peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/printing
/aesaracode.py
| from __future__ import annotations | |
| from typing import Any | |
| from sympy.external import import_module | |
| from sympy.printing.printer import Printer | |
| from sympy.utilities.iterables import is_sequence | |
| import sympy | |
| from functools import partial | |
| aesara = import_module('aesara') | |
| if aesara: | |
| aes = aesara.scalar | |
| aet = aesara.tensor | |
| from aesara.tensor import nlinalg | |
| from aesara.tensor.elemwise import Elemwise | |
| from aesara.tensor.elemwise import DimShuffle | |
| # `true_divide` replaced `true_div` in Aesara 2.8.11 (released 2023) to | |
| # match NumPy | |
| # XXX: Remove this when not needed to support older versions. | |
| true_divide = getattr(aet, 'true_divide', None) | |
| if true_divide is None: | |
| true_divide = aet.true_div | |
| mapping = { | |
| sympy.Add: aet.add, | |
| sympy.Mul: aet.mul, | |
| sympy.Abs: aet.abs, | |
| sympy.sign: aet.sgn, | |
| sympy.ceiling: aet.ceil, | |
| sympy.floor: aet.floor, | |
| sympy.log: aet.log, | |
| sympy.exp: aet.exp, | |
| sympy.sqrt: aet.sqrt, | |
| sympy.cos: aet.cos, | |
| sympy.acos: aet.arccos, | |
| sympy.sin: aet.sin, | |
| sympy.asin: aet.arcsin, | |
| sympy.tan: aet.tan, | |
| sympy.atan: aet.arctan, | |
| sympy.atan2: aet.arctan2, | |
| sympy.cosh: aet.cosh, | |
| sympy.acosh: aet.arccosh, | |
| sympy.sinh: aet.sinh, | |
| sympy.asinh: aet.arcsinh, | |
| sympy.tanh: aet.tanh, | |
| sympy.atanh: aet.arctanh, | |
| sympy.re: aet.real, | |
| sympy.im: aet.imag, | |
| sympy.arg: aet.angle, | |
| sympy.erf: aet.erf, | |
| sympy.gamma: aet.gamma, | |
| sympy.loggamma: aet.gammaln, | |
| sympy.Pow: aet.pow, | |
| sympy.Eq: aet.eq, | |
| sympy.StrictGreaterThan: aet.gt, | |
| sympy.StrictLessThan: aet.lt, | |
| sympy.LessThan: aet.le, | |
| sympy.GreaterThan: aet.ge, | |
| sympy.And: aet.bitwise_and, # bitwise | |
| sympy.Or: aet.bitwise_or, # bitwise | |
| sympy.Not: aet.invert, # bitwise | |
| sympy.Xor: aet.bitwise_xor, # bitwise | |
| sympy.Max: aet.maximum, # Sympy accept >2 inputs, Aesara only 2 | |
| sympy.Min: aet.minimum, # Sympy accept >2 inputs, Aesara only 2 | |
| sympy.conjugate: aet.conj, | |
| sympy.core.numbers.ImaginaryUnit: lambda:aet.complex(0,1), | |
| # Matrices | |
| sympy.MatAdd: Elemwise(aes.add), | |
| sympy.HadamardProduct: Elemwise(aes.mul), | |
| sympy.Trace: nlinalg.trace, | |
| sympy.Determinant : nlinalg.det, | |
| sympy.Inverse: nlinalg.matrix_inverse, | |
| sympy.Transpose: DimShuffle((False, False), [1, 0]), | |
| } | |
| class AesaraPrinter(Printer): | |
| """ Code printer which creates Aesara symbolic expression graphs. | |
| Parameters | |
| ========== | |
| cache : dict | |
| Cache dictionary to use. If None (default) will use | |
| the global cache. To create a printer which does not depend on or alter | |
| global state pass an empty dictionary. Note: the dictionary is not | |
| copied on initialization of the printer and will be updated in-place, | |
| so using the same dict object when creating multiple printers or making | |
| multiple calls to :func:`.aesara_code` or :func:`.aesara_function` means | |
| the cache is shared between all these applications. | |
| Attributes | |
| ========== | |
| cache : dict | |
| A cache of Aesara variables which have been created for SymPy | |
| symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or | |
| :class:`sympy.matrices.expressions.MatrixSymbol`). This is used to | |
| ensure that all references to a given symbol in an expression (or | |
| multiple expressions) are printed as the same Aesara variable, which is | |
| created only once. Symbols are differentiated only by name and type. The | |
| format of the cache's contents should be considered opaque to the user. | |
| """ | |
| printmethod = "_aesara" | |
| def __init__(self, *args, **kwargs): | |
| self.cache = kwargs.pop('cache', {}) | |
| super().__init__(*args, **kwargs) | |
| def _get_key(self, s, name=None, dtype=None, broadcastable=None): | |
| """ Get the cache key for a SymPy object. | |
| Parameters | |
| ========== | |
| s : sympy.core.basic.Basic | |
| SymPy object to get key for. | |
| name : str | |
| Name of object, if it does not have a ``name`` attribute. | |
| """ | |
| if name is None: | |
| name = s.name | |
| return (name, type(s), s.args, dtype, broadcastable) | |
| def _get_or_create(self, s, name=None, dtype=None, broadcastable=None): | |
| """ | |
| Get the Aesara variable for a SymPy symbol from the cache, or create it | |
| if it does not exist. | |
| """ | |
| # Defaults | |
| if name is None: | |
| name = s.name | |
| if dtype is None: | |
| dtype = 'floatX' | |
| if broadcastable is None: | |
| broadcastable = () | |
| key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable) | |
| if key in self.cache: | |
| return self.cache[key] | |
| value = aet.tensor(name=name, dtype=dtype, broadcastable=broadcastable) | |
| self.cache[key] = value | |
| return value | |
| def _print_Symbol(self, s, **kwargs): | |
| dtype = kwargs.get('dtypes', {}).get(s) | |
| bc = kwargs.get('broadcastables', {}).get(s) | |
| return self._get_or_create(s, dtype=dtype, broadcastable=bc) | |
| def _print_AppliedUndef(self, s, **kwargs): | |
| name = str(type(s)) + '_' + str(s.args[0]) | |
| dtype = kwargs.get('dtypes', {}).get(s) | |
| bc = kwargs.get('broadcastables', {}).get(s) | |
| return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc) | |
| def _print_Basic(self, expr, **kwargs): | |
| op = mapping[type(expr)] | |
| children = [self._print(arg, **kwargs) for arg in expr.args] | |
| return op(*children) | |
| def _print_Number(self, n, **kwargs): | |
| # Integers already taken care of below, interpret as float | |
| return float(n.evalf()) | |
| def _print_MatrixSymbol(self, X, **kwargs): | |
| dtype = kwargs.get('dtypes', {}).get(X) | |
| return self._get_or_create(X, dtype=dtype, broadcastable=(None, None)) | |
| def _print_DenseMatrix(self, X, **kwargs): | |
| if not hasattr(aet, 'stacklists'): | |
| raise NotImplementedError( | |
| "Matrix translation not yet supported in this version of Aesara") | |
| return aet.stacklists([ | |
| [self._print(arg, **kwargs) for arg in L] | |
| for L in X.tolist() | |
| ]) | |
| _print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix | |
| def _print_MatMul(self, expr, **kwargs): | |
| children = [self._print(arg, **kwargs) for arg in expr.args] | |
| result = children[0] | |
| for child in children[1:]: | |
| result = aet.dot(result, child) | |
| return result | |
| def _print_MatPow(self, expr, **kwargs): | |
| children = [self._print(arg, **kwargs) for arg in expr.args] | |
| result = 1 | |
| if isinstance(children[1], int) and children[1] > 0: | |
| for i in range(children[1]): | |
| result = aet.dot(result, children[0]) | |
| else: | |
| raise NotImplementedError('''Only non-negative integer | |
| powers of matrices can be handled by Aesara at the moment''') | |
| return result | |
| def _print_MatrixSlice(self, expr, **kwargs): | |
| parent = self._print(expr.parent, **kwargs) | |
| rowslice = self._print(slice(*expr.rowslice), **kwargs) | |
| colslice = self._print(slice(*expr.colslice), **kwargs) | |
| return parent[rowslice, colslice] | |
| def _print_BlockMatrix(self, expr, **kwargs): | |
| nrows, ncols = expr.blocks.shape | |
| blocks = [[self._print(expr.blocks[r, c], **kwargs) | |
| for c in range(ncols)] | |
| for r in range(nrows)] | |
| return aet.join(0, *[aet.join(1, *row) for row in blocks]) | |
| def _print_slice(self, expr, **kwargs): | |
| return slice(*[self._print(i, **kwargs) | |
| if isinstance(i, sympy.Basic) else i | |
| for i in (expr.start, expr.stop, expr.step)]) | |
| def _print_Pi(self, expr, **kwargs): | |
| return 3.141592653589793 | |
| def _print_Piecewise(self, expr, **kwargs): | |
| import numpy as np | |
| e, cond = expr.args[0].args # First condition and corresponding value | |
| # Print conditional expression and value for first condition | |
| p_cond = self._print(cond, **kwargs) | |
| p_e = self._print(e, **kwargs) | |
| # One condition only | |
| if len(expr.args) == 1: | |
| # Return value if condition else NaN | |
| return aet.switch(p_cond, p_e, np.nan) | |
| # Return value_1 if condition_1 else evaluate remaining conditions | |
| p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs) | |
| return aet.switch(p_cond, p_e, p_remaining) | |
| def _print_Rational(self, expr, **kwargs): | |
| return true_divide(self._print(expr.p, **kwargs), | |
| self._print(expr.q, **kwargs)) | |
| def _print_Integer(self, expr, **kwargs): | |
| return expr.p | |
| def _print_factorial(self, expr, **kwargs): | |
| return self._print(sympy.gamma(expr.args[0] + 1), **kwargs) | |
| def _print_Derivative(self, deriv, **kwargs): | |
| from aesara.gradient import Rop | |
| rv = self._print(deriv.expr, **kwargs) | |
| for var in deriv.variables: | |
| var = self._print(var, **kwargs) | |
| rv = Rop(rv, var, aet.ones_like(var)) | |
| return rv | |
| def emptyPrinter(self, expr): | |
| return expr | |
| def doprint(self, expr, dtypes=None, broadcastables=None): | |
| """ Convert a SymPy expression to a Aesara graph variable. | |
| The ``dtypes`` and ``broadcastables`` arguments are used to specify the | |
| data type, dimension, and broadcasting behavior of the Aesara variables | |
| corresponding to the free symbols in ``expr``. Each is a mapping from | |
| SymPy symbols to the value of the corresponding argument to | |
| ``aesara.tensor.var.TensorVariable``. | |
| See the corresponding `documentation page`__ for more information on | |
| broadcasting in Aesara. | |
| .. __: https://aesara.readthedocs.io/en/latest/tutorial/broadcasting.html | |
| Parameters | |
| ========== | |
| expr : sympy.core.expr.Expr | |
| SymPy expression to print. | |
| dtypes : dict | |
| Mapping from SymPy symbols to Aesara datatypes to use when creating | |
| new Aesara variables for those symbols. Corresponds to the ``dtype`` | |
| argument to ``aesara.tensor.var.TensorVariable``. Defaults to ``'floatX'`` | |
| for symbols not included in the mapping. | |
| broadcastables : dict | |
| Mapping from SymPy symbols to the value of the ``broadcastable`` | |
| argument to ``aesara.tensor.var.TensorVariable`` to use when creating Aesara | |
| variables for those symbols. Defaults to the empty tuple for symbols | |
| not included in the mapping (resulting in a scalar). | |
| Returns | |
| ======= | |
| aesara.graph.basic.Variable | |
| A variable corresponding to the expression's value in a Aesara | |
| symbolic expression graph. | |
| """ | |
| if dtypes is None: | |
| dtypes = {} | |
| if broadcastables is None: | |
| broadcastables = {} | |
| return self._print(expr, dtypes=dtypes, broadcastables=broadcastables) | |
| global_cache: dict[Any, Any] = {} | |
| def aesara_code(expr, cache=None, **kwargs): | |
| """ | |
| Convert a SymPy expression into a Aesara graph variable. | |
| Parameters | |
| ========== | |
| expr : sympy.core.expr.Expr | |
| SymPy expression object to convert. | |
| cache : dict | |
| Cached Aesara variables (see :class:`AesaraPrinter.cache | |
| <AesaraPrinter>`). Defaults to the module-level global cache. | |
| dtypes : dict | |
| Passed to :meth:`.AesaraPrinter.doprint`. | |
| broadcastables : dict | |
| Passed to :meth:`.AesaraPrinter.doprint`. | |
| Returns | |
| ======= | |
| aesara.graph.basic.Variable | |
| A variable corresponding to the expression's value in a Aesara symbolic | |
| expression graph. | |
| """ | |
| if not aesara: | |
| raise ImportError("aesara is required for aesara_code") | |
| if cache is None: | |
| cache = global_cache | |
| return AesaraPrinter(cache=cache, settings={}).doprint(expr, **kwargs) | |
| def dim_handling(inputs, dim=None, dims=None, broadcastables=None): | |
| r""" | |
| Get value of ``broadcastables`` argument to :func:`.aesara_code` from | |
| keyword arguments to :func:`.aesara_function`. | |
| Included for backwards compatibility. | |
| Parameters | |
| ========== | |
| inputs | |
| Sequence of input symbols. | |
| dim : int | |
| Common number of dimensions for all inputs. Overrides other arguments | |
| if given. | |
| dims : dict | |
| Mapping from input symbols to number of dimensions. Overrides | |
| ``broadcastables`` argument if given. | |
| broadcastables : dict | |
| Explicit value of ``broadcastables`` argument to | |
| :meth:`.AesaraPrinter.doprint`. If not None function will return this value unchanged. | |
| Returns | |
| ======= | |
| dict | |
| Dictionary mapping elements of ``inputs`` to their "broadcastable" | |
| values (tuple of ``bool``\ s). | |
| """ | |
| if dim is not None: | |
| return {s: (False,) * dim for s in inputs} | |
| if dims is not None: | |
| maxdim = max(dims.values()) | |
| return { | |
| s: (False,) * d + (True,) * (maxdim - d) | |
| for s, d in dims.items() | |
| } | |
| if broadcastables is not None: | |
| return broadcastables | |
| return {} | |
| def aesara_function(inputs, outputs, scalar=False, *, | |
| dim=None, dims=None, broadcastables=None, **kwargs): | |
| """ | |
| Create a Aesara function from SymPy expressions. | |
| The inputs and outputs are converted to Aesara variables using | |
| :func:`.aesara_code` and then passed to ``aesara.function``. | |
| Parameters | |
| ========== | |
| inputs | |
| Sequence of symbols which constitute the inputs of the function. | |
| outputs | |
| Sequence of expressions which constitute the outputs(s) of the | |
| function. The free symbols of each expression must be a subset of | |
| ``inputs``. | |
| scalar : bool | |
| Convert 0-dimensional arrays in output to scalars. This will return a | |
| Python wrapper function around the Aesara function object. | |
| cache : dict | |
| Cached Aesara variables (see :class:`AesaraPrinter.cache | |
| <AesaraPrinter>`). Defaults to the module-level global cache. | |
| dtypes : dict | |
| Passed to :meth:`.AesaraPrinter.doprint`. | |
| broadcastables : dict | |
| Passed to :meth:`.AesaraPrinter.doprint`. | |
| dims : dict | |
| Alternative to ``broadcastables`` argument. Mapping from elements of | |
| ``inputs`` to integers indicating the dimension of their associated | |
| arrays/tensors. Overrides ``broadcastables`` argument if given. | |
| dim : int | |
| Another alternative to the ``broadcastables`` argument. Common number of | |
| dimensions to use for all arrays/tensors. | |
| ``aesara_function([x, y], [...], dim=2)`` is equivalent to using | |
| ``broadcastables={x: (False, False), y: (False, False)}``. | |
| Returns | |
| ======= | |
| callable | |
| A callable object which takes values of ``inputs`` as positional | |
| arguments and returns an output array for each of the expressions | |
| in ``outputs``. If ``outputs`` is a single expression the function will | |
| return a Numpy array, if it is a list of multiple expressions the | |
| function will return a list of arrays. See description of the ``squeeze`` | |
| argument above for the behavior when a single output is passed in a list. | |
| The returned object will either be an instance of | |
| ``aesara.compile.function.types.Function`` or a Python wrapper | |
| function around one. In both cases, the returned value will have a | |
| ``aesara_function`` attribute which points to the return value of | |
| ``aesara.function``. | |
| Examples | |
| ======== | |
| >>> from sympy.abc import x, y, z | |
| >>> from sympy.printing.aesaracode import aesara_function | |
| A simple function with one input and one output: | |
| >>> f1 = aesara_function([x], [x**2 - 1], scalar=True) | |
| >>> f1(3) | |
| 8.0 | |
| A function with multiple inputs and one output: | |
| >>> f2 = aesara_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True) | |
| >>> f2(3, 4, 2) | |
| 5.0 | |
| A function with multiple inputs and multiple outputs: | |
| >>> f3 = aesara_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True) | |
| >>> f3(2, 3) | |
| [13.0, -5.0] | |
| See also | |
| ======== | |
| dim_handling | |
| """ | |
| if not aesara: | |
| raise ImportError("Aesara is required for aesara_function") | |
| # Pop off non-aesara keyword args | |
| cache = kwargs.pop('cache', {}) | |
| dtypes = kwargs.pop('dtypes', {}) | |
| broadcastables = dim_handling( | |
| inputs, dim=dim, dims=dims, broadcastables=broadcastables, | |
| ) | |
| # Print inputs/outputs | |
| code = partial(aesara_code, cache=cache, dtypes=dtypes, | |
| broadcastables=broadcastables) | |
| tinputs = list(map(code, inputs)) | |
| toutputs = list(map(code, outputs)) | |
| #fix constant expressions as variables | |
| toutputs = [output if isinstance(output, aesara.graph.basic.Variable) else aet.as_tensor_variable(output) for output in toutputs] | |
| if len(toutputs) == 1: | |
| toutputs = toutputs[0] | |
| # Compile aesara func | |
| func = aesara.function(tinputs, toutputs, **kwargs) | |
| is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs] | |
| # No wrapper required | |
| if not scalar or not any(is_0d): | |
| func.aesara_function = func | |
| return func | |
| # Create wrapper to convert 0-dimensional outputs to scalars | |
| def wrapper(*args): | |
| out = func(*args) | |
| # out can be array(1.0) or [array(1.0), array(2.0)] | |
| if is_sequence(out): | |
| return [o[()] if is_0d[i] else o for i, o in enumerate(out)] | |
| else: | |
| return out[()] | |
| wrapper.__wrapped__ = func | |
| wrapper.__doc__ = func.__doc__ | |
| wrapper.aesara_function = func | |
| return wrapper | |