peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/matrices
/expressions
/kronecker.py
| """Implementation of the Kronecker product""" | |
| from functools import reduce | |
| from math import prod | |
| from sympy.core import Mul, sympify | |
| from sympy.functions import adjoint | |
| from sympy.matrices.common import ShapeError | |
| from sympy.matrices.expressions.matexpr import MatrixExpr | |
| from sympy.matrices.expressions.transpose import transpose | |
| from sympy.matrices.expressions.special import Identity | |
| from sympy.matrices.matrices import MatrixBase | |
| from sympy.strategies import ( | |
| canon, condition, distribute, do_one, exhaust, flatten, typed, unpack) | |
| from sympy.strategies.traverse import bottom_up | |
| from sympy.utilities import sift | |
| from .matadd import MatAdd | |
| from .matmul import MatMul | |
| from .matpow import MatPow | |
| def kronecker_product(*matrices): | |
| """ | |
| The Kronecker product of two or more arguments. | |
| This computes the explicit Kronecker product for subclasses of | |
| ``MatrixBase`` i.e. explicit matrices. Otherwise, a symbolic | |
| ``KroneckerProduct`` object is returned. | |
| Examples | |
| ======== | |
| For ``MatrixSymbol`` arguments a ``KroneckerProduct`` object is returned. | |
| Elements of this matrix can be obtained by indexing, or for MatrixSymbols | |
| with known dimension the explicit matrix can be obtained with | |
| ``.as_explicit()`` | |
| >>> from sympy import kronecker_product, MatrixSymbol | |
| >>> A = MatrixSymbol('A', 2, 2) | |
| >>> B = MatrixSymbol('B', 2, 2) | |
| >>> kronecker_product(A) | |
| A | |
| >>> kronecker_product(A, B) | |
| KroneckerProduct(A, B) | |
| >>> kronecker_product(A, B)[0, 1] | |
| A[0, 0]*B[0, 1] | |
| >>> kronecker_product(A, B).as_explicit() | |
| Matrix([ | |
| [A[0, 0]*B[0, 0], A[0, 0]*B[0, 1], A[0, 1]*B[0, 0], A[0, 1]*B[0, 1]], | |
| [A[0, 0]*B[1, 0], A[0, 0]*B[1, 1], A[0, 1]*B[1, 0], A[0, 1]*B[1, 1]], | |
| [A[1, 0]*B[0, 0], A[1, 0]*B[0, 1], A[1, 1]*B[0, 0], A[1, 1]*B[0, 1]], | |
| [A[1, 0]*B[1, 0], A[1, 0]*B[1, 1], A[1, 1]*B[1, 0], A[1, 1]*B[1, 1]]]) | |
| For explicit matrices the Kronecker product is returned as a Matrix | |
| >>> from sympy import Matrix, kronecker_product | |
| >>> sigma_x = Matrix([ | |
| ... [0, 1], | |
| ... [1, 0]]) | |
| ... | |
| >>> Isigma_y = Matrix([ | |
| ... [0, 1], | |
| ... [-1, 0]]) | |
| ... | |
| >>> kronecker_product(sigma_x, Isigma_y) | |
| Matrix([ | |
| [ 0, 0, 0, 1], | |
| [ 0, 0, -1, 0], | |
| [ 0, 1, 0, 0], | |
| [-1, 0, 0, 0]]) | |
| See Also | |
| ======== | |
| KroneckerProduct | |
| """ | |
| if not matrices: | |
| raise TypeError("Empty Kronecker product is undefined") | |
| if len(matrices) == 1: | |
| return matrices[0] | |
| else: | |
| return KroneckerProduct(*matrices).doit() | |
| class KroneckerProduct(MatrixExpr): | |
| """ | |
| The Kronecker product of two or more arguments. | |
| The Kronecker product is a non-commutative product of matrices. | |
| Given two matrices of dimension (m, n) and (s, t) it produces a matrix | |
| of dimension (m s, n t). | |
| This is a symbolic object that simply stores its argument without | |
| evaluating it. To actually compute the product, use the function | |
| ``kronecker_product()`` or call the ``.doit()`` or ``.as_explicit()`` | |
| methods. | |
| >>> from sympy import KroneckerProduct, MatrixSymbol | |
| >>> A = MatrixSymbol('A', 5, 5) | |
| >>> B = MatrixSymbol('B', 5, 5) | |
| >>> isinstance(KroneckerProduct(A, B), KroneckerProduct) | |
| True | |
| """ | |
| is_KroneckerProduct = True | |
| def __new__(cls, *args, check=True): | |
| args = list(map(sympify, args)) | |
| if all(a.is_Identity for a in args): | |
| ret = Identity(prod(a.rows for a in args)) | |
| if all(isinstance(a, MatrixBase) for a in args): | |
| return ret.as_explicit() | |
| else: | |
| return ret | |
| if check: | |
| validate(*args) | |
| return super().__new__(cls, *args) | |
| def shape(self): | |
| rows, cols = self.args[0].shape | |
| for mat in self.args[1:]: | |
| rows *= mat.rows | |
| cols *= mat.cols | |
| return (rows, cols) | |
| def _entry(self, i, j, **kwargs): | |
| result = 1 | |
| for mat in reversed(self.args): | |
| i, m = divmod(i, mat.rows) | |
| j, n = divmod(j, mat.cols) | |
| result *= mat[m, n] | |
| return result | |
| def _eval_adjoint(self): | |
| return KroneckerProduct(*list(map(adjoint, self.args))).doit() | |
| def _eval_conjugate(self): | |
| return KroneckerProduct(*[a.conjugate() for a in self.args]).doit() | |
| def _eval_transpose(self): | |
| return KroneckerProduct(*list(map(transpose, self.args))).doit() | |
| def _eval_trace(self): | |
| from .trace import trace | |
| return Mul(*[trace(a) for a in self.args]) | |
| def _eval_determinant(self): | |
| from .determinant import det, Determinant | |
| if not all(a.is_square for a in self.args): | |
| return Determinant(self) | |
| m = self.rows | |
| return Mul(*[det(a)**(m/a.rows) for a in self.args]) | |
| def _eval_inverse(self): | |
| try: | |
| return KroneckerProduct(*[a.inverse() for a in self.args]) | |
| except ShapeError: | |
| from sympy.matrices.expressions.inverse import Inverse | |
| return Inverse(self) | |
| def structurally_equal(self, other): | |
| '''Determine whether two matrices have the same Kronecker product structure | |
| Examples | |
| ======== | |
| >>> from sympy import KroneckerProduct, MatrixSymbol, symbols | |
| >>> m, n = symbols(r'm, n', integer=True) | |
| >>> A = MatrixSymbol('A', m, m) | |
| >>> B = MatrixSymbol('B', n, n) | |
| >>> C = MatrixSymbol('C', m, m) | |
| >>> D = MatrixSymbol('D', n, n) | |
| >>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(C, D)) | |
| True | |
| >>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(D, C)) | |
| False | |
| >>> KroneckerProduct(A, B).structurally_equal(C) | |
| False | |
| ''' | |
| # Inspired by BlockMatrix | |
| return (isinstance(other, KroneckerProduct) | |
| and self.shape == other.shape | |
| and len(self.args) == len(other.args) | |
| and all(a.shape == b.shape for (a, b) in zip(self.args, other.args))) | |
| def has_matching_shape(self, other): | |
| '''Determine whether two matrices have the appropriate structure to bring matrix | |
| multiplication inside the KroneckerProdut | |
| Examples | |
| ======== | |
| >>> from sympy import KroneckerProduct, MatrixSymbol, symbols | |
| >>> m, n = symbols(r'm, n', integer=True) | |
| >>> A = MatrixSymbol('A', m, n) | |
| >>> B = MatrixSymbol('B', n, m) | |
| >>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(B, A)) | |
| True | |
| >>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(A, B)) | |
| False | |
| >>> KroneckerProduct(A, B).has_matching_shape(A) | |
| False | |
| ''' | |
| return (isinstance(other, KroneckerProduct) | |
| and self.cols == other.rows | |
| and len(self.args) == len(other.args) | |
| and all(a.cols == b.rows for (a, b) in zip(self.args, other.args))) | |
| def _eval_expand_kroneckerproduct(self, **hints): | |
| return flatten(canon(typed({KroneckerProduct: distribute(KroneckerProduct, MatAdd)}))(self)) | |
| def _kronecker_add(self, other): | |
| if self.structurally_equal(other): | |
| return self.__class__(*[a + b for (a, b) in zip(self.args, other.args)]) | |
| else: | |
| return self + other | |
| def _kronecker_mul(self, other): | |
| if self.has_matching_shape(other): | |
| return self.__class__(*[a*b for (a, b) in zip(self.args, other.args)]) | |
| else: | |
| return self * other | |
| def doit(self, **hints): | |
| deep = hints.get('deep', True) | |
| if deep: | |
| args = [arg.doit(**hints) for arg in self.args] | |
| else: | |
| args = self.args | |
| return canonicalize(KroneckerProduct(*args)) | |
| def validate(*args): | |
| if not all(arg.is_Matrix for arg in args): | |
| raise TypeError("Mix of Matrix and Scalar symbols") | |
| # rules | |
| def extract_commutative(kron): | |
| c_part = [] | |
| nc_part = [] | |
| for arg in kron.args: | |
| c, nc = arg.args_cnc() | |
| c_part.extend(c) | |
| nc_part.append(Mul._from_args(nc)) | |
| c_part = Mul(*c_part) | |
| if c_part != 1: | |
| return c_part*KroneckerProduct(*nc_part) | |
| return kron | |
| def matrix_kronecker_product(*matrices): | |
| """Compute the Kronecker product of a sequence of SymPy Matrices. | |
| This is the standard Kronecker product of matrices [1]. | |
| Parameters | |
| ========== | |
| matrices : tuple of MatrixBase instances | |
| The matrices to take the Kronecker product of. | |
| Returns | |
| ======= | |
| matrix : MatrixBase | |
| The Kronecker product matrix. | |
| Examples | |
| ======== | |
| >>> from sympy import Matrix | |
| >>> from sympy.matrices.expressions.kronecker import ( | |
| ... matrix_kronecker_product) | |
| >>> m1 = Matrix([[1,2],[3,4]]) | |
| >>> m2 = Matrix([[1,0],[0,1]]) | |
| >>> matrix_kronecker_product(m1, m2) | |
| Matrix([ | |
| [1, 0, 2, 0], | |
| [0, 1, 0, 2], | |
| [3, 0, 4, 0], | |
| [0, 3, 0, 4]]) | |
| >>> matrix_kronecker_product(m2, m1) | |
| Matrix([ | |
| [1, 2, 0, 0], | |
| [3, 4, 0, 0], | |
| [0, 0, 1, 2], | |
| [0, 0, 3, 4]]) | |
| References | |
| ========== | |
| .. [1] https://en.wikipedia.org/wiki/Kronecker_product | |
| """ | |
| # Make sure we have a sequence of Matrices | |
| if not all(isinstance(m, MatrixBase) for m in matrices): | |
| raise TypeError( | |
| 'Sequence of Matrices expected, got: %s' % repr(matrices) | |
| ) | |
| # Pull out the first element in the product. | |
| matrix_expansion = matrices[-1] | |
| # Do the kronecker product working from right to left. | |
| for mat in reversed(matrices[:-1]): | |
| rows = mat.rows | |
| cols = mat.cols | |
| # Go through each row appending kronecker product to. | |
| # running matrix_expansion. | |
| for i in range(rows): | |
| start = matrix_expansion*mat[i*cols] | |
| # Go through each column joining each item | |
| for j in range(cols - 1): | |
| start = start.row_join( | |
| matrix_expansion*mat[i*cols + j + 1] | |
| ) | |
| # If this is the first element, make it the start of the | |
| # new row. | |
| if i == 0: | |
| next = start | |
| else: | |
| next = next.col_join(start) | |
| matrix_expansion = next | |
| MatrixClass = max(matrices, key=lambda M: M._class_priority).__class__ | |
| if isinstance(matrix_expansion, MatrixClass): | |
| return matrix_expansion | |
| else: | |
| return MatrixClass(matrix_expansion) | |
| def explicit_kronecker_product(kron): | |
| # Make sure we have a sequence of Matrices | |
| if not all(isinstance(m, MatrixBase) for m in kron.args): | |
| return kron | |
| return matrix_kronecker_product(*kron.args) | |
| rules = (unpack, | |
| explicit_kronecker_product, | |
| flatten, | |
| extract_commutative) | |
| canonicalize = exhaust(condition(lambda x: isinstance(x, KroneckerProduct), | |
| do_one(*rules))) | |
| def _kronecker_dims_key(expr): | |
| if isinstance(expr, KroneckerProduct): | |
| return tuple(a.shape for a in expr.args) | |
| else: | |
| return (0,) | |
| def kronecker_mat_add(expr): | |
| args = sift(expr.args, _kronecker_dims_key) | |
| nonkrons = args.pop((0,), None) | |
| if not args: | |
| return expr | |
| krons = [reduce(lambda x, y: x._kronecker_add(y), group) | |
| for group in args.values()] | |
| if not nonkrons: | |
| return MatAdd(*krons) | |
| else: | |
| return MatAdd(*krons) + nonkrons | |
| def kronecker_mat_mul(expr): | |
| # modified from block matrix code | |
| factor, matrices = expr.as_coeff_matrices() | |
| i = 0 | |
| while i < len(matrices) - 1: | |
| A, B = matrices[i:i+2] | |
| if isinstance(A, KroneckerProduct) and isinstance(B, KroneckerProduct): | |
| matrices[i] = A._kronecker_mul(B) | |
| matrices.pop(i+1) | |
| else: | |
| i += 1 | |
| return factor*MatMul(*matrices) | |
| def kronecker_mat_pow(expr): | |
| if isinstance(expr.base, KroneckerProduct) and all(a.is_square for a in expr.base.args): | |
| return KroneckerProduct(*[MatPow(a, expr.exp) for a in expr.base.args]) | |
| else: | |
| return expr | |
| def combine_kronecker(expr): | |
| """Combine KronekeckerProduct with expression. | |
| If possible write operations on KroneckerProducts of compatible shapes | |
| as a single KroneckerProduct. | |
| Examples | |
| ======== | |
| >>> from sympy.matrices.expressions import combine_kronecker | |
| >>> from sympy import MatrixSymbol, KroneckerProduct, symbols | |
| >>> m, n = symbols(r'm, n', integer=True) | |
| >>> A = MatrixSymbol('A', m, n) | |
| >>> B = MatrixSymbol('B', n, m) | |
| >>> combine_kronecker(KroneckerProduct(A, B)*KroneckerProduct(B, A)) | |
| KroneckerProduct(A*B, B*A) | |
| >>> combine_kronecker(KroneckerProduct(A, B)+KroneckerProduct(B.T, A.T)) | |
| KroneckerProduct(A + B.T, B + A.T) | |
| >>> C = MatrixSymbol('C', n, n) | |
| >>> D = MatrixSymbol('D', m, m) | |
| >>> combine_kronecker(KroneckerProduct(C, D)**m) | |
| KroneckerProduct(C**m, D**m) | |
| """ | |
| def haskron(expr): | |
| return isinstance(expr, MatrixExpr) and expr.has(KroneckerProduct) | |
| rule = exhaust( | |
| bottom_up(exhaust(condition(haskron, typed( | |
| {MatAdd: kronecker_mat_add, | |
| MatMul: kronecker_mat_mul, | |
| MatPow: kronecker_mat_pow}))))) | |
| result = rule(expr) | |
| doit = getattr(result, 'doit', None) | |
| if doit is not None: | |
| return doit() | |
| else: | |
| return result | |