Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/decompositions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/dense.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/determinant.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/eigen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/graph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/immutable.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/inverse.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrices.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/normalforms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/reductions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/repmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/solvers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparse.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparsetools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/subspaces.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/utilities.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/bench_matrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/bench_matrix.py +21 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/kronecker.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/sets.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/special.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/fourier.py +91 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/kronecker.py +434 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_blockmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_companion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_derivatives.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_determinant.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_dotproduct.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_factorizations.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_funcmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_hadamard.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matexpr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matmul.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_permutation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_slice.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_special.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_trace.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_transpose.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_adjoint.py +34 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_blockmatrix.py +445 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_inverse.py +62 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_kronecker.py +150 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matexpr.py +567 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matpow.py +217 -0
- env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_slice.py +65 -0
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.48 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/common.cpython-310.pyc
ADDED
Binary file (99.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/decompositions.cpython-310.pyc
ADDED
Binary file (41.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/dense.cpython-310.pyc
ADDED
Binary file (31.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/determinant.cpython-310.pyc
ADDED
Binary file (24 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/eigen.cpython-310.pyc
ADDED
Binary file (36.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/graph.cpython-310.pyc
ADDED
Binary file (9.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/immutable.cpython-310.pyc
ADDED
Binary file (6.24 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/inverse.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrices.cpython-310.pyc
ADDED
Binary file (70.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/normalforms.cpython-310.pyc
ADDED
Binary file (4.39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/reductions.cpython-310.pyc
ADDED
Binary file (9.82 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/repmatrix.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/solvers.cpython-310.pyc
ADDED
Binary file (21.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparse.cpython-310.pyc
ADDED
Binary file (13.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparsetools.cpython-310.pyc
ADDED
Binary file (8.52 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/subspaces.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/__pycache__/utilities.cpython-310.pyc
ADDED
Binary file (2.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/bench_matrix.cpython-310.pyc
ADDED
Binary file (898 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/benchmarks/bench_matrix.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Integer
|
2 |
+
from sympy.matrices.dense import (eye, zeros)
|
3 |
+
|
4 |
+
i3 = Integer(3)
|
5 |
+
M = eye(100)
|
6 |
+
|
7 |
+
|
8 |
+
def timeit_Matrix__getitem_ii():
|
9 |
+
M[3, 3]
|
10 |
+
|
11 |
+
|
12 |
+
def timeit_Matrix__getitem_II():
|
13 |
+
M[i3, i3]
|
14 |
+
|
15 |
+
|
16 |
+
def timeit_Matrix__getslice():
|
17 |
+
M[:, :]
|
18 |
+
|
19 |
+
|
20 |
+
def timeit_Matrix_zeronm():
|
21 |
+
zeros(100, 100)
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/kronecker.cpython-310.pyc
ADDED
Binary file (16.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/sets.cpython-310.pyc
ADDED
Binary file (2.81 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/special.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/fourier.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.sympify import _sympify
|
2 |
+
from sympy.matrices.expressions import MatrixExpr
|
3 |
+
from sympy.core.numbers import I
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.functions.elementary.exponential import exp
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
|
8 |
+
|
9 |
+
class DFT(MatrixExpr):
|
10 |
+
r"""
|
11 |
+
Returns a discrete Fourier transform matrix. The matrix is scaled
|
12 |
+
with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
==========
|
16 |
+
|
17 |
+
n : integer or Symbol
|
18 |
+
Size of the transform.
|
19 |
+
|
20 |
+
Examples
|
21 |
+
========
|
22 |
+
|
23 |
+
>>> from sympy.abc import n
|
24 |
+
>>> from sympy.matrices.expressions.fourier import DFT
|
25 |
+
>>> DFT(3)
|
26 |
+
DFT(3)
|
27 |
+
>>> DFT(3).as_explicit()
|
28 |
+
Matrix([
|
29 |
+
[sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
|
30 |
+
[sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3],
|
31 |
+
[sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]])
|
32 |
+
>>> DFT(n).shape
|
33 |
+
(n, n)
|
34 |
+
|
35 |
+
References
|
36 |
+
==========
|
37 |
+
|
38 |
+
.. [1] https://en.wikipedia.org/wiki/DFT_matrix
|
39 |
+
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __new__(cls, n):
|
43 |
+
n = _sympify(n)
|
44 |
+
cls._check_dim(n)
|
45 |
+
|
46 |
+
obj = super().__new__(cls, n)
|
47 |
+
return obj
|
48 |
+
|
49 |
+
n = property(lambda self: self.args[0]) # type: ignore
|
50 |
+
shape = property(lambda self: (self.n, self.n)) # type: ignore
|
51 |
+
|
52 |
+
def _entry(self, i, j, **kwargs):
|
53 |
+
w = exp(-2*S.Pi*I/self.n)
|
54 |
+
return w**(i*j) / sqrt(self.n)
|
55 |
+
|
56 |
+
def _eval_inverse(self):
|
57 |
+
return IDFT(self.n)
|
58 |
+
|
59 |
+
|
60 |
+
class IDFT(DFT):
|
61 |
+
r"""
|
62 |
+
Returns an inverse discrete Fourier transform matrix. The matrix is scaled
|
63 |
+
with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
|
64 |
+
|
65 |
+
Parameters
|
66 |
+
==========
|
67 |
+
|
68 |
+
n : integer or Symbol
|
69 |
+
Size of the transform
|
70 |
+
|
71 |
+
Examples
|
72 |
+
========
|
73 |
+
|
74 |
+
>>> from sympy.matrices.expressions.fourier import DFT, IDFT
|
75 |
+
>>> IDFT(3)
|
76 |
+
IDFT(3)
|
77 |
+
>>> IDFT(4)*DFT(4)
|
78 |
+
I
|
79 |
+
|
80 |
+
See Also
|
81 |
+
========
|
82 |
+
|
83 |
+
DFT
|
84 |
+
|
85 |
+
"""
|
86 |
+
def _entry(self, i, j, **kwargs):
|
87 |
+
w = exp(-2*S.Pi*I/self.n)
|
88 |
+
return w**(-i*j) / sqrt(self.n)
|
89 |
+
|
90 |
+
def _eval_inverse(self):
|
91 |
+
return DFT(self.n)
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/kronecker.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of the Kronecker product"""
|
2 |
+
from functools import reduce
|
3 |
+
from math import prod
|
4 |
+
|
5 |
+
from sympy.core import Mul, sympify
|
6 |
+
from sympy.functions import adjoint
|
7 |
+
from sympy.matrices.common import ShapeError
|
8 |
+
from sympy.matrices.expressions.matexpr import MatrixExpr
|
9 |
+
from sympy.matrices.expressions.transpose import transpose
|
10 |
+
from sympy.matrices.expressions.special import Identity
|
11 |
+
from sympy.matrices.matrices import MatrixBase
|
12 |
+
from sympy.strategies import (
|
13 |
+
canon, condition, distribute, do_one, exhaust, flatten, typed, unpack)
|
14 |
+
from sympy.strategies.traverse import bottom_up
|
15 |
+
from sympy.utilities import sift
|
16 |
+
|
17 |
+
from .matadd import MatAdd
|
18 |
+
from .matmul import MatMul
|
19 |
+
from .matpow import MatPow
|
20 |
+
|
21 |
+
|
22 |
+
def kronecker_product(*matrices):
|
23 |
+
"""
|
24 |
+
The Kronecker product of two or more arguments.
|
25 |
+
|
26 |
+
This computes the explicit Kronecker product for subclasses of
|
27 |
+
``MatrixBase`` i.e. explicit matrices. Otherwise, a symbolic
|
28 |
+
``KroneckerProduct`` object is returned.
|
29 |
+
|
30 |
+
|
31 |
+
Examples
|
32 |
+
========
|
33 |
+
|
34 |
+
For ``MatrixSymbol`` arguments a ``KroneckerProduct`` object is returned.
|
35 |
+
Elements of this matrix can be obtained by indexing, or for MatrixSymbols
|
36 |
+
with known dimension the explicit matrix can be obtained with
|
37 |
+
``.as_explicit()``
|
38 |
+
|
39 |
+
>>> from sympy import kronecker_product, MatrixSymbol
|
40 |
+
>>> A = MatrixSymbol('A', 2, 2)
|
41 |
+
>>> B = MatrixSymbol('B', 2, 2)
|
42 |
+
>>> kronecker_product(A)
|
43 |
+
A
|
44 |
+
>>> kronecker_product(A, B)
|
45 |
+
KroneckerProduct(A, B)
|
46 |
+
>>> kronecker_product(A, B)[0, 1]
|
47 |
+
A[0, 0]*B[0, 1]
|
48 |
+
>>> kronecker_product(A, B).as_explicit()
|
49 |
+
Matrix([
|
50 |
+
[A[0, 0]*B[0, 0], A[0, 0]*B[0, 1], A[0, 1]*B[0, 0], A[0, 1]*B[0, 1]],
|
51 |
+
[A[0, 0]*B[1, 0], A[0, 0]*B[1, 1], A[0, 1]*B[1, 0], A[0, 1]*B[1, 1]],
|
52 |
+
[A[1, 0]*B[0, 0], A[1, 0]*B[0, 1], A[1, 1]*B[0, 0], A[1, 1]*B[0, 1]],
|
53 |
+
[A[1, 0]*B[1, 0], A[1, 0]*B[1, 1], A[1, 1]*B[1, 0], A[1, 1]*B[1, 1]]])
|
54 |
+
|
55 |
+
For explicit matrices the Kronecker product is returned as a Matrix
|
56 |
+
|
57 |
+
>>> from sympy import Matrix, kronecker_product
|
58 |
+
>>> sigma_x = Matrix([
|
59 |
+
... [0, 1],
|
60 |
+
... [1, 0]])
|
61 |
+
...
|
62 |
+
>>> Isigma_y = Matrix([
|
63 |
+
... [0, 1],
|
64 |
+
... [-1, 0]])
|
65 |
+
...
|
66 |
+
>>> kronecker_product(sigma_x, Isigma_y)
|
67 |
+
Matrix([
|
68 |
+
[ 0, 0, 0, 1],
|
69 |
+
[ 0, 0, -1, 0],
|
70 |
+
[ 0, 1, 0, 0],
|
71 |
+
[-1, 0, 0, 0]])
|
72 |
+
|
73 |
+
See Also
|
74 |
+
========
|
75 |
+
KroneckerProduct
|
76 |
+
|
77 |
+
"""
|
78 |
+
if not matrices:
|
79 |
+
raise TypeError("Empty Kronecker product is undefined")
|
80 |
+
if len(matrices) == 1:
|
81 |
+
return matrices[0]
|
82 |
+
else:
|
83 |
+
return KroneckerProduct(*matrices).doit()
|
84 |
+
|
85 |
+
|
86 |
+
class KroneckerProduct(MatrixExpr):
|
87 |
+
"""
|
88 |
+
The Kronecker product of two or more arguments.
|
89 |
+
|
90 |
+
The Kronecker product is a non-commutative product of matrices.
|
91 |
+
Given two matrices of dimension (m, n) and (s, t) it produces a matrix
|
92 |
+
of dimension (m s, n t).
|
93 |
+
|
94 |
+
This is a symbolic object that simply stores its argument without
|
95 |
+
evaluating it. To actually compute the product, use the function
|
96 |
+
``kronecker_product()`` or call the ``.doit()`` or ``.as_explicit()``
|
97 |
+
methods.
|
98 |
+
|
99 |
+
>>> from sympy import KroneckerProduct, MatrixSymbol
|
100 |
+
>>> A = MatrixSymbol('A', 5, 5)
|
101 |
+
>>> B = MatrixSymbol('B', 5, 5)
|
102 |
+
>>> isinstance(KroneckerProduct(A, B), KroneckerProduct)
|
103 |
+
True
|
104 |
+
"""
|
105 |
+
is_KroneckerProduct = True
|
106 |
+
|
107 |
+
def __new__(cls, *args, check=True):
|
108 |
+
args = list(map(sympify, args))
|
109 |
+
if all(a.is_Identity for a in args):
|
110 |
+
ret = Identity(prod(a.rows for a in args))
|
111 |
+
if all(isinstance(a, MatrixBase) for a in args):
|
112 |
+
return ret.as_explicit()
|
113 |
+
else:
|
114 |
+
return ret
|
115 |
+
|
116 |
+
if check:
|
117 |
+
validate(*args)
|
118 |
+
return super().__new__(cls, *args)
|
119 |
+
|
120 |
+
@property
|
121 |
+
def shape(self):
|
122 |
+
rows, cols = self.args[0].shape
|
123 |
+
for mat in self.args[1:]:
|
124 |
+
rows *= mat.rows
|
125 |
+
cols *= mat.cols
|
126 |
+
return (rows, cols)
|
127 |
+
|
128 |
+
def _entry(self, i, j, **kwargs):
|
129 |
+
result = 1
|
130 |
+
for mat in reversed(self.args):
|
131 |
+
i, m = divmod(i, mat.rows)
|
132 |
+
j, n = divmod(j, mat.cols)
|
133 |
+
result *= mat[m, n]
|
134 |
+
return result
|
135 |
+
|
136 |
+
def _eval_adjoint(self):
|
137 |
+
return KroneckerProduct(*list(map(adjoint, self.args))).doit()
|
138 |
+
|
139 |
+
def _eval_conjugate(self):
|
140 |
+
return KroneckerProduct(*[a.conjugate() for a in self.args]).doit()
|
141 |
+
|
142 |
+
def _eval_transpose(self):
|
143 |
+
return KroneckerProduct(*list(map(transpose, self.args))).doit()
|
144 |
+
|
145 |
+
def _eval_trace(self):
|
146 |
+
from .trace import trace
|
147 |
+
return Mul(*[trace(a) for a in self.args])
|
148 |
+
|
149 |
+
def _eval_determinant(self):
|
150 |
+
from .determinant import det, Determinant
|
151 |
+
if not all(a.is_square for a in self.args):
|
152 |
+
return Determinant(self)
|
153 |
+
|
154 |
+
m = self.rows
|
155 |
+
return Mul(*[det(a)**(m/a.rows) for a in self.args])
|
156 |
+
|
157 |
+
def _eval_inverse(self):
|
158 |
+
try:
|
159 |
+
return KroneckerProduct(*[a.inverse() for a in self.args])
|
160 |
+
except ShapeError:
|
161 |
+
from sympy.matrices.expressions.inverse import Inverse
|
162 |
+
return Inverse(self)
|
163 |
+
|
164 |
+
def structurally_equal(self, other):
|
165 |
+
'''Determine whether two matrices have the same Kronecker product structure
|
166 |
+
|
167 |
+
Examples
|
168 |
+
========
|
169 |
+
|
170 |
+
>>> from sympy import KroneckerProduct, MatrixSymbol, symbols
|
171 |
+
>>> m, n = symbols(r'm, n', integer=True)
|
172 |
+
>>> A = MatrixSymbol('A', m, m)
|
173 |
+
>>> B = MatrixSymbol('B', n, n)
|
174 |
+
>>> C = MatrixSymbol('C', m, m)
|
175 |
+
>>> D = MatrixSymbol('D', n, n)
|
176 |
+
>>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(C, D))
|
177 |
+
True
|
178 |
+
>>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(D, C))
|
179 |
+
False
|
180 |
+
>>> KroneckerProduct(A, B).structurally_equal(C)
|
181 |
+
False
|
182 |
+
'''
|
183 |
+
# Inspired by BlockMatrix
|
184 |
+
return (isinstance(other, KroneckerProduct)
|
185 |
+
and self.shape == other.shape
|
186 |
+
and len(self.args) == len(other.args)
|
187 |
+
and all(a.shape == b.shape for (a, b) in zip(self.args, other.args)))
|
188 |
+
|
189 |
+
def has_matching_shape(self, other):
|
190 |
+
'''Determine whether two matrices have the appropriate structure to bring matrix
|
191 |
+
multiplication inside the KroneckerProdut
|
192 |
+
|
193 |
+
Examples
|
194 |
+
========
|
195 |
+
>>> from sympy import KroneckerProduct, MatrixSymbol, symbols
|
196 |
+
>>> m, n = symbols(r'm, n', integer=True)
|
197 |
+
>>> A = MatrixSymbol('A', m, n)
|
198 |
+
>>> B = MatrixSymbol('B', n, m)
|
199 |
+
>>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(B, A))
|
200 |
+
True
|
201 |
+
>>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(A, B))
|
202 |
+
False
|
203 |
+
>>> KroneckerProduct(A, B).has_matching_shape(A)
|
204 |
+
False
|
205 |
+
'''
|
206 |
+
return (isinstance(other, KroneckerProduct)
|
207 |
+
and self.cols == other.rows
|
208 |
+
and len(self.args) == len(other.args)
|
209 |
+
and all(a.cols == b.rows for (a, b) in zip(self.args, other.args)))
|
210 |
+
|
211 |
+
def _eval_expand_kroneckerproduct(self, **hints):
|
212 |
+
return flatten(canon(typed({KroneckerProduct: distribute(KroneckerProduct, MatAdd)}))(self))
|
213 |
+
|
214 |
+
def _kronecker_add(self, other):
|
215 |
+
if self.structurally_equal(other):
|
216 |
+
return self.__class__(*[a + b for (a, b) in zip(self.args, other.args)])
|
217 |
+
else:
|
218 |
+
return self + other
|
219 |
+
|
220 |
+
def _kronecker_mul(self, other):
|
221 |
+
if self.has_matching_shape(other):
|
222 |
+
return self.__class__(*[a*b for (a, b) in zip(self.args, other.args)])
|
223 |
+
else:
|
224 |
+
return self * other
|
225 |
+
|
226 |
+
def doit(self, **hints):
|
227 |
+
deep = hints.get('deep', True)
|
228 |
+
if deep:
|
229 |
+
args = [arg.doit(**hints) for arg in self.args]
|
230 |
+
else:
|
231 |
+
args = self.args
|
232 |
+
return canonicalize(KroneckerProduct(*args))
|
233 |
+
|
234 |
+
|
235 |
+
def validate(*args):
|
236 |
+
if not all(arg.is_Matrix for arg in args):
|
237 |
+
raise TypeError("Mix of Matrix and Scalar symbols")
|
238 |
+
|
239 |
+
|
240 |
+
# rules
|
241 |
+
|
242 |
+
def extract_commutative(kron):
|
243 |
+
c_part = []
|
244 |
+
nc_part = []
|
245 |
+
for arg in kron.args:
|
246 |
+
c, nc = arg.args_cnc()
|
247 |
+
c_part.extend(c)
|
248 |
+
nc_part.append(Mul._from_args(nc))
|
249 |
+
|
250 |
+
c_part = Mul(*c_part)
|
251 |
+
if c_part != 1:
|
252 |
+
return c_part*KroneckerProduct(*nc_part)
|
253 |
+
return kron
|
254 |
+
|
255 |
+
|
256 |
+
def matrix_kronecker_product(*matrices):
|
257 |
+
"""Compute the Kronecker product of a sequence of SymPy Matrices.
|
258 |
+
|
259 |
+
This is the standard Kronecker product of matrices [1].
|
260 |
+
|
261 |
+
Parameters
|
262 |
+
==========
|
263 |
+
|
264 |
+
matrices : tuple of MatrixBase instances
|
265 |
+
The matrices to take the Kronecker product of.
|
266 |
+
|
267 |
+
Returns
|
268 |
+
=======
|
269 |
+
|
270 |
+
matrix : MatrixBase
|
271 |
+
The Kronecker product matrix.
|
272 |
+
|
273 |
+
Examples
|
274 |
+
========
|
275 |
+
|
276 |
+
>>> from sympy import Matrix
|
277 |
+
>>> from sympy.matrices.expressions.kronecker import (
|
278 |
+
... matrix_kronecker_product)
|
279 |
+
|
280 |
+
>>> m1 = Matrix([[1,2],[3,4]])
|
281 |
+
>>> m2 = Matrix([[1,0],[0,1]])
|
282 |
+
>>> matrix_kronecker_product(m1, m2)
|
283 |
+
Matrix([
|
284 |
+
[1, 0, 2, 0],
|
285 |
+
[0, 1, 0, 2],
|
286 |
+
[3, 0, 4, 0],
|
287 |
+
[0, 3, 0, 4]])
|
288 |
+
>>> matrix_kronecker_product(m2, m1)
|
289 |
+
Matrix([
|
290 |
+
[1, 2, 0, 0],
|
291 |
+
[3, 4, 0, 0],
|
292 |
+
[0, 0, 1, 2],
|
293 |
+
[0, 0, 3, 4]])
|
294 |
+
|
295 |
+
References
|
296 |
+
==========
|
297 |
+
|
298 |
+
.. [1] https://en.wikipedia.org/wiki/Kronecker_product
|
299 |
+
"""
|
300 |
+
# Make sure we have a sequence of Matrices
|
301 |
+
if not all(isinstance(m, MatrixBase) for m in matrices):
|
302 |
+
raise TypeError(
|
303 |
+
'Sequence of Matrices expected, got: %s' % repr(matrices)
|
304 |
+
)
|
305 |
+
|
306 |
+
# Pull out the first element in the product.
|
307 |
+
matrix_expansion = matrices[-1]
|
308 |
+
# Do the kronecker product working from right to left.
|
309 |
+
for mat in reversed(matrices[:-1]):
|
310 |
+
rows = mat.rows
|
311 |
+
cols = mat.cols
|
312 |
+
# Go through each row appending kronecker product to.
|
313 |
+
# running matrix_expansion.
|
314 |
+
for i in range(rows):
|
315 |
+
start = matrix_expansion*mat[i*cols]
|
316 |
+
# Go through each column joining each item
|
317 |
+
for j in range(cols - 1):
|
318 |
+
start = start.row_join(
|
319 |
+
matrix_expansion*mat[i*cols + j + 1]
|
320 |
+
)
|
321 |
+
# If this is the first element, make it the start of the
|
322 |
+
# new row.
|
323 |
+
if i == 0:
|
324 |
+
next = start
|
325 |
+
else:
|
326 |
+
next = next.col_join(start)
|
327 |
+
matrix_expansion = next
|
328 |
+
|
329 |
+
MatrixClass = max(matrices, key=lambda M: M._class_priority).__class__
|
330 |
+
if isinstance(matrix_expansion, MatrixClass):
|
331 |
+
return matrix_expansion
|
332 |
+
else:
|
333 |
+
return MatrixClass(matrix_expansion)
|
334 |
+
|
335 |
+
|
336 |
+
def explicit_kronecker_product(kron):
|
337 |
+
# Make sure we have a sequence of Matrices
|
338 |
+
if not all(isinstance(m, MatrixBase) for m in kron.args):
|
339 |
+
return kron
|
340 |
+
|
341 |
+
return matrix_kronecker_product(*kron.args)
|
342 |
+
|
343 |
+
|
344 |
+
rules = (unpack,
|
345 |
+
explicit_kronecker_product,
|
346 |
+
flatten,
|
347 |
+
extract_commutative)
|
348 |
+
|
349 |
+
canonicalize = exhaust(condition(lambda x: isinstance(x, KroneckerProduct),
|
350 |
+
do_one(*rules)))
|
351 |
+
|
352 |
+
|
353 |
+
def _kronecker_dims_key(expr):
|
354 |
+
if isinstance(expr, KroneckerProduct):
|
355 |
+
return tuple(a.shape for a in expr.args)
|
356 |
+
else:
|
357 |
+
return (0,)
|
358 |
+
|
359 |
+
|
360 |
+
def kronecker_mat_add(expr):
|
361 |
+
args = sift(expr.args, _kronecker_dims_key)
|
362 |
+
nonkrons = args.pop((0,), None)
|
363 |
+
if not args:
|
364 |
+
return expr
|
365 |
+
|
366 |
+
krons = [reduce(lambda x, y: x._kronecker_add(y), group)
|
367 |
+
for group in args.values()]
|
368 |
+
|
369 |
+
if not nonkrons:
|
370 |
+
return MatAdd(*krons)
|
371 |
+
else:
|
372 |
+
return MatAdd(*krons) + nonkrons
|
373 |
+
|
374 |
+
|
375 |
+
def kronecker_mat_mul(expr):
|
376 |
+
# modified from block matrix code
|
377 |
+
factor, matrices = expr.as_coeff_matrices()
|
378 |
+
|
379 |
+
i = 0
|
380 |
+
while i < len(matrices) - 1:
|
381 |
+
A, B = matrices[i:i+2]
|
382 |
+
if isinstance(A, KroneckerProduct) and isinstance(B, KroneckerProduct):
|
383 |
+
matrices[i] = A._kronecker_mul(B)
|
384 |
+
matrices.pop(i+1)
|
385 |
+
else:
|
386 |
+
i += 1
|
387 |
+
|
388 |
+
return factor*MatMul(*matrices)
|
389 |
+
|
390 |
+
|
391 |
+
def kronecker_mat_pow(expr):
|
392 |
+
if isinstance(expr.base, KroneckerProduct) and all(a.is_square for a in expr.base.args):
|
393 |
+
return KroneckerProduct(*[MatPow(a, expr.exp) for a in expr.base.args])
|
394 |
+
else:
|
395 |
+
return expr
|
396 |
+
|
397 |
+
|
398 |
+
def combine_kronecker(expr):
|
399 |
+
"""Combine KronekeckerProduct with expression.
|
400 |
+
|
401 |
+
If possible write operations on KroneckerProducts of compatible shapes
|
402 |
+
as a single KroneckerProduct.
|
403 |
+
|
404 |
+
Examples
|
405 |
+
========
|
406 |
+
|
407 |
+
>>> from sympy.matrices.expressions import combine_kronecker
|
408 |
+
>>> from sympy import MatrixSymbol, KroneckerProduct, symbols
|
409 |
+
>>> m, n = symbols(r'm, n', integer=True)
|
410 |
+
>>> A = MatrixSymbol('A', m, n)
|
411 |
+
>>> B = MatrixSymbol('B', n, m)
|
412 |
+
>>> combine_kronecker(KroneckerProduct(A, B)*KroneckerProduct(B, A))
|
413 |
+
KroneckerProduct(A*B, B*A)
|
414 |
+
>>> combine_kronecker(KroneckerProduct(A, B)+KroneckerProduct(B.T, A.T))
|
415 |
+
KroneckerProduct(A + B.T, B + A.T)
|
416 |
+
>>> C = MatrixSymbol('C', n, n)
|
417 |
+
>>> D = MatrixSymbol('D', m, m)
|
418 |
+
>>> combine_kronecker(KroneckerProduct(C, D)**m)
|
419 |
+
KroneckerProduct(C**m, D**m)
|
420 |
+
"""
|
421 |
+
def haskron(expr):
|
422 |
+
return isinstance(expr, MatrixExpr) and expr.has(KroneckerProduct)
|
423 |
+
|
424 |
+
rule = exhaust(
|
425 |
+
bottom_up(exhaust(condition(haskron, typed(
|
426 |
+
{MatAdd: kronecker_mat_add,
|
427 |
+
MatMul: kronecker_mat_mul,
|
428 |
+
MatPow: kronecker_mat_pow})))))
|
429 |
+
result = rule(expr)
|
430 |
+
doit = getattr(result, 'doit', None)
|
431 |
+
if doit is not None:
|
432 |
+
return doit()
|
433 |
+
else:
|
434 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (197 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_blockmatrix.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_companion.cpython-310.pyc
ADDED
Binary file (2.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_derivatives.cpython-310.pyc
ADDED
Binary file (13.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_determinant.cpython-310.pyc
ADDED
Binary file (2.82 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_dotproduct.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_factorizations.cpython-310.pyc
ADDED
Binary file (1.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_funcmatrix.cpython-310.pyc
ADDED
Binary file (3.82 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_hadamard.cpython-310.pyc
ADDED
Binary file (5.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matexpr.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_matmul.cpython-310.pyc
ADDED
Binary file (8.06 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_permutation.cpython-310.pyc
ADDED
Binary file (5.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_slice.cpython-310.pyc
ADDED
Binary file (3.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_special.cpython-310.pyc
ADDED
Binary file (8.41 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_trace.cpython-310.pyc
ADDED
Binary file (4.66 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_transpose.cpython-310.pyc
ADDED
Binary file (2.66 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_adjoint.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import symbols, S
|
2 |
+
from sympy.functions import adjoint, conjugate, transpose
|
3 |
+
from sympy.matrices.expressions import MatrixSymbol, Adjoint, trace, Transpose
|
4 |
+
from sympy.matrices import eye, Matrix
|
5 |
+
|
6 |
+
n, m, l, k, p = symbols('n m l k p', integer=True)
|
7 |
+
A = MatrixSymbol('A', n, m)
|
8 |
+
B = MatrixSymbol('B', m, l)
|
9 |
+
C = MatrixSymbol('C', n, n)
|
10 |
+
|
11 |
+
|
12 |
+
def test_adjoint():
|
13 |
+
Sq = MatrixSymbol('Sq', n, n)
|
14 |
+
|
15 |
+
assert Adjoint(A).shape == (m, n)
|
16 |
+
assert Adjoint(A*B).shape == (l, n)
|
17 |
+
assert adjoint(Adjoint(A)) == A
|
18 |
+
assert isinstance(Adjoint(Adjoint(A)), Adjoint)
|
19 |
+
|
20 |
+
assert conjugate(Adjoint(A)) == Transpose(A)
|
21 |
+
assert transpose(Adjoint(A)) == Adjoint(Transpose(A))
|
22 |
+
|
23 |
+
assert Adjoint(eye(3)).doit() == eye(3)
|
24 |
+
|
25 |
+
assert Adjoint(S(5)).doit() == S(5)
|
26 |
+
|
27 |
+
assert Adjoint(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]])
|
28 |
+
|
29 |
+
assert adjoint(trace(Sq)) == conjugate(trace(Sq))
|
30 |
+
assert trace(adjoint(Sq)) == conjugate(trace(Sq))
|
31 |
+
|
32 |
+
assert Adjoint(Sq)[0, 1] == conjugate(Sq[1, 0])
|
33 |
+
|
34 |
+
assert Adjoint(A*B).doit() == Adjoint(B) * Adjoint(A)
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_blockmatrix.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.expressions.trace import Trace
|
2 |
+
from sympy.testing.pytest import raises, slow
|
3 |
+
from sympy.matrices.expressions.blockmatrix import (
|
4 |
+
block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
|
5 |
+
BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
|
6 |
+
blockcut, reblock_2x2, deblock)
|
7 |
+
from sympy.matrices.expressions import (MatrixSymbol, Identity,
|
8 |
+
Inverse, trace, Transpose, det, ZeroMatrix, OneMatrix)
|
9 |
+
from sympy.matrices.common import NonInvertibleMatrixError
|
10 |
+
from sympy.matrices import (
|
11 |
+
Matrix, ImmutableMatrix, ImmutableSparseMatrix)
|
12 |
+
from sympy.core import Tuple, symbols, Expr, S
|
13 |
+
from sympy.functions import transpose, im, re
|
14 |
+
|
15 |
+
i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
|
16 |
+
A = MatrixSymbol('A', n, n)
|
17 |
+
B = MatrixSymbol('B', n, n)
|
18 |
+
C = MatrixSymbol('C', n, n)
|
19 |
+
D = MatrixSymbol('D', n, n)
|
20 |
+
G = MatrixSymbol('G', n, n)
|
21 |
+
H = MatrixSymbol('H', n, n)
|
22 |
+
b1 = BlockMatrix([[G, H]])
|
23 |
+
b2 = BlockMatrix([[G], [H]])
|
24 |
+
|
25 |
+
def test_bc_matmul():
|
26 |
+
assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])
|
27 |
+
|
28 |
+
def test_bc_matadd():
|
29 |
+
assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
|
30 |
+
BlockMatrix([[G+H, H+H]])
|
31 |
+
|
32 |
+
def test_bc_transpose():
|
33 |
+
assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
|
34 |
+
BlockMatrix([[A.T, C.T], [B.T, D.T]])
|
35 |
+
|
36 |
+
def test_bc_dist_diag():
|
37 |
+
A = MatrixSymbol('A', n, n)
|
38 |
+
B = MatrixSymbol('B', m, m)
|
39 |
+
C = MatrixSymbol('C', l, l)
|
40 |
+
X = BlockDiagMatrix(A, B, C)
|
41 |
+
|
42 |
+
assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
|
43 |
+
|
44 |
+
def test_block_plus_ident():
|
45 |
+
A = MatrixSymbol('A', n, n)
|
46 |
+
B = MatrixSymbol('B', n, m)
|
47 |
+
C = MatrixSymbol('C', m, n)
|
48 |
+
D = MatrixSymbol('D', m, m)
|
49 |
+
X = BlockMatrix([[A, B], [C, D]])
|
50 |
+
Z = MatrixSymbol('Z', n + m, n + m)
|
51 |
+
assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
|
52 |
+
BlockDiagMatrix(Identity(n), Identity(m)) + X + Z
|
53 |
+
|
54 |
+
def test_BlockMatrix():
|
55 |
+
A = MatrixSymbol('A', n, m)
|
56 |
+
B = MatrixSymbol('B', n, k)
|
57 |
+
C = MatrixSymbol('C', l, m)
|
58 |
+
D = MatrixSymbol('D', l, k)
|
59 |
+
M = MatrixSymbol('M', m + k, p)
|
60 |
+
N = MatrixSymbol('N', l + n, k + m)
|
61 |
+
X = BlockMatrix(Matrix([[A, B], [C, D]]))
|
62 |
+
|
63 |
+
assert X.__class__(*X.args) == X
|
64 |
+
|
65 |
+
# block_collapse does nothing on normal inputs
|
66 |
+
E = MatrixSymbol('E', n, m)
|
67 |
+
assert block_collapse(A + 2*E) == A + 2*E
|
68 |
+
F = MatrixSymbol('F', m, m)
|
69 |
+
assert block_collapse(E.T*A*F) == E.T*A*F
|
70 |
+
|
71 |
+
assert X.shape == (l + n, k + m)
|
72 |
+
assert X.blockshape == (2, 2)
|
73 |
+
assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
|
74 |
+
assert transpose(X).shape == X.shape[::-1]
|
75 |
+
|
76 |
+
# Test that BlockMatrices and MatrixSymbols can still mix
|
77 |
+
assert (X*M).is_MatMul
|
78 |
+
assert X._blockmul(M).is_MatMul
|
79 |
+
assert (X*M).shape == (n + l, p)
|
80 |
+
assert (X + N).is_MatAdd
|
81 |
+
assert X._blockadd(N).is_MatAdd
|
82 |
+
assert (X + N).shape == X.shape
|
83 |
+
|
84 |
+
E = MatrixSymbol('E', m, 1)
|
85 |
+
F = MatrixSymbol('F', k, 1)
|
86 |
+
|
87 |
+
Y = BlockMatrix(Matrix([[E], [F]]))
|
88 |
+
|
89 |
+
assert (X*Y).shape == (l + n, 1)
|
90 |
+
assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
|
91 |
+
assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F
|
92 |
+
|
93 |
+
# block_collapse passes down into container objects, transposes, and inverse
|
94 |
+
assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
|
95 |
+
assert block_collapse(Tuple(X*Y, 2*X)) == (
|
96 |
+
block_collapse(X*Y), block_collapse(2*X))
|
97 |
+
|
98 |
+
# Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
|
99 |
+
Ab = BlockMatrix([[A]])
|
100 |
+
Z = MatrixSymbol('Z', *A.shape)
|
101 |
+
assert block_collapse(Ab + Z) == A + Z
|
102 |
+
|
103 |
+
def test_block_collapse_explicit_matrices():
|
104 |
+
A = Matrix([[1, 2], [3, 4]])
|
105 |
+
assert block_collapse(BlockMatrix([[A]])) == A
|
106 |
+
|
107 |
+
A = ImmutableSparseMatrix([[1, 2], [3, 4]])
|
108 |
+
assert block_collapse(BlockMatrix([[A]])) == A
|
109 |
+
|
110 |
+
def test_issue_17624():
|
111 |
+
a = MatrixSymbol("a", 2, 2)
|
112 |
+
z = ZeroMatrix(2, 2)
|
113 |
+
b = BlockMatrix([[a, z], [z, z]])
|
114 |
+
assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
|
115 |
+
assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])
|
116 |
+
|
117 |
+
def test_issue_18618():
|
118 |
+
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
119 |
+
assert A == Matrix(BlockDiagMatrix(A))
|
120 |
+
|
121 |
+
def test_BlockMatrix_trace():
|
122 |
+
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
|
123 |
+
X = BlockMatrix([[A, B], [C, D]])
|
124 |
+
assert trace(X) == trace(A) + trace(D)
|
125 |
+
assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0
|
126 |
+
|
127 |
+
def test_BlockMatrix_Determinant():
|
128 |
+
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
|
129 |
+
X = BlockMatrix([[A, B], [C, D]])
|
130 |
+
from sympy.assumptions.ask import Q
|
131 |
+
from sympy.assumptions.assume import assuming
|
132 |
+
with assuming(Q.invertible(A)):
|
133 |
+
assert det(X) == det(A) * det(X.schur('A'))
|
134 |
+
|
135 |
+
assert isinstance(det(X), Expr)
|
136 |
+
assert det(BlockMatrix([A])) == det(A)
|
137 |
+
assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
|
138 |
+
|
139 |
+
def test_squareBlockMatrix():
|
140 |
+
A = MatrixSymbol('A', n, n)
|
141 |
+
B = MatrixSymbol('B', n, m)
|
142 |
+
C = MatrixSymbol('C', m, n)
|
143 |
+
D = MatrixSymbol('D', m, m)
|
144 |
+
X = BlockMatrix([[A, B], [C, D]])
|
145 |
+
Y = BlockMatrix([[A]])
|
146 |
+
|
147 |
+
assert X.is_square
|
148 |
+
|
149 |
+
Q = X + Identity(m + n)
|
150 |
+
assert (block_collapse(Q) ==
|
151 |
+
BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
|
152 |
+
|
153 |
+
assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
|
154 |
+
assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul
|
155 |
+
|
156 |
+
assert block_collapse(Y.I) == A.I
|
157 |
+
|
158 |
+
assert isinstance(X.inverse(), Inverse)
|
159 |
+
|
160 |
+
assert not X.is_Identity
|
161 |
+
|
162 |
+
Z = BlockMatrix([[Identity(n), B], [C, D]])
|
163 |
+
assert not Z.is_Identity
|
164 |
+
|
165 |
+
|
166 |
+
def test_BlockMatrix_2x2_inverse_symbolic():
|
167 |
+
A = MatrixSymbol('A', n, m)
|
168 |
+
B = MatrixSymbol('B', n, k - m)
|
169 |
+
C = MatrixSymbol('C', k - n, m)
|
170 |
+
D = MatrixSymbol('D', k - n, k - m)
|
171 |
+
X = BlockMatrix([[A, B], [C, D]])
|
172 |
+
assert X.is_square and X.shape == (k, k)
|
173 |
+
assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square
|
174 |
+
|
175 |
+
# test code path where only A is invertible
|
176 |
+
A = MatrixSymbol('A', n, n)
|
177 |
+
B = MatrixSymbol('B', n, m)
|
178 |
+
C = MatrixSymbol('C', m, n)
|
179 |
+
D = ZeroMatrix(m, m)
|
180 |
+
X = BlockMatrix([[A, B], [C, D]])
|
181 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
182 |
+
[A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
|
183 |
+
[-X.schur('A').I * C * A.I, X.schur('A').I],
|
184 |
+
])
|
185 |
+
|
186 |
+
# test code path where only B is invertible
|
187 |
+
A = MatrixSymbol('A', n, m)
|
188 |
+
B = MatrixSymbol('B', n, n)
|
189 |
+
C = ZeroMatrix(m, m)
|
190 |
+
D = MatrixSymbol('D', m, n)
|
191 |
+
X = BlockMatrix([[A, B], [C, D]])
|
192 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
193 |
+
[-X.schur('B').I * D * B.I, X.schur('B').I],
|
194 |
+
[B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
|
195 |
+
])
|
196 |
+
|
197 |
+
# test code path where only C is invertible
|
198 |
+
A = MatrixSymbol('A', n, m)
|
199 |
+
B = ZeroMatrix(n, n)
|
200 |
+
C = MatrixSymbol('C', m, m)
|
201 |
+
D = MatrixSymbol('D', m, n)
|
202 |
+
X = BlockMatrix([[A, B], [C, D]])
|
203 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
204 |
+
[-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
|
205 |
+
[X.schur('C').I, -X.schur('C').I * A * C.I],
|
206 |
+
])
|
207 |
+
|
208 |
+
# test code path where only D is invertible
|
209 |
+
A = ZeroMatrix(n, n)
|
210 |
+
B = MatrixSymbol('B', n, m)
|
211 |
+
C = MatrixSymbol('C', m, n)
|
212 |
+
D = MatrixSymbol('D', m, m)
|
213 |
+
X = BlockMatrix([[A, B], [C, D]])
|
214 |
+
assert block_collapse(X.inverse()) == BlockMatrix([
|
215 |
+
[X.schur('D').I, -X.schur('D').I * B * D.I],
|
216 |
+
[-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
|
217 |
+
])
|
218 |
+
|
219 |
+
|
220 |
+
def test_BlockMatrix_2x2_inverse_numeric():
|
221 |
+
"""Test 2x2 block matrix inversion numerically for all 4 formulas"""
|
222 |
+
M = Matrix([[1, 2], [3, 4]])
|
223 |
+
# rank deficient matrices that have full rank when two of them combined
|
224 |
+
D1 = Matrix([[1, 2], [2, 4]])
|
225 |
+
D2 = Matrix([[1, 3], [3, 9]])
|
226 |
+
D3 = Matrix([[1, 4], [4, 16]])
|
227 |
+
assert D1.rank() == D2.rank() == D3.rank() == 1
|
228 |
+
assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2
|
229 |
+
|
230 |
+
# Only A is invertible
|
231 |
+
K = BlockMatrix([[M, D1], [D2, D3]])
|
232 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
233 |
+
# Only B is invertible
|
234 |
+
K = BlockMatrix([[D1, M], [D2, D3]])
|
235 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
236 |
+
# Only C is invertible
|
237 |
+
K = BlockMatrix([[D1, D2], [M, D3]])
|
238 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
239 |
+
# Only D is invertible
|
240 |
+
K = BlockMatrix([[D1, D2], [D3, M]])
|
241 |
+
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
|
242 |
+
|
243 |
+
|
244 |
+
@slow
|
245 |
+
def test_BlockMatrix_3x3_symbolic():
|
246 |
+
# Only test one of these, instead of all permutations, because it's slow
|
247 |
+
rowblocksizes = (n, m, k)
|
248 |
+
colblocksizes = (m, k, n)
|
249 |
+
K = BlockMatrix([
|
250 |
+
[MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
|
251 |
+
for rows in rowblocksizes
|
252 |
+
])
|
253 |
+
collapse = block_collapse(K.I)
|
254 |
+
assert isinstance(collapse, BlockMatrix)
|
255 |
+
|
256 |
+
|
257 |
+
def test_BlockDiagMatrix():
|
258 |
+
A = MatrixSymbol('A', n, n)
|
259 |
+
B = MatrixSymbol('B', m, m)
|
260 |
+
C = MatrixSymbol('C', l, l)
|
261 |
+
M = MatrixSymbol('M', n + m + l, n + m + l)
|
262 |
+
|
263 |
+
X = BlockDiagMatrix(A, B, C)
|
264 |
+
Y = BlockDiagMatrix(A, 2*B, 3*C)
|
265 |
+
|
266 |
+
assert X.blocks[1, 1] == B
|
267 |
+
assert X.shape == (n + m + l, n + m + l)
|
268 |
+
assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
|
269 |
+
for i in range(3) for j in range(3))
|
270 |
+
assert X.__class__(*X.args) == X
|
271 |
+
assert X.get_diag_blocks() == (A, B, C)
|
272 |
+
|
273 |
+
assert isinstance(block_collapse(X.I * X), Identity)
|
274 |
+
|
275 |
+
assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
|
276 |
+
assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
|
277 |
+
#XXX: should be == ??
|
278 |
+
assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
|
279 |
+
assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
|
280 |
+
assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)
|
281 |
+
|
282 |
+
# Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
|
283 |
+
assert (X*(2*M)).is_MatMul
|
284 |
+
assert (X + (2*M)).is_MatAdd
|
285 |
+
|
286 |
+
assert (X._blockmul(M)).is_MatMul
|
287 |
+
assert (X._blockadd(M)).is_MatAdd
|
288 |
+
|
289 |
+
def test_BlockDiagMatrix_nonsquare():
|
290 |
+
A = MatrixSymbol('A', n, m)
|
291 |
+
B = MatrixSymbol('B', k, l)
|
292 |
+
X = BlockDiagMatrix(A, B)
|
293 |
+
assert X.shape == (n + k, m + l)
|
294 |
+
assert X.shape == (n + k, m + l)
|
295 |
+
assert X.rowblocksizes == [n, k]
|
296 |
+
assert X.colblocksizes == [m, l]
|
297 |
+
C = MatrixSymbol('C', n, m)
|
298 |
+
D = MatrixSymbol('D', k, l)
|
299 |
+
Y = BlockDiagMatrix(C, D)
|
300 |
+
assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
|
301 |
+
assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
|
302 |
+
raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())
|
303 |
+
|
304 |
+
def test_BlockDiagMatrix_determinant():
|
305 |
+
A = MatrixSymbol('A', n, n)
|
306 |
+
B = MatrixSymbol('B', m, m)
|
307 |
+
assert det(BlockDiagMatrix()) == 1
|
308 |
+
assert det(BlockDiagMatrix(A)) == det(A)
|
309 |
+
assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)
|
310 |
+
|
311 |
+
# non-square blocks
|
312 |
+
C = MatrixSymbol('C', m, n)
|
313 |
+
D = MatrixSymbol('D', n, m)
|
314 |
+
assert det(BlockDiagMatrix(C, D)) == 0
|
315 |
+
|
316 |
+
def test_BlockDiagMatrix_trace():
|
317 |
+
assert trace(BlockDiagMatrix()) == 0
|
318 |
+
assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
|
319 |
+
A = MatrixSymbol('A', n, n)
|
320 |
+
assert trace(BlockDiagMatrix(A)) == trace(A)
|
321 |
+
B = MatrixSymbol('B', m, m)
|
322 |
+
assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)
|
323 |
+
|
324 |
+
# non-square blocks
|
325 |
+
C = MatrixSymbol('C', m, n)
|
326 |
+
D = MatrixSymbol('D', n, m)
|
327 |
+
assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)
|
328 |
+
|
329 |
+
def test_BlockDiagMatrix_transpose():
|
330 |
+
A = MatrixSymbol('A', n, m)
|
331 |
+
B = MatrixSymbol('B', k, l)
|
332 |
+
assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
|
333 |
+
assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
|
334 |
+
assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)
|
335 |
+
|
336 |
+
def test_issue_2460():
|
337 |
+
bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
|
338 |
+
bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
|
339 |
+
assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))
|
340 |
+
|
341 |
+
def test_blockcut():
|
342 |
+
A = MatrixSymbol('A', n, m)
|
343 |
+
B = blockcut(A, (n/2, n/2), (m/2, m/2))
|
344 |
+
assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
|
345 |
+
[A[n/2:, :m/2], A[n/2:, m/2:]]])
|
346 |
+
|
347 |
+
M = ImmutableMatrix(4, 4, range(16))
|
348 |
+
B = blockcut(M, (2, 2), (2, 2))
|
349 |
+
assert M == ImmutableMatrix(B)
|
350 |
+
|
351 |
+
B = blockcut(M, (1, 3), (2, 2))
|
352 |
+
assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
|
353 |
+
|
354 |
+
def test_reblock_2x2():
|
355 |
+
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
|
356 |
+
for j in range(3)]
|
357 |
+
for i in range(3)])
|
358 |
+
assert B.blocks.shape == (3, 3)
|
359 |
+
|
360 |
+
BB = reblock_2x2(B)
|
361 |
+
assert BB.blocks.shape == (2, 2)
|
362 |
+
|
363 |
+
assert B.shape == BB.shape
|
364 |
+
assert B.as_explicit() == BB.as_explicit()
|
365 |
+
|
366 |
+
def test_deblock():
|
367 |
+
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
|
368 |
+
for j in range(4)]
|
369 |
+
for i in range(4)])
|
370 |
+
|
371 |
+
assert deblock(reblock_2x2(B)) == B
|
372 |
+
|
373 |
+
def test_block_collapse_type():
|
374 |
+
bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
|
375 |
+
bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))
|
376 |
+
|
377 |
+
assert bm1.T.__class__ == BlockDiagMatrix
|
378 |
+
assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
|
379 |
+
assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
|
380 |
+
assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
|
381 |
+
assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
|
382 |
+
assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
|
383 |
+
|
384 |
+
def test_invalid_block_matrix():
|
385 |
+
raises(ValueError, lambda: BlockMatrix([
|
386 |
+
[Identity(2), Identity(5)],
|
387 |
+
]))
|
388 |
+
raises(ValueError, lambda: BlockMatrix([
|
389 |
+
[Identity(n), Identity(m)],
|
390 |
+
]))
|
391 |
+
raises(ValueError, lambda: BlockMatrix([
|
392 |
+
[ZeroMatrix(n, n), ZeroMatrix(n, n)],
|
393 |
+
[ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
|
394 |
+
]))
|
395 |
+
raises(ValueError, lambda: BlockMatrix([
|
396 |
+
[ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
|
397 |
+
[ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
|
398 |
+
]))
|
399 |
+
|
400 |
+
def test_block_lu_decomposition():
|
401 |
+
A = MatrixSymbol('A', n, n)
|
402 |
+
B = MatrixSymbol('B', n, m)
|
403 |
+
C = MatrixSymbol('C', m, n)
|
404 |
+
D = MatrixSymbol('D', m, m)
|
405 |
+
X = BlockMatrix([[A, B], [C, D]])
|
406 |
+
|
407 |
+
#LDU decomposition
|
408 |
+
L, D, U = X.LDUdecomposition()
|
409 |
+
assert block_collapse(L*D*U) == X
|
410 |
+
|
411 |
+
#UDL decomposition
|
412 |
+
U, D, L = X.UDLdecomposition()
|
413 |
+
assert block_collapse(U*D*L) == X
|
414 |
+
|
415 |
+
#LU decomposition
|
416 |
+
L, U = X.LUdecomposition()
|
417 |
+
assert block_collapse(L*U) == X
|
418 |
+
|
419 |
+
def test_issue_21866():
|
420 |
+
n = 10
|
421 |
+
I = Identity(n)
|
422 |
+
O = ZeroMatrix(n, n)
|
423 |
+
A = BlockMatrix([[ I, O, O, O ],
|
424 |
+
[ O, I, O, O ],
|
425 |
+
[ O, O, I, O ],
|
426 |
+
[ I, O, O, I ]])
|
427 |
+
Ainv = block_collapse(A.inv())
|
428 |
+
AinvT = BlockMatrix([[ I, O, O, O ],
|
429 |
+
[ O, I, O, O ],
|
430 |
+
[ O, O, I, O ],
|
431 |
+
[ -I, O, O, I ]])
|
432 |
+
assert Ainv == AinvT
|
433 |
+
|
434 |
+
|
435 |
+
def test_adjoint_and_special_matrices():
|
436 |
+
A = Identity(3)
|
437 |
+
B = OneMatrix(3, 2)
|
438 |
+
C = ZeroMatrix(2, 3)
|
439 |
+
D = Identity(2)
|
440 |
+
X = BlockMatrix([[A, B], [C, D]])
|
441 |
+
X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
|
442 |
+
assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
|
443 |
+
assert re(X) == X
|
444 |
+
assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
|
445 |
+
assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_inverse.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import symbols, S
|
2 |
+
from sympy.matrices.expressions import MatrixSymbol, Inverse, MatPow, ZeroMatrix, OneMatrix
|
3 |
+
from sympy.matrices.common import NonInvertibleMatrixError, NonSquareMatrixError
|
4 |
+
from sympy.matrices import eye, Identity
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.assumptions.ask import Q
|
7 |
+
from sympy.assumptions.refine import refine
|
8 |
+
|
9 |
+
n, m, l = symbols('n m l', integer=True)
|
10 |
+
A = MatrixSymbol('A', n, m)
|
11 |
+
B = MatrixSymbol('B', m, l)
|
12 |
+
C = MatrixSymbol('C', n, n)
|
13 |
+
D = MatrixSymbol('D', n, n)
|
14 |
+
E = MatrixSymbol('E', m, n)
|
15 |
+
|
16 |
+
|
17 |
+
def test_inverse():
|
18 |
+
assert Inverse(C).args == (C, S.NegativeOne)
|
19 |
+
assert Inverse(C).shape == (n, n)
|
20 |
+
assert Inverse(A*E).shape == (n, n)
|
21 |
+
assert Inverse(E*A).shape == (m, m)
|
22 |
+
assert Inverse(C).inverse() == C
|
23 |
+
assert Inverse(Inverse(C)).doit() == C
|
24 |
+
assert isinstance(Inverse(Inverse(C)), Inverse)
|
25 |
+
|
26 |
+
assert Inverse(*Inverse(E*A).args) == Inverse(E*A)
|
27 |
+
|
28 |
+
assert C.inverse().inverse() == C
|
29 |
+
|
30 |
+
assert C.inverse()*C == Identity(C.rows)
|
31 |
+
|
32 |
+
assert Identity(n).inverse() == Identity(n)
|
33 |
+
assert (3*Identity(n)).inverse() == Identity(n)/3
|
34 |
+
|
35 |
+
# Simplifies Muls if possible (i.e. submatrices are square)
|
36 |
+
assert (C*D).inverse() == D.I*C.I
|
37 |
+
# But still works when not possible
|
38 |
+
assert isinstance((A*E).inverse(), Inverse)
|
39 |
+
assert Inverse(C*D).doit(inv_expand=False) == Inverse(C*D)
|
40 |
+
|
41 |
+
assert Inverse(eye(3)).doit() == eye(3)
|
42 |
+
assert Inverse(eye(3)).doit(deep=False) == eye(3)
|
43 |
+
|
44 |
+
assert OneMatrix(1, 1).I == Identity(1)
|
45 |
+
assert isinstance(OneMatrix(n, n).I, Inverse)
|
46 |
+
|
47 |
+
def test_inverse_non_invertible():
|
48 |
+
raises(NonInvertibleMatrixError, lambda: ZeroMatrix(n, n).I)
|
49 |
+
raises(NonInvertibleMatrixError, lambda: OneMatrix(2, 2).I)
|
50 |
+
|
51 |
+
def test_refine():
|
52 |
+
assert refine(C.I, Q.orthogonal(C)) == C.T
|
53 |
+
|
54 |
+
|
55 |
+
def test_inverse_matpow_canonicalization():
|
56 |
+
A = MatrixSymbol('A', 3, 3)
|
57 |
+
assert Inverse(MatPow(A, 3)).doit() == MatPow(Inverse(A), 3).doit()
|
58 |
+
|
59 |
+
|
60 |
+
def test_nonsquare_error():
|
61 |
+
A = MatrixSymbol('A', 3, 4)
|
62 |
+
raises(NonSquareMatrixError, lambda: Inverse(A))
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_kronecker.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.mod import Mod
|
2 |
+
from sympy.core.numbers import I
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.elementary.integers import floor
|
5 |
+
from sympy.matrices.dense import (Matrix, eye)
|
6 |
+
from sympy.matrices import MatrixSymbol, Identity
|
7 |
+
from sympy.matrices.expressions import det, trace
|
8 |
+
|
9 |
+
from sympy.matrices.expressions.kronecker import (KroneckerProduct,
|
10 |
+
kronecker_product,
|
11 |
+
combine_kronecker)
|
12 |
+
|
13 |
+
|
14 |
+
mat1 = Matrix([[1, 2 * I], [1 + I, 3]])
|
15 |
+
mat2 = Matrix([[2 * I, 3], [4 * I, 2]])
|
16 |
+
|
17 |
+
i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x')
|
18 |
+
Z = MatrixSymbol('Z', n, n)
|
19 |
+
W = MatrixSymbol('W', m, m)
|
20 |
+
A = MatrixSymbol('A', n, m)
|
21 |
+
B = MatrixSymbol('B', n, m)
|
22 |
+
C = MatrixSymbol('C', m, k)
|
23 |
+
|
24 |
+
|
25 |
+
def test_KroneckerProduct():
|
26 |
+
assert isinstance(KroneckerProduct(A, B), KroneckerProduct)
|
27 |
+
assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B)
|
28 |
+
assert KroneckerProduct(A, C).shape == (n*m, m*k)
|
29 |
+
assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix
|
30 |
+
assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity
|
31 |
+
|
32 |
+
|
33 |
+
def test_KroneckerProduct_identity():
|
34 |
+
assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n)
|
35 |
+
assert KroneckerProduct(eye(2), eye(3)) == eye(6)
|
36 |
+
|
37 |
+
|
38 |
+
def test_KroneckerProduct_explicit():
|
39 |
+
X = MatrixSymbol('X', 2, 2)
|
40 |
+
Y = MatrixSymbol('Y', 2, 2)
|
41 |
+
kp = KroneckerProduct(X, Y)
|
42 |
+
assert kp.shape == (4, 4)
|
43 |
+
assert kp.as_explicit() == Matrix(
|
44 |
+
[
|
45 |
+
[X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]],
|
46 |
+
[X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]],
|
47 |
+
[X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]],
|
48 |
+
[X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]]
|
49 |
+
]
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def test_tensor_product_adjoint():
|
54 |
+
assert KroneckerProduct(I*A, B).adjoint() == \
|
55 |
+
-I*KroneckerProduct(A.adjoint(), B.adjoint())
|
56 |
+
assert KroneckerProduct(mat1, mat2).adjoint() == \
|
57 |
+
kronecker_product(mat1.adjoint(), mat2.adjoint())
|
58 |
+
|
59 |
+
|
60 |
+
def test_tensor_product_conjugate():
|
61 |
+
assert KroneckerProduct(I*A, B).conjugate() == \
|
62 |
+
-I*KroneckerProduct(A.conjugate(), B.conjugate())
|
63 |
+
assert KroneckerProduct(mat1, mat2).conjugate() == \
|
64 |
+
kronecker_product(mat1.conjugate(), mat2.conjugate())
|
65 |
+
|
66 |
+
|
67 |
+
def test_tensor_product_transpose():
|
68 |
+
assert KroneckerProduct(I*A, B).transpose() == \
|
69 |
+
I*KroneckerProduct(A.transpose(), B.transpose())
|
70 |
+
assert KroneckerProduct(mat1, mat2).transpose() == \
|
71 |
+
kronecker_product(mat1.transpose(), mat2.transpose())
|
72 |
+
|
73 |
+
|
74 |
+
def test_KroneckerProduct_is_associative():
|
75 |
+
assert kronecker_product(A, kronecker_product(
|
76 |
+
B, C)) == kronecker_product(kronecker_product(A, B), C)
|
77 |
+
assert kronecker_product(A, kronecker_product(
|
78 |
+
B, C)) == KroneckerProduct(A, B, C)
|
79 |
+
|
80 |
+
|
81 |
+
def test_KroneckerProduct_is_bilinear():
|
82 |
+
assert kronecker_product(x*A, B) == x*kronecker_product(A, B)
|
83 |
+
assert kronecker_product(A, x*B) == x*kronecker_product(A, B)
|
84 |
+
|
85 |
+
|
86 |
+
def test_KroneckerProduct_determinant():
|
87 |
+
kp = kronecker_product(W, Z)
|
88 |
+
assert det(kp) == det(W)**n * det(Z)**m
|
89 |
+
|
90 |
+
|
91 |
+
def test_KroneckerProduct_trace():
|
92 |
+
kp = kronecker_product(W, Z)
|
93 |
+
assert trace(kp) == trace(W)*trace(Z)
|
94 |
+
|
95 |
+
|
96 |
+
def test_KroneckerProduct_isnt_commutative():
|
97 |
+
assert KroneckerProduct(A, B) != KroneckerProduct(B, A)
|
98 |
+
assert KroneckerProduct(A, B).is_commutative is False
|
99 |
+
|
100 |
+
|
101 |
+
def test_KroneckerProduct_extracts_commutative_part():
|
102 |
+
assert kronecker_product(x * A, 2 * B) == x * \
|
103 |
+
2 * KroneckerProduct(A, B)
|
104 |
+
|
105 |
+
|
106 |
+
def test_KroneckerProduct_inverse():
|
107 |
+
kp = kronecker_product(W, Z)
|
108 |
+
assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse())
|
109 |
+
|
110 |
+
|
111 |
+
def test_KroneckerProduct_combine_add():
|
112 |
+
kp1 = kronecker_product(A, B)
|
113 |
+
kp2 = kronecker_product(C, W)
|
114 |
+
assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W)
|
115 |
+
|
116 |
+
|
117 |
+
def test_KroneckerProduct_combine_mul():
|
118 |
+
X = MatrixSymbol('X', m, n)
|
119 |
+
Y = MatrixSymbol('Y', m, n)
|
120 |
+
kp1 = kronecker_product(A, X)
|
121 |
+
kp2 = kronecker_product(B, Y)
|
122 |
+
assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y)
|
123 |
+
|
124 |
+
|
125 |
+
def test_KroneckerProduct_combine_pow():
|
126 |
+
X = MatrixSymbol('X', n, n)
|
127 |
+
Y = MatrixSymbol('Y', n, n)
|
128 |
+
assert combine_kronecker(KroneckerProduct(
|
129 |
+
X, Y)**x) == KroneckerProduct(X**x, Y**x)
|
130 |
+
assert combine_kronecker(x * KroneckerProduct(X, Y)
|
131 |
+
** 2) == x * KroneckerProduct(X**2, Y**2)
|
132 |
+
assert combine_kronecker(
|
133 |
+
x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B)
|
134 |
+
# cannot simplify because of non-square arguments to kronecker product:
|
135 |
+
assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m
|
136 |
+
|
137 |
+
|
138 |
+
def test_KroneckerProduct_expand():
|
139 |
+
X = MatrixSymbol('X', n, n)
|
140 |
+
Y = MatrixSymbol('Y', n, n)
|
141 |
+
|
142 |
+
assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \
|
143 |
+
KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \
|
144 |
+
KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z)
|
145 |
+
|
146 |
+
def test_KroneckerProduct_entry():
|
147 |
+
A = MatrixSymbol('A', n, m)
|
148 |
+
B = MatrixSymbol('B', o, p)
|
149 |
+
|
150 |
+
assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matexpr.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.exprtools import gcd_terms
|
3 |
+
from sympy.core.function import (diff, expand)
|
4 |
+
from sympy.core.relational import Eq
|
5 |
+
from sympy.core.symbol import (Dummy, Symbol, Str)
|
6 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
7 |
+
from sympy.matrices.dense import zeros
|
8 |
+
from sympy.polys.polytools import factor
|
9 |
+
|
10 |
+
from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational,
|
11 |
+
Function)
|
12 |
+
from sympy.functions import sin, cos, tan, sqrt, cbrt, exp
|
13 |
+
from sympy.simplify import simplify
|
14 |
+
from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul,
|
15 |
+
MatPow, Matrix, MatrixExpr, MatrixSymbol,
|
16 |
+
SparseMatrix, Transpose, Adjoint, MatrixSet)
|
17 |
+
from sympy.matrices.common import NonSquareMatrixError
|
18 |
+
from sympy.matrices.expressions.determinant import Determinant, det
|
19 |
+
from sympy.matrices.expressions.matexpr import MatrixElement
|
20 |
+
from sympy.matrices.expressions.special import ZeroMatrix, Identity
|
21 |
+
from sympy.testing.pytest import raises, XFAIL
|
22 |
+
|
23 |
+
|
24 |
+
n, m, l, k, p = symbols('n m l k p', integer=True)
|
25 |
+
x = symbols('x')
|
26 |
+
A = MatrixSymbol('A', n, m)
|
27 |
+
B = MatrixSymbol('B', m, l)
|
28 |
+
C = MatrixSymbol('C', n, n)
|
29 |
+
D = MatrixSymbol('D', n, n)
|
30 |
+
E = MatrixSymbol('E', m, n)
|
31 |
+
w = MatrixSymbol('w', n, 1)
|
32 |
+
|
33 |
+
|
34 |
+
def test_matrix_symbol_creation():
|
35 |
+
assert MatrixSymbol('A', 2, 2)
|
36 |
+
assert MatrixSymbol('A', 0, 0)
|
37 |
+
raises(ValueError, lambda: MatrixSymbol('A', -1, 2))
|
38 |
+
raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2))
|
39 |
+
raises(ValueError, lambda: MatrixSymbol('A', 2j, 2))
|
40 |
+
raises(ValueError, lambda: MatrixSymbol('A', 2, -1))
|
41 |
+
raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0))
|
42 |
+
raises(ValueError, lambda: MatrixSymbol('A', 2, 2j))
|
43 |
+
|
44 |
+
n = symbols('n')
|
45 |
+
assert MatrixSymbol('A', n, n)
|
46 |
+
n = symbols('n', integer=False)
|
47 |
+
raises(ValueError, lambda: MatrixSymbol('A', n, n))
|
48 |
+
n = symbols('n', negative=True)
|
49 |
+
raises(ValueError, lambda: MatrixSymbol('A', n, n))
|
50 |
+
|
51 |
+
|
52 |
+
def test_matexpr_properties():
|
53 |
+
assert A.shape == (n, m)
|
54 |
+
assert (A * B).shape == (n, l)
|
55 |
+
assert A[0, 1].indices == (0, 1)
|
56 |
+
assert A[0, 0].symbol == A
|
57 |
+
assert A[0, 0].symbol.name == 'A'
|
58 |
+
|
59 |
+
|
60 |
+
def test_matexpr():
|
61 |
+
assert (x*A).shape == A.shape
|
62 |
+
assert (x*A).__class__ == MatMul
|
63 |
+
assert 2*A - A - A == ZeroMatrix(*A.shape)
|
64 |
+
assert (A*B).shape == (n, l)
|
65 |
+
|
66 |
+
|
67 |
+
def test_matexpr_subs():
|
68 |
+
A = MatrixSymbol('A', n, m)
|
69 |
+
B = MatrixSymbol('B', m, l)
|
70 |
+
C = MatrixSymbol('C', m, l)
|
71 |
+
|
72 |
+
assert A.subs(n, m).shape == (m, m)
|
73 |
+
assert (A*B).subs(B, C) == A*C
|
74 |
+
assert (A*B).subs(l, n).is_square
|
75 |
+
|
76 |
+
W = MatrixSymbol("W", 3, 3)
|
77 |
+
X = MatrixSymbol("X", 2, 2)
|
78 |
+
Y = MatrixSymbol("Y", 1, 2)
|
79 |
+
Z = MatrixSymbol("Z", n, 2)
|
80 |
+
# no restrictions on Symbol replacement
|
81 |
+
assert X.subs(X, Y) == Y
|
82 |
+
# it might be better to just change the name
|
83 |
+
y = Str('y')
|
84 |
+
assert X.subs(Str("X"), y).args == (y, 2, 2)
|
85 |
+
# it's ok to introduce a wider matrix
|
86 |
+
assert X[1, 1].subs(X, W) == W[1, 1]
|
87 |
+
# but for a given MatrixExpression, only change
|
88 |
+
# name if indexing on the new shape is valid.
|
89 |
+
# Here, X is 2,2; Y is 1,2 and Y[1, 1] is out
|
90 |
+
# of range so an error is raised
|
91 |
+
raises(IndexError, lambda: X[1, 1].subs(X, Y))
|
92 |
+
# here, [0, 1] is in range so the subs succeeds
|
93 |
+
assert X[0, 1].subs(X, Y) == Y[0, 1]
|
94 |
+
# and here the size of n will accept any index
|
95 |
+
# in the first position
|
96 |
+
assert W[2, 1].subs(W, Z) == Z[2, 1]
|
97 |
+
# but not in the second position
|
98 |
+
raises(IndexError, lambda: W[2, 2].subs(W, Z))
|
99 |
+
# any matrix should raise if invalid
|
100 |
+
raises(IndexError, lambda: W[2, 2].subs(W, zeros(2)))
|
101 |
+
|
102 |
+
A = SparseMatrix([[1, 2], [3, 4]])
|
103 |
+
B = Matrix([[1, 2], [3, 4]])
|
104 |
+
C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2)
|
105 |
+
|
106 |
+
assert (C*D).subs({C: A, D: B}) == MatMul(A, B)
|
107 |
+
|
108 |
+
|
109 |
+
def test_addition():
|
110 |
+
A = MatrixSymbol('A', n, m)
|
111 |
+
B = MatrixSymbol('B', n, m)
|
112 |
+
|
113 |
+
assert isinstance(A + B, MatAdd)
|
114 |
+
assert (A + B).shape == A.shape
|
115 |
+
assert isinstance(A - A + 2*B, MatMul)
|
116 |
+
|
117 |
+
raises(TypeError, lambda: A + 1)
|
118 |
+
raises(TypeError, lambda: 5 + A)
|
119 |
+
raises(TypeError, lambda: 5 - A)
|
120 |
+
|
121 |
+
assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
|
122 |
+
raises(TypeError, lambda: ZeroMatrix(n, m) + S.Zero)
|
123 |
+
|
124 |
+
|
125 |
+
def test_multiplication():
|
126 |
+
A = MatrixSymbol('A', n, m)
|
127 |
+
B = MatrixSymbol('B', m, l)
|
128 |
+
C = MatrixSymbol('C', n, n)
|
129 |
+
|
130 |
+
assert (2*A*B).shape == (n, l)
|
131 |
+
assert (A*0*B) == ZeroMatrix(n, l)
|
132 |
+
assert (2*A).shape == A.shape
|
133 |
+
|
134 |
+
assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)
|
135 |
+
|
136 |
+
assert C * Identity(n) * C.I == Identity(n)
|
137 |
+
|
138 |
+
assert B/2 == S.Half*B
|
139 |
+
raises(NotImplementedError, lambda: 2/B)
|
140 |
+
|
141 |
+
A = MatrixSymbol('A', n, n)
|
142 |
+
B = MatrixSymbol('B', n, n)
|
143 |
+
assert Identity(n) * (A + B) == A + B
|
144 |
+
|
145 |
+
assert A**2*A == A**3
|
146 |
+
assert A**2*(A.I)**3 == A.I
|
147 |
+
assert A**3*(A.I)**2 == A
|
148 |
+
|
149 |
+
|
150 |
+
def test_MatPow():
|
151 |
+
A = MatrixSymbol('A', n, n)
|
152 |
+
|
153 |
+
AA = MatPow(A, 2)
|
154 |
+
assert AA.exp == 2
|
155 |
+
assert AA.base == A
|
156 |
+
assert (A**n).exp == n
|
157 |
+
|
158 |
+
assert A**0 == Identity(n)
|
159 |
+
assert A**1 == A
|
160 |
+
assert A**2 == AA
|
161 |
+
assert A**-1 == Inverse(A)
|
162 |
+
assert (A**-1)**-1 == A
|
163 |
+
assert (A**2)**3 == A**6
|
164 |
+
assert A**S.Half == sqrt(A)
|
165 |
+
assert A**Rational(1, 3) == cbrt(A)
|
166 |
+
raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2)
|
167 |
+
|
168 |
+
|
169 |
+
def test_MatrixSymbol():
|
170 |
+
n, m, t = symbols('n,m,t')
|
171 |
+
X = MatrixSymbol('X', n, m)
|
172 |
+
assert X.shape == (n, m)
|
173 |
+
raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855
|
174 |
+
assert X.doit() == X
|
175 |
+
|
176 |
+
|
177 |
+
def test_dense_conversion():
|
178 |
+
X = MatrixSymbol('X', 2, 2)
|
179 |
+
assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
|
180 |
+
assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])
|
181 |
+
|
182 |
+
|
183 |
+
def test_free_symbols():
|
184 |
+
assert (C*D).free_symbols == {C, D}
|
185 |
+
|
186 |
+
|
187 |
+
def test_zero_matmul():
|
188 |
+
assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)
|
189 |
+
|
190 |
+
|
191 |
+
def test_matadd_simplify():
|
192 |
+
A = MatrixSymbol('A', 1, 1)
|
193 |
+
assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
|
194 |
+
MatAdd(A, Matrix([[1]]))
|
195 |
+
|
196 |
+
|
197 |
+
def test_matmul_simplify():
|
198 |
+
A = MatrixSymbol('A', 1, 1)
|
199 |
+
assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
|
200 |
+
MatMul(A, Matrix([[1]]))
|
201 |
+
|
202 |
+
|
203 |
+
def test_invariants():
|
204 |
+
A = MatrixSymbol('A', n, m)
|
205 |
+
B = MatrixSymbol('B', m, l)
|
206 |
+
X = MatrixSymbol('X', n, n)
|
207 |
+
objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
|
208 |
+
Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
|
209 |
+
MatPow(X, 0)]
|
210 |
+
for obj in objs:
|
211 |
+
assert obj == obj.__class__(*obj.args)
|
212 |
+
|
213 |
+
|
214 |
+
def test_matexpr_indexing():
|
215 |
+
A = MatrixSymbol('A', n, m)
|
216 |
+
A[1, 2]
|
217 |
+
A[l, k]
|
218 |
+
A[l + 1, k + 1]
|
219 |
+
A = MatrixSymbol('A', 2, 1)
|
220 |
+
for i in range(-2, 2):
|
221 |
+
for j in range(-1, 1):
|
222 |
+
A[i, j]
|
223 |
+
|
224 |
+
|
225 |
+
def test_single_indexing():
|
226 |
+
A = MatrixSymbol('A', 2, 3)
|
227 |
+
assert A[1] == A[0, 1]
|
228 |
+
assert A[int(1)] == A[0, 1]
|
229 |
+
assert A[3] == A[1, 0]
|
230 |
+
assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
|
231 |
+
raises(IndexError, lambda: A[6])
|
232 |
+
raises(IndexError, lambda: A[n])
|
233 |
+
B = MatrixSymbol('B', n, m)
|
234 |
+
raises(IndexError, lambda: B[1])
|
235 |
+
B = MatrixSymbol('B', n, 3)
|
236 |
+
assert B[3] == B[1, 0]
|
237 |
+
|
238 |
+
|
239 |
+
def test_MatrixElement_commutative():
|
240 |
+
assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]
|
241 |
+
|
242 |
+
|
243 |
+
def test_MatrixSymbol_determinant():
|
244 |
+
A = MatrixSymbol('A', 4, 4)
|
245 |
+
assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
|
246 |
+
A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
|
247 |
+
A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
|
248 |
+
A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
|
249 |
+
A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
|
250 |
+
A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
|
251 |
+
A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
|
252 |
+
A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
|
253 |
+
A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
|
254 |
+
A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
|
255 |
+
A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
|
256 |
+
A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
|
257 |
+
A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]
|
258 |
+
|
259 |
+
B = MatrixSymbol('B', 4, 4)
|
260 |
+
assert Determinant(A + B).doit() == det(A + B) == (A + B).det()
|
261 |
+
|
262 |
+
|
263 |
+
def test_MatrixElement_diff():
|
264 |
+
assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]
|
265 |
+
|
266 |
+
|
267 |
+
def test_MatrixElement_doit():
|
268 |
+
u = MatrixSymbol('u', 2, 1)
|
269 |
+
v = ImmutableMatrix([3, 5])
|
270 |
+
assert u[0, 0].subs(u, v).doit() == v[0, 0]
|
271 |
+
|
272 |
+
|
273 |
+
def test_identity_powers():
|
274 |
+
M = Identity(n)
|
275 |
+
assert MatPow(M, 3).doit() == M**3
|
276 |
+
assert M**n == M
|
277 |
+
assert MatPow(M, 0).doit() == M**2
|
278 |
+
assert M**-2 == M
|
279 |
+
assert MatPow(M, -2).doit() == M**0
|
280 |
+
N = Identity(3)
|
281 |
+
assert MatPow(N, 2).doit() == N**n
|
282 |
+
assert MatPow(N, 3).doit() == N
|
283 |
+
assert MatPow(N, -2).doit() == N**4
|
284 |
+
assert MatPow(N, 2).doit() == N**0
|
285 |
+
|
286 |
+
|
287 |
+
def test_Zero_power():
|
288 |
+
z1 = ZeroMatrix(n, n)
|
289 |
+
assert z1**4 == z1
|
290 |
+
raises(ValueError, lambda:z1**-2)
|
291 |
+
assert z1**0 == Identity(n)
|
292 |
+
assert MatPow(z1, 2).doit() == z1**2
|
293 |
+
raises(ValueError, lambda:MatPow(z1, -2).doit())
|
294 |
+
z2 = ZeroMatrix(3, 3)
|
295 |
+
assert MatPow(z2, 4).doit() == z2**4
|
296 |
+
raises(ValueError, lambda:z2**-3)
|
297 |
+
assert z2**3 == MatPow(z2, 3).doit()
|
298 |
+
assert z2**0 == Identity(3)
|
299 |
+
raises(ValueError, lambda:MatPow(z2, -1).doit())
|
300 |
+
|
301 |
+
|
302 |
+
def test_matrixelement_diff():
|
303 |
+
dexpr = diff((D*w)[k,0], w[p,0])
|
304 |
+
|
305 |
+
assert w[k, p].diff(w[k, p]) == 1
|
306 |
+
assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0))
|
307 |
+
_i_1 = Dummy("_i_1")
|
308 |
+
assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1)))
|
309 |
+
assert dexpr.doit() == D[k, p]
|
310 |
+
|
311 |
+
|
312 |
+
def test_MatrixElement_with_values():
|
313 |
+
x, y, z, w = symbols("x y z w")
|
314 |
+
M = Matrix([[x, y], [z, w]])
|
315 |
+
i, j = symbols("i, j")
|
316 |
+
Mij = M[i, j]
|
317 |
+
assert isinstance(Mij, MatrixElement)
|
318 |
+
Ms = SparseMatrix([[2, 3], [4, 5]])
|
319 |
+
msij = Ms[i, j]
|
320 |
+
assert isinstance(msij, MatrixElement)
|
321 |
+
for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
|
322 |
+
assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
|
323 |
+
assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
|
324 |
+
A = MatrixSymbol("A", 2, 2)
|
325 |
+
assert A[0, 0].subs(A, M) == x
|
326 |
+
assert A[i, j].subs(A, M) == M[i, j]
|
327 |
+
assert M[i, j].subs(M, A) == A[i, j]
|
328 |
+
|
329 |
+
assert isinstance(M[3*i - 2, j], MatrixElement)
|
330 |
+
assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
|
331 |
+
assert isinstance(M[i, 0], MatrixElement)
|
332 |
+
assert M[i, 0].subs(i, 0) == M[0, 0]
|
333 |
+
assert M[0, i].subs(i, 1) == M[0, 1]
|
334 |
+
|
335 |
+
assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]
|
336 |
+
|
337 |
+
raises(ValueError, lambda: M[i, 2])
|
338 |
+
raises(ValueError, lambda: M[i, -1])
|
339 |
+
raises(ValueError, lambda: M[2, i])
|
340 |
+
raises(ValueError, lambda: M[-1, i])
|
341 |
+
|
342 |
+
|
343 |
+
def test_inv():
|
344 |
+
B = MatrixSymbol('B', 3, 3)
|
345 |
+
assert B.inv() == B**-1
|
346 |
+
|
347 |
+
# https://github.com/sympy/sympy/issues/19162
|
348 |
+
X = MatrixSymbol('X', 1, 1).as_explicit()
|
349 |
+
assert X.inv() == Matrix([[1/X[0, 0]]])
|
350 |
+
|
351 |
+
X = MatrixSymbol('X', 2, 2).as_explicit()
|
352 |
+
detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0]
|
353 |
+
invX = Matrix([[ X[1, 1], -X[0, 1]],
|
354 |
+
[-X[1, 0], X[0, 0]]]) / detX
|
355 |
+
assert X.inv() == invX
|
356 |
+
|
357 |
+
|
358 |
+
@XFAIL
|
359 |
+
def test_factor_expand():
|
360 |
+
A = MatrixSymbol("A", n, n)
|
361 |
+
B = MatrixSymbol("B", n, n)
|
362 |
+
expr1 = (A + B)*(C + D)
|
363 |
+
expr2 = A*C + B*C + A*D + B*D
|
364 |
+
assert expr1 != expr2
|
365 |
+
assert expand(expr1) == expr2
|
366 |
+
assert factor(expr2) == expr1
|
367 |
+
|
368 |
+
expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
|
369 |
+
I = Identity(n)
|
370 |
+
# Ideally we get the first, but we at least don't want a wrong answer
|
371 |
+
assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]
|
372 |
+
|
373 |
+
|
374 |
+
def test_issue_2749():
|
375 |
+
A = MatrixSymbol("A", 5, 2)
|
376 |
+
assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
|
377 |
+
[(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])
|
378 |
+
|
379 |
+
|
380 |
+
def test_issue_2750():
|
381 |
+
x = MatrixSymbol('x', 1, 1)
|
382 |
+
assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])
|
383 |
+
|
384 |
+
|
385 |
+
def test_issue_7842():
|
386 |
+
A = MatrixSymbol('A', 3, 1)
|
387 |
+
B = MatrixSymbol('B', 2, 1)
|
388 |
+
assert Eq(A, B) == False
|
389 |
+
assert Eq(A[1,0], B[1, 0]).func is Eq
|
390 |
+
A = ZeroMatrix(2, 3)
|
391 |
+
B = ZeroMatrix(2, 3)
|
392 |
+
assert Eq(A, B) == True
|
393 |
+
|
394 |
+
|
395 |
+
def test_issue_21195():
|
396 |
+
t = symbols('t')
|
397 |
+
x = Function('x')(t)
|
398 |
+
dx = x.diff(t)
|
399 |
+
exp1 = cos(x) + cos(x)*dx
|
400 |
+
exp2 = sin(x) + tan(x)*(dx.diff(t))
|
401 |
+
exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t)
|
402 |
+
A = Matrix([[exp1], [exp2], [exp3]])
|
403 |
+
B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]])
|
404 |
+
assert A.diff(x) == B
|
405 |
+
|
406 |
+
|
407 |
+
def test_MatMul_postprocessor():
|
408 |
+
z = zeros(2)
|
409 |
+
z1 = ZeroMatrix(2, 2)
|
410 |
+
assert Mul(0, z) == Mul(z, 0) in [z, z1]
|
411 |
+
|
412 |
+
M = Matrix([[1, 2], [3, 4]])
|
413 |
+
Mx = Matrix([[x, 2*x], [3*x, 4*x]])
|
414 |
+
assert Mul(x, M) == Mul(M, x) == Mx
|
415 |
+
|
416 |
+
A = MatrixSymbol("A", 2, 2)
|
417 |
+
assert Mul(A, M) == MatMul(A, M)
|
418 |
+
assert Mul(M, A) == MatMul(M, A)
|
419 |
+
# Scalars should be absorbed into constant matrices
|
420 |
+
a = Mul(x, M, A)
|
421 |
+
b = Mul(M, x, A)
|
422 |
+
c = Mul(M, A, x)
|
423 |
+
assert a == b == c == MatMul(Mx, A)
|
424 |
+
a = Mul(x, A, M)
|
425 |
+
b = Mul(A, x, M)
|
426 |
+
c = Mul(A, M, x)
|
427 |
+
assert a == b == c == MatMul(A, Mx)
|
428 |
+
assert Mul(M, M) == M**2
|
429 |
+
assert Mul(A, M, M) == MatMul(A, M**2)
|
430 |
+
assert Mul(M, M, A) == MatMul(M**2, A)
|
431 |
+
assert Mul(M, A, M) == MatMul(M, A, M)
|
432 |
+
|
433 |
+
assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)
|
434 |
+
|
435 |
+
|
436 |
+
@XFAIL
|
437 |
+
def test_MatAdd_postprocessor_xfail():
|
438 |
+
# This is difficult to get working because of the way that Add processes
|
439 |
+
# its args.
|
440 |
+
z = zeros(2)
|
441 |
+
assert Add(z, S.NaN) == Add(S.NaN, z)
|
442 |
+
|
443 |
+
|
444 |
+
def test_MatAdd_postprocessor():
|
445 |
+
# Some of these are nonsensical, but we do not raise errors for Add
|
446 |
+
# because that breaks algorithms that want to replace matrices with dummy
|
447 |
+
# symbols.
|
448 |
+
|
449 |
+
z = zeros(2)
|
450 |
+
|
451 |
+
assert Add(0, z) == Add(z, 0) == z
|
452 |
+
|
453 |
+
a = Add(S.Infinity, z)
|
454 |
+
assert a == Add(z, S.Infinity)
|
455 |
+
assert isinstance(a, Add)
|
456 |
+
assert a.args == (S.Infinity, z)
|
457 |
+
|
458 |
+
a = Add(S.ComplexInfinity, z)
|
459 |
+
assert a == Add(z, S.ComplexInfinity)
|
460 |
+
assert isinstance(a, Add)
|
461 |
+
assert a.args == (S.ComplexInfinity, z)
|
462 |
+
|
463 |
+
a = Add(z, S.NaN)
|
464 |
+
# assert a == Add(S.NaN, z) # See the XFAIL above
|
465 |
+
assert isinstance(a, Add)
|
466 |
+
assert a.args == (S.NaN, z)
|
467 |
+
|
468 |
+
M = Matrix([[1, 2], [3, 4]])
|
469 |
+
a = Add(x, M)
|
470 |
+
assert a == Add(M, x)
|
471 |
+
assert isinstance(a, Add)
|
472 |
+
assert a.args == (x, M)
|
473 |
+
|
474 |
+
A = MatrixSymbol("A", 2, 2)
|
475 |
+
assert Add(A, M) == Add(M, A) == A + M
|
476 |
+
|
477 |
+
# Scalars should be absorbed into constant matrices (producing an error)
|
478 |
+
a = Add(x, M, A)
|
479 |
+
assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
|
480 |
+
assert isinstance(a, Add)
|
481 |
+
assert a.args == (x, A + M)
|
482 |
+
|
483 |
+
assert Add(M, M) == 2*M
|
484 |
+
assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M
|
485 |
+
|
486 |
+
a = Add(A, x, M, M, x)
|
487 |
+
assert isinstance(a, Add)
|
488 |
+
assert a.args == (2*x, A + 2*M)
|
489 |
+
|
490 |
+
|
491 |
+
def test_simplify_matrix_expressions():
|
492 |
+
# Various simplification functions
|
493 |
+
assert type(gcd_terms(C*D + D*C)) == MatAdd
|
494 |
+
a = gcd_terms(2*C*D + 4*D*C)
|
495 |
+
assert type(a) == MatAdd
|
496 |
+
assert a.args == (2*C*D, 4*D*C)
|
497 |
+
|
498 |
+
|
499 |
+
def test_exp():
|
500 |
+
A = MatrixSymbol('A', 2, 2)
|
501 |
+
B = MatrixSymbol('B', 2, 2)
|
502 |
+
expr1 = exp(A)*exp(B)
|
503 |
+
expr2 = exp(B)*exp(A)
|
504 |
+
assert expr1 != expr2
|
505 |
+
assert expr1 - expr2 != 0
|
506 |
+
assert not isinstance(expr1, exp)
|
507 |
+
assert not isinstance(expr2, exp)
|
508 |
+
|
509 |
+
|
510 |
+
def test_invalid_args():
|
511 |
+
raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))
|
512 |
+
|
513 |
+
|
514 |
+
def test_matrixsymbol_from_symbol():
|
515 |
+
# The label should be preserved during doit and subs
|
516 |
+
A_label = Symbol('A', complex=True)
|
517 |
+
A = MatrixSymbol(A_label, 2, 2)
|
518 |
+
|
519 |
+
A_1 = A.doit()
|
520 |
+
A_2 = A.subs(2, 3)
|
521 |
+
assert A_1.args == A.args
|
522 |
+
assert A_2.args[0] == A.args[0]
|
523 |
+
|
524 |
+
|
525 |
+
def test_as_explicit():
|
526 |
+
Z = MatrixSymbol('Z', 2, 3)
|
527 |
+
assert Z.as_explicit() == ImmutableMatrix([
|
528 |
+
[Z[0, 0], Z[0, 1], Z[0, 2]],
|
529 |
+
[Z[1, 0], Z[1, 1], Z[1, 2]],
|
530 |
+
])
|
531 |
+
raises(ValueError, lambda: A.as_explicit())
|
532 |
+
|
533 |
+
|
534 |
+
def test_MatrixSet():
|
535 |
+
M = MatrixSet(2, 2, set=S.Reals)
|
536 |
+
assert M.shape == (2, 2)
|
537 |
+
assert M.set == S.Reals
|
538 |
+
X = Matrix([[1, 2], [3, 4]])
|
539 |
+
assert X in M
|
540 |
+
X = ZeroMatrix(2, 2)
|
541 |
+
assert X in M
|
542 |
+
raises(TypeError, lambda: A in M)
|
543 |
+
raises(TypeError, lambda: 1 in M)
|
544 |
+
M = MatrixSet(n, m, set=S.Reals)
|
545 |
+
assert A in M
|
546 |
+
raises(TypeError, lambda: C in M)
|
547 |
+
raises(TypeError, lambda: X in M)
|
548 |
+
M = MatrixSet(2, 2, set={1, 2, 3})
|
549 |
+
X = Matrix([[1, 2], [3, 4]])
|
550 |
+
Y = Matrix([[1, 2]])
|
551 |
+
assert (X in M) == S.false
|
552 |
+
assert (Y in M) == S.false
|
553 |
+
raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
|
554 |
+
raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
|
555 |
+
raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))
|
556 |
+
|
557 |
+
|
558 |
+
def test_matrixsymbol_solving():
|
559 |
+
A = MatrixSymbol('A', 2, 2)
|
560 |
+
B = MatrixSymbol('B', 2, 2)
|
561 |
+
Z = ZeroMatrix(2, 2)
|
562 |
+
assert -(-A + B) - A + B == Z
|
563 |
+
assert (-(-A + B) - A + B).simplify() == Z
|
564 |
+
assert (-(-A + B) - A + B).expand() == Z
|
565 |
+
assert (-(-A + B) - A + B - Z).simplify() == Z
|
566 |
+
assert (-(-A + B) - A + B - Z).expand() == Z
|
567 |
+
assert (A*(A + B) + B*(A.T + B.T)).expand() == A**2 + A*B + B*A.T + B*B.T
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matpow.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
2 |
+
from sympy.simplify.powsimp import powsimp
|
3 |
+
from sympy.testing.pytest import raises
|
4 |
+
from sympy.core.expr import unchanged
|
5 |
+
from sympy.core import symbols, S
|
6 |
+
from sympy.matrices import Identity, MatrixSymbol, ImmutableMatrix, ZeroMatrix, OneMatrix, Matrix
|
7 |
+
from sympy.matrices.common import NonSquareMatrixError
|
8 |
+
from sympy.matrices.expressions import MatPow, MatAdd, MatMul
|
9 |
+
from sympy.matrices.expressions.inverse import Inverse
|
10 |
+
from sympy.matrices.expressions.matexpr import MatrixElement
|
11 |
+
|
12 |
+
n, m, l, k = symbols('n m l k', integer=True)
|
13 |
+
A = MatrixSymbol('A', n, m)
|
14 |
+
B = MatrixSymbol('B', m, l)
|
15 |
+
C = MatrixSymbol('C', n, n)
|
16 |
+
D = MatrixSymbol('D', n, n)
|
17 |
+
E = MatrixSymbol('E', m, n)
|
18 |
+
|
19 |
+
|
20 |
+
def test_entry_matrix():
|
21 |
+
X = ImmutableMatrix([[1, 2], [3, 4]])
|
22 |
+
assert MatPow(X, 0)[0, 0] == 1
|
23 |
+
assert MatPow(X, 0)[0, 1] == 0
|
24 |
+
assert MatPow(X, 1)[0, 0] == 1
|
25 |
+
assert MatPow(X, 1)[0, 1] == 2
|
26 |
+
assert MatPow(X, 2)[0, 0] == 7
|
27 |
+
|
28 |
+
|
29 |
+
def test_entry_symbol():
|
30 |
+
from sympy.concrete import Sum
|
31 |
+
assert MatPow(C, 0)[0, 0] == 1
|
32 |
+
assert MatPow(C, 0)[0, 1] == 0
|
33 |
+
assert MatPow(C, 1)[0, 0] == C[0, 0]
|
34 |
+
assert isinstance(MatPow(C, 2)[0, 0], Sum)
|
35 |
+
assert isinstance(MatPow(C, n)[0, 0], MatrixElement)
|
36 |
+
|
37 |
+
|
38 |
+
def test_as_explicit_symbol():
|
39 |
+
X = MatrixSymbol('X', 2, 2)
|
40 |
+
assert MatPow(X, 0).as_explicit() == ImmutableMatrix(Identity(2))
|
41 |
+
assert MatPow(X, 1).as_explicit() == X.as_explicit()
|
42 |
+
assert MatPow(X, 2).as_explicit() == (X.as_explicit())**2
|
43 |
+
assert MatPow(X, n).as_explicit() == ImmutableMatrix([
|
44 |
+
[(X ** n)[0, 0], (X ** n)[0, 1]],
|
45 |
+
[(X ** n)[1, 0], (X ** n)[1, 1]],
|
46 |
+
])
|
47 |
+
|
48 |
+
a = MatrixSymbol("a", 3, 1)
|
49 |
+
b = MatrixSymbol("b", 3, 1)
|
50 |
+
c = MatrixSymbol("c", 3, 1)
|
51 |
+
|
52 |
+
expr = (a.T*b)**S.Half
|
53 |
+
assert expr.as_explicit() == Matrix([[sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])]])
|
54 |
+
|
55 |
+
expr = c*(a.T*b)**S.Half
|
56 |
+
m = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
|
57 |
+
assert expr.as_explicit() == Matrix([[c[0, 0]*m], [c[1, 0]*m], [c[2, 0]*m]])
|
58 |
+
|
59 |
+
expr = (a*b.T)**S.Half
|
60 |
+
denom = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
|
61 |
+
expected = (a*b.T).as_explicit()/denom
|
62 |
+
assert expr.as_explicit() == expected
|
63 |
+
|
64 |
+
expr = X**-1
|
65 |
+
det = X[0, 0]*X[1, 1] - X[1, 0]*X[0, 1]
|
66 |
+
expected = Matrix([[X[1, 1], -X[0, 1]], [-X[1, 0], X[0, 0]]])/det
|
67 |
+
assert expr.as_explicit() == expected
|
68 |
+
|
69 |
+
expr = X**m
|
70 |
+
assert expr.as_explicit() == X.as_explicit()**m
|
71 |
+
|
72 |
+
|
73 |
+
def test_as_explicit_matrix():
|
74 |
+
A = ImmutableMatrix([[1, 2], [3, 4]])
|
75 |
+
assert MatPow(A, 0).as_explicit() == ImmutableMatrix(Identity(2))
|
76 |
+
assert MatPow(A, 1).as_explicit() == A
|
77 |
+
assert MatPow(A, 2).as_explicit() == A**2
|
78 |
+
assert MatPow(A, -1).as_explicit() == A.inv()
|
79 |
+
assert MatPow(A, -2).as_explicit() == (A.inv())**2
|
80 |
+
# less expensive than testing on a 2x2
|
81 |
+
A = ImmutableMatrix([4])
|
82 |
+
assert MatPow(A, S.Half).as_explicit() == A**S.Half
|
83 |
+
|
84 |
+
|
85 |
+
def test_doit_symbol():
|
86 |
+
assert MatPow(C, 0).doit() == Identity(n)
|
87 |
+
assert MatPow(C, 1).doit() == C
|
88 |
+
assert MatPow(C, -1).doit() == C.I
|
89 |
+
for r in [2, S.Half, S.Pi, n]:
|
90 |
+
assert MatPow(C, r).doit() == MatPow(C, r)
|
91 |
+
|
92 |
+
|
93 |
+
def test_doit_matrix():
|
94 |
+
X = ImmutableMatrix([[1, 2], [3, 4]])
|
95 |
+
assert MatPow(X, 0).doit() == ImmutableMatrix(Identity(2))
|
96 |
+
assert MatPow(X, 1).doit() == X
|
97 |
+
assert MatPow(X, 2).doit() == X**2
|
98 |
+
assert MatPow(X, -1).doit() == X.inv()
|
99 |
+
assert MatPow(X, -2).doit() == (X.inv())**2
|
100 |
+
# less expensive than testing on a 2x2
|
101 |
+
assert MatPow(ImmutableMatrix([4]), S.Half).doit() == ImmutableMatrix([2])
|
102 |
+
X = ImmutableMatrix([[0, 2], [0, 4]]) # det() == 0
|
103 |
+
raises(ValueError, lambda: MatPow(X,-1).doit())
|
104 |
+
raises(ValueError, lambda: MatPow(X,-2).doit())
|
105 |
+
|
106 |
+
|
107 |
+
def test_nonsquare():
|
108 |
+
A = MatrixSymbol('A', 2, 3)
|
109 |
+
B = ImmutableMatrix([[1, 2, 3], [4, 5, 6]])
|
110 |
+
for r in [-1, 0, 1, 2, S.Half, S.Pi, n]:
|
111 |
+
raises(NonSquareMatrixError, lambda: MatPow(A, r))
|
112 |
+
raises(NonSquareMatrixError, lambda: MatPow(B, r))
|
113 |
+
|
114 |
+
|
115 |
+
def test_doit_equals_pow(): #17179
|
116 |
+
X = ImmutableMatrix ([[1,0],[0,1]])
|
117 |
+
assert MatPow(X, n).doit() == X**n == X
|
118 |
+
|
119 |
+
|
120 |
+
def test_doit_nested_MatrixExpr():
|
121 |
+
X = ImmutableMatrix([[1, 2], [3, 4]])
|
122 |
+
Y = ImmutableMatrix([[2, 3], [4, 5]])
|
123 |
+
assert MatPow(MatMul(X, Y), 2).doit() == (X*Y)**2
|
124 |
+
assert MatPow(MatAdd(X, Y), 2).doit() == (X + Y)**2
|
125 |
+
|
126 |
+
|
127 |
+
def test_identity_power():
|
128 |
+
k = Identity(n)
|
129 |
+
assert MatPow(k, 4).doit() == k
|
130 |
+
assert MatPow(k, n).doit() == k
|
131 |
+
assert MatPow(k, -3).doit() == k
|
132 |
+
assert MatPow(k, 0).doit() == k
|
133 |
+
l = Identity(3)
|
134 |
+
assert MatPow(l, n).doit() == l
|
135 |
+
assert MatPow(l, -1).doit() == l
|
136 |
+
assert MatPow(l, 0).doit() == l
|
137 |
+
|
138 |
+
|
139 |
+
def test_zero_power():
|
140 |
+
z1 = ZeroMatrix(n, n)
|
141 |
+
assert MatPow(z1, 3).doit() == z1
|
142 |
+
raises(ValueError, lambda:MatPow(z1, -1).doit())
|
143 |
+
assert MatPow(z1, 0).doit() == Identity(n)
|
144 |
+
assert MatPow(z1, n).doit() == z1
|
145 |
+
raises(ValueError, lambda:MatPow(z1, -2).doit())
|
146 |
+
z2 = ZeroMatrix(4, 4)
|
147 |
+
assert MatPow(z2, n).doit() == z2
|
148 |
+
raises(ValueError, lambda:MatPow(z2, -3).doit())
|
149 |
+
assert MatPow(z2, 2).doit() == z2
|
150 |
+
assert MatPow(z2, 0).doit() == Identity(4)
|
151 |
+
raises(ValueError, lambda:MatPow(z2, -1).doit())
|
152 |
+
|
153 |
+
|
154 |
+
def test_OneMatrix_power():
|
155 |
+
o = OneMatrix(3, 3)
|
156 |
+
assert o ** 0 == Identity(3)
|
157 |
+
assert o ** 1 == o
|
158 |
+
assert o * o == o ** 2 == 3 * o
|
159 |
+
assert o * o * o == o ** 3 == 9 * o
|
160 |
+
|
161 |
+
o = OneMatrix(n, n)
|
162 |
+
assert o * o == o ** 2 == n * o
|
163 |
+
# powsimp necessary as n ** (n - 2) * n does not produce n ** (n - 1)
|
164 |
+
assert powsimp(o ** (n - 1) * o) == o ** n == n ** (n - 1) * o
|
165 |
+
|
166 |
+
|
167 |
+
def test_transpose_power():
|
168 |
+
from sympy.matrices.expressions.transpose import Transpose as TP
|
169 |
+
|
170 |
+
assert (C*D).T**5 == ((C*D)**5).T == (D.T * C.T)**5
|
171 |
+
assert ((C*D).T**5).T == (C*D)**5
|
172 |
+
|
173 |
+
assert (C.T.I.T)**7 == C**-7
|
174 |
+
assert (C.T**l).T**k == C**(l*k)
|
175 |
+
|
176 |
+
assert ((E.T * A.T)**5).T == (A*E)**5
|
177 |
+
assert ((A*E).T**5).T**7 == (A*E)**35
|
178 |
+
assert TP(TP(C**2 * D**3)**5).doit() == (C**2 * D**3)**5
|
179 |
+
|
180 |
+
assert ((D*C)**-5).T**-5 == ((D*C)**25).T
|
181 |
+
assert (((D*C)**l).T**k).T == (D*C)**(l*k)
|
182 |
+
|
183 |
+
|
184 |
+
def test_Inverse():
|
185 |
+
assert Inverse(MatPow(C, 0)).doit() == Identity(n)
|
186 |
+
assert Inverse(MatPow(C, 1)).doit() == Inverse(C)
|
187 |
+
assert Inverse(MatPow(C, 2)).doit() == MatPow(C, -2)
|
188 |
+
assert Inverse(MatPow(C, -1)).doit() == C
|
189 |
+
|
190 |
+
assert MatPow(Inverse(C), 0).doit() == Identity(n)
|
191 |
+
assert MatPow(Inverse(C), 1).doit() == Inverse(C)
|
192 |
+
assert MatPow(Inverse(C), 2).doit() == MatPow(C, -2)
|
193 |
+
assert MatPow(Inverse(C), -1).doit() == C
|
194 |
+
|
195 |
+
|
196 |
+
def test_combine_powers():
|
197 |
+
assert (C ** 1) ** 1 == C
|
198 |
+
assert (C ** 2) ** 3 == MatPow(C, 6)
|
199 |
+
assert (C ** -2) ** -3 == MatPow(C, 6)
|
200 |
+
assert (C ** -1) ** -1 == C
|
201 |
+
assert (((C ** 2) ** 3) ** 4) ** 5 == MatPow(C, 120)
|
202 |
+
assert (C ** n) ** n == C ** (n ** 2)
|
203 |
+
|
204 |
+
|
205 |
+
def test_unchanged():
|
206 |
+
assert unchanged(MatPow, C, 0)
|
207 |
+
assert unchanged(MatPow, C, 1)
|
208 |
+
assert unchanged(MatPow, Inverse(C), -1)
|
209 |
+
assert unchanged(Inverse, MatPow(C, -1), -1)
|
210 |
+
assert unchanged(MatPow, MatPow(C, -1), -1)
|
211 |
+
assert unchanged(MatPow, MatPow(C, 1), 1)
|
212 |
+
|
213 |
+
|
214 |
+
def test_no_exponentiation():
|
215 |
+
# if this passes, Pow.as_numer_denom should recognize
|
216 |
+
# MatAdd as exponent
|
217 |
+
raises(NotImplementedError, lambda: 3**(-2*C))
|
env-llmeval/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_slice.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.matrices.expressions.slice import MatrixSlice
|
2 |
+
from sympy.matrices.expressions import MatrixSymbol
|
3 |
+
from sympy.abc import a, b, c, d, k, l, m, n
|
4 |
+
from sympy.testing.pytest import raises, XFAIL
|
5 |
+
from sympy.functions.elementary.integers import floor
|
6 |
+
from sympy.assumptions import assuming, Q
|
7 |
+
|
8 |
+
|
9 |
+
X = MatrixSymbol('X', n, m)
|
10 |
+
Y = MatrixSymbol('Y', m, k)
|
11 |
+
|
12 |
+
def test_shape():
|
13 |
+
B = MatrixSlice(X, (a, b), (c, d))
|
14 |
+
assert B.shape == (b - a, d - c)
|
15 |
+
|
16 |
+
def test_entry():
|
17 |
+
B = MatrixSlice(X, (a, b), (c, d))
|
18 |
+
assert B[0,0] == X[a, c]
|
19 |
+
assert B[k,l] == X[a+k, c+l]
|
20 |
+
raises(IndexError, lambda : MatrixSlice(X, 1, (2, 5))[1, 0])
|
21 |
+
|
22 |
+
assert X[1::2, :][1, 3] == X[1+2, 3]
|
23 |
+
assert X[:, 1::2][3, 1] == X[3, 1+2]
|
24 |
+
|
25 |
+
def test_on_diag():
|
26 |
+
assert not MatrixSlice(X, (a, b), (c, d)).on_diag
|
27 |
+
assert MatrixSlice(X, (a, b), (a, b)).on_diag
|
28 |
+
|
29 |
+
def test_inputs():
|
30 |
+
assert MatrixSlice(X, 1, (2, 5)) == MatrixSlice(X, (1, 2), (2, 5))
|
31 |
+
assert MatrixSlice(X, 1, (2, 5)).shape == (1, 3)
|
32 |
+
|
33 |
+
def test_slicing():
|
34 |
+
assert X[1:5, 2:4] == MatrixSlice(X, (1, 5), (2, 4))
|
35 |
+
assert X[1, 2:4] == MatrixSlice(X, 1, (2, 4))
|
36 |
+
assert X[1:5, :].shape == (4, X.shape[1])
|
37 |
+
assert X[:, 1:5].shape == (X.shape[0], 4)
|
38 |
+
|
39 |
+
assert X[::2, ::2].shape == (floor(n/2), floor(m/2))
|
40 |
+
assert X[2, :] == MatrixSlice(X, 2, (0, m))
|
41 |
+
assert X[k, :] == MatrixSlice(X, k, (0, m))
|
42 |
+
|
43 |
+
def test_exceptions():
|
44 |
+
X = MatrixSymbol('x', 10, 20)
|
45 |
+
raises(IndexError, lambda: X[0:12, 2])
|
46 |
+
raises(IndexError, lambda: X[0:9, 22])
|
47 |
+
raises(IndexError, lambda: X[-1:5, 2])
|
48 |
+
|
49 |
+
@XFAIL
|
50 |
+
def test_symmetry():
|
51 |
+
X = MatrixSymbol('x', 10, 10)
|
52 |
+
Y = X[:5, 5:]
|
53 |
+
with assuming(Q.symmetric(X)):
|
54 |
+
assert Y.T == X[5:, :5]
|
55 |
+
|
56 |
+
def test_slice_of_slice():
|
57 |
+
X = MatrixSymbol('x', 10, 10)
|
58 |
+
assert X[2, :][:, 3][0, 0] == X[2, 3]
|
59 |
+
assert X[:5, :5][:4, :4] == X[:4, :4]
|
60 |
+
assert X[1:5, 2:6][1:3, 2] == X[2:4, 4]
|
61 |
+
assert X[1:9:2, 2:6][1:3, 2] == X[3:7:2, 4]
|
62 |
+
|
63 |
+
def test_negative_index():
|
64 |
+
X = MatrixSymbol('x', 10, 10)
|
65 |
+
assert X[-1, :] == X[9, :]
|