|
""" |
|
Cuthill-McKee ordering of graph nodes to produce sparse matrices |
|
""" |
|
from collections import deque |
|
from operator import itemgetter |
|
|
|
import networkx as nx |
|
|
|
from ..utils import arbitrary_element |
|
|
|
__all__ = ["cuthill_mckee_ordering", "reverse_cuthill_mckee_ordering"] |
|
|
|
|
|
def cuthill_mckee_ordering(G, heuristic=None): |
|
"""Generate an ordering (permutation) of the graph nodes to make |
|
a sparse matrix. |
|
|
|
Uses the Cuthill-McKee heuristic (based on breadth-first search) [1]_. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A NetworkX graph |
|
|
|
heuristic : function, optional |
|
Function to choose starting node for RCM algorithm. If None |
|
a node from a pseudo-peripheral pair is used. A user-defined function |
|
can be supplied that takes a graph object and returns a single node. |
|
|
|
Returns |
|
------- |
|
nodes : generator |
|
Generator of nodes in Cuthill-McKee ordering. |
|
|
|
Examples |
|
-------- |
|
>>> from networkx.utils import cuthill_mckee_ordering |
|
>>> G = nx.path_graph(4) |
|
>>> rcm = list(cuthill_mckee_ordering(G)) |
|
>>> A = nx.adjacency_matrix(G, nodelist=rcm) |
|
|
|
Smallest degree node as heuristic function: |
|
|
|
>>> def smallest_degree(G): |
|
... return min(G, key=G.degree) |
|
>>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree)) |
|
|
|
|
|
See Also |
|
-------- |
|
reverse_cuthill_mckee_ordering |
|
|
|
Notes |
|
----- |
|
The optimal solution the bandwidth reduction is NP-complete [2]_. |
|
|
|
|
|
References |
|
---------- |
|
.. [1] E. Cuthill and J. McKee. |
|
Reducing the bandwidth of sparse symmetric matrices, |
|
In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969. |
|
http://doi.acm.org/10.1145/800195.805928 |
|
.. [2] Steven S. Skiena. 1997. The Algorithm Design Manual. |
|
Springer-Verlag New York, Inc., New York, NY, USA. |
|
""" |
|
for c in nx.connected_components(G): |
|
yield from connected_cuthill_mckee_ordering(G.subgraph(c), heuristic) |
|
|
|
|
|
def reverse_cuthill_mckee_ordering(G, heuristic=None): |
|
"""Generate an ordering (permutation) of the graph nodes to make |
|
a sparse matrix. |
|
|
|
Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) |
|
[1]_. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A NetworkX graph |
|
|
|
heuristic : function, optional |
|
Function to choose starting node for RCM algorithm. If None |
|
a node from a pseudo-peripheral pair is used. A user-defined function |
|
can be supplied that takes a graph object and returns a single node. |
|
|
|
Returns |
|
------- |
|
nodes : generator |
|
Generator of nodes in reverse Cuthill-McKee ordering. |
|
|
|
Examples |
|
-------- |
|
>>> from networkx.utils import reverse_cuthill_mckee_ordering |
|
>>> G = nx.path_graph(4) |
|
>>> rcm = list(reverse_cuthill_mckee_ordering(G)) |
|
>>> A = nx.adjacency_matrix(G, nodelist=rcm) |
|
|
|
Smallest degree node as heuristic function: |
|
|
|
>>> def smallest_degree(G): |
|
... return min(G, key=G.degree) |
|
>>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree)) |
|
|
|
|
|
See Also |
|
-------- |
|
cuthill_mckee_ordering |
|
|
|
Notes |
|
----- |
|
The optimal solution the bandwidth reduction is NP-complete [2]_. |
|
|
|
References |
|
---------- |
|
.. [1] E. Cuthill and J. McKee. |
|
Reducing the bandwidth of sparse symmetric matrices, |
|
In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969. |
|
http://doi.acm.org/10.1145/800195.805928 |
|
.. [2] Steven S. Skiena. 1997. The Algorithm Design Manual. |
|
Springer-Verlag New York, Inc., New York, NY, USA. |
|
""" |
|
return reversed(list(cuthill_mckee_ordering(G, heuristic=heuristic))) |
|
|
|
|
|
def connected_cuthill_mckee_ordering(G, heuristic=None): |
|
|
|
if heuristic is None: |
|
start = pseudo_peripheral_node(G) |
|
else: |
|
start = heuristic(G) |
|
visited = {start} |
|
queue = deque([start]) |
|
while queue: |
|
parent = queue.popleft() |
|
yield parent |
|
nd = sorted(G.degree(set(G[parent]) - visited), key=itemgetter(1)) |
|
children = [n for n, d in nd] |
|
visited.update(children) |
|
queue.extend(children) |
|
|
|
|
|
def pseudo_peripheral_node(G): |
|
|
|
|
|
u = arbitrary_element(G) |
|
lp = 0 |
|
v = u |
|
while True: |
|
spl = dict(nx.shortest_path_length(G, v)) |
|
l = max(spl.values()) |
|
if l <= lp: |
|
break |
|
lp = l |
|
farthest = (n for n, dist in spl.items() if dist == l) |
|
v, deg = min(G.degree(farthest), key=itemgetter(1)) |
|
return v |
|
|