(node_attrs, str): | |
if node_attrs[0] == "[": | |
# e.g. `node_attrs="[node_attributes]"` (argument of list of attributes) | |
# e.g. `func(node_attributes=["foo", "bar"])` | |
node_attrs = { | |
node_attr: None for node_attr in bound.arguments[node_attrs[1:-1]] | |
} | |
elif callable(bound.arguments[node_attrs]): | |
# e.g. `node_attrs="weight"` and `func(weight=myfunc)` | |
preserve_node_attrs = True | |
node_attrs = None | |
elif bound.arguments[node_attrs] is not None: | |
# e.g. `node_attrs="weight"` and `func(weight="foo")` | |
node_attrs = {bound.arguments[node_attrs]: None} | |
else: | |
# e.g. `node_attrs="weight"` and `func(weight=None)` | |
node_attrs = None | |
else: | |
# e.g. `node_attrs={"attr": "default"}` and `func(attr="foo", default=7)` | |
# e.g. `node_attrs={"attr": 0}` and `func(attr="foo")` | |
node_attrs = { | |
node_attr: bound.arguments.get(val) if isinstance(val, str) else val | |
for key, val in node_attrs.items() | |
if (node_attr := bound.arguments[key]) is not None | |
} | |
preserve_graph_attrs = self.preserve_graph_attrs | |
# It should be safe to assume that we either have networkx graphs or backend graphs. | |
# Future work: allow conversions between backends. | |
for gname in self.graphs: | |
if gname in self.list_graphs: | |
bound.arguments[gname] = [ | |
self._convert_graph( | |
backend_name, | |
g, | |
edge_attrs=edge_attrs, | |
node_attrs=node_attrs, | |
preserve_edge_attrs=preserve_edge_attrs, | |
preserve_node_attrs=preserve_node_attrs, | |
preserve_graph_attrs=preserve_graph_attrs, | |
graph_name=gname, | |
use_cache=use_cache, | |
) | |
if getattr(g, "__networkx_backend__", "networkx") == "networkx" | |
else g | |
for g in bound.arguments[gname] | |
] | |
else: | |
graph = bound.arguments[gname] | |
if graph is None: | |
if gname in self.optional_graphs: | |
continue | |
raise TypeError( | |
f"Missing required graph argument `{gname}` in {self.name} function" | |
) | |
if isinstance(preserve_edge_attrs, dict): | |
preserve_edges = False | |
edges = preserve_edge_attrs.get(gname, edge_attrs) | |
else: | |
preserve_edges = preserve_edge_attrs | |
edges = edge_attrs | |
if isinstance(preserve_node_attrs, dict): | |
preserve_nodes = False | |
nodes = preserve_node_attrs.get(gname, node_attrs) | |
else: | |
preserve_nodes = preserve_node_attrs | |
nodes = node_attrs | |
if isinstance(preserve_graph_attrs, set): | |
preserve_graph = gname in preserve_graph_attrs | |
else: | |
preserve_graph = preserve_graph_attrs | |
if getattr(graph, "__networkx_backend__", "networkx") == "networkx": | |
bound.arguments[gname] = self._convert_graph( | |
backend_name, | |
graph, | |
edge_attrs=edges, | |
node_attrs=nodes, | |
preserve_edge_attrs=preserve_edges, | |
preserve_node_attrs=preserve_nodes, | |
preserve_graph_attrs=preserve_graph, | |
graph_name=gname, | |
use_cache=use_cache, | |
) | |
bound_kwargs = bound.kwargs | |
del bound_kwargs["backend"] | |
return bound.args, bound_kwargs | |
def _convert_graph( | |
self, | |
backend_name, | |
graph, | |
*, | |
edge_attrs, | |
node_attrs, | |
preserve_edge_attrs, | |
preserve_node_attrs, | |
preserve_graph_attrs, | |
graph_name, | |
use_cache, | |
): | |
if ( | |
use_cache | |
and (nx_cache := getattr(graph, "__networkx_cache__", None)) is not None | |
): | |
cache = nx_cache.setdefault("backends", {}).setdefault(backend_name, {}) | |
# edge_attrs: dict | None | |
# node_attrs: dict | None | |
# preserve_edge_attrs: bool (False if edge_attrs is not None) | |
# preserve_node_attrs: bool (False if node_attrs is not None) | |
# preserve_graph_attrs: bool | |
key = edge_key, node_key, graph_key = ( | |
frozenset(edge_attrs.items()) | |
if edge_attrs is not None | |
else preserve_edge_attrs, | |
frozenset(node_attrs.items()) | |
if node_attrs is not None | |
else preserve_node_attrs, | |
preserve_graph_attrs, | |
) | |
if cache: | |
warning_message = ( | |
f"Using cached graph for {backend_name!r} backend in " | |
f"call to {self.name}.\n\nFor the cache to be consistent " | |
"(i.e., correct), the input graph must not have been " | |
"manually mutated since the cached graph was created. " | |
"Examples of manually mutating the graph data structures " | |
"resulting in an inconsistent cache include:\n\n" | |
" >>> G[u][v][key] = val\n\n" | |
"and\n\n" | |
" >>> for u, v, d in G.edges(data=True):\n" | |
" ... d[key] = val\n\n" | |
"Using methods such as `G.add_edge(u, v, weight=val)` " | |
"will correctly clear the cache to keep it consistent. " | |
"You may also use `G.__networkx_cache__.clear()` to " | |
"manually clear the cache, or set `G.__networkx_cache__` " | |
"to None to disable caching for G. Enable or disable " | |
"caching via `nx.config.cache_converted_graphs` config." | |
) | |
# Do a simple search for a cached graph with compatible data. | |
# For example, if we need a single attribute, then it's okay | |
# to use a cached graph that preserved all attributes. | |
# This looks for an exact match first. | |
for compat_key in itertools.product( | |
(edge_key, True) if edge_key is not True else (True,), | |
(node_key, True) if node_key is not True else (True,), | |
(graph_key, True) if graph_key is not True else (True,), | |
): | |
if (rv := cache.get(compat_key)) is not None: | |
warnings.warn(warning_message) | |
return rv | |
if edge_key is not True and node_key is not True: | |
# Iterate over the items in `cache` to see if any are compatible. | |
# For example, if no edge attributes are needed, then a graph | |
# with any edge attribute will suffice. We use the same logic | |
# below (but switched) to clear unnecessary items from the cache. | |
# Use `list(cache.items())` to be thread-safe. | |
for (ekey, nkey, gkey), val in list(cache.items()): | |
if edge_key is False or ekey is True: | |
pass | |
elif ( | |
edge_key is True | |
or ekey is False | |
or not edge_key.issubset(ekey) | |
): | |
continue | |
if node_key is False or nkey is True: | |
pass | |
elif ( | |
node_key is True | |
or nkey is False | |
or not node_key.issubset(nkey) | |
): | |
continue | |
if graph_key and not gkey: | |
continue | |
warnings.warn(warning_message) | |
return val | |
backend = _load_backend(backend_name) | |
rv = backend.convert_from_nx( | |
graph, | |
edge_attrs=edge_attrs, | |
node_attrs=node_attrs, | |
preserve_edge_attrs=preserve_edge_attrs, | |
preserve_node_attrs=preserve_node_attrs, | |
preserve_graph_attrs=preserve_graph_attrs, | |
name=self.name, | |
graph_name=graph_name, | |
) | |
if use_cache and nx_cache is not None: | |
# Remove old cached items that are no longer necessary since they | |
# are dominated/subsumed/outdated by what was just calculated. | |
# This uses the same logic as above, but with keys switched. | |
cache[key] = rv # Set at beginning to be thread-safe | |
for cur_key in list(cache): | |
if cur_key == key: | |
continue | |
ekey, nkey, gkey = cur_key | |
if ekey is False or edge_key is True: | |
pass | |
elif ekey is True or edge_key is False or not ekey.issubset(edge_key): | |
continue | |
if nkey is False or node_key is True: | |
pass | |
elif nkey is True or node_key is False or not nkey.issubset(node_key): | |
continue | |
if gkey and not graph_key: | |
continue | |
cache.pop(cur_key, None) # Use pop instead of del to be thread-safe | |
return rv | |
def _convert_and_call(self, backend_name, args, kwargs, *, fallback_to_nx=False): | |
"""Call this dispatchable function with a backend, converting graphs if necessary.""" | |
backend = _load_backend(backend_name) | |
if not self._can_backend_run(backend_name, *args, **kwargs): | |
if fallback_to_nx: | |
return self.orig_func(*args, **kwargs) | |
msg = f"'{self.name}' not implemented by {backend_name}" | |
if hasattr(backend, self.name): | |
msg += " with the given arguments" | |
raise RuntimeError(msg) | |
try: | |
converted_args, converted_kwargs = self._convert_arguments( | |
backend_name, args, kwargs, use_cache=config.cache_converted_graphs | |
) | |
result = getattr(backend, self.name)(*converted_args, **converted_kwargs) | |
except (NotImplementedError, nx.NetworkXNotImplemented) as exc: | |
if fallback_to_nx: | |
return self.orig_func(*args, **kwargs) | |
raise | |
return result | |
def _convert_and_call_for_tests( | |
self, backend_name, args, kwargs, *, fallback_to_nx=False | |
): | |
"""Call this dispatchable function with a backend; for use with testing.""" | |
backend = _load_backend(backend_name) | |
if not self._can_backend_run(backend_name, *args, **kwargs): | |
if fallback_to_nx or not self.graphs: | |
return self.orig_func(*args, **kwargs) | |
import pytest | |
msg = f"'{self.name}' not implemented by {backend_name}" | |
if hasattr(backend, self.name): | |
msg += " with the given arguments" | |
pytest.xfail(msg) | |
from collections.abc import Iterable, Iterator, Mapping | |
from copy import copy | |
from io import BufferedReader, BytesIO, StringIO, TextIOWrapper | |
from itertools import tee | |
from random import Random | |
import numpy as np | |
from numpy.random import Generator, RandomState | |
from scipy.sparse import sparray | |
# We sometimes compare the backend result to the original result, | |
# so we need two sets of arguments. We tee iterators and copy | |
# random state so that they may be used twice. | |
if not args: | |
args1 = args2 = args | |
else: | |
args1, args2 = zip( | |
*( | |
(arg, copy(arg)) | |
if isinstance( | |
arg, BytesIO | StringIO | Random | Generator | RandomState | |
) | |
else tee(arg) | |
if isinstance(arg, Iterator) | |
and not isinstance(arg, BufferedReader | TextIOWrapper) | |
else (arg, arg) | |
for arg in args | |
) | |
) | |
if not kwargs: | |
kwargs1 = kwargs2 = kwargs | |
else: | |
kwargs1, kwargs2 = zip( | |
*( | |
((k, v), (k, copy(v))) | |
if isinstance( | |
v, BytesIO | StringIO | Random | Generator | RandomState | |
) | |
else ((k, (teed := tee(v))[0]), (k, teed[1])) | |
if isinstance(v, Iterator) | |
and not isinstance(v, BufferedReader | TextIOWrapper) | |
else ((k, v), (k, v)) | |
for k, v in kwargs.items() | |
) | |
) | |
kwargs1 = dict(kwargs1) | |
kwargs2 = dict(kwargs2) | |
try: | |
converted_args, converted_kwargs = self._convert_arguments( | |
backend_name, args1, kwargs1, use_cache=False | |
) | |
result = getattr(backend, self.name)(*converted_args, **converted_kwargs) | |
except (NotImplementedError, nx.NetworkXNotImplemented) as exc: | |
if fallback_to_nx: | |
return self.orig_func(*args2, **kwargs2) | |
import pytest | |
pytest.xfail( | |
exc.args[0] if exc.args else f"{self.name} raised {type(exc).__name__}" | |
) | |
# Verify that `self._returns_graph` is correct. This compares the return type | |
# to the type expected from `self._returns_graph`. This handles tuple and list | |
# return types, but *does not* catch functions that yield graphs. | |
if ( | |
self._returns_graph | |
!= ( | |
isinstance(result, nx.Graph) | |
or hasattr(result, "__networkx_backend__") | |
or isinstance(result, tuple | list) | |
and any( | |
isinstance(x, nx.Graph) or hasattr(x, "__networkx_backend__") | |
for x in result | |
) | |
) | |
and not ( | |
# May return Graph or None | |
self.name in {"check_planarity", "check_planarity_recursive"} | |
and any(x is None for x in result) | |
) | |
and not ( | |
# May return Graph or dict | |
self.name in {"held_karp_ascent"} | |
and any(isinstance(x, dict) for x in result) | |
) | |
and self.name | |
not in { | |
# yields graphs | |
"all_triads", | |
"general_k_edge_subgraphs", | |
# yields graphs or arrays | |
"nonisomorphic_trees", | |
} | |
): | |
raise RuntimeError(f"`returns_graph` is incorrect for {self.name}") | |
def check_result(val, depth=0): | |
if isinstance(val, np.number): | |
raise RuntimeError( | |
f"{self.name} returned a numpy scalar {val} ({type(val)}, depth={depth})" | |
) | |
if isinstance(val, np.ndarray | sparray): | |
return | |
if isinstance(val, nx.Graph): | |
check_result(val._node, depth=depth + 1) | |
check_result(val._adj, depth=depth + 1) | |
return | |
if isinstance(val, Iterator): | |
raise NotImplementedError | |
if isinstance(val, Iterable) and not isinstance(val, str): | |
for x in val: | |
check_result(x, depth=depth + 1) | |
if isinstance(val, Mapping): | |
for x in val.values(): | |
check_result(x, depth=depth + 1) | |
def check_iterator(it): | |
for val in it: | |
try: | |
check_result(val) | |
except RuntimeError as exc: | |
raise RuntimeError( | |
f"{self.name} returned a numpy scalar {val} ({type(val)})" | |
) from exc | |
yield val | |
if self.name in {"from_edgelist"}: | |
# numpy scalars are explicitly given as values in some tests | |
pass | |
elif isinstance(result, Iterator): | |
result = check_iterator(result) | |
else: | |
try: | |
check_result(result) | |
except RuntimeError as exc: | |
raise RuntimeError( | |
f"{self.name} returned a numpy scalar {result} ({type(result)})" | |
) from exc | |
check_result(result) | |
if self.name in { | |
"edmonds_karp", | |
"barycenter", | |
"contracted_edge", | |
"contracted_nodes", | |
"stochastic_graph", | |
"relabel_nodes", | |
"maximum_branching", | |
"incremental_closeness_centrality", | |
"minimal_branching", | |
"minimum_spanning_arborescence", | |
"recursive_simple_cycles", | |
"connected_double_edge_swap", | |
}: | |
# Special-case algorithms that mutate input graphs | |
bound = self.__signature__.bind(*converted_args, **converted_kwargs) | |
bound.apply_defaults() | |
bound2 = self.__signature__.bind(*args2, **kwargs2) | |
bound2.apply_defaults() | |
if self.name in { | |
"minimal_branching", | |
"minimum_spanning_arborescence", | |
"recursive_simple_cycles", | |
"connected_double_edge_swap", | |
}: | |
G1 = backend.convert_to_nx(bound.arguments["G"]) | |
G2 = bound2.arguments["G"] | |
G2._adj = G1._adj | |
nx._clear_cache(G2) | |
elif self.name == "edmonds_karp": | |
R1 = backend.convert_to_nx(bound.arguments["residual"]) | |
R2 = bound2.arguments["residual"] | |
if R1 is not None and R2 is not None: | |
for k, v in R1.edges.items(): | |
R2.edges[k]["flow"] = v["flow"] | |
R2.graph.update(R1.graph) | |
nx._clear_cache(R2) | |
elif self.name == "barycenter" and bound.arguments["attr"] is not None: | |
G1 = backend.convert_to_nx(bound.arguments["G"]) | |
G2 = bound2.arguments["G"] | |
attr = bound.arguments["attr"] | |
for k, v in G1.nodes.items(): | |
G2.nodes[k][attr] = v[attr] | |
nx._clear_cache(G2) | |
elif ( | |
self.name in {"contracted_nodes", "contracted_edge"} | |
and not bound.arguments["copy"] | |
): | |
# Edges and nodes changed; node "contraction" and edge "weight" attrs | |
G1 = backend.convert_to_nx(bound.arguments["G"]) | |
G2 = bound2.arguments["G"] | |
G2.__dict__.update(G1.__dict__) | |
nx._clear_cache(G2) | |
elif self.name == "stochastic_graph" and not bound.arguments["copy"]: | |
G1 = backend.convert_to_nx(bound.arguments["G"]) | |
G2 = bound2.arguments["G"] | |
for k, v in G1.edges.items(): | |
G2.edges[k]["weight"] = v["weight"] | |
nx._clear_cache(G2) | |
elif ( | |
self.name == "relabel_nodes" | |
and not bound.arguments["copy"] | |
or self.name in {"incremental_closeness_centrality"} | |
): | |
G1 = backend.convert_to_nx(bound.arguments["G"]) | |
G2 = bound2.arguments["G"] | |
if G1 is G2: | |
return G2 | |
G2._node.clear() | |
G2._node.update(G1._node) | |
G2._adj.clear() | |
G2._adj.update(G1._adj) | |
if hasattr(G1, "_pred") and hasattr(G2, "_pred"): | |
G2._pred.clear() | |
G2._pred.update(G1._pred) | |
if hasattr(G1, "_succ") and hasattr(G2, "_succ"): | |
G2._succ.clear() | |
G2._succ.update(G1._succ) | |
nx._clear_cache(G2) | |
if self.name == "relabel_nodes": | |
return G2 | |
return backend.convert_to_nx(result) | |
converted_result = backend.convert_to_nx(result) | |
if isinstance(converted_result, nx.Graph) and self.name not in { | |
"boykov_kolmogorov", | |
"preflow_push", | |
"quotient_graph", | |
"shortest_augmenting_path", | |
"spectral_graph_forge", | |
# We don't handle tempfile.NamedTemporaryFile arguments | |
"read_gml", | |
"read_graph6", | |
"read_sparse6", | |
# We don't handle io.BufferedReader or io.TextIOWrapper arguments | |
"bipartite_read_edgelist", | |
"read_adjlist", | |
"read_edgelist", | |
"read_graphml", | |
"read_multiline_adjlist", | |
"read_pajek", | |
"from_pydot", | |
"pydot_read_dot", | |
"agraph_read_dot", | |
# graph comparison fails b/c of nan values | |
"read_gexf", | |
}: | |
# For graph return types (e.g. generators), we compare that results are | |
# the same between the backend and networkx, then return the original | |
# networkx result so the iteration order will be consistent in tests. | |
G = self.orig_func(*args2, **kwargs2) | |
if not nx.utils.graphs_equal(G, converted_result): | |
assert G.number_of_nodes() == converted_result.number_of_nodes() | |
assert G.number_of_edges() == converted_result.number_of_edges() | |
assert G.graph == converted_result.graph | |
assert G.nodes == converted_result.nodes | |
assert G.adj == converted_result.adj | |
assert type(G) is type(converted_result) | |
raise AssertionError("Graphs are not equal") | |
return G | |
return converted_result | |
def _make_doc(self): | |
"""Generate the backends section at the end for functions having an alternate | |
backend implementation(s) using the `backend_info` entry-point.""" | |
if not self.backends: | |
return self._orig_doc | |
lines = [ | |
"Backends", | |
"--------", | |
] | |
for backend in sorted(self.backends): | |
info = backend_info[backend] | |
if "short_summary" in info: | |
lines.append(f"{backend} : {info['short_summary']}") | |
else: | |
lines.append(backend) | |
if "functions" not in info or self.name not in info["functions"]: | |
lines.append("") | |
continue | |
func_info = info["functions"][self.name] | |
# Renaming extra_docstring to additional_docs | |
if func_docs := ( | |
func_info.get("additional_docs") or func_info.get("extra_docstring") | |
): | |
lines.extend( | |
f" {line}" if line else line for line in func_docs.split("\n") | |
) | |
add_gap = True | |
else: | |
add_gap = False | |
# Renaming extra_parameters to additional_parameters | |
if extra_parameters := ( | |
func_info.get("extra_parameters") | |
or func_info.get("additional_parameters") | |
): | |
if add_gap: | |
lines.append("") | |
lines.append(" Additional parameters:") | |
for param in sorted(extra_parameters): | |
lines.append(f" {param}") | |
if desc := extra_parameters[param]: | |
lines.append(f" {desc}") | |
lines.append("") | |
else: | |
lines.append("") | |
if func_url := func_info.get("url"): | |
lines.append(f"[`Source <{func_url}>`_]") | |
lines.append("") | |
lines.pop() # Remove last empty line | |
to_add = "\n ".join(lines) | |
return f"{self._orig_doc.rstrip()}\n\n {to_add}" | |
def __reduce__(self): | |
"""Allow this object to be serialized with pickle. | |
This uses the global registry `_registered_algorithms` to deserialize. | |
""" | |
return _restore_dispatchable, (self.name,) | |
def _restore_dispatchable(name): | |
return _registered_algorithms[name] | |
if os.environ.get("_NETWORKX_BUILDING_DOCS_"): | |
# When building docs with Sphinx, use the original function with the | |
# dispatched __doc__, b/c Sphinx renders normal Python functions better. | |
# This doesn't show e.g. `*, backend=None, **backend_kwargs` in the | |
# signatures, which is probably okay. It does allow the docstring to be | |
# updated based on the installed backends. | |
_orig_dispatchable = _dispatchable | |
def _dispatchable(func=None, **kwargs): # type: ignore[no-redef] | |
if func is None: | |
return partial(_dispatchable, **kwargs) | |
dispatched_func = _orig_dispatchable(func, **kwargs) | |
func.__doc__ = dispatched_func.__doc__ | |
return func | |
_dispatchable.__doc__ = _orig_dispatchable.__new__.__doc__ # type: ignore[method-assign,assignment] | |
_sig = inspect.signature(_orig_dispatchable.__new__) | |
_dispatchable.__signature__ = _sig.replace( # type: ignore[method-assign,assignment] | |
parameters=[v for k, v in _sig.parameters.items() if k != "cls"] | |
) | |