Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_gosper.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_sums_products.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_delta.py +499 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_gosper.py +204 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_guess.py +82 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_products.py +410 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_sums_products.py +1646 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/aesaracode.py +539 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/c.py +747 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/conventions.py +88 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/dot.py +294 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/precedence.py +177 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/rcode.py +410 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/rust.py +625 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/smtlib.py +526 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tableform.py +366 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tensorflow.py +216 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/autowrap.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/decorator.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/lambdify.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/magic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/misc.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/pytest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/runtests.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__init__.py +22 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/availability.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/compilation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/runners.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/availability.py +77 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/compilation.py +648 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/__pycache__/test_compilation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/test_compilation.py +62 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/util.py +287 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/__init__.py +79 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/data/mmlctop.xsl +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/data/mmltex.xsl +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/data/simple_mmlctop.xsl +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/pytest.py +12 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_autowrap.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_codegen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_codegen_julia.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_gosper.cpython-310.pyc
ADDED
Binary file (8.37 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_sums_products.cpython-310.pyc
ADDED
Binary file (62.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_delta.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete import Sum
|
2 |
+
from sympy.concrete.delta import deltaproduct as dp, deltasummation as ds, _extract_delta
|
3 |
+
from sympy.core import Eq, S, symbols, oo
|
4 |
+
from sympy.functions import KroneckerDelta as KD, Piecewise, piecewise_fold
|
5 |
+
from sympy.logic import And
|
6 |
+
from sympy.testing.pytest import raises
|
7 |
+
|
8 |
+
i, j, k, l, m = symbols("i j k l m", integer=True, finite=True)
|
9 |
+
x, y = symbols("x y", commutative=False)
|
10 |
+
|
11 |
+
|
12 |
+
def test_deltaproduct_trivial():
|
13 |
+
assert dp(x, (j, 1, 0)) == 1
|
14 |
+
assert dp(x, (j, 1, 3)) == x**3
|
15 |
+
assert dp(x + y, (j, 1, 3)) == (x + y)**3
|
16 |
+
assert dp(x*y, (j, 1, 3)) == (x*y)**3
|
17 |
+
assert dp(KD(i, j), (k, 1, 3)) == KD(i, j)
|
18 |
+
assert dp(x*KD(i, j), (k, 1, 3)) == x**3*KD(i, j)
|
19 |
+
assert dp(x*y*KD(i, j), (k, 1, 3)) == (x*y)**3*KD(i, j)
|
20 |
+
|
21 |
+
|
22 |
+
def test_deltaproduct_basic():
|
23 |
+
assert dp(KD(i, j), (j, 1, 3)) == 0
|
24 |
+
assert dp(KD(i, j), (j, 1, 1)) == KD(i, 1)
|
25 |
+
assert dp(KD(i, j), (j, 2, 2)) == KD(i, 2)
|
26 |
+
assert dp(KD(i, j), (j, 3, 3)) == KD(i, 3)
|
27 |
+
assert dp(KD(i, j), (j, 1, k)) == KD(i, 1)*KD(k, 1) + KD(k, 0)
|
28 |
+
assert dp(KD(i, j), (j, k, 3)) == KD(i, 3)*KD(k, 3) + KD(k, 4)
|
29 |
+
assert dp(KD(i, j), (j, k, l)) == KD(i, l)*KD(k, l) + KD(k, l + 1)
|
30 |
+
|
31 |
+
|
32 |
+
def test_deltaproduct_mul_x_kd():
|
33 |
+
assert dp(x*KD(i, j), (j, 1, 3)) == 0
|
34 |
+
assert dp(x*KD(i, j), (j, 1, 1)) == x*KD(i, 1)
|
35 |
+
assert dp(x*KD(i, j), (j, 2, 2)) == x*KD(i, 2)
|
36 |
+
assert dp(x*KD(i, j), (j, 3, 3)) == x*KD(i, 3)
|
37 |
+
assert dp(x*KD(i, j), (j, 1, k)) == x*KD(i, 1)*KD(k, 1) + KD(k, 0)
|
38 |
+
assert dp(x*KD(i, j), (j, k, 3)) == x*KD(i, 3)*KD(k, 3) + KD(k, 4)
|
39 |
+
assert dp(x*KD(i, j), (j, k, l)) == x*KD(i, l)*KD(k, l) + KD(k, l + 1)
|
40 |
+
|
41 |
+
|
42 |
+
def test_deltaproduct_mul_add_x_y_kd():
|
43 |
+
assert dp((x + y)*KD(i, j), (j, 1, 3)) == 0
|
44 |
+
assert dp((x + y)*KD(i, j), (j, 1, 1)) == (x + y)*KD(i, 1)
|
45 |
+
assert dp((x + y)*KD(i, j), (j, 2, 2)) == (x + y)*KD(i, 2)
|
46 |
+
assert dp((x + y)*KD(i, j), (j, 3, 3)) == (x + y)*KD(i, 3)
|
47 |
+
assert dp((x + y)*KD(i, j), (j, 1, k)) == \
|
48 |
+
(x + y)*KD(i, 1)*KD(k, 1) + KD(k, 0)
|
49 |
+
assert dp((x + y)*KD(i, j), (j, k, 3)) == \
|
50 |
+
(x + y)*KD(i, 3)*KD(k, 3) + KD(k, 4)
|
51 |
+
assert dp((x + y)*KD(i, j), (j, k, l)) == \
|
52 |
+
(x + y)*KD(i, l)*KD(k, l) + KD(k, l + 1)
|
53 |
+
|
54 |
+
|
55 |
+
def test_deltaproduct_add_kd_kd():
|
56 |
+
assert dp(KD(i, k) + KD(j, k), (k, 1, 3)) == 0
|
57 |
+
assert dp(KD(i, k) + KD(j, k), (k, 1, 1)) == KD(i, 1) + KD(j, 1)
|
58 |
+
assert dp(KD(i, k) + KD(j, k), (k, 2, 2)) == KD(i, 2) + KD(j, 2)
|
59 |
+
assert dp(KD(i, k) + KD(j, k), (k, 3, 3)) == KD(i, 3) + KD(j, 3)
|
60 |
+
assert dp(KD(i, k) + KD(j, k), (k, 1, l)) == KD(l, 0) + \
|
61 |
+
KD(i, 1)*KD(l, 1) + KD(j, 1)*KD(l, 1) + \
|
62 |
+
KD(i, 1)*KD(j, 2)*KD(l, 2) + KD(j, 1)*KD(i, 2)*KD(l, 2)
|
63 |
+
assert dp(KD(i, k) + KD(j, k), (k, l, 3)) == KD(l, 4) + \
|
64 |
+
KD(i, 3)*KD(l, 3) + KD(j, 3)*KD(l, 3) + \
|
65 |
+
KD(i, 2)*KD(j, 3)*KD(l, 2) + KD(i, 3)*KD(j, 2)*KD(l, 2)
|
66 |
+
assert dp(KD(i, k) + KD(j, k), (k, l, m)) == KD(l, m + 1) + \
|
67 |
+
KD(i, m)*KD(l, m) + KD(j, m)*KD(l, m) + \
|
68 |
+
KD(i, m)*KD(j, m - 1)*KD(l, m - 1) + KD(i, m - 1)*KD(j, m)*KD(l, m - 1)
|
69 |
+
|
70 |
+
|
71 |
+
def test_deltaproduct_mul_x_add_kd_kd():
|
72 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 1, 3)) == 0
|
73 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 1, 1)) == x*(KD(i, 1) + KD(j, 1))
|
74 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 2, 2)) == x*(KD(i, 2) + KD(j, 2))
|
75 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 3, 3)) == x*(KD(i, 3) + KD(j, 3))
|
76 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, 1, l)) == KD(l, 0) + \
|
77 |
+
x*KD(i, 1)*KD(l, 1) + x*KD(j, 1)*KD(l, 1) + \
|
78 |
+
x**2*KD(i, 1)*KD(j, 2)*KD(l, 2) + x**2*KD(j, 1)*KD(i, 2)*KD(l, 2)
|
79 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, l, 3)) == KD(l, 4) + \
|
80 |
+
x*KD(i, 3)*KD(l, 3) + x*KD(j, 3)*KD(l, 3) + \
|
81 |
+
x**2*KD(i, 2)*KD(j, 3)*KD(l, 2) + x**2*KD(i, 3)*KD(j, 2)*KD(l, 2)
|
82 |
+
assert dp(x*(KD(i, k) + KD(j, k)), (k, l, m)) == KD(l, m + 1) + \
|
83 |
+
x*KD(i, m)*KD(l, m) + x*KD(j, m)*KD(l, m) + \
|
84 |
+
x**2*KD(i, m - 1)*KD(j, m)*KD(l, m - 1) + \
|
85 |
+
x**2*KD(i, m)*KD(j, m - 1)*KD(l, m - 1)
|
86 |
+
|
87 |
+
|
88 |
+
def test_deltaproduct_mul_add_x_y_add_kd_kd():
|
89 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 3)) == 0
|
90 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 1)) == \
|
91 |
+
(x + y)*(KD(i, 1) + KD(j, 1))
|
92 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 2, 2)) == \
|
93 |
+
(x + y)*(KD(i, 2) + KD(j, 2))
|
94 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 3, 3)) == \
|
95 |
+
(x + y)*(KD(i, 3) + KD(j, 3))
|
96 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, 1, l)) == KD(l, 0) + \
|
97 |
+
(x + y)*KD(i, 1)*KD(l, 1) + (x + y)*KD(j, 1)*KD(l, 1) + \
|
98 |
+
(x + y)**2*KD(i, 1)*KD(j, 2)*KD(l, 2) + \
|
99 |
+
(x + y)**2*KD(j, 1)*KD(i, 2)*KD(l, 2)
|
100 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, l, 3)) == KD(l, 4) + \
|
101 |
+
(x + y)*KD(i, 3)*KD(l, 3) + (x + y)*KD(j, 3)*KD(l, 3) + \
|
102 |
+
(x + y)**2*KD(i, 2)*KD(j, 3)*KD(l, 2) + \
|
103 |
+
(x + y)**2*KD(i, 3)*KD(j, 2)*KD(l, 2)
|
104 |
+
assert dp((x + y)*(KD(i, k) + KD(j, k)), (k, l, m)) == KD(l, m + 1) + \
|
105 |
+
(x + y)*KD(i, m)*KD(l, m) + (x + y)*KD(j, m)*KD(l, m) + \
|
106 |
+
(x + y)**2*KD(i, m - 1)*KD(j, m)*KD(l, m - 1) + \
|
107 |
+
(x + y)**2*KD(i, m)*KD(j, m - 1)*KD(l, m - 1)
|
108 |
+
|
109 |
+
|
110 |
+
def test_deltaproduct_add_mul_x_y_mul_x_kd():
|
111 |
+
assert dp(x*y + x*KD(i, j), (j, 1, 3)) == (x*y)**3 + \
|
112 |
+
x*(x*y)**2*KD(i, 1) + (x*y)*x*(x*y)*KD(i, 2) + (x*y)**2*x*KD(i, 3)
|
113 |
+
assert dp(x*y + x*KD(i, j), (j, 1, 1)) == x*y + x*KD(i, 1)
|
114 |
+
assert dp(x*y + x*KD(i, j), (j, 2, 2)) == x*y + x*KD(i, 2)
|
115 |
+
assert dp(x*y + x*KD(i, j), (j, 3, 3)) == x*y + x*KD(i, 3)
|
116 |
+
assert dp(x*y + x*KD(i, j), (j, 1, k)) == \
|
117 |
+
(x*y)**k + Piecewise(
|
118 |
+
((x*y)**(i - 1)*x*(x*y)**(k - i), And(1 <= i, i <= k)),
|
119 |
+
(0, True)
|
120 |
+
)
|
121 |
+
assert dp(x*y + x*KD(i, j), (j, k, 3)) == \
|
122 |
+
(x*y)**(-k + 4) + Piecewise(
|
123 |
+
((x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
|
124 |
+
(0, True)
|
125 |
+
)
|
126 |
+
assert dp(x*y + x*KD(i, j), (j, k, l)) == \
|
127 |
+
(x*y)**(-k + l + 1) + Piecewise(
|
128 |
+
((x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
|
129 |
+
(0, True)
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
def test_deltaproduct_mul_x_add_y_kd():
|
134 |
+
assert dp(x*(y + KD(i, j)), (j, 1, 3)) == (x*y)**3 + \
|
135 |
+
x*(x*y)**2*KD(i, 1) + (x*y)*x*(x*y)*KD(i, 2) + (x*y)**2*x*KD(i, 3)
|
136 |
+
assert dp(x*(y + KD(i, j)), (j, 1, 1)) == x*(y + KD(i, 1))
|
137 |
+
assert dp(x*(y + KD(i, j)), (j, 2, 2)) == x*(y + KD(i, 2))
|
138 |
+
assert dp(x*(y + KD(i, j)), (j, 3, 3)) == x*(y + KD(i, 3))
|
139 |
+
assert dp(x*(y + KD(i, j)), (j, 1, k)) == \
|
140 |
+
(x*y)**k + Piecewise(
|
141 |
+
((x*y)**(i - 1)*x*(x*y)**(k - i), And(1 <= i, i <= k)),
|
142 |
+
(0, True)
|
143 |
+
).expand()
|
144 |
+
assert dp(x*(y + KD(i, j)), (j, k, 3)) == \
|
145 |
+
((x*y)**(-k + 4) + Piecewise(
|
146 |
+
((x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
|
147 |
+
(0, True)
|
148 |
+
)).expand()
|
149 |
+
assert dp(x*(y + KD(i, j)), (j, k, l)) == \
|
150 |
+
((x*y)**(-k + l + 1) + Piecewise(
|
151 |
+
((x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
|
152 |
+
(0, True)
|
153 |
+
)).expand()
|
154 |
+
|
155 |
+
|
156 |
+
def test_deltaproduct_mul_x_add_y_twokd():
|
157 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 1, 3)) == (x*y)**3 + \
|
158 |
+
2*x*(x*y)**2*KD(i, 1) + 2*x*y*x*x*y*KD(i, 2) + 2*(x*y)**2*x*KD(i, 3)
|
159 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 1, 1)) == x*(y + 2*KD(i, 1))
|
160 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 2, 2)) == x*(y + 2*KD(i, 2))
|
161 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 3, 3)) == x*(y + 2*KD(i, 3))
|
162 |
+
assert dp(x*(y + 2*KD(i, j)), (j, 1, k)) == \
|
163 |
+
(x*y)**k + Piecewise(
|
164 |
+
(2*(x*y)**(i - 1)*x*(x*y)**(k - i), And(1 <= i, i <= k)),
|
165 |
+
(0, True)
|
166 |
+
).expand()
|
167 |
+
assert dp(x*(y + 2*KD(i, j)), (j, k, 3)) == \
|
168 |
+
((x*y)**(-k + 4) + Piecewise(
|
169 |
+
(2*(x*y)**(i - k)*x*(x*y)**(3 - i), And(k <= i, i <= 3)),
|
170 |
+
(0, True)
|
171 |
+
)).expand()
|
172 |
+
assert dp(x*(y + 2*KD(i, j)), (j, k, l)) == \
|
173 |
+
((x*y)**(-k + l + 1) + Piecewise(
|
174 |
+
(2*(x*y)**(i - k)*x*(x*y)**(l - i), And(k <= i, i <= l)),
|
175 |
+
(0, True)
|
176 |
+
)).expand()
|
177 |
+
|
178 |
+
|
179 |
+
def test_deltaproduct_mul_add_x_y_add_y_kd():
|
180 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 1, 3)) == ((x + y)*y)**3 + \
|
181 |
+
(x + y)*((x + y)*y)**2*KD(i, 1) + \
|
182 |
+
(x + y)*y*(x + y)**2*y*KD(i, 2) + \
|
183 |
+
((x + y)*y)**2*(x + y)*KD(i, 3)
|
184 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 1, 1)) == (x + y)*(y + KD(i, 1))
|
185 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 2, 2)) == (x + y)*(y + KD(i, 2))
|
186 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 3, 3)) == (x + y)*(y + KD(i, 3))
|
187 |
+
assert dp((x + y)*(y + KD(i, j)), (j, 1, k)) == \
|
188 |
+
((x + y)*y)**k + Piecewise(
|
189 |
+
(((x + y)*y)**(-1)*((x + y)*y)**i*(x + y)*((x + y)*y
|
190 |
+
)**k*((x + y)*y)**(-i), (i >= 1) & (i <= k)), (0, True))
|
191 |
+
assert dp((x + y)*(y + KD(i, j)), (j, k, 3)) == (
|
192 |
+
(x + y)*y)**4*((x + y)*y)**(-k) + Piecewise((((x + y)*y)**i*(
|
193 |
+
(x + y)*y)**(-k)*(x + y)*((x + y)*y)**3*((x + y)*y)**(-i),
|
194 |
+
(i >= k) & (i <= 3)), (0, True))
|
195 |
+
assert dp((x + y)*(y + KD(i, j)), (j, k, l)) == \
|
196 |
+
(x + y)*y*((x + y)*y)**l*((x + y)*y)**(-k) + Piecewise(
|
197 |
+
(((x + y)*y)**i*((x + y)*y)**(-k)*(x + y)*((x + y)*y
|
198 |
+
)**l*((x + y)*y)**(-i), (i >= k) & (i <= l)), (0, True))
|
199 |
+
|
200 |
+
|
201 |
+
def test_deltaproduct_mul_add_x_kd_add_y_kd():
|
202 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == \
|
203 |
+
KD(i, 1)*(KD(i, k) + x)*((KD(i, k) + x)*y)**2 + \
|
204 |
+
KD(i, 2)*(KD(i, k) + x)*y*(KD(i, k) + x)**2*y + \
|
205 |
+
KD(i, 3)*((KD(i, k) + x)*y)**2*(KD(i, k) + x) + \
|
206 |
+
((KD(i, k) + x)*y)**3
|
207 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == \
|
208 |
+
(x + KD(i, k))*(y + KD(i, 1))
|
209 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == \
|
210 |
+
(x + KD(i, k))*(y + KD(i, 2))
|
211 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == \
|
212 |
+
(x + KD(i, k))*(y + KD(i, 3))
|
213 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == \
|
214 |
+
((KD(i, k) + x)*y)**k + Piecewise(
|
215 |
+
(((KD(i, k) + x)*y)**(-1)*((KD(i, k) + x)*y)**i*(KD(i, k) + x
|
216 |
+
)*((KD(i, k) + x)*y)**k*((KD(i, k) + x)*y)**(-i), (i >= 1
|
217 |
+
) & (i <= k)), (0, True))
|
218 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == (
|
219 |
+
(KD(i, k) + x)*y)**4*((KD(i, k) + x)*y)**(-k) + Piecewise(
|
220 |
+
(((KD(i, k) + x)*y)**i*((KD(i, k) + x)*y)**(-k)*(KD(i, k)
|
221 |
+
+ x)*((KD(i, k) + x)*y)**3*((KD(i, k) + x)*y)**(-i),
|
222 |
+
(i >= k) & (i <= 3)), (0, True))
|
223 |
+
assert dp((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == (
|
224 |
+
KD(i, k) + x)*y*((KD(i, k) + x)*y)**l*((KD(i, k) + x)*y
|
225 |
+
)**(-k) + Piecewise((((KD(i, k) + x)*y)**i*((KD(i, k) + x
|
226 |
+
)*y)**(-k)*(KD(i, k) + x)*((KD(i, k) + x)*y)**l*((KD(i, k) + x
|
227 |
+
)*y)**(-i), (i >= k) & (i <= l)), (0, True))
|
228 |
+
|
229 |
+
|
230 |
+
def test_deltasummation_trivial():
|
231 |
+
assert ds(x, (j, 1, 0)) == 0
|
232 |
+
assert ds(x, (j, 1, 3)) == 3*x
|
233 |
+
assert ds(x + y, (j, 1, 3)) == 3*(x + y)
|
234 |
+
assert ds(x*y, (j, 1, 3)) == 3*x*y
|
235 |
+
assert ds(KD(i, j), (k, 1, 3)) == 3*KD(i, j)
|
236 |
+
assert ds(x*KD(i, j), (k, 1, 3)) == 3*x*KD(i, j)
|
237 |
+
assert ds(x*y*KD(i, j), (k, 1, 3)) == 3*x*y*KD(i, j)
|
238 |
+
|
239 |
+
|
240 |
+
def test_deltasummation_basic_numerical():
|
241 |
+
n = symbols('n', integer=True, nonzero=True)
|
242 |
+
assert ds(KD(n, 0), (n, 1, 3)) == 0
|
243 |
+
|
244 |
+
# return unevaluated, until it gets implemented
|
245 |
+
assert ds(KD(i**2, j**2), (j, -oo, oo)) == \
|
246 |
+
Sum(KD(i**2, j**2), (j, -oo, oo))
|
247 |
+
|
248 |
+
assert Piecewise((KD(i, k), And(1 <= i, i <= 3)), (0, True)) == \
|
249 |
+
ds(KD(i, j)*KD(j, k), (j, 1, 3)) == \
|
250 |
+
ds(KD(j, k)*KD(i, j), (j, 1, 3))
|
251 |
+
|
252 |
+
assert ds(KD(i, k), (k, -oo, oo)) == 1
|
253 |
+
assert ds(KD(i, k), (k, 0, oo)) == Piecewise((1, S.Zero <= i), (0, True))
|
254 |
+
assert ds(KD(i, k), (k, 1, 3)) == \
|
255 |
+
Piecewise((1, And(1 <= i, i <= 3)), (0, True))
|
256 |
+
assert ds(k*KD(i, j)*KD(j, k), (k, -oo, oo)) == j*KD(i, j)
|
257 |
+
assert ds(j*KD(i, j), (j, -oo, oo)) == i
|
258 |
+
assert ds(i*KD(i, j), (i, -oo, oo)) == j
|
259 |
+
assert ds(x, (i, 1, 3)) == 3*x
|
260 |
+
assert ds((i + j)*KD(i, j), (j, -oo, oo)) == 2*i
|
261 |
+
|
262 |
+
|
263 |
+
def test_deltasummation_basic_symbolic():
|
264 |
+
assert ds(KD(i, j), (j, 1, 3)) == \
|
265 |
+
Piecewise((1, And(1 <= i, i <= 3)), (0, True))
|
266 |
+
assert ds(KD(i, j), (j, 1, 1)) == Piecewise((1, Eq(i, 1)), (0, True))
|
267 |
+
assert ds(KD(i, j), (j, 2, 2)) == Piecewise((1, Eq(i, 2)), (0, True))
|
268 |
+
assert ds(KD(i, j), (j, 3, 3)) == Piecewise((1, Eq(i, 3)), (0, True))
|
269 |
+
assert ds(KD(i, j), (j, 1, k)) == \
|
270 |
+
Piecewise((1, And(1 <= i, i <= k)), (0, True))
|
271 |
+
assert ds(KD(i, j), (j, k, 3)) == \
|
272 |
+
Piecewise((1, And(k <= i, i <= 3)), (0, True))
|
273 |
+
assert ds(KD(i, j), (j, k, l)) == \
|
274 |
+
Piecewise((1, And(k <= i, i <= l)), (0, True))
|
275 |
+
|
276 |
+
|
277 |
+
def test_deltasummation_mul_x_kd():
|
278 |
+
assert ds(x*KD(i, j), (j, 1, 3)) == \
|
279 |
+
Piecewise((x, And(1 <= i, i <= 3)), (0, True))
|
280 |
+
assert ds(x*KD(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True))
|
281 |
+
assert ds(x*KD(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True))
|
282 |
+
assert ds(x*KD(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True))
|
283 |
+
assert ds(x*KD(i, j), (j, 1, k)) == \
|
284 |
+
Piecewise((x, And(1 <= i, i <= k)), (0, True))
|
285 |
+
assert ds(x*KD(i, j), (j, k, 3)) == \
|
286 |
+
Piecewise((x, And(k <= i, i <= 3)), (0, True))
|
287 |
+
assert ds(x*KD(i, j), (j, k, l)) == \
|
288 |
+
Piecewise((x, And(k <= i, i <= l)), (0, True))
|
289 |
+
|
290 |
+
|
291 |
+
def test_deltasummation_mul_add_x_y_kd():
|
292 |
+
assert ds((x + y)*KD(i, j), (j, 1, 3)) == \
|
293 |
+
Piecewise((x + y, And(1 <= i, i <= 3)), (0, True))
|
294 |
+
assert ds((x + y)*KD(i, j), (j, 1, 1)) == \
|
295 |
+
Piecewise((x + y, Eq(i, 1)), (0, True))
|
296 |
+
assert ds((x + y)*KD(i, j), (j, 2, 2)) == \
|
297 |
+
Piecewise((x + y, Eq(i, 2)), (0, True))
|
298 |
+
assert ds((x + y)*KD(i, j), (j, 3, 3)) == \
|
299 |
+
Piecewise((x + y, Eq(i, 3)), (0, True))
|
300 |
+
assert ds((x + y)*KD(i, j), (j, 1, k)) == \
|
301 |
+
Piecewise((x + y, And(1 <= i, i <= k)), (0, True))
|
302 |
+
assert ds((x + y)*KD(i, j), (j, k, 3)) == \
|
303 |
+
Piecewise((x + y, And(k <= i, i <= 3)), (0, True))
|
304 |
+
assert ds((x + y)*KD(i, j), (j, k, l)) == \
|
305 |
+
Piecewise((x + y, And(k <= i, i <= l)), (0, True))
|
306 |
+
|
307 |
+
|
308 |
+
def test_deltasummation_add_kd_kd():
|
309 |
+
assert ds(KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
|
310 |
+
Piecewise((1, And(1 <= i, i <= 3)), (0, True)) +
|
311 |
+
Piecewise((1, And(1 <= j, j <= 3)), (0, True)))
|
312 |
+
assert ds(KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
|
313 |
+
Piecewise((1, Eq(i, 1)), (0, True)) +
|
314 |
+
Piecewise((1, Eq(j, 1)), (0, True)))
|
315 |
+
assert ds(KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
|
316 |
+
Piecewise((1, Eq(i, 2)), (0, True)) +
|
317 |
+
Piecewise((1, Eq(j, 2)), (0, True)))
|
318 |
+
assert ds(KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
|
319 |
+
Piecewise((1, Eq(i, 3)), (0, True)) +
|
320 |
+
Piecewise((1, Eq(j, 3)), (0, True)))
|
321 |
+
assert ds(KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
|
322 |
+
Piecewise((1, And(1 <= i, i <= l)), (0, True)) +
|
323 |
+
Piecewise((1, And(1 <= j, j <= l)), (0, True)))
|
324 |
+
assert ds(KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
|
325 |
+
Piecewise((1, And(l <= i, i <= 3)), (0, True)) +
|
326 |
+
Piecewise((1, And(l <= j, j <= 3)), (0, True)))
|
327 |
+
assert ds(KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
|
328 |
+
Piecewise((1, And(l <= i, i <= m)), (0, True)) +
|
329 |
+
Piecewise((1, And(l <= j, j <= m)), (0, True)))
|
330 |
+
|
331 |
+
|
332 |
+
def test_deltasummation_add_mul_x_kd_kd():
|
333 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
|
334 |
+
Piecewise((x, And(1 <= i, i <= 3)), (0, True)) +
|
335 |
+
Piecewise((1, And(1 <= j, j <= 3)), (0, True)))
|
336 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
|
337 |
+
Piecewise((x, Eq(i, 1)), (0, True)) +
|
338 |
+
Piecewise((1, Eq(j, 1)), (0, True)))
|
339 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
|
340 |
+
Piecewise((x, Eq(i, 2)), (0, True)) +
|
341 |
+
Piecewise((1, Eq(j, 2)), (0, True)))
|
342 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
|
343 |
+
Piecewise((x, Eq(i, 3)), (0, True)) +
|
344 |
+
Piecewise((1, Eq(j, 3)), (0, True)))
|
345 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
|
346 |
+
Piecewise((x, And(1 <= i, i <= l)), (0, True)) +
|
347 |
+
Piecewise((1, And(1 <= j, j <= l)), (0, True)))
|
348 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
|
349 |
+
Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
|
350 |
+
Piecewise((1, And(l <= j, j <= 3)), (0, True)))
|
351 |
+
assert ds(x*KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
|
352 |
+
Piecewise((x, And(l <= i, i <= m)), (0, True)) +
|
353 |
+
Piecewise((1, And(l <= j, j <= m)), (0, True)))
|
354 |
+
|
355 |
+
|
356 |
+
def test_deltasummation_mul_x_add_kd_kd():
|
357 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
|
358 |
+
Piecewise((x, And(1 <= i, i <= 3)), (0, True)) +
|
359 |
+
Piecewise((x, And(1 <= j, j <= 3)), (0, True)))
|
360 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
|
361 |
+
Piecewise((x, Eq(i, 1)), (0, True)) +
|
362 |
+
Piecewise((x, Eq(j, 1)), (0, True)))
|
363 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
|
364 |
+
Piecewise((x, Eq(i, 2)), (0, True)) +
|
365 |
+
Piecewise((x, Eq(j, 2)), (0, True)))
|
366 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
|
367 |
+
Piecewise((x, Eq(i, 3)), (0, True)) +
|
368 |
+
Piecewise((x, Eq(j, 3)), (0, True)))
|
369 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
|
370 |
+
Piecewise((x, And(1 <= i, i <= l)), (0, True)) +
|
371 |
+
Piecewise((x, And(1 <= j, j <= l)), (0, True)))
|
372 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
|
373 |
+
Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
|
374 |
+
Piecewise((x, And(l <= j, j <= 3)), (0, True)))
|
375 |
+
assert ds(x*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
|
376 |
+
Piecewise((x, And(l <= i, i <= m)), (0, True)) +
|
377 |
+
Piecewise((x, And(l <= j, j <= m)), (0, True)))
|
378 |
+
|
379 |
+
|
380 |
+
def test_deltasummation_mul_add_x_y_add_kd_kd():
|
381 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
|
382 |
+
Piecewise((x + y, And(1 <= i, i <= 3)), (0, True)) +
|
383 |
+
Piecewise((x + y, And(1 <= j, j <= 3)), (0, True)))
|
384 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
|
385 |
+
Piecewise((x + y, Eq(i, 1)), (0, True)) +
|
386 |
+
Piecewise((x + y, Eq(j, 1)), (0, True)))
|
387 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
|
388 |
+
Piecewise((x + y, Eq(i, 2)), (0, True)) +
|
389 |
+
Piecewise((x + y, Eq(j, 2)), (0, True)))
|
390 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
|
391 |
+
Piecewise((x + y, Eq(i, 3)), (0, True)) +
|
392 |
+
Piecewise((x + y, Eq(j, 3)), (0, True)))
|
393 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
|
394 |
+
Piecewise((x + y, And(1 <= i, i <= l)), (0, True)) +
|
395 |
+
Piecewise((x + y, And(1 <= j, j <= l)), (0, True)))
|
396 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
|
397 |
+
Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
|
398 |
+
Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
|
399 |
+
assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
|
400 |
+
Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
|
401 |
+
Piecewise((x + y, And(l <= j, j <= m)), (0, True)))
|
402 |
+
|
403 |
+
|
404 |
+
def test_deltasummation_add_mul_x_y_mul_x_kd():
|
405 |
+
assert ds(x*y + x*KD(i, j), (j, 1, 3)) == \
|
406 |
+
Piecewise((3*x*y + x, And(1 <= i, i <= 3)), (3*x*y, True))
|
407 |
+
assert ds(x*y + x*KD(i, j), (j, 1, 1)) == \
|
408 |
+
Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
|
409 |
+
assert ds(x*y + x*KD(i, j), (j, 2, 2)) == \
|
410 |
+
Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
|
411 |
+
assert ds(x*y + x*KD(i, j), (j, 3, 3)) == \
|
412 |
+
Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
|
413 |
+
assert ds(x*y + x*KD(i, j), (j, 1, k)) == \
|
414 |
+
Piecewise((k*x*y + x, And(1 <= i, i <= k)), (k*x*y, True))
|
415 |
+
assert ds(x*y + x*KD(i, j), (j, k, 3)) == \
|
416 |
+
Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
|
417 |
+
assert ds(x*y + x*KD(i, j), (j, k, l)) == Piecewise(
|
418 |
+
((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))
|
419 |
+
|
420 |
+
|
421 |
+
def test_deltasummation_mul_x_add_y_kd():
|
422 |
+
assert ds(x*(y + KD(i, j)), (j, 1, 3)) == \
|
423 |
+
Piecewise((3*x*y + x, And(1 <= i, i <= 3)), (3*x*y, True))
|
424 |
+
assert ds(x*(y + KD(i, j)), (j, 1, 1)) == \
|
425 |
+
Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
|
426 |
+
assert ds(x*(y + KD(i, j)), (j, 2, 2)) == \
|
427 |
+
Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
|
428 |
+
assert ds(x*(y + KD(i, j)), (j, 3, 3)) == \
|
429 |
+
Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
|
430 |
+
assert ds(x*(y + KD(i, j)), (j, 1, k)) == \
|
431 |
+
Piecewise((k*x*y + x, And(1 <= i, i <= k)), (k*x*y, True))
|
432 |
+
assert ds(x*(y + KD(i, j)), (j, k, 3)) == \
|
433 |
+
Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
|
434 |
+
assert ds(x*(y + KD(i, j)), (j, k, l)) == Piecewise(
|
435 |
+
((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))
|
436 |
+
|
437 |
+
|
438 |
+
def test_deltasummation_mul_x_add_y_twokd():
|
439 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 1, 3)) == \
|
440 |
+
Piecewise((3*x*y + 2*x, And(1 <= i, i <= 3)), (3*x*y, True))
|
441 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 1, 1)) == \
|
442 |
+
Piecewise((x*y + 2*x, Eq(i, 1)), (x*y, True))
|
443 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 2, 2)) == \
|
444 |
+
Piecewise((x*y + 2*x, Eq(i, 2)), (x*y, True))
|
445 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 3, 3)) == \
|
446 |
+
Piecewise((x*y + 2*x, Eq(i, 3)), (x*y, True))
|
447 |
+
assert ds(x*(y + 2*KD(i, j)), (j, 1, k)) == \
|
448 |
+
Piecewise((k*x*y + 2*x, And(1 <= i, i <= k)), (k*x*y, True))
|
449 |
+
assert ds(x*(y + 2*KD(i, j)), (j, k, 3)) == Piecewise(
|
450 |
+
((4 - k)*x*y + 2*x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
|
451 |
+
assert ds(x*(y + 2*KD(i, j)), (j, k, l)) == Piecewise(
|
452 |
+
((l - k + 1)*x*y + 2*x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))
|
453 |
+
|
454 |
+
|
455 |
+
def test_deltasummation_mul_add_x_y_add_y_kd():
|
456 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 1, 3)) == Piecewise(
|
457 |
+
(3*(x + y)*y + x + y, And(1 <= i, i <= 3)), (3*(x + y)*y, True))
|
458 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 1, 1)) == \
|
459 |
+
Piecewise(((x + y)*y + x + y, Eq(i, 1)), ((x + y)*y, True))
|
460 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 2, 2)) == \
|
461 |
+
Piecewise(((x + y)*y + x + y, Eq(i, 2)), ((x + y)*y, True))
|
462 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 3, 3)) == \
|
463 |
+
Piecewise(((x + y)*y + x + y, Eq(i, 3)), ((x + y)*y, True))
|
464 |
+
assert ds((x + y)*(y + KD(i, j)), (j, 1, k)) == Piecewise(
|
465 |
+
(k*(x + y)*y + x + y, And(1 <= i, i <= k)), (k*(x + y)*y, True))
|
466 |
+
assert ds((x + y)*(y + KD(i, j)), (j, k, 3)) == Piecewise(
|
467 |
+
((4 - k)*(x + y)*y + x + y, And(k <= i, i <= 3)),
|
468 |
+
((4 - k)*(x + y)*y, True))
|
469 |
+
assert ds((x + y)*(y + KD(i, j)), (j, k, l)) == Piecewise(
|
470 |
+
((l - k + 1)*(x + y)*y + x + y, And(k <= i, i <= l)),
|
471 |
+
((l - k + 1)*(x + y)*y, True))
|
472 |
+
|
473 |
+
|
474 |
+
def test_deltasummation_mul_add_x_kd_add_y_kd():
|
475 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
|
476 |
+
Piecewise((KD(i, k) + x, And(1 <= i, i <= 3)), (0, True)) +
|
477 |
+
3*(KD(i, k) + x)*y)
|
478 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
|
479 |
+
Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) +
|
480 |
+
(KD(i, k) + x)*y)
|
481 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
|
482 |
+
Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) +
|
483 |
+
(KD(i, k) + x)*y)
|
484 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
|
485 |
+
Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) +
|
486 |
+
(KD(i, k) + x)*y)
|
487 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == piecewise_fold(
|
488 |
+
Piecewise((KD(i, k) + x, And(1 <= i, i <= k)), (0, True)) +
|
489 |
+
k*(KD(i, k) + x)*y)
|
490 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == piecewise_fold(
|
491 |
+
Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) +
|
492 |
+
(4 - k)*(KD(i, k) + x)*y)
|
493 |
+
assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == piecewise_fold(
|
494 |
+
Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
|
495 |
+
(l - k + 1)*(KD(i, k) + x)*y)
|
496 |
+
|
497 |
+
|
498 |
+
def test_extract_delta():
|
499 |
+
raises(ValueError, lambda: _extract_delta(KD(i, j) + KD(k, l), i))
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_gosper.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for Gosper's algorithm for hypergeometric summation. """
|
2 |
+
|
3 |
+
from sympy.core.numbers import (Rational, pi)
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import Symbol
|
6 |
+
from sympy.functions.combinatorial.factorials import (binomial, factorial)
|
7 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
8 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
9 |
+
from sympy.functions.special.gamma_functions import gamma
|
10 |
+
from sympy.polys.polytools import Poly
|
11 |
+
from sympy.simplify.simplify import simplify
|
12 |
+
from sympy.concrete.gosper import gosper_normal, gosper_sum, gosper_term
|
13 |
+
from sympy.abc import a, b, j, k, m, n, r, x
|
14 |
+
|
15 |
+
|
16 |
+
def test_gosper_normal():
|
17 |
+
eq = 4*n + 5, 2*(4*n + 1)*(2*n + 3), n
|
18 |
+
assert gosper_normal(*eq) == \
|
19 |
+
(Poly(Rational(1, 4), n), Poly(n + Rational(3, 2)), Poly(n + Rational(1, 4)))
|
20 |
+
assert gosper_normal(*eq, polys=False) == \
|
21 |
+
(Rational(1, 4), n + Rational(3, 2), n + Rational(1, 4))
|
22 |
+
|
23 |
+
|
24 |
+
def test_gosper_term():
|
25 |
+
assert gosper_term((4*k + 1)*factorial(
|
26 |
+
k)/factorial(2*k + 1), k) == (-k - S.Half)/(k + Rational(1, 4))
|
27 |
+
|
28 |
+
|
29 |
+
def test_gosper_sum():
|
30 |
+
assert gosper_sum(1, (k, 0, n)) == 1 + n
|
31 |
+
assert gosper_sum(k, (k, 0, n)) == n*(1 + n)/2
|
32 |
+
assert gosper_sum(k**2, (k, 0, n)) == n*(1 + n)*(1 + 2*n)/6
|
33 |
+
assert gosper_sum(k**3, (k, 0, n)) == n**2*(1 + n)**2/4
|
34 |
+
|
35 |
+
assert gosper_sum(2**k, (k, 0, n)) == 2*2**n - 1
|
36 |
+
|
37 |
+
assert gosper_sum(factorial(k), (k, 0, n)) is None
|
38 |
+
assert gosper_sum(binomial(n, k), (k, 0, n)) is None
|
39 |
+
|
40 |
+
assert gosper_sum(factorial(k)/k**2, (k, 0, n)) is None
|
41 |
+
assert gosper_sum((k - 3)*factorial(k), (k, 0, n)) is None
|
42 |
+
|
43 |
+
assert gosper_sum(k*factorial(k), k) == factorial(k)
|
44 |
+
assert gosper_sum(
|
45 |
+
k*factorial(k), (k, 0, n)) == n*factorial(n) + factorial(n) - 1
|
46 |
+
|
47 |
+
assert gosper_sum((-1)**k*binomial(n, k), (k, 0, n)) == 0
|
48 |
+
assert gosper_sum((
|
49 |
+
-1)**k*binomial(n, k), (k, 0, m)) == -(-1)**m*(m - n)*binomial(n, m)/n
|
50 |
+
|
51 |
+
assert gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n)) == \
|
52 |
+
(2*factorial(2*n + 1) - factorial(n))/factorial(2*n + 1)
|
53 |
+
|
54 |
+
# issue 6033:
|
55 |
+
assert gosper_sum(
|
56 |
+
n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b)), \
|
57 |
+
(n, 0, m)).simplify() == -exp(m*log(a) + m*log(b))*gamma(a + 1) \
|
58 |
+
*gamma(b + 1)/(gamma(a)*gamma(b)*gamma(a + m + 1)*gamma(b + m + 1)) \
|
59 |
+
+ 1/(gamma(a)*gamma(b))
|
60 |
+
|
61 |
+
|
62 |
+
def test_gosper_sum_indefinite():
|
63 |
+
assert gosper_sum(k, k) == k*(k - 1)/2
|
64 |
+
assert gosper_sum(k**2, k) == k*(k - 1)*(2*k - 1)/6
|
65 |
+
|
66 |
+
assert gosper_sum(1/(k*(k + 1)), k) == -1/k
|
67 |
+
assert gosper_sum(-(27*k**4 + 158*k**3 + 430*k**2 + 678*k + 445)*gamma(2*k
|
68 |
+
+ 4)/(3*(3*k + 7)*gamma(3*k + 6)), k) == \
|
69 |
+
(3*k + 5)*(k**2 + 2*k + 5)*gamma(2*k + 4)/gamma(3*k + 6)
|
70 |
+
|
71 |
+
|
72 |
+
def test_gosper_sum_parametric():
|
73 |
+
assert gosper_sum(binomial(S.Half, m - j + 1)*binomial(S.Half, m + j), (j, 1, n)) == \
|
74 |
+
n*(1 + m - n)*(-1 + 2*m + 2*n)*binomial(S.Half, 1 + m - n)* \
|
75 |
+
binomial(S.Half, m + n)/(m*(1 + 2*m))
|
76 |
+
|
77 |
+
|
78 |
+
def test_gosper_sum_algebraic():
|
79 |
+
assert gosper_sum(
|
80 |
+
n**2 + sqrt(2), (n, 0, m)) == (m + 1)*(2*m**2 + m + 6*sqrt(2))/6
|
81 |
+
|
82 |
+
|
83 |
+
def test_gosper_sum_iterated():
|
84 |
+
f1 = binomial(2*k, k)/4**k
|
85 |
+
f2 = (1 + 2*n)*binomial(2*n, n)/4**n
|
86 |
+
f3 = (1 + 2*n)*(3 + 2*n)*binomial(2*n, n)/(3*4**n)
|
87 |
+
f4 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*binomial(2*n, n)/(15*4**n)
|
88 |
+
f5 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*binomial(2*n, n)/(105*4**n)
|
89 |
+
|
90 |
+
assert gosper_sum(f1, (k, 0, n)) == f2
|
91 |
+
assert gosper_sum(f2, (n, 0, n)) == f3
|
92 |
+
assert gosper_sum(f3, (n, 0, n)) == f4
|
93 |
+
assert gosper_sum(f4, (n, 0, n)) == f5
|
94 |
+
|
95 |
+
# the AeqB tests test expressions given in
|
96 |
+
# www.math.upenn.edu/~wilf/AeqB.pdf
|
97 |
+
|
98 |
+
|
99 |
+
def test_gosper_sum_AeqB_part1():
|
100 |
+
f1a = n**4
|
101 |
+
f1b = n**3*2**n
|
102 |
+
f1c = 1/(n**2 + sqrt(5)*n - 1)
|
103 |
+
f1d = n**4*4**n/binomial(2*n, n)
|
104 |
+
f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
|
105 |
+
f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
|
106 |
+
f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
|
107 |
+
f1h = n*factorial(n - S.Half)**2/factorial(n + 1)**2
|
108 |
+
|
109 |
+
g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
|
110 |
+
g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
|
111 |
+
g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
|
112 |
+
3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
|
113 |
+
g1d = Rational(-2, 231) + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
|
114 |
+
22*m + 3)/(693*binomial(2*m, m))
|
115 |
+
g1e = Rational(-9, 2) + (81*m**2 + 261*m + 200)*factorial(
|
116 |
+
3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
|
117 |
+
g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
|
118 |
+
g1g = -binomial(2*m, m)**2/4**(2*m)
|
119 |
+
g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S.Half)**2/factorial(m + 1)**2
|
120 |
+
|
121 |
+
g = gosper_sum(f1a, (n, 0, m))
|
122 |
+
assert g is not None and simplify(g - g1a) == 0
|
123 |
+
g = gosper_sum(f1b, (n, 0, m))
|
124 |
+
assert g is not None and simplify(g - g1b) == 0
|
125 |
+
g = gosper_sum(f1c, (n, 0, m))
|
126 |
+
assert g is not None and simplify(g - g1c) == 0
|
127 |
+
g = gosper_sum(f1d, (n, 0, m))
|
128 |
+
assert g is not None and simplify(g - g1d) == 0
|
129 |
+
g = gosper_sum(f1e, (n, 0, m))
|
130 |
+
assert g is not None and simplify(g - g1e) == 0
|
131 |
+
g = gosper_sum(f1f, (n, 0, m))
|
132 |
+
assert g is not None and simplify(g - g1f) == 0
|
133 |
+
g = gosper_sum(f1g, (n, 0, m))
|
134 |
+
assert g is not None and simplify(g - g1g) == 0
|
135 |
+
g = gosper_sum(f1h, (n, 0, m))
|
136 |
+
# need to call rewrite(gamma) here because we have terms involving
|
137 |
+
# factorial(1/2)
|
138 |
+
assert g is not None and simplify(g - g1h).rewrite(gamma) == 0
|
139 |
+
|
140 |
+
|
141 |
+
def test_gosper_sum_AeqB_part2():
|
142 |
+
f2a = n**2*a**n
|
143 |
+
f2b = (n - r/2)*binomial(r, n)
|
144 |
+
f2c = factorial(n - 1)**2/(factorial(n - x)*factorial(n + x))
|
145 |
+
|
146 |
+
g2a = -a*(a + 1)/(a - 1)**3 + a**(
|
147 |
+
m + 1)*(a**2*m**2 - 2*a*m**2 + m**2 - 2*a*m + 2*m + a + 1)/(a - 1)**3
|
148 |
+
g2b = (m - r)*binomial(r, m)/2
|
149 |
+
ff = factorial(1 - x)*factorial(1 + x)
|
150 |
+
g2c = 1/ff*(
|
151 |
+
1 - 1/x**2) + factorial(m)**2/(x**2*factorial(m - x)*factorial(m + x))
|
152 |
+
|
153 |
+
g = gosper_sum(f2a, (n, 0, m))
|
154 |
+
assert g is not None and simplify(g - g2a) == 0
|
155 |
+
g = gosper_sum(f2b, (n, 0, m))
|
156 |
+
assert g is not None and simplify(g - g2b) == 0
|
157 |
+
g = gosper_sum(f2c, (n, 1, m))
|
158 |
+
assert g is not None and simplify(g - g2c) == 0
|
159 |
+
|
160 |
+
|
161 |
+
def test_gosper_nan():
|
162 |
+
a = Symbol('a', positive=True)
|
163 |
+
b = Symbol('b', positive=True)
|
164 |
+
n = Symbol('n', integer=True)
|
165 |
+
m = Symbol('m', integer=True)
|
166 |
+
f2d = n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b))
|
167 |
+
g2d = 1/(factorial(a - 1)*factorial(
|
168 |
+
b - 1)) - a**(m + 1)*b**(m + 1)/(factorial(a + m)*factorial(b + m))
|
169 |
+
g = gosper_sum(f2d, (n, 0, m))
|
170 |
+
assert simplify(g - g2d) == 0
|
171 |
+
|
172 |
+
|
173 |
+
def test_gosper_sum_AeqB_part3():
|
174 |
+
f3a = 1/n**4
|
175 |
+
f3b = (6*n + 3)/(4*n**4 + 8*n**3 + 8*n**2 + 4*n + 3)
|
176 |
+
f3c = 2**n*(n**2 - 2*n - 1)/(n**2*(n + 1)**2)
|
177 |
+
f3d = n**2*4**n/((n + 1)*(n + 2))
|
178 |
+
f3e = 2**n/(n + 1)
|
179 |
+
f3f = 4*(n - 1)*(n**2 - 2*n - 1)/(n**2*(n + 1)**2*(n - 2)**2*(n - 3)**2)
|
180 |
+
f3g = (n**4 - 14*n**2 - 24*n - 9)*2**n/(n**2*(n + 1)**2*(n + 2)**2*
|
181 |
+
(n + 3)**2)
|
182 |
+
|
183 |
+
# g3a -> no closed form
|
184 |
+
g3b = m*(m + 2)/(2*m**2 + 4*m + 3)
|
185 |
+
g3c = 2**m/m**2 - 2
|
186 |
+
g3d = Rational(2, 3) + 4**(m + 1)*(m - 1)/(m + 2)/3
|
187 |
+
# g3e -> no closed form
|
188 |
+
g3f = -(Rational(-1, 16) + 1/((m - 2)**2*(m + 1)**2)) # the AeqB key is wrong
|
189 |
+
g3g = Rational(-2, 9) + 2**(m + 1)/((m + 1)**2*(m + 3)**2)
|
190 |
+
|
191 |
+
g = gosper_sum(f3a, (n, 1, m))
|
192 |
+
assert g is None
|
193 |
+
g = gosper_sum(f3b, (n, 1, m))
|
194 |
+
assert g is not None and simplify(g - g3b) == 0
|
195 |
+
g = gosper_sum(f3c, (n, 1, m - 1))
|
196 |
+
assert g is not None and simplify(g - g3c) == 0
|
197 |
+
g = gosper_sum(f3d, (n, 1, m))
|
198 |
+
assert g is not None and simplify(g - g3d) == 0
|
199 |
+
g = gosper_sum(f3e, (n, 0, m - 1))
|
200 |
+
assert g is None
|
201 |
+
g = gosper_sum(f3f, (n, 4, m))
|
202 |
+
assert g is not None and simplify(g - g3f) == 0
|
203 |
+
g = gosper_sum(f3g, (n, 1, m))
|
204 |
+
assert g is not None and simplify(g - g3g) == 0
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_guess.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.guess import (
|
2 |
+
find_simple_recurrence_vector,
|
3 |
+
find_simple_recurrence,
|
4 |
+
rationalize,
|
5 |
+
guess_generating_function_rational,
|
6 |
+
guess_generating_function,
|
7 |
+
guess
|
8 |
+
)
|
9 |
+
from sympy.concrete.products import Product
|
10 |
+
from sympy.core.function import Function
|
11 |
+
from sympy.core.numbers import Rational
|
12 |
+
from sympy.core.singleton import S
|
13 |
+
from sympy.core.symbol import (Symbol, symbols)
|
14 |
+
from sympy.core.sympify import sympify
|
15 |
+
from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial)
|
16 |
+
from sympy.functions.combinatorial.numbers import fibonacci
|
17 |
+
from sympy.functions.elementary.exponential import exp
|
18 |
+
|
19 |
+
|
20 |
+
def test_find_simple_recurrence_vector():
|
21 |
+
assert find_simple_recurrence_vector(
|
22 |
+
[fibonacci(k) for k in range(12)]) == [1, -1, -1]
|
23 |
+
|
24 |
+
|
25 |
+
def test_find_simple_recurrence():
|
26 |
+
a = Function('a')
|
27 |
+
n = Symbol('n')
|
28 |
+
assert find_simple_recurrence([fibonacci(k) for k in range(12)]) == (
|
29 |
+
-a(n) - a(n + 1) + a(n + 2))
|
30 |
+
|
31 |
+
f = Function('a')
|
32 |
+
i = Symbol('n')
|
33 |
+
a = [1, 1, 1]
|
34 |
+
for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
|
35 |
+
assert find_simple_recurrence(a, A=f, N=i) == (
|
36 |
+
-8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3))
|
37 |
+
assert find_simple_recurrence([0, 2, 15, 74, 12, 3, 0,
|
38 |
+
1, 2, 85, 4, 5, 63]) == 0
|
39 |
+
|
40 |
+
|
41 |
+
def test_rationalize():
|
42 |
+
from mpmath import cos, pi, mpf
|
43 |
+
assert rationalize(cos(pi/3)) == S.Half
|
44 |
+
assert rationalize(mpf("0.333333333333333")) == Rational(1, 3)
|
45 |
+
assert rationalize(mpf("-0.333333333333333")) == Rational(-1, 3)
|
46 |
+
assert rationalize(pi, maxcoeff = 250) == Rational(355, 113)
|
47 |
+
|
48 |
+
|
49 |
+
def test_guess_generating_function_rational():
|
50 |
+
x = Symbol('x')
|
51 |
+
assert guess_generating_function_rational([fibonacci(k)
|
52 |
+
for k in range(5, 15)]) == ((3*x + 5)/(-x**2 - x + 1))
|
53 |
+
|
54 |
+
|
55 |
+
def test_guess_generating_function():
|
56 |
+
x = Symbol('x')
|
57 |
+
assert guess_generating_function([fibonacci(k)
|
58 |
+
for k in range(5, 15)])['ogf'] == ((3*x + 5)/(-x**2 - x + 1))
|
59 |
+
assert guess_generating_function(
|
60 |
+
[1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919])['ogf'] == (
|
61 |
+
(1/(x**4 + 2*x**2 - 4*x + 1))**S.Half)
|
62 |
+
assert guess_generating_function(sympify(
|
63 |
+
"[3/2, 11/2, 0, -121/2, -363/2, 121, 4719/2, 11495/2, -8712, -178717/2]")
|
64 |
+
)['ogf'] == (x + Rational(3, 2))/(11*x**2 - 3*x + 1)
|
65 |
+
assert guess_generating_function([factorial(k) for k in range(12)],
|
66 |
+
types=['egf'])['egf'] == 1/(-x + 1)
|
67 |
+
assert guess_generating_function([k+1 for k in range(12)],
|
68 |
+
types=['egf']) == {'egf': (x + 1)*exp(x), 'lgdegf': (x + 2)/(x + 1)}
|
69 |
+
|
70 |
+
|
71 |
+
def test_guess():
|
72 |
+
i0, i1 = symbols('i0 i1')
|
73 |
+
assert guess([1, 2, 6, 24, 120], evaluate=False) == [Product(i1 + 1, (i1, 1, i0 - 1))]
|
74 |
+
assert guess([1, 2, 6, 24, 120]) == [RisingFactorial(2, i0 - 1)]
|
75 |
+
assert guess([1, 2, 7, 42, 429, 7436, 218348, 10850216], niter=4) == [
|
76 |
+
2**(i0 - 1)*(Rational(27, 16))**(i0**2/2 - 3*i0/2 +
|
77 |
+
1)*Product(RisingFactorial(Rational(5, 3), i1 - 1)*RisingFactorial(Rational(7, 3), i1
|
78 |
+
- 1)/(RisingFactorial(Rational(3, 2), i1 - 1)*RisingFactorial(Rational(5, 2), i1 -
|
79 |
+
1)), (i1, 1, i0 - 1))]
|
80 |
+
assert guess([1, 0, 2]) == []
|
81 |
+
x, y = symbols('x y')
|
82 |
+
assert guess([1, 2, 6, 24, 120], variables=[x, y]) == [RisingFactorial(2, x - 1)]
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_products.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.products import (Product, product)
|
2 |
+
from sympy.concrete.summations import Sum
|
3 |
+
from sympy.core.function import (Derivative, Function, diff)
|
4 |
+
from sympy.core.numbers import (Rational, oo, pi)
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
7 |
+
from sympy.functions.combinatorial.factorials import (rf, factorial)
|
8 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
11 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
12 |
+
from sympy.simplify.combsimp import combsimp
|
13 |
+
from sympy.simplify.simplify import simplify
|
14 |
+
from sympy.testing.pytest import raises
|
15 |
+
|
16 |
+
a, k, n, m, x = symbols('a,k,n,m,x', integer=True)
|
17 |
+
f = Function('f')
|
18 |
+
|
19 |
+
|
20 |
+
def test_karr_convention():
|
21 |
+
# Test the Karr product convention that we want to hold.
|
22 |
+
# See his paper "Summation in Finite Terms" for a detailed
|
23 |
+
# reasoning why we really want exactly this definition.
|
24 |
+
# The convention is described for sums on page 309 and
|
25 |
+
# essentially in section 1.4, definition 3. For products
|
26 |
+
# we can find in analogy:
|
27 |
+
#
|
28 |
+
# \prod_{m <= i < n} f(i) 'has the obvious meaning' for m < n
|
29 |
+
# \prod_{m <= i < n} f(i) = 0 for m = n
|
30 |
+
# \prod_{m <= i < n} f(i) = 1 / \prod_{n <= i < m} f(i) for m > n
|
31 |
+
#
|
32 |
+
# It is important to note that he defines all products with
|
33 |
+
# the upper limit being *exclusive*.
|
34 |
+
# In contrast, SymPy and the usual mathematical notation has:
|
35 |
+
#
|
36 |
+
# prod_{i = a}^b f(i) = f(a) * f(a+1) * ... * f(b-1) * f(b)
|
37 |
+
#
|
38 |
+
# with the upper limit *inclusive*. So translating between
|
39 |
+
# the two we find that:
|
40 |
+
#
|
41 |
+
# \prod_{m <= i < n} f(i) = \prod_{i = m}^{n-1} f(i)
|
42 |
+
#
|
43 |
+
# where we intentionally used two different ways to typeset the
|
44 |
+
# products and its limits.
|
45 |
+
|
46 |
+
i = Symbol("i", integer=True)
|
47 |
+
k = Symbol("k", integer=True)
|
48 |
+
j = Symbol("j", integer=True, positive=True)
|
49 |
+
|
50 |
+
# A simple example with a concrete factors and symbolic limits.
|
51 |
+
|
52 |
+
# The normal product: m = k and n = k + j and therefore m < n:
|
53 |
+
m = k
|
54 |
+
n = k + j
|
55 |
+
|
56 |
+
a = m
|
57 |
+
b = n - 1
|
58 |
+
S1 = Product(i**2, (i, a, b)).doit()
|
59 |
+
|
60 |
+
# The reversed product: m = k + j and n = k and therefore m > n:
|
61 |
+
m = k + j
|
62 |
+
n = k
|
63 |
+
|
64 |
+
a = m
|
65 |
+
b = n - 1
|
66 |
+
S2 = Product(i**2, (i, a, b)).doit()
|
67 |
+
|
68 |
+
assert S1 * S2 == 1
|
69 |
+
|
70 |
+
# Test the empty product: m = k and n = k and therefore m = n:
|
71 |
+
m = k
|
72 |
+
n = k
|
73 |
+
|
74 |
+
a = m
|
75 |
+
b = n - 1
|
76 |
+
Sz = Product(i**2, (i, a, b)).doit()
|
77 |
+
|
78 |
+
assert Sz == 1
|
79 |
+
|
80 |
+
# Another example this time with an unspecified factor and
|
81 |
+
# numeric limits. (We can not do both tests in the same example.)
|
82 |
+
f = Function("f")
|
83 |
+
|
84 |
+
# The normal product with m < n:
|
85 |
+
m = 2
|
86 |
+
n = 11
|
87 |
+
|
88 |
+
a = m
|
89 |
+
b = n - 1
|
90 |
+
S1 = Product(f(i), (i, a, b)).doit()
|
91 |
+
|
92 |
+
# The reversed product with m > n:
|
93 |
+
m = 11
|
94 |
+
n = 2
|
95 |
+
|
96 |
+
a = m
|
97 |
+
b = n - 1
|
98 |
+
S2 = Product(f(i), (i, a, b)).doit()
|
99 |
+
|
100 |
+
assert simplify(S1 * S2) == 1
|
101 |
+
|
102 |
+
# Test the empty product with m = n:
|
103 |
+
m = 5
|
104 |
+
n = 5
|
105 |
+
|
106 |
+
a = m
|
107 |
+
b = n - 1
|
108 |
+
Sz = Product(f(i), (i, a, b)).doit()
|
109 |
+
|
110 |
+
assert Sz == 1
|
111 |
+
|
112 |
+
|
113 |
+
def test_karr_proposition_2a():
|
114 |
+
# Test Karr, page 309, proposition 2, part a
|
115 |
+
i, u, v = symbols('i u v', integer=True)
|
116 |
+
|
117 |
+
def test_the_product(m, n):
|
118 |
+
# g
|
119 |
+
g = i**3 + 2*i**2 - 3*i
|
120 |
+
# f = Delta g
|
121 |
+
f = simplify(g.subs(i, i+1) / g)
|
122 |
+
# The product
|
123 |
+
a = m
|
124 |
+
b = n - 1
|
125 |
+
P = Product(f, (i, a, b)).doit()
|
126 |
+
# Test if Product_{m <= i < n} f(i) = g(n) / g(m)
|
127 |
+
assert combsimp(P / (g.subs(i, n) / g.subs(i, m))) == 1
|
128 |
+
|
129 |
+
# m < n
|
130 |
+
test_the_product(u, u + v)
|
131 |
+
# m = n
|
132 |
+
test_the_product(u, u)
|
133 |
+
# m > n
|
134 |
+
test_the_product(u + v, u)
|
135 |
+
|
136 |
+
|
137 |
+
def test_karr_proposition_2b():
|
138 |
+
# Test Karr, page 309, proposition 2, part b
|
139 |
+
i, u, v, w = symbols('i u v w', integer=True)
|
140 |
+
|
141 |
+
def test_the_product(l, n, m):
|
142 |
+
# Productmand
|
143 |
+
s = i**3
|
144 |
+
# First product
|
145 |
+
a = l
|
146 |
+
b = n - 1
|
147 |
+
S1 = Product(s, (i, a, b)).doit()
|
148 |
+
# Second product
|
149 |
+
a = l
|
150 |
+
b = m - 1
|
151 |
+
S2 = Product(s, (i, a, b)).doit()
|
152 |
+
# Third product
|
153 |
+
a = m
|
154 |
+
b = n - 1
|
155 |
+
S3 = Product(s, (i, a, b)).doit()
|
156 |
+
# Test if S1 = S2 * S3 as required
|
157 |
+
assert combsimp(S1 / (S2 * S3)) == 1
|
158 |
+
|
159 |
+
# l < m < n
|
160 |
+
test_the_product(u, u + v, u + v + w)
|
161 |
+
# l < m = n
|
162 |
+
test_the_product(u, u + v, u + v)
|
163 |
+
# l < m > n
|
164 |
+
test_the_product(u, u + v + w, v)
|
165 |
+
# l = m < n
|
166 |
+
test_the_product(u, u, u + v)
|
167 |
+
# l = m = n
|
168 |
+
test_the_product(u, u, u)
|
169 |
+
# l = m > n
|
170 |
+
test_the_product(u + v, u + v, u)
|
171 |
+
# l > m < n
|
172 |
+
test_the_product(u + v, u, u + w)
|
173 |
+
# l > m = n
|
174 |
+
test_the_product(u + v, u, u)
|
175 |
+
# l > m > n
|
176 |
+
test_the_product(u + v + w, u + v, u)
|
177 |
+
|
178 |
+
|
179 |
+
def test_simple_products():
|
180 |
+
assert product(2, (k, a, n)) == 2**(n - a + 1)
|
181 |
+
assert product(k, (k, 1, n)) == factorial(n)
|
182 |
+
assert product(k**3, (k, 1, n)) == factorial(n)**3
|
183 |
+
|
184 |
+
assert product(k + 1, (k, 0, n - 1)) == factorial(n)
|
185 |
+
assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a)
|
186 |
+
|
187 |
+
assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5)
|
188 |
+
assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5)
|
189 |
+
assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2)
|
190 |
+
|
191 |
+
assert isinstance(product(k**k, (k, 1, n)), Product)
|
192 |
+
|
193 |
+
assert Product(x**k, (k, 1, n)).variables == [k]
|
194 |
+
|
195 |
+
raises(ValueError, lambda: Product(n))
|
196 |
+
raises(ValueError, lambda: Product(n, k))
|
197 |
+
raises(ValueError, lambda: Product(n, k, 1))
|
198 |
+
raises(ValueError, lambda: Product(n, k, 1, 10))
|
199 |
+
raises(ValueError, lambda: Product(n, (k, 1)))
|
200 |
+
|
201 |
+
assert product(1, (n, 1, oo)) == 1 # issue 8301
|
202 |
+
assert product(2, (n, 1, oo)) is oo
|
203 |
+
assert product(-1, (n, 1, oo)).func is Product
|
204 |
+
|
205 |
+
|
206 |
+
def test_multiple_products():
|
207 |
+
assert product(x, (n, 1, k), (k, 1, m)) == x**(m**2/2 + m/2)
|
208 |
+
assert product(f(n), (
|
209 |
+
n, 1, m), (m, 1, k)) == Product(f(n), (n, 1, m), (m, 1, k)).doit()
|
210 |
+
assert Product(f(n), (m, 1, k), (n, 1, k)).doit() == \
|
211 |
+
Product(Product(f(n), (m, 1, k)), (n, 1, k)).doit() == \
|
212 |
+
product(f(n), (m, 1, k), (n, 1, k)) == \
|
213 |
+
product(product(f(n), (m, 1, k)), (n, 1, k)) == \
|
214 |
+
Product(f(n)**k, (n, 1, k))
|
215 |
+
assert Product(
|
216 |
+
x, (x, 1, k), (k, 1, n)).doit() == Product(factorial(k), (k, 1, n))
|
217 |
+
|
218 |
+
assert Product(x**k, (n, 1, k), (k, 1, m)).variables == [n, k]
|
219 |
+
|
220 |
+
|
221 |
+
def test_rational_products():
|
222 |
+
assert product(1 + 1/k, (k, 1, n)) == rf(2, n)/factorial(n)
|
223 |
+
|
224 |
+
|
225 |
+
def test_special_products():
|
226 |
+
# Wallis product
|
227 |
+
assert product((4*k)**2 / (4*k**2 - 1), (k, 1, n)) == \
|
228 |
+
4**n*factorial(n)**2/rf(S.Half, n)/rf(Rational(3, 2), n)
|
229 |
+
|
230 |
+
# Euler's product formula for sin
|
231 |
+
assert product(1 + a/k**2, (k, 1, n)) == \
|
232 |
+
rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2
|
233 |
+
|
234 |
+
|
235 |
+
def test__eval_product():
|
236 |
+
from sympy.abc import i, n
|
237 |
+
# issue 4809
|
238 |
+
a = Function('a')
|
239 |
+
assert product(2*a(i), (i, 1, n)) == 2**n * Product(a(i), (i, 1, n))
|
240 |
+
# issue 4810
|
241 |
+
assert product(2**i, (i, 1, n)) == 2**(n*(n + 1)/2)
|
242 |
+
k, m = symbols('k m', integer=True)
|
243 |
+
assert product(2**i, (i, k, m)) == 2**(-k**2/2 + k/2 + m**2/2 + m/2)
|
244 |
+
n = Symbol('n', negative=True, integer=True)
|
245 |
+
p = Symbol('p', positive=True, integer=True)
|
246 |
+
assert product(2**i, (i, n, p)) == 2**(-n**2/2 + n/2 + p**2/2 + p/2)
|
247 |
+
assert product(2**i, (i, p, n)) == 2**(n**2/2 + n/2 - p**2/2 + p/2)
|
248 |
+
|
249 |
+
|
250 |
+
def test_product_pow():
|
251 |
+
# issue 4817
|
252 |
+
assert product(2**f(k), (k, 1, n)) == 2**Sum(f(k), (k, 1, n))
|
253 |
+
assert product(2**(2*f(k)), (k, 1, n)) == 2**Sum(2*f(k), (k, 1, n))
|
254 |
+
|
255 |
+
|
256 |
+
def test_infinite_product():
|
257 |
+
# issue 5737
|
258 |
+
assert isinstance(Product(2**(1/factorial(n)), (n, 0, oo)), Product)
|
259 |
+
|
260 |
+
|
261 |
+
def test_conjugate_transpose():
|
262 |
+
p = Product(x**k, (k, 1, 3))
|
263 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
264 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
265 |
+
assert p.transpose().doit() == p.doit().transpose()
|
266 |
+
|
267 |
+
A, B = symbols("A B", commutative=False)
|
268 |
+
p = Product(A*B**k, (k, 1, 3))
|
269 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
270 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
271 |
+
assert p.transpose().doit() == p.doit().transpose()
|
272 |
+
|
273 |
+
p = Product(B**k*A, (k, 1, 3))
|
274 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
275 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
276 |
+
assert p.transpose().doit() == p.doit().transpose()
|
277 |
+
|
278 |
+
|
279 |
+
def test_simplify_prod():
|
280 |
+
y, t, b, c, v, d = symbols('y, t, b, c, v, d', integer = True)
|
281 |
+
|
282 |
+
_simplify = lambda e: simplify(e, doit=False)
|
283 |
+
assert _simplify(Product(x*y, (x, n, m), (y, a, k)) * \
|
284 |
+
Product(y, (x, n, m), (y, a, k))) == \
|
285 |
+
Product(x*y**2, (x, n, m), (y, a, k))
|
286 |
+
assert _simplify(3 * y* Product(x, (x, n, m)) * Product(x, (x, m + 1, a))) \
|
287 |
+
== 3 * y * Product(x, (x, n, a))
|
288 |
+
assert _simplify(Product(x, (x, k + 1, a)) * Product(x, (x, n, k))) == \
|
289 |
+
Product(x, (x, n, a))
|
290 |
+
assert _simplify(Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))) == \
|
291 |
+
Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))
|
292 |
+
assert _simplify(Product(x, (t, a, b)) * Product(y, (t, a, b)) * \
|
293 |
+
Product(x, (t, b+1, c))) == Product(x*y, (t, a, b)) * \
|
294 |
+
Product(x, (t, b+1, c))
|
295 |
+
assert _simplify(Product(x, (t, a, b)) * Product(x, (t, b+1, c)) * \
|
296 |
+
Product(y, (t, a, b))) == Product(x*y, (t, a, b)) * \
|
297 |
+
Product(x, (t, b+1, c))
|
298 |
+
assert _simplify(Product(sin(t)**2 + cos(t)**2 + 1, (t, a, b))) == \
|
299 |
+
Product(2, (t, a, b))
|
300 |
+
assert _simplify(Product(sin(t)**2 + cos(t)**2 - 1, (t, a, b))) == \
|
301 |
+
Product(0, (t, a, b))
|
302 |
+
assert _simplify(Product(v*Product(sin(t)**2 + cos(t)**2, (t, a, b)),
|
303 |
+
(v, c, d))) == Product(v*Product(1, (t, a, b)), (v, c, d))
|
304 |
+
|
305 |
+
|
306 |
+
def test_change_index():
|
307 |
+
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
|
308 |
+
|
309 |
+
assert Product(x, (x, a, b)).change_index(x, x + 1, y) == \
|
310 |
+
Product(y - 1, (y, a + 1, b + 1))
|
311 |
+
assert Product(x**2, (x, a, b)).change_index(x, x - 1) == \
|
312 |
+
Product((x + 1)**2, (x, a - 1, b - 1))
|
313 |
+
assert Product(x**2, (x, a, b)).change_index(x, -x, y) == \
|
314 |
+
Product((-y)**2, (y, -b, -a))
|
315 |
+
assert Product(x, (x, a, b)).change_index(x, -x - 1) == \
|
316 |
+
Product(-x - 1, (x, - b - 1, -a - 1))
|
317 |
+
assert Product(x*y, (x, a, b), (y, c, d)).change_index(x, x - 1, z) == \
|
318 |
+
Product((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
|
319 |
+
|
320 |
+
|
321 |
+
def test_reorder():
|
322 |
+
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
|
323 |
+
|
324 |
+
assert Product(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
|
325 |
+
Product(x*y, (y, c, d), (x, a, b))
|
326 |
+
assert Product(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
|
327 |
+
Product(x, (x, c, d), (x, a, b))
|
328 |
+
assert Product(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
|
329 |
+
(2, 0), (0, 1)) == Product(x*y + z, (z, m, n), (y, c, d), (x, a, b))
|
330 |
+
assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
331 |
+
(0, 1), (1, 2), (0, 2)) == \
|
332 |
+
Product(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
333 |
+
assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
334 |
+
(x, y), (y, z), (x, z)) == \
|
335 |
+
Product(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
336 |
+
assert Product(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
|
337 |
+
Product(x*y, (y, c, d), (x, a, b))
|
338 |
+
assert Product(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
|
339 |
+
Product(x*y, (y, c, d), (x, a, b))
|
340 |
+
|
341 |
+
|
342 |
+
def test_Product_is_convergent():
|
343 |
+
assert Product(1/n**2, (n, 1, oo)).is_convergent() is S.false
|
344 |
+
assert Product(exp(1/n**2), (n, 1, oo)).is_convergent() is S.true
|
345 |
+
assert Product(1/n, (n, 1, oo)).is_convergent() is S.false
|
346 |
+
assert Product(1 + 1/n, (n, 1, oo)).is_convergent() is S.false
|
347 |
+
assert Product(1 + 1/n**2, (n, 1, oo)).is_convergent() is S.true
|
348 |
+
|
349 |
+
|
350 |
+
def test_reverse_order():
|
351 |
+
x, y, a, b, c, d= symbols('x, y, a, b, c, d', integer = True)
|
352 |
+
|
353 |
+
assert Product(x, (x, 0, 3)).reverse_order(0) == Product(1/x, (x, 4, -1))
|
354 |
+
assert Product(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
|
355 |
+
Product(x*y, (x, 6, 0), (y, 7, -1))
|
356 |
+
assert Product(x, (x, 1, 2)).reverse_order(0) == Product(1/x, (x, 3, 0))
|
357 |
+
assert Product(x, (x, 1, 3)).reverse_order(0) == Product(1/x, (x, 4, 0))
|
358 |
+
assert Product(x, (x, 1, a)).reverse_order(0) == Product(1/x, (x, a + 1, 0))
|
359 |
+
assert Product(x, (x, a, 5)).reverse_order(0) == Product(1/x, (x, 6, a - 1))
|
360 |
+
assert Product(x, (x, a + 1, a + 5)).reverse_order(0) == \
|
361 |
+
Product(1/x, (x, a + 6, a))
|
362 |
+
assert Product(x, (x, a + 1, a + 2)).reverse_order(0) == \
|
363 |
+
Product(1/x, (x, a + 3, a))
|
364 |
+
assert Product(x, (x, a + 1, a + 1)).reverse_order(0) == \
|
365 |
+
Product(1/x, (x, a + 2, a))
|
366 |
+
assert Product(x, (x, a, b)).reverse_order(0) == Product(1/x, (x, b + 1, a - 1))
|
367 |
+
assert Product(x, (x, a, b)).reverse_order(x) == Product(1/x, (x, b + 1, a - 1))
|
368 |
+
assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
|
369 |
+
Product(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
370 |
+
assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
|
371 |
+
Product(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
372 |
+
|
373 |
+
|
374 |
+
def test_issue_9983():
|
375 |
+
n = Symbol('n', integer=True, positive=True)
|
376 |
+
p = Product(1 + 1/n**Rational(2, 3), (n, 1, oo))
|
377 |
+
assert p.is_convergent() is S.false
|
378 |
+
assert product(1 + 1/n**Rational(2, 3), (n, 1, oo)) == p.doit()
|
379 |
+
|
380 |
+
|
381 |
+
def test_issue_13546():
|
382 |
+
n = Symbol('n')
|
383 |
+
k = Symbol('k')
|
384 |
+
p = Product(n + 1 / 2**k, (k, 0, n-1)).doit()
|
385 |
+
assert p.subs(n, 2).doit() == Rational(15, 2)
|
386 |
+
|
387 |
+
|
388 |
+
def test_issue_14036():
|
389 |
+
a, n = symbols('a n')
|
390 |
+
assert product(1 - a**2 / (n*pi)**2, [n, 1, oo]) != 0
|
391 |
+
|
392 |
+
|
393 |
+
def test_rewrite_Sum():
|
394 |
+
assert Product(1 - S.Half**2/k**2, (k, 1, oo)).rewrite(Sum) == \
|
395 |
+
exp(Sum(log(1 - 1/(4*k**2)), (k, 1, oo)))
|
396 |
+
|
397 |
+
|
398 |
+
def test_KroneckerDelta_Product():
|
399 |
+
y = Symbol('y')
|
400 |
+
assert Product(x*KroneckerDelta(x, y), (x, 0, 1)).doit() == 0
|
401 |
+
|
402 |
+
|
403 |
+
def test_issue_20848():
|
404 |
+
_i = Dummy('i')
|
405 |
+
t, y, z = symbols('t y z')
|
406 |
+
assert diff(Product(x, (y, 1, z)), x).as_dummy() == Sum(Product(x, (y, 1, _i - 1))*Product(x, (y, _i + 1, z)), (_i, 1, z)).as_dummy()
|
407 |
+
assert diff(Product(x, (y, 1, z)), x).doit() == x**(z - 1)*z
|
408 |
+
assert diff(Product(x, (y, x, z)), x) == Derivative(Product(x, (y, x, z)), x)
|
409 |
+
assert diff(Product(t, (x, 1, z)), x) == S(0)
|
410 |
+
assert Product(sin(n*x), (n, -1, 1)).diff(x).doit() == S(0)
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/test_sums_products.py
ADDED
@@ -0,0 +1,1646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import prod
|
2 |
+
|
3 |
+
from sympy.concrete.expr_with_intlimits import ReorderError
|
4 |
+
from sympy.concrete.products import (Product, product)
|
5 |
+
from sympy.concrete.summations import (Sum, summation, telescopic,
|
6 |
+
eval_sum_residue, _dummy_with_inherited_properties_concrete)
|
7 |
+
from sympy.core.function import (Derivative, Function)
|
8 |
+
from sympy.core import (Catalan, EulerGamma)
|
9 |
+
from sympy.core.facts import InconsistentAssumptions
|
10 |
+
from sympy.core.mod import Mod
|
11 |
+
from sympy.core.numbers import (E, I, Rational, nan, oo, pi)
|
12 |
+
from sympy.core.relational import Eq
|
13 |
+
from sympy.core.numbers import Float
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
16 |
+
from sympy.core.sympify import sympify
|
17 |
+
from sympy.functions.combinatorial.factorials import (rf, binomial, factorial)
|
18 |
+
from sympy.functions.combinatorial.numbers import harmonic
|
19 |
+
from sympy.functions.elementary.complexes import Abs
|
20 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
21 |
+
from sympy.functions.elementary.hyperbolic import (sinh, tanh)
|
22 |
+
from sympy.functions.elementary.integers import floor
|
23 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
24 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
25 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
26 |
+
from sympy.functions.special.gamma_functions import (gamma, lowergamma)
|
27 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
28 |
+
from sympy.functions.special.zeta_functions import zeta
|
29 |
+
from sympy.integrals.integrals import Integral
|
30 |
+
from sympy.logic.boolalg import And, Or
|
31 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
32 |
+
from sympy.matrices.expressions.special import Identity
|
33 |
+
from sympy.matrices import (Matrix, SparseMatrix,
|
34 |
+
ImmutableDenseMatrix, ImmutableSparseMatrix, diag)
|
35 |
+
from sympy.sets.fancysets import Range
|
36 |
+
from sympy.sets.sets import Interval
|
37 |
+
from sympy.simplify.combsimp import combsimp
|
38 |
+
from sympy.simplify.simplify import simplify
|
39 |
+
from sympy.tensor.indexed import (Idx, Indexed, IndexedBase)
|
40 |
+
from sympy.testing.pytest import XFAIL, raises, slow
|
41 |
+
from sympy.abc import a, b, c, d, k, m, x, y, z
|
42 |
+
|
43 |
+
n = Symbol('n', integer=True)
|
44 |
+
f, g = symbols('f g', cls=Function)
|
45 |
+
|
46 |
+
def test_karr_convention():
|
47 |
+
# Test the Karr summation convention that we want to hold.
|
48 |
+
# See his paper "Summation in Finite Terms" for a detailed
|
49 |
+
# reasoning why we really want exactly this definition.
|
50 |
+
# The convention is described on page 309 and essentially
|
51 |
+
# in section 1.4, definition 3:
|
52 |
+
#
|
53 |
+
# \sum_{m <= i < n} f(i) 'has the obvious meaning' for m < n
|
54 |
+
# \sum_{m <= i < n} f(i) = 0 for m = n
|
55 |
+
# \sum_{m <= i < n} f(i) = - \sum_{n <= i < m} f(i) for m > n
|
56 |
+
#
|
57 |
+
# It is important to note that he defines all sums with
|
58 |
+
# the upper limit being *exclusive*.
|
59 |
+
# In contrast, SymPy and the usual mathematical notation has:
|
60 |
+
#
|
61 |
+
# sum_{i = a}^b f(i) = f(a) + f(a+1) + ... + f(b-1) + f(b)
|
62 |
+
#
|
63 |
+
# with the upper limit *inclusive*. So translating between
|
64 |
+
# the two we find that:
|
65 |
+
#
|
66 |
+
# \sum_{m <= i < n} f(i) = \sum_{i = m}^{n-1} f(i)
|
67 |
+
#
|
68 |
+
# where we intentionally used two different ways to typeset the
|
69 |
+
# sum and its limits.
|
70 |
+
|
71 |
+
i = Symbol("i", integer=True)
|
72 |
+
k = Symbol("k", integer=True)
|
73 |
+
j = Symbol("j", integer=True)
|
74 |
+
|
75 |
+
# A simple example with a concrete summand and symbolic limits.
|
76 |
+
|
77 |
+
# The normal sum: m = k and n = k + j and therefore m < n:
|
78 |
+
m = k
|
79 |
+
n = k + j
|
80 |
+
|
81 |
+
a = m
|
82 |
+
b = n - 1
|
83 |
+
S1 = Sum(i**2, (i, a, b)).doit()
|
84 |
+
|
85 |
+
# The reversed sum: m = k + j and n = k and therefore m > n:
|
86 |
+
m = k + j
|
87 |
+
n = k
|
88 |
+
|
89 |
+
a = m
|
90 |
+
b = n - 1
|
91 |
+
S2 = Sum(i**2, (i, a, b)).doit()
|
92 |
+
|
93 |
+
assert simplify(S1 + S2) == 0
|
94 |
+
|
95 |
+
# Test the empty sum: m = k and n = k and therefore m = n:
|
96 |
+
m = k
|
97 |
+
n = k
|
98 |
+
|
99 |
+
a = m
|
100 |
+
b = n - 1
|
101 |
+
Sz = Sum(i**2, (i, a, b)).doit()
|
102 |
+
|
103 |
+
assert Sz == 0
|
104 |
+
|
105 |
+
# Another example this time with an unspecified summand and
|
106 |
+
# numeric limits. (We can not do both tests in the same example.)
|
107 |
+
|
108 |
+
# The normal sum with m < n:
|
109 |
+
m = 2
|
110 |
+
n = 11
|
111 |
+
|
112 |
+
a = m
|
113 |
+
b = n - 1
|
114 |
+
S1 = Sum(f(i), (i, a, b)).doit()
|
115 |
+
|
116 |
+
# The reversed sum with m > n:
|
117 |
+
m = 11
|
118 |
+
n = 2
|
119 |
+
|
120 |
+
a = m
|
121 |
+
b = n - 1
|
122 |
+
S2 = Sum(f(i), (i, a, b)).doit()
|
123 |
+
|
124 |
+
assert simplify(S1 + S2) == 0
|
125 |
+
|
126 |
+
# Test the empty sum with m = n:
|
127 |
+
m = 5
|
128 |
+
n = 5
|
129 |
+
|
130 |
+
a = m
|
131 |
+
b = n - 1
|
132 |
+
Sz = Sum(f(i), (i, a, b)).doit()
|
133 |
+
|
134 |
+
assert Sz == 0
|
135 |
+
|
136 |
+
e = Piecewise((exp(-i), Mod(i, 2) > 0), (0, True))
|
137 |
+
s = Sum(e, (i, 0, 11))
|
138 |
+
assert s.n(3) == s.doit().n(3)
|
139 |
+
|
140 |
+
|
141 |
+
def test_karr_proposition_2a():
|
142 |
+
# Test Karr, page 309, proposition 2, part a
|
143 |
+
i = Symbol("i", integer=True)
|
144 |
+
u = Symbol("u", integer=True)
|
145 |
+
v = Symbol("v", integer=True)
|
146 |
+
|
147 |
+
def test_the_sum(m, n):
|
148 |
+
# g
|
149 |
+
g = i**3 + 2*i**2 - 3*i
|
150 |
+
# f = Delta g
|
151 |
+
f = simplify(g.subs(i, i+1) - g)
|
152 |
+
# The sum
|
153 |
+
a = m
|
154 |
+
b = n - 1
|
155 |
+
S = Sum(f, (i, a, b)).doit()
|
156 |
+
# Test if Sum_{m <= i < n} f(i) = g(n) - g(m)
|
157 |
+
assert simplify(S - (g.subs(i, n) - g.subs(i, m))) == 0
|
158 |
+
|
159 |
+
# m < n
|
160 |
+
test_the_sum(u, u+v)
|
161 |
+
# m = n
|
162 |
+
test_the_sum(u, u )
|
163 |
+
# m > n
|
164 |
+
test_the_sum(u+v, u )
|
165 |
+
|
166 |
+
|
167 |
+
def test_karr_proposition_2b():
|
168 |
+
# Test Karr, page 309, proposition 2, part b
|
169 |
+
i = Symbol("i", integer=True)
|
170 |
+
u = Symbol("u", integer=True)
|
171 |
+
v = Symbol("v", integer=True)
|
172 |
+
w = Symbol("w", integer=True)
|
173 |
+
|
174 |
+
def test_the_sum(l, n, m):
|
175 |
+
# Summand
|
176 |
+
s = i**3
|
177 |
+
# First sum
|
178 |
+
a = l
|
179 |
+
b = n - 1
|
180 |
+
S1 = Sum(s, (i, a, b)).doit()
|
181 |
+
# Second sum
|
182 |
+
a = l
|
183 |
+
b = m - 1
|
184 |
+
S2 = Sum(s, (i, a, b)).doit()
|
185 |
+
# Third sum
|
186 |
+
a = m
|
187 |
+
b = n - 1
|
188 |
+
S3 = Sum(s, (i, a, b)).doit()
|
189 |
+
# Test if S1 = S2 + S3 as required
|
190 |
+
assert S1 - (S2 + S3) == 0
|
191 |
+
|
192 |
+
# l < m < n
|
193 |
+
test_the_sum(u, u+v, u+v+w)
|
194 |
+
# l < m = n
|
195 |
+
test_the_sum(u, u+v, u+v )
|
196 |
+
# l < m > n
|
197 |
+
test_the_sum(u, u+v+w, v )
|
198 |
+
# l = m < n
|
199 |
+
test_the_sum(u, u, u+v )
|
200 |
+
# l = m = n
|
201 |
+
test_the_sum(u, u, u )
|
202 |
+
# l = m > n
|
203 |
+
test_the_sum(u+v, u+v, u )
|
204 |
+
# l > m < n
|
205 |
+
test_the_sum(u+v, u, u+w )
|
206 |
+
# l > m = n
|
207 |
+
test_the_sum(u+v, u, u )
|
208 |
+
# l > m > n
|
209 |
+
test_the_sum(u+v+w, u+v, u )
|
210 |
+
|
211 |
+
|
212 |
+
def test_arithmetic_sums():
|
213 |
+
assert summation(1, (n, a, b)) == b - a + 1
|
214 |
+
assert Sum(S.NaN, (n, a, b)) is S.NaN
|
215 |
+
assert Sum(x, (n, a, a)).doit() == x
|
216 |
+
assert Sum(x, (x, a, a)).doit() == a
|
217 |
+
assert Sum(x, (n, 1, a)).doit() == a*x
|
218 |
+
assert Sum(x, (x, Range(1, 11))).doit() == 55
|
219 |
+
assert Sum(x, (x, Range(1, 11, 2))).doit() == 25
|
220 |
+
assert Sum(x, (x, Range(1, 10, 2))) == Sum(x, (x, Range(9, 0, -2)))
|
221 |
+
lo, hi = 1, 2
|
222 |
+
s1 = Sum(n, (n, lo, hi))
|
223 |
+
s2 = Sum(n, (n, hi, lo))
|
224 |
+
assert s1 != s2
|
225 |
+
assert s1.doit() == 3 and s2.doit() == 0
|
226 |
+
lo, hi = x, x + 1
|
227 |
+
s1 = Sum(n, (n, lo, hi))
|
228 |
+
s2 = Sum(n, (n, hi, lo))
|
229 |
+
assert s1 != s2
|
230 |
+
assert s1.doit() == 2*x + 1 and s2.doit() == 0
|
231 |
+
assert Sum(Integral(x, (x, 1, y)) + x, (x, 1, 2)).doit() == \
|
232 |
+
y**2 + 2
|
233 |
+
assert summation(1, (n, 1, 10)) == 10
|
234 |
+
assert summation(2*n, (n, 0, 10**10)) == 100000000010000000000
|
235 |
+
assert summation(4*n*m, (n, a, 1), (m, 1, d)).expand() == \
|
236 |
+
2*d + 2*d**2 + a*d + a*d**2 - d*a**2 - a**2*d**2
|
237 |
+
assert summation(cos(n), (n, -2, 1)) == cos(-2) + cos(-1) + cos(0) + cos(1)
|
238 |
+
assert summation(cos(n), (n, x, x + 2)) == cos(x) + cos(x + 1) + cos(x + 2)
|
239 |
+
assert isinstance(summation(cos(n), (n, x, x + S.Half)), Sum)
|
240 |
+
assert summation(k, (k, 0, oo)) is oo
|
241 |
+
assert summation(k, (k, Range(1, 11))) == 55
|
242 |
+
|
243 |
+
|
244 |
+
def test_polynomial_sums():
|
245 |
+
assert summation(n**2, (n, 3, 8)) == 199
|
246 |
+
assert summation(n, (n, a, b)) == \
|
247 |
+
((a + b)*(b - a + 1)/2).expand()
|
248 |
+
assert summation(n**2, (n, 1, b)) == \
|
249 |
+
((2*b**3 + 3*b**2 + b)/6).expand()
|
250 |
+
assert summation(n**3, (n, 1, b)) == \
|
251 |
+
((b**4 + 2*b**3 + b**2)/4).expand()
|
252 |
+
assert summation(n**6, (n, 1, b)) == \
|
253 |
+
((6*b**7 + 21*b**6 + 21*b**5 - 7*b**3 + b)/42).expand()
|
254 |
+
|
255 |
+
|
256 |
+
def test_geometric_sums():
|
257 |
+
assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi)
|
258 |
+
assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1
|
259 |
+
assert summation(S.Half**n, (n, 1, oo)) == 1
|
260 |
+
assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1
|
261 |
+
assert summation(2**n, (n, 1, oo)) is oo
|
262 |
+
assert summation(2**(-n), (n, 1, oo)) == 1
|
263 |
+
assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54)
|
264 |
+
assert summation(2**(-4*n + 3), (n, 1, oo)) == Rational(8, 15)
|
265 |
+
assert summation(2**(n + 1), (n, 1, b)).expand() == 4*(2**b - 1)
|
266 |
+
|
267 |
+
# issue 6664:
|
268 |
+
assert summation(x**n, (n, 0, oo)) == \
|
269 |
+
Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True))
|
270 |
+
|
271 |
+
assert summation(-2**n, (n, 0, oo)) is -oo
|
272 |
+
assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo))
|
273 |
+
|
274 |
+
# issue 6802:
|
275 |
+
assert summation((-1)**(2*x + 2), (x, 0, n)) == n + 1
|
276 |
+
assert summation((-2)**(2*x + 2), (x, 0, n)) == 4*4**(n + 1)/S(3) - Rational(4, 3)
|
277 |
+
assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1)/S(2) + S.Half
|
278 |
+
assert summation(y**x, (x, a, b)) == \
|
279 |
+
Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True))
|
280 |
+
assert summation((-2)**(y*x + 2), (x, 0, n)) == \
|
281 |
+
4*Piecewise((n + 1, Eq((-2)**y, 1)),
|
282 |
+
((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True))
|
283 |
+
|
284 |
+
# issue 8251:
|
285 |
+
assert summation((1/(n + 1)**2)*n**2, (n, 0, oo)) is oo
|
286 |
+
|
287 |
+
#issue 9908:
|
288 |
+
assert Sum(1/(n**3 - 1), (n, -oo, -2)).doit() == summation(1/(n**3 - 1), (n, -oo, -2))
|
289 |
+
|
290 |
+
#issue 11642:
|
291 |
+
result = Sum(0.5**n, (n, 1, oo)).doit()
|
292 |
+
assert result == 1.0
|
293 |
+
assert result.is_Float
|
294 |
+
|
295 |
+
result = Sum(0.25**n, (n, 1, oo)).doit()
|
296 |
+
assert result == 1/3.
|
297 |
+
assert result.is_Float
|
298 |
+
|
299 |
+
result = Sum(0.99999**n, (n, 1, oo)).doit()
|
300 |
+
assert result == 99999.0
|
301 |
+
assert result.is_Float
|
302 |
+
|
303 |
+
result = Sum(S.Half**n, (n, 1, oo)).doit()
|
304 |
+
assert result == 1
|
305 |
+
assert not result.is_Float
|
306 |
+
|
307 |
+
result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit()
|
308 |
+
assert result == Rational(3, 2)
|
309 |
+
assert not result.is_Float
|
310 |
+
|
311 |
+
assert Sum(1.0**n, (n, 1, oo)).doit() is oo
|
312 |
+
assert Sum(2.43**n, (n, 1, oo)).doit() is oo
|
313 |
+
|
314 |
+
# Issue 13979
|
315 |
+
i, k, q = symbols('i k q', integer=True)
|
316 |
+
result = summation(
|
317 |
+
exp(-2*I*pi*k*i/n) * exp(2*I*pi*q*i/n) / n, (i, 0, n - 1)
|
318 |
+
)
|
319 |
+
assert result.simplify() == Piecewise(
|
320 |
+
(1, Eq(exp(-2*I*pi*(k - q)/n), 1)), (0, True)
|
321 |
+
)
|
322 |
+
|
323 |
+
#Issue 23491
|
324 |
+
assert Sum(1/(n**2 + 1), (n, 1, oo)).doit() == S(-1)/2 + pi/(2*tanh(pi))
|
325 |
+
|
326 |
+
def test_harmonic_sums():
|
327 |
+
assert summation(1/k, (k, 0, n)) == Sum(1/k, (k, 0, n))
|
328 |
+
assert summation(1/k, (k, 1, n)) == harmonic(n)
|
329 |
+
assert summation(n/k, (k, 1, n)) == n*harmonic(n)
|
330 |
+
assert summation(1/k, (k, 5, n)) == harmonic(n) - harmonic(4)
|
331 |
+
|
332 |
+
|
333 |
+
def test_composite_sums():
|
334 |
+
f = S.Half*(7 - 6*n + Rational(1, 7)*n**3)
|
335 |
+
s = summation(f, (n, a, b))
|
336 |
+
assert not isinstance(s, Sum)
|
337 |
+
A = 0
|
338 |
+
for i in range(-3, 5):
|
339 |
+
A += f.subs(n, i)
|
340 |
+
B = s.subs(a, -3).subs(b, 4)
|
341 |
+
assert A == B
|
342 |
+
|
343 |
+
|
344 |
+
def test_hypergeometric_sums():
|
345 |
+
assert summation(
|
346 |
+
binomial(2*k, k)/4**k, (k, 0, n)) == (1 + 2*n)*binomial(2*n, n)/4**n
|
347 |
+
assert summation(binomial(2*k, k)/5**k, (k, -oo, oo)) == sqrt(5)
|
348 |
+
|
349 |
+
|
350 |
+
def test_other_sums():
|
351 |
+
f = m**2 + m*exp(m)
|
352 |
+
g = 3*exp(Rational(3, 2))/2 + exp(S.Half)/2 - exp(Rational(-1, 2))/2 - 3*exp(Rational(-3, 2))/2 + 5
|
353 |
+
|
354 |
+
assert summation(f, (m, Rational(-3, 2), Rational(3, 2))) == g
|
355 |
+
assert summation(f, (m, -1.5, 1.5)).evalf().epsilon_eq(g.evalf(), 1e-10)
|
356 |
+
|
357 |
+
fac = factorial
|
358 |
+
|
359 |
+
|
360 |
+
def NS(e, n=15, **options):
|
361 |
+
return str(sympify(e).evalf(n, **options))
|
362 |
+
|
363 |
+
|
364 |
+
def test_evalf_fast_series():
|
365 |
+
# Euler transformed series for sqrt(1+x)
|
366 |
+
assert NS(Sum(
|
367 |
+
fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100)
|
368 |
+
|
369 |
+
# Some series for exp(1)
|
370 |
+
estr = NS(E, 100)
|
371 |
+
assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr
|
372 |
+
assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr
|
373 |
+
assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr
|
374 |
+
assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr
|
375 |
+
|
376 |
+
pistr = NS(pi, 100)
|
377 |
+
# Ramanujan series for pi
|
378 |
+
assert NS(9801/sqrt(8)/Sum(fac(
|
379 |
+
4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr
|
380 |
+
assert NS(1/Sum(
|
381 |
+
binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr
|
382 |
+
# Machin's formula for pi
|
383 |
+
assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) -
|
384 |
+
4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr
|
385 |
+
|
386 |
+
# Apery's constant
|
387 |
+
astr = NS(zeta(3), 100)
|
388 |
+
P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \
|
389 |
+
n + 12463
|
390 |
+
assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac(
|
391 |
+
n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr
|
392 |
+
assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 /
|
393 |
+
fac(2*n + 1)**5, (n, 0, oo)), 100) == astr
|
394 |
+
|
395 |
+
|
396 |
+
def test_evalf_fast_series_issue_4021():
|
397 |
+
# Catalan's constant
|
398 |
+
assert NS(Sum((-1)**(n - 1)*2**(8*n)*(40*n**2 - 24*n + 3)*fac(2*n)**3*
|
399 |
+
fac(n)**2/n**3/(2*n - 1)/fac(4*n)**2, (n, 1, oo))/64, 100) == \
|
400 |
+
NS(Catalan, 100)
|
401 |
+
astr = NS(zeta(3), 100)
|
402 |
+
assert NS(5*Sum(
|
403 |
+
(-1)**(n - 1)*fac(n)**2 / n**3 / fac(2*n), (n, 1, oo))/2, 100) == astr
|
404 |
+
assert NS(Sum((-1)**(n - 1)*(56*n**2 - 32*n + 5) / (2*n - 1)**2 * fac(n - 1)
|
405 |
+
**3 / fac(3*n), (n, 1, oo))/4, 100) == astr
|
406 |
+
|
407 |
+
|
408 |
+
def test_evalf_slow_series():
|
409 |
+
assert NS(Sum((-1)**n / n, (n, 1, oo)), 15) == NS(-log(2), 15)
|
410 |
+
assert NS(Sum((-1)**n / n, (n, 1, oo)), 50) == NS(-log(2), 50)
|
411 |
+
assert NS(Sum(1/n**2, (n, 1, oo)), 15) == NS(pi**2/6, 15)
|
412 |
+
assert NS(Sum(1/n**2, (n, 1, oo)), 100) == NS(pi**2/6, 100)
|
413 |
+
assert NS(Sum(1/n**2, (n, 1, oo)), 500) == NS(pi**2/6, 500)
|
414 |
+
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 15) == NS(pi**3/32, 15)
|
415 |
+
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 50) == NS(pi**3/32, 50)
|
416 |
+
|
417 |
+
|
418 |
+
def test_evalf_oo_to_oo():
|
419 |
+
# There used to be an error in certain cases
|
420 |
+
# Does not evaluate, but at least do not throw an error
|
421 |
+
# Evaluates symbolically to 0, which is not correct
|
422 |
+
assert Sum(1/(n**2+1), (n, -oo, oo)).evalf() == Sum(1/(n**2+1), (n, -oo, oo))
|
423 |
+
# This evaluates if from 1 to oo and symbolically
|
424 |
+
assert Sum(1/(factorial(abs(n))), (n, -oo, -1)).evalf() == Sum(1/(factorial(abs(n))), (n, -oo, -1))
|
425 |
+
|
426 |
+
|
427 |
+
def test_euler_maclaurin():
|
428 |
+
# Exact polynomial sums with E-M
|
429 |
+
def check_exact(f, a, b, m, n):
|
430 |
+
A = Sum(f, (k, a, b))
|
431 |
+
s, e = A.euler_maclaurin(m, n)
|
432 |
+
assert (e == 0) and (s.expand() == A.doit())
|
433 |
+
check_exact(k**4, a, b, 0, 2)
|
434 |
+
check_exact(k**4 + 2*k, a, b, 1, 2)
|
435 |
+
check_exact(k**4 + k**2, a, b, 1, 5)
|
436 |
+
check_exact(k**5, 2, 6, 1, 2)
|
437 |
+
check_exact(k**5, 2, 6, 1, 3)
|
438 |
+
assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0)
|
439 |
+
# Not exact
|
440 |
+
assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
|
441 |
+
# Numerical test
|
442 |
+
for mi, ni in [(2, 4), (2, 20), (10, 20), (18, 20)]:
|
443 |
+
A = Sum(1/k**3, (k, 1, oo))
|
444 |
+
s, e = A.euler_maclaurin(mi, ni)
|
445 |
+
assert abs((s - zeta(3)).evalf()) < e.evalf()
|
446 |
+
|
447 |
+
raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin())
|
448 |
+
|
449 |
+
|
450 |
+
@slow
|
451 |
+
def test_evalf_euler_maclaurin():
|
452 |
+
assert NS(Sum(1/k**k, (k, 1, oo)), 15) == '1.29128599706266'
|
453 |
+
assert NS(Sum(1/k**k, (k, 1, oo)),
|
454 |
+
50) == '1.2912859970626635404072825905956005414986193682745'
|
455 |
+
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 15) == NS(EulerGamma, 15)
|
456 |
+
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 50) == NS(EulerGamma, 50)
|
457 |
+
assert NS(Sum(log(k)/k**2, (k, 1, oo)), 15) == '0.937548254315844'
|
458 |
+
assert NS(Sum(log(k)/k**2, (k, 1, oo)),
|
459 |
+
50) == '0.93754825431584375370257409456786497789786028861483'
|
460 |
+
assert NS(Sum(1/k, (k, 1000000, 2000000)), 15) == '0.693147930560008'
|
461 |
+
assert NS(Sum(1/k, (k, 1000000, 2000000)),
|
462 |
+
50) == '0.69314793056000780941723211364567656807940638436025'
|
463 |
+
|
464 |
+
|
465 |
+
def test_evalf_symbolic():
|
466 |
+
# issue 6328
|
467 |
+
expr = Sum(f(x), (x, 1, 3)) + Sum(g(x), (x, 1, 3))
|
468 |
+
assert expr.evalf() == expr
|
469 |
+
|
470 |
+
|
471 |
+
def test_evalf_issue_3273():
|
472 |
+
assert Sum(0, (k, 1, oo)).evalf() == 0
|
473 |
+
|
474 |
+
|
475 |
+
def test_simple_products():
|
476 |
+
assert Product(S.NaN, (x, 1, 3)) is S.NaN
|
477 |
+
assert product(S.NaN, (x, 1, 3)) is S.NaN
|
478 |
+
assert Product(x, (n, a, a)).doit() == x
|
479 |
+
assert Product(x, (x, a, a)).doit() == a
|
480 |
+
assert Product(x, (y, 1, a)).doit() == x**a
|
481 |
+
|
482 |
+
lo, hi = 1, 2
|
483 |
+
s1 = Product(n, (n, lo, hi))
|
484 |
+
s2 = Product(n, (n, hi, lo))
|
485 |
+
assert s1 != s2
|
486 |
+
# This IS correct according to Karr product convention
|
487 |
+
assert s1.doit() == 2
|
488 |
+
assert s2.doit() == 1
|
489 |
+
|
490 |
+
lo, hi = x, x + 1
|
491 |
+
s1 = Product(n, (n, lo, hi))
|
492 |
+
s2 = Product(n, (n, hi, lo))
|
493 |
+
s3 = 1 / Product(n, (n, hi + 1, lo - 1))
|
494 |
+
assert s1 != s2
|
495 |
+
# This IS correct according to Karr product convention
|
496 |
+
assert s1.doit() == x*(x + 1)
|
497 |
+
assert s2.doit() == 1
|
498 |
+
assert s3.doit() == x*(x + 1)
|
499 |
+
|
500 |
+
assert Product(Integral(2*x, (x, 1, y)) + 2*x, (x, 1, 2)).doit() == \
|
501 |
+
(y**2 + 1)*(y**2 + 3)
|
502 |
+
assert product(2, (n, a, b)) == 2**(b - a + 1)
|
503 |
+
assert product(n, (n, 1, b)) == factorial(b)
|
504 |
+
assert product(n**3, (n, 1, b)) == factorial(b)**3
|
505 |
+
assert product(3**(2 + n), (n, a, b)) \
|
506 |
+
== 3**(2*(1 - a + b) + b/2 + (b**2)/2 + a/2 - (a**2)/2)
|
507 |
+
assert product(cos(n), (n, 3, 5)) == cos(3)*cos(4)*cos(5)
|
508 |
+
assert product(cos(n), (n, x, x + 2)) == cos(x)*cos(x + 1)*cos(x + 2)
|
509 |
+
assert isinstance(product(cos(n), (n, x, x + S.Half)), Product)
|
510 |
+
# If Product managed to evaluate this one, it most likely got it wrong!
|
511 |
+
assert isinstance(Product(n**n, (n, 1, b)), Product)
|
512 |
+
|
513 |
+
|
514 |
+
def test_rational_products():
|
515 |
+
assert combsimp(product(1 + 1/n, (n, a, b))) == (1 + b)/a
|
516 |
+
assert combsimp(product(n + 1, (n, a, b))) == gamma(2 + b)/gamma(1 + a)
|
517 |
+
assert combsimp(product((n + 1)/(n - 1), (n, a, b))) == b*(1 + b)/(a*(a - 1))
|
518 |
+
assert combsimp(product(n/(n + 1)/(n + 2), (n, a, b))) == \
|
519 |
+
a*gamma(a + 2)/(b + 1)/gamma(b + 3)
|
520 |
+
assert combsimp(product(n*(n + 1)/(n - 1)/(n - 2), (n, a, b))) == \
|
521 |
+
b**2*(b - 1)*(1 + b)/(a - 1)**2/(a*(a - 2))
|
522 |
+
|
523 |
+
|
524 |
+
def test_wallis_product():
|
525 |
+
# Wallis product, given in two different forms to ensure that Product
|
526 |
+
# can factor simple rational expressions
|
527 |
+
A = Product(4*n**2 / (4*n**2 - 1), (n, 1, b))
|
528 |
+
B = Product((2*n)*(2*n)/(2*n - 1)/(2*n + 1), (n, 1, b))
|
529 |
+
R = pi*gamma(b + 1)**2/(2*gamma(b + S.Half)*gamma(b + Rational(3, 2)))
|
530 |
+
assert simplify(A.doit()) == R
|
531 |
+
assert simplify(B.doit()) == R
|
532 |
+
# This one should eventually also be doable (Euler's product formula for sin)
|
533 |
+
# assert Product(1+x/n**2, (n, 1, b)) == ...
|
534 |
+
|
535 |
+
|
536 |
+
def test_telescopic_sums():
|
537 |
+
#checks also input 2 of comment 1 issue 4127
|
538 |
+
assert Sum(1/k - 1/(k + 1), (k, 1, n)).doit() == 1 - 1/(1 + n)
|
539 |
+
assert Sum(
|
540 |
+
f(k) - f(k + 2), (k, m, n)).doit() == -f(1 + n) - f(2 + n) + f(m) + f(1 + m)
|
541 |
+
assert Sum(cos(k) - cos(k + 3), (k, 1, n)).doit() == -cos(1 + n) - \
|
542 |
+
cos(2 + n) - cos(3 + n) + cos(1) + cos(2) + cos(3)
|
543 |
+
|
544 |
+
# dummy variable shouldn't matter
|
545 |
+
assert telescopic(1/m, -m/(1 + m), (m, n - 1, n)) == \
|
546 |
+
telescopic(1/k, -k/(1 + k), (k, n - 1, n))
|
547 |
+
|
548 |
+
assert Sum(1/x/(x - 1), (x, a, b)).doit() == 1/(a - 1) - 1/b
|
549 |
+
eq = 1/((5*n + 2)*(5*(n + 1) + 2))
|
550 |
+
assert Sum(eq, (n, 0, oo)).doit() == S(1)/10
|
551 |
+
nz = symbols('nz', nonzero=True)
|
552 |
+
v = Sum(eq.subs(5, nz), (n, 0, oo)).doit()
|
553 |
+
assert v.subs(nz, 5).simplify() == S(1)/10
|
554 |
+
# check that apart is being used in non-symbolic case
|
555 |
+
s = Sum(eq, (n, 0, k)).doit()
|
556 |
+
v = Sum(eq, (n, 0, 10**100)).doit()
|
557 |
+
assert v == s.subs(k, 10**100)
|
558 |
+
|
559 |
+
|
560 |
+
def test_sum_reconstruct():
|
561 |
+
s = Sum(n**2, (n, -1, 1))
|
562 |
+
assert s == Sum(*s.args)
|
563 |
+
raises(ValueError, lambda: Sum(x, x))
|
564 |
+
raises(ValueError, lambda: Sum(x, (x, 1)))
|
565 |
+
|
566 |
+
|
567 |
+
def test_limit_subs():
|
568 |
+
for F in (Sum, Product, Integral):
|
569 |
+
assert F(a*exp(a), (a, -2, 2)) == F(a*exp(a), (a, -b, b)).subs(b, 2)
|
570 |
+
assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \
|
571 |
+
F(a, (a, c, 4))
|
572 |
+
assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1))
|
573 |
+
|
574 |
+
|
575 |
+
def test_function_subs():
|
576 |
+
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
|
577 |
+
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
|
578 |
+
assert S.subs(f(x),x) == S
|
579 |
+
raises(ValueError, lambda: S.subs(f(y),x+y) )
|
580 |
+
S = Sum(x*log(y),(x,0,oo),(y,0,oo))
|
581 |
+
assert S.subs(log(y),y) == S
|
582 |
+
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
|
583 |
+
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
|
584 |
+
|
585 |
+
|
586 |
+
def test_equality():
|
587 |
+
# if this fails remove special handling below
|
588 |
+
raises(ValueError, lambda: Sum(x, x))
|
589 |
+
r = symbols('x', real=True)
|
590 |
+
for F in (Sum, Product, Integral):
|
591 |
+
try:
|
592 |
+
assert F(x, x) != F(y, y)
|
593 |
+
assert F(x, (x, 1, 2)) != F(x, x)
|
594 |
+
assert F(x, (x, x)) != F(x, x) # or else they print the same
|
595 |
+
assert F(1, x) != F(1, y)
|
596 |
+
except ValueError:
|
597 |
+
pass
|
598 |
+
assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) # diff limit
|
599 |
+
assert F(a, (x, 1, x)) != F(a, (y, 1, y))
|
600 |
+
assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) # diff expression
|
601 |
+
assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) # diff assumptions
|
602 |
+
assert F(1, (x, 1, x)) != F(1, (y, 1, x)) # only dummy is diff
|
603 |
+
assert F(1, (x, 1, x)).dummy_eq(F(1, (y, 1, x)))
|
604 |
+
|
605 |
+
# issue 5265
|
606 |
+
assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a))
|
607 |
+
|
608 |
+
|
609 |
+
def test_Sum_doit():
|
610 |
+
assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3
|
611 |
+
assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
|
612 |
+
3*Integral(a**2)
|
613 |
+
assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2)
|
614 |
+
|
615 |
+
# test nested sum evaluation
|
616 |
+
s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n))
|
617 |
+
assert 0 == (s.doit() - n*(n+1)*(n-1)).factor()
|
618 |
+
|
619 |
+
# Integer assumes finite
|
620 |
+
assert Sum(KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((1, And(-oo < y, y < oo)), (0, True))
|
621 |
+
assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == 1
|
622 |
+
assert Sum(m*KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((m, And(-oo < y, y < oo)), (0, True))
|
623 |
+
assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == x
|
624 |
+
assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
|
625 |
+
assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
|
626 |
+
3 * Piecewise((1, And(1 <= k, k <= 3)), (0, True))
|
627 |
+
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
|
628 |
+
f(1) + f(2) + f(3)
|
629 |
+
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
|
630 |
+
Sum(f(n), (n, 1, oo))
|
631 |
+
|
632 |
+
# issue 2597
|
633 |
+
nmax = symbols('N', integer=True, positive=True)
|
634 |
+
pw = Piecewise((1, And(1 <= n, n <= nmax)), (0, True))
|
635 |
+
assert Sum(pw, (n, 1, nmax)).doit() == Sum(Piecewise((1, nmax >= n),
|
636 |
+
(0, True)), (n, 1, nmax))
|
637 |
+
|
638 |
+
q, s = symbols('q, s')
|
639 |
+
assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1),
|
640 |
+
(Sum(n**(-2*s), (n, 1, oo)), True))
|
641 |
+
assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1),
|
642 |
+
(Sum((n + 1)**(-s), (n, 0, oo)), True))
|
643 |
+
assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise(
|
644 |
+
(zeta(s, q), And(q > 0, s > 1)),
|
645 |
+
(Sum((n + q)**(-s), (n, 0, oo)), True))
|
646 |
+
assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise(
|
647 |
+
(zeta(s, 2*q), And(2*q > 0, s > 1)),
|
648 |
+
(Sum((n + q)**(-s), (n, q, oo)), True))
|
649 |
+
assert summation(1/n**2, (n, 1, oo)) == zeta(2)
|
650 |
+
assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo))
|
651 |
+
|
652 |
+
|
653 |
+
def test_Product_doit():
|
654 |
+
assert Product(n*Integral(a**2), (n, 1, 3)).doit() == 2 * a**9 / 9
|
655 |
+
assert Product(n*Integral(a**2), (n, 1, 3)).doit(deep=False) == \
|
656 |
+
6*Integral(a**2)**3
|
657 |
+
assert product(n*Integral(a**2), (n, 1, 3)) == 6*Integral(a**2)**3
|
658 |
+
|
659 |
+
|
660 |
+
def test_Sum_interface():
|
661 |
+
assert isinstance(Sum(0, (n, 0, 2)), Sum)
|
662 |
+
assert Sum(nan, (n, 0, 2)) is nan
|
663 |
+
assert Sum(nan, (n, 0, oo)) is nan
|
664 |
+
assert Sum(0, (n, 0, 2)).doit() == 0
|
665 |
+
assert isinstance(Sum(0, (n, 0, oo)), Sum)
|
666 |
+
assert Sum(0, (n, 0, oo)).doit() == 0
|
667 |
+
raises(ValueError, lambda: Sum(1))
|
668 |
+
raises(ValueError, lambda: summation(1))
|
669 |
+
|
670 |
+
|
671 |
+
def test_diff():
|
672 |
+
assert Sum(x, (x, 1, 2)).diff(x) == 0
|
673 |
+
assert Sum(x*y, (x, 1, 2)).diff(x) == 0
|
674 |
+
assert Sum(x*y, (y, 1, 2)).diff(x) == Sum(y, (y, 1, 2))
|
675 |
+
e = Sum(x*y, (x, 1, a))
|
676 |
+
assert e.diff(a) == Derivative(e, a)
|
677 |
+
assert Sum(x*y, (x, 1, 3), (a, 2, 5)).diff(y).doit() == \
|
678 |
+
Sum(x*y, (x, 1, 3), (a, 2, 5)).doit().diff(y) == 24
|
679 |
+
assert Sum(x, (x, 1, 2)).diff(y) == 0
|
680 |
+
|
681 |
+
|
682 |
+
def test_hypersum():
|
683 |
+
assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
|
684 |
+
assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
|
685 |
+
assert simplify(summation((-1)**n*x**(2*n + 1) /
|
686 |
+
factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120
|
687 |
+
|
688 |
+
assert summation(1/(n + 2)**3, (n, 1, oo)) == Rational(-9, 8) + zeta(3)
|
689 |
+
assert summation(1/n**4, (n, 1, oo)) == pi**4/90
|
690 |
+
|
691 |
+
s = summation(x**n*n, (n, -oo, 0))
|
692 |
+
assert s.is_Piecewise
|
693 |
+
assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
|
694 |
+
assert s.args[0].args[1] == (abs(1/x) < 1)
|
695 |
+
|
696 |
+
m = Symbol('n', integer=True, positive=True)
|
697 |
+
assert summation(binomial(m, k), (k, 0, m)) == 2**m
|
698 |
+
|
699 |
+
|
700 |
+
def test_issue_4170():
|
701 |
+
assert summation(1/factorial(k), (k, 0, oo)) == E
|
702 |
+
|
703 |
+
|
704 |
+
def test_is_commutative():
|
705 |
+
from sympy.physics.secondquant import NO, F, Fd
|
706 |
+
m = Symbol('m', commutative=False)
|
707 |
+
for f in (Sum, Product, Integral):
|
708 |
+
assert f(z, (z, 1, 1)).is_commutative is True
|
709 |
+
assert f(z*y, (z, 1, 6)).is_commutative is True
|
710 |
+
assert f(m*x, (x, 1, 2)).is_commutative is False
|
711 |
+
|
712 |
+
assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False
|
713 |
+
|
714 |
+
|
715 |
+
def test_is_zero():
|
716 |
+
for func in [Sum, Product]:
|
717 |
+
assert func(0, (x, 1, 1)).is_zero is True
|
718 |
+
assert func(x, (x, 1, 1)).is_zero is None
|
719 |
+
|
720 |
+
assert Sum(0, (x, 1, 0)).is_zero is True
|
721 |
+
assert Product(0, (x, 1, 0)).is_zero is False
|
722 |
+
|
723 |
+
|
724 |
+
def test_is_number():
|
725 |
+
# is number should not rely on evaluation or assumptions,
|
726 |
+
# it should be equivalent to `not foo.free_symbols`
|
727 |
+
assert Sum(1, (x, 1, 1)).is_number is True
|
728 |
+
assert Sum(1, (x, 1, x)).is_number is False
|
729 |
+
assert Sum(0, (x, y, z)).is_number is False
|
730 |
+
assert Sum(x, (y, 1, 2)).is_number is False
|
731 |
+
assert Sum(x, (y, 1, 1)).is_number is False
|
732 |
+
assert Sum(x, (x, 1, 2)).is_number is True
|
733 |
+
assert Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
|
734 |
+
|
735 |
+
assert Product(2, (x, 1, 1)).is_number is True
|
736 |
+
assert Product(2, (x, 1, y)).is_number is False
|
737 |
+
assert Product(0, (x, y, z)).is_number is False
|
738 |
+
assert Product(1, (x, y, z)).is_number is False
|
739 |
+
assert Product(x, (y, 1, x)).is_number is False
|
740 |
+
assert Product(x, (y, 1, 2)).is_number is False
|
741 |
+
assert Product(x, (y, 1, 1)).is_number is False
|
742 |
+
assert Product(x, (x, 1, 2)).is_number is True
|
743 |
+
|
744 |
+
|
745 |
+
def test_free_symbols():
|
746 |
+
for func in [Sum, Product]:
|
747 |
+
assert func(1, (x, 1, 2)).free_symbols == set()
|
748 |
+
assert func(0, (x, 1, y)).free_symbols == {y}
|
749 |
+
assert func(2, (x, 1, y)).free_symbols == {y}
|
750 |
+
assert func(x, (x, 1, 2)).free_symbols == set()
|
751 |
+
assert func(x, (x, 1, y)).free_symbols == {y}
|
752 |
+
assert func(x, (y, 1, y)).free_symbols == {x, y}
|
753 |
+
assert func(x, (y, 1, 2)).free_symbols == {x}
|
754 |
+
assert func(x, (y, 1, 1)).free_symbols == {x}
|
755 |
+
assert func(x, (y, 1, z)).free_symbols == {x, z}
|
756 |
+
assert func(x, (x, 1, y), (y, 1, 2)).free_symbols == set()
|
757 |
+
assert func(x, (x, 1, y), (y, 1, z)).free_symbols == {z}
|
758 |
+
assert func(x, (x, 1, y), (y, 1, y)).free_symbols == {y}
|
759 |
+
assert func(x, (y, 1, y), (y, 1, z)).free_symbols == {x, z}
|
760 |
+
assert Sum(1, (x, 1, y)).free_symbols == {y}
|
761 |
+
# free_symbols answers whether the object *as written* has free symbols,
|
762 |
+
# not whether the evaluated expression has free symbols
|
763 |
+
assert Product(1, (x, 1, y)).free_symbols == {y}
|
764 |
+
# don't count free symbols that are not independent of integration
|
765 |
+
# variable(s)
|
766 |
+
assert func(f(x), (f(x), 1, 2)).free_symbols == set()
|
767 |
+
assert func(f(x), (f(x), 1, x)).free_symbols == {x}
|
768 |
+
assert func(f(x), (f(x), 1, y)).free_symbols == {y}
|
769 |
+
assert func(f(x), (z, 1, y)).free_symbols == {x, y}
|
770 |
+
|
771 |
+
|
772 |
+
def test_conjugate_transpose():
|
773 |
+
A, B = symbols("A B", commutative=False)
|
774 |
+
p = Sum(A*B**n, (n, 1, 3))
|
775 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
776 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
777 |
+
assert p.transpose().doit() == p.doit().transpose()
|
778 |
+
|
779 |
+
p = Sum(B**n*A, (n, 1, 3))
|
780 |
+
assert p.adjoint().doit() == p.doit().adjoint()
|
781 |
+
assert p.conjugate().doit() == p.doit().conjugate()
|
782 |
+
assert p.transpose().doit() == p.doit().transpose()
|
783 |
+
|
784 |
+
|
785 |
+
def test_noncommutativity_honoured():
|
786 |
+
A, B = symbols("A B", commutative=False)
|
787 |
+
M = symbols('M', integer=True, positive=True)
|
788 |
+
p = Sum(A*B**n, (n, 1, M))
|
789 |
+
assert p.doit() == A*Piecewise((M, Eq(B, 1)),
|
790 |
+
((B - B**(M + 1))*(1 - B)**(-1), True))
|
791 |
+
|
792 |
+
p = Sum(B**n*A, (n, 1, M))
|
793 |
+
assert p.doit() == Piecewise((M, Eq(B, 1)),
|
794 |
+
((B - B**(M + 1))*(1 - B)**(-1), True))*A
|
795 |
+
|
796 |
+
p = Sum(B**n*A*B**n, (n, 1, M))
|
797 |
+
assert p.doit() == p
|
798 |
+
|
799 |
+
|
800 |
+
def test_issue_4171():
|
801 |
+
assert summation(factorial(2*k + 1)/factorial(2*k), (k, 0, oo)) is oo
|
802 |
+
assert summation(2*k + 1, (k, 0, oo)) is oo
|
803 |
+
|
804 |
+
|
805 |
+
def test_issue_6273():
|
806 |
+
assert Sum(x, (x, 1, n)).n(2, subs={n: 1}) == Float(1, 2)
|
807 |
+
|
808 |
+
|
809 |
+
def test_issue_6274():
|
810 |
+
assert Sum(x, (x, 1, 0)).doit() == 0
|
811 |
+
assert NS(Sum(x, (x, 1, 0))) == '0'
|
812 |
+
assert Sum(n, (n, 10, 5)).doit() == -30
|
813 |
+
assert NS(Sum(n, (n, 10, 5))) == '-30.0000000000000'
|
814 |
+
|
815 |
+
|
816 |
+
def test_simplify_sum():
|
817 |
+
y, t, v = symbols('y, t, v')
|
818 |
+
|
819 |
+
_simplify = lambda e: simplify(e, doit=False)
|
820 |
+
assert _simplify(Sum(x*y, (x, n, m), (y, a, k)) + \
|
821 |
+
Sum(y, (x, n, m), (y, a, k))) == Sum(y * (x + 1), (x, n, m), (y, a, k))
|
822 |
+
assert _simplify(Sum(x, (x, n, m)) + Sum(x, (x, m + 1, a))) == \
|
823 |
+
Sum(x, (x, n, a))
|
824 |
+
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x, (x, n, k))) == \
|
825 |
+
Sum(x, (x, n, a))
|
826 |
+
assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x + 1, (x, n, k))) == \
|
827 |
+
Sum(x, (x, n, a)) + Sum(1, (x, n, k))
|
828 |
+
assert _simplify(Sum(x, (x, 0, 3)) * 3 + 3 * Sum(x, (x, 4, 6)) + \
|
829 |
+
4 * Sum(z, (z, 0, 1))) == 4*Sum(z, (z, 0, 1)) + 3*Sum(x, (x, 0, 6))
|
830 |
+
assert _simplify(3*Sum(x**2, (x, a, b)) + Sum(x, (x, a, b))) == \
|
831 |
+
Sum(x*(3*x + 1), (x, a, b))
|
832 |
+
assert _simplify(Sum(x**3, (x, n, k)) * 3 + 3 * Sum(x, (x, n, k)) + \
|
833 |
+
4 * y * Sum(z, (z, n, k))) + 1 == \
|
834 |
+
4*y*Sum(z, (z, n, k)) + 3*Sum(x**3 + x, (x, n, k)) + 1
|
835 |
+
assert _simplify(Sum(x, (x, a, b)) + 1 + Sum(x, (x, b + 1, c))) == \
|
836 |
+
1 + Sum(x, (x, a, c))
|
837 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + \
|
838 |
+
Sum(x, (t, b+1, c))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
|
839 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + \
|
840 |
+
Sum(y, (t, a, b))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
|
841 |
+
assert _simplify(Sum(x, (t, a, b)) + 2 * Sum(x, (t, b+1, c))) == \
|
842 |
+
_simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + Sum(x, (t, b+1, c)))
|
843 |
+
assert _simplify(Sum(x, (x, a, b))*Sum(x**2, (x, a, b))) == \
|
844 |
+
Sum(x, (x, a, b)) * Sum(x**2, (x, a, b))
|
845 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b))) \
|
846 |
+
== (x + y + z) * Sum(1, (t, a, b)) # issue 8596
|
847 |
+
assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b)) + \
|
848 |
+
Sum(v, (t, a, b))) == (x + y + z + v) * Sum(1, (t, a, b)) # issue 8596
|
849 |
+
assert _simplify(Sum(x * y, (x, a, b)) / (3 * y)) == \
|
850 |
+
(Sum(x, (x, a, b)) / 3)
|
851 |
+
assert _simplify(Sum(f(x) * y * z, (x, a, b)) / (y * z)) \
|
852 |
+
== Sum(f(x), (x, a, b))
|
853 |
+
assert _simplify(Sum(c * x, (x, a, b)) - c * Sum(x, (x, a, b))) == 0
|
854 |
+
assert _simplify(c * (Sum(x, (x, a, b)) + y)) == c * (y + Sum(x, (x, a, b)))
|
855 |
+
assert _simplify(c * (Sum(x, (x, a, b)) + y * Sum(x, (x, a, b)))) == \
|
856 |
+
c * (y + 1) * Sum(x, (x, a, b))
|
857 |
+
assert _simplify(Sum(Sum(c * x, (x, a, b)), (y, a, b))) == \
|
858 |
+
c * Sum(x, (x, a, b), (y, a, b))
|
859 |
+
assert _simplify(Sum((3 + y) * Sum(c * x, (x, a, b)), (y, a, b))) == \
|
860 |
+
c * Sum((3 + y), (y, a, b)) * Sum(x, (x, a, b))
|
861 |
+
assert _simplify(Sum((3 + t) * Sum(c * t, (x, a, b)), (y, a, b))) == \
|
862 |
+
c*t*(t + 3)*Sum(1, (x, a, b))*Sum(1, (y, a, b))
|
863 |
+
assert _simplify(Sum(Sum(d * t, (x, a, b - 1)) + \
|
864 |
+
Sum(d * t, (x, b, c)), (t, a, b))) == \
|
865 |
+
d * Sum(1, (x, a, c)) * Sum(t, (t, a, b))
|
866 |
+
assert _simplify(Sum(sin(t)**2 + cos(t)**2 + 1, (t, a, b))) == \
|
867 |
+
2 * Sum(1, (t, a, b))
|
868 |
+
|
869 |
+
|
870 |
+
def test_change_index():
|
871 |
+
b, v, w = symbols('b, v, w', integer = True)
|
872 |
+
|
873 |
+
assert Sum(x, (x, a, b)).change_index(x, x + 1, y) == \
|
874 |
+
Sum(y - 1, (y, a + 1, b + 1))
|
875 |
+
assert Sum(x**2, (x, a, b)).change_index( x, x - 1) == \
|
876 |
+
Sum((x+1)**2, (x, a - 1, b - 1))
|
877 |
+
assert Sum(x**2, (x, a, b)).change_index( x, -x, y) == \
|
878 |
+
Sum((-y)**2, (y, -b, -a))
|
879 |
+
assert Sum(x, (x, a, b)).change_index( x, -x - 1) == \
|
880 |
+
Sum(-x - 1, (x, -b - 1, -a - 1))
|
881 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).change_index( x, x - 1, z) == \
|
882 |
+
Sum((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
|
883 |
+
assert Sum(x, (x, a, b)).change_index( x, x + v) == \
|
884 |
+
Sum(-v + x, (x, a + v, b + v))
|
885 |
+
assert Sum(x, (x, a, b)).change_index( x, -x - v) == \
|
886 |
+
Sum(-v - x, (x, -b - v, -a - v))
|
887 |
+
assert Sum(x, (x, a, b)).change_index(x, w*x, v) == \
|
888 |
+
Sum(v/w, (v, b*w, a*w))
|
889 |
+
raises(ValueError, lambda: Sum(x, (x, a, b)).change_index(x, 2*x))
|
890 |
+
|
891 |
+
|
892 |
+
def test_reorder():
|
893 |
+
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
|
894 |
+
|
895 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
|
896 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
897 |
+
assert Sum(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
|
898 |
+
Sum(x, (x, c, d), (x, a, b))
|
899 |
+
assert Sum(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
|
900 |
+
(2, 0), (0, 1)) == Sum(x*y + z, (z, m, n), (y, c, d), (x, a, b))
|
901 |
+
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
902 |
+
(0, 1), (1, 2), (0, 2)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
903 |
+
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
|
904 |
+
(x, y), (y, z), (x, z)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
|
905 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
|
906 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
907 |
+
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
|
908 |
+
Sum(x*y, (y, c, d), (x, a, b))
|
909 |
+
|
910 |
+
|
911 |
+
def test_reverse_order():
|
912 |
+
assert Sum(x, (x, 0, 3)).reverse_order(0) == Sum(-x, (x, 4, -1))
|
913 |
+
assert Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
|
914 |
+
Sum(x*y, (x, 6, 0), (y, 7, -1))
|
915 |
+
assert Sum(x, (x, 1, 2)).reverse_order(0) == Sum(-x, (x, 3, 0))
|
916 |
+
assert Sum(x, (x, 1, 3)).reverse_order(0) == Sum(-x, (x, 4, 0))
|
917 |
+
assert Sum(x, (x, 1, a)).reverse_order(0) == Sum(-x, (x, a + 1, 0))
|
918 |
+
assert Sum(x, (x, a, 5)).reverse_order(0) == Sum(-x, (x, 6, a - 1))
|
919 |
+
assert Sum(x, (x, a + 1, a + 5)).reverse_order(0) == \
|
920 |
+
Sum(-x, (x, a + 6, a))
|
921 |
+
assert Sum(x, (x, a + 1, a + 2)).reverse_order(0) == \
|
922 |
+
Sum(-x, (x, a + 3, a))
|
923 |
+
assert Sum(x, (x, a + 1, a + 1)).reverse_order(0) == \
|
924 |
+
Sum(-x, (x, a + 2, a))
|
925 |
+
assert Sum(x, (x, a, b)).reverse_order(0) == Sum(-x, (x, b + 1, a - 1))
|
926 |
+
assert Sum(x, (x, a, b)).reverse_order(x) == Sum(-x, (x, b + 1, a - 1))
|
927 |
+
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
|
928 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
929 |
+
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
|
930 |
+
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
|
931 |
+
|
932 |
+
|
933 |
+
def test_issue_7097():
|
934 |
+
assert sum(x**n/n for n in range(1, 401)) == summation(x**n/n, (n, 1, 400))
|
935 |
+
|
936 |
+
|
937 |
+
def test_factor_expand_subs():
|
938 |
+
# test factoring
|
939 |
+
assert Sum(4 * x, (x, 1, y)).factor() == 4 * Sum(x, (x, 1, y))
|
940 |
+
assert Sum(x * a, (x, 1, y)).factor() == a * Sum(x, (x, 1, y))
|
941 |
+
assert Sum(4 * x * a, (x, 1, y)).factor() == 4 * a * Sum(x, (x, 1, y))
|
942 |
+
assert Sum(4 * x * y, (x, 1, y)).factor() == 4 * y * Sum(x, (x, 1, y))
|
943 |
+
|
944 |
+
# test expand
|
945 |
+
_x = Symbol('x', zero=False)
|
946 |
+
assert Sum(x+1,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(1,(x,1,y))
|
947 |
+
assert Sum(x+a*x**2,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(a*x**2,(x,1,y))
|
948 |
+
assert Sum(_x**(n + 1)*(n + 1), (n, -1, oo)).expand() \
|
949 |
+
== Sum(n*_x*_x**n + _x*_x**n, (n, -1, oo))
|
950 |
+
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(power_exp=False) \
|
951 |
+
== Sum(n*x**(n + 1) + x**(n + 1), (n, -1, oo))
|
952 |
+
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(force=True) \
|
953 |
+
== Sum(x*x**n, (n, -1, oo)) + Sum(n*x*x**n, (n, -1, oo))
|
954 |
+
assert Sum(a*n+a*n**2,(n,0,4)).expand() \
|
955 |
+
== Sum(a*n,(n,0,4)) + Sum(a*n**2,(n,0,4))
|
956 |
+
assert Sum(_x**a*_x**n,(x,0,3)) \
|
957 |
+
== Sum(_x**(a+n),(x,0,3)).expand(power_exp=True)
|
958 |
+
_a, _n = symbols('a n', positive=True)
|
959 |
+
assert Sum(x**(_a+_n),(x,0,3)).expand(power_exp=True) \
|
960 |
+
== Sum(x**_a*x**_n, (x, 0, 3))
|
961 |
+
assert Sum(x**(_a-_n),(x,0,3)).expand(power_exp=True) \
|
962 |
+
== Sum(x**(_a-_n),(x,0,3)).expand(power_exp=False)
|
963 |
+
|
964 |
+
# test subs
|
965 |
+
assert Sum(1/(1+a*x**2),(x,0,3)).subs([(a,3)]) == Sum(1/(1+3*x**2),(x,0,3))
|
966 |
+
assert Sum(x*y,(x,0,y),(y,0,x)).subs([(x,3)]) == Sum(x*y,(x,0,y),(y,0,3))
|
967 |
+
assert Sum(x,(x,1,10)).subs([(x,y-2)]) == Sum(x,(x,1,10))
|
968 |
+
assert Sum(1/x,(x,1,10)).subs([(x,(3+n)**3)]) == Sum(1/x,(x,1,10))
|
969 |
+
assert Sum(1/x,(x,1,10)).subs([(x,3*x-2)]) == Sum(1/x,(x,1,10))
|
970 |
+
|
971 |
+
|
972 |
+
def test_distribution_over_equality():
|
973 |
+
assert Product(Eq(x*2, f(x)), (x, 1, 3)).doit() == Eq(48, f(1)*f(2)*f(3))
|
974 |
+
assert Sum(Eq(f(x), x**2), (x, 0, y)) == \
|
975 |
+
Eq(Sum(f(x), (x, 0, y)), Sum(x**2, (x, 0, y)))
|
976 |
+
|
977 |
+
|
978 |
+
def test_issue_2787():
|
979 |
+
n, k = symbols('n k', positive=True, integer=True)
|
980 |
+
p = symbols('p', positive=True)
|
981 |
+
binomial_dist = binomial(n, k)*p**k*(1 - p)**(n - k)
|
982 |
+
s = Sum(binomial_dist*k, (k, 0, n))
|
983 |
+
res = s.doit().simplify()
|
984 |
+
ans = Piecewise(
|
985 |
+
(n*p, x),
|
986 |
+
(Sum(k*p**k*binomial(n, k)*(1 - p)**(n - k), (k, 0, n)),
|
987 |
+
True)).subs(x, (Eq(n, 1) | (n > 1)) & (p/Abs(p - 1) <= 1))
|
988 |
+
ans2 = Piecewise(
|
989 |
+
(n*p, x),
|
990 |
+
(factorial(n)*Sum(p**k*(1 - p)**(-k + n)/
|
991 |
+
(factorial(-k + n)*factorial(k - 1)), (k, 0, n)),
|
992 |
+
True)).subs(x, (Eq(n, 1) | (n > 1)) & (p/Abs(p - 1) <= 1))
|
993 |
+
assert res in [ans, ans2] # XXX system dependent
|
994 |
+
# Issue #17165: make sure that another simplify does not complicate
|
995 |
+
# the result by much. Why didn't first simplify replace
|
996 |
+
# Eq(n, 1) | (n > 1) with True?
|
997 |
+
assert res.simplify().count_ops() <= res.count_ops() + 2
|
998 |
+
|
999 |
+
|
1000 |
+
def test_issue_4668():
|
1001 |
+
assert summation(1/n, (n, 2, oo)) is oo
|
1002 |
+
|
1003 |
+
|
1004 |
+
def test_matrix_sum():
|
1005 |
+
A = Matrix([[0, 1], [n, 0]])
|
1006 |
+
|
1007 |
+
result = Sum(A, (n, 0, 3)).doit()
|
1008 |
+
assert result == Matrix([[0, 4], [6, 0]])
|
1009 |
+
assert result.__class__ == ImmutableDenseMatrix
|
1010 |
+
|
1011 |
+
A = SparseMatrix([[0, 1], [n, 0]])
|
1012 |
+
|
1013 |
+
result = Sum(A, (n, 0, 3)).doit()
|
1014 |
+
assert result.__class__ == ImmutableSparseMatrix
|
1015 |
+
|
1016 |
+
|
1017 |
+
def test_failing_matrix_sum():
|
1018 |
+
n = Symbol('n')
|
1019 |
+
# TODO Implement matrix geometric series summation.
|
1020 |
+
A = Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])
|
1021 |
+
assert Sum(A ** n, (n, 1, 4)).doit() == \
|
1022 |
+
Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
|
1023 |
+
# issue sympy/sympy#16989
|
1024 |
+
assert summation(A**n, (n, 1, 1)) == A
|
1025 |
+
|
1026 |
+
|
1027 |
+
def test_indexed_idx_sum():
|
1028 |
+
i = symbols('i', cls=Idx)
|
1029 |
+
r = Indexed('r', i)
|
1030 |
+
assert Sum(r, (i, 0, 3)).doit() == sum([r.xreplace({i: j}) for j in range(4)])
|
1031 |
+
assert Product(r, (i, 0, 3)).doit() == prod([r.xreplace({i: j}) for j in range(4)])
|
1032 |
+
|
1033 |
+
j = symbols('j', integer=True)
|
1034 |
+
assert Sum(r, (i, j, j+2)).doit() == sum([r.xreplace({i: j+k}) for k in range(3)])
|
1035 |
+
assert Product(r, (i, j, j+2)).doit() == prod([r.xreplace({i: j+k}) for k in range(3)])
|
1036 |
+
|
1037 |
+
k = Idx('k', range=(1, 3))
|
1038 |
+
A = IndexedBase('A')
|
1039 |
+
assert Sum(A[k], k).doit() == sum([A[Idx(j, (1, 3))] for j in range(1, 4)])
|
1040 |
+
assert Product(A[k], k).doit() == prod([A[Idx(j, (1, 3))] for j in range(1, 4)])
|
1041 |
+
|
1042 |
+
raises(ValueError, lambda: Sum(A[k], (k, 1, 4)))
|
1043 |
+
raises(ValueError, lambda: Sum(A[k], (k, 0, 3)))
|
1044 |
+
raises(ValueError, lambda: Sum(A[k], (k, 2, oo)))
|
1045 |
+
|
1046 |
+
raises(ValueError, lambda: Product(A[k], (k, 1, 4)))
|
1047 |
+
raises(ValueError, lambda: Product(A[k], (k, 0, 3)))
|
1048 |
+
raises(ValueError, lambda: Product(A[k], (k, 2, oo)))
|
1049 |
+
|
1050 |
+
|
1051 |
+
@slow
|
1052 |
+
def test_is_convergent():
|
1053 |
+
# divergence tests --
|
1054 |
+
assert Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() is S.false
|
1055 |
+
assert Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() is S.false
|
1056 |
+
assert Sum(3**(-2*n - 1)*n**n, (n, 1, oo)).is_convergent() is S.false
|
1057 |
+
assert Sum((-1)**n*n, (n, 3, oo)).is_convergent() is S.false
|
1058 |
+
assert Sum((-1)**n, (n, 1, oo)).is_convergent() is S.false
|
1059 |
+
assert Sum(log(1/n), (n, 2, oo)).is_convergent() is S.false
|
1060 |
+
|
1061 |
+
# Raabe's test --
|
1062 |
+
assert Sum(Product((3*m),(m,1,n))/Product((3*m+4),(m,1,n)),(n,1,oo)).is_convergent() is S.true
|
1063 |
+
|
1064 |
+
# root test --
|
1065 |
+
assert Sum((-12)**n/n, (n, 1, oo)).is_convergent() is S.false
|
1066 |
+
|
1067 |
+
# integral test --
|
1068 |
+
|
1069 |
+
# p-series test --
|
1070 |
+
assert Sum(1/(n**2 + 1), (n, 1, oo)).is_convergent() is S.true
|
1071 |
+
assert Sum(1/n**Rational(6, 5), (n, 1, oo)).is_convergent() is S.true
|
1072 |
+
assert Sum(2/(n*sqrt(n - 1)), (n, 2, oo)).is_convergent() is S.true
|
1073 |
+
assert Sum(1/(sqrt(n)*sqrt(n)), (n, 2, oo)).is_convergent() is S.false
|
1074 |
+
assert Sum(factorial(n) / factorial(n+2), (n, 1, oo)).is_convergent() is S.true
|
1075 |
+
assert Sum(rf(5,n)/rf(7,n),(n,1,oo)).is_convergent() is S.true
|
1076 |
+
assert Sum((rf(1, n)*rf(2, n))/(rf(3, n)*factorial(n)),(n,1,oo)).is_convergent() is S.false
|
1077 |
+
|
1078 |
+
# comparison test --
|
1079 |
+
assert Sum(1/(n + log(n)), (n, 1, oo)).is_convergent() is S.false
|
1080 |
+
assert Sum(1/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
|
1081 |
+
assert Sum(1/(n*log(n)), (n, 2, oo)).is_convergent() is S.false
|
1082 |
+
assert Sum(2/(n*log(n)*log(log(n))**2), (n, 5, oo)).is_convergent() is S.true
|
1083 |
+
assert Sum(2/(n*log(n)**2), (n, 2, oo)).is_convergent() is S.true
|
1084 |
+
assert Sum((n - 1)/(n**2*log(n)**3), (n, 2, oo)).is_convergent() is S.true
|
1085 |
+
assert Sum(1/(n*log(n)*log(log(n))), (n, 5, oo)).is_convergent() is S.false
|
1086 |
+
assert Sum((n - 1)/(n*log(n)**3), (n, 3, oo)).is_convergent() is S.false
|
1087 |
+
assert Sum(2/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
|
1088 |
+
assert Sum(1/(n*sqrt(log(n))*log(log(n))), (n, 100, oo)).is_convergent() is S.false
|
1089 |
+
assert Sum(log(log(n))/(n*log(n)**2), (n, 100, oo)).is_convergent() is S.true
|
1090 |
+
assert Sum(log(n)/n**2, (n, 5, oo)).is_convergent() is S.true
|
1091 |
+
|
1092 |
+
# alternating series tests --
|
1093 |
+
assert Sum((-1)**(n - 1)/(n**2 - 1), (n, 3, oo)).is_convergent() is S.true
|
1094 |
+
|
1095 |
+
# with -negativeInfinite Limits
|
1096 |
+
assert Sum(1/(n**2 + 1), (n, -oo, 1)).is_convergent() is S.true
|
1097 |
+
assert Sum(1/(n - 1), (n, -oo, -1)).is_convergent() is S.false
|
1098 |
+
assert Sum(1/(n**2 - 1), (n, -oo, -5)).is_convergent() is S.true
|
1099 |
+
assert Sum(1/(n**2 - 1), (n, -oo, 2)).is_convergent() is S.true
|
1100 |
+
assert Sum(1/(n**2 - 1), (n, -oo, oo)).is_convergent() is S.true
|
1101 |
+
|
1102 |
+
# piecewise functions
|
1103 |
+
f = Piecewise((n**(-2), n <= 1), (n**2, n > 1))
|
1104 |
+
assert Sum(f, (n, 1, oo)).is_convergent() is S.false
|
1105 |
+
assert Sum(f, (n, -oo, oo)).is_convergent() is S.false
|
1106 |
+
assert Sum(f, (n, 1, 100)).is_convergent() is S.true
|
1107 |
+
#assert Sum(f, (n, -oo, 1)).is_convergent() is S.true
|
1108 |
+
|
1109 |
+
# integral test
|
1110 |
+
|
1111 |
+
assert Sum(log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
|
1112 |
+
assert Sum(-log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
|
1113 |
+
# the following function has maxima located at (x, y) =
|
1114 |
+
# (1.2, 0.43), (3.0, -0.25) and (6.8, 0.050)
|
1115 |
+
eq = (x - 2)*(x**2 - 6*x + 4)*exp(-x)
|
1116 |
+
assert Sum(eq, (x, 1, oo)).is_convergent() is S.true
|
1117 |
+
assert Sum(eq, (x, 1, 2)).is_convergent() is S.true
|
1118 |
+
assert Sum(1/(x**3), (x, 1, oo)).is_convergent() is S.true
|
1119 |
+
assert Sum(1/(x**S.Half), (x, 1, oo)).is_convergent() is S.false
|
1120 |
+
|
1121 |
+
# issue 19545
|
1122 |
+
assert Sum(1/n - 3/(3*n +2), (n, 1, oo)).is_convergent() is S.true
|
1123 |
+
|
1124 |
+
# issue 19836
|
1125 |
+
assert Sum(4/(n + 2) - 5/(n + 1) + 1/n,(n, 7, oo)).is_convergent() is S.true
|
1126 |
+
|
1127 |
+
|
1128 |
+
def test_is_absolutely_convergent():
|
1129 |
+
assert Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() is S.false
|
1130 |
+
assert Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() is S.true
|
1131 |
+
|
1132 |
+
|
1133 |
+
@XFAIL
|
1134 |
+
def test_convergent_failing():
|
1135 |
+
# dirichlet tests
|
1136 |
+
assert Sum(sin(n)/n, (n, 1, oo)).is_convergent() is S.true
|
1137 |
+
assert Sum(sin(2*n)/n, (n, 1, oo)).is_convergent() is S.true
|
1138 |
+
|
1139 |
+
|
1140 |
+
def test_issue_6966():
|
1141 |
+
i, k, m = symbols('i k m', integer=True)
|
1142 |
+
z_i, q_i = symbols('z_i q_i')
|
1143 |
+
a_k = Sum(-q_i*z_i/k,(i,1,m))
|
1144 |
+
b_k = a_k.diff(z_i)
|
1145 |
+
assert isinstance(b_k, Sum)
|
1146 |
+
assert b_k == Sum(-q_i/k,(i,1,m))
|
1147 |
+
|
1148 |
+
|
1149 |
+
def test_issue_10156():
|
1150 |
+
cx = Sum(2*y**2*x, (x, 1,3))
|
1151 |
+
e = 2*y*Sum(2*cx*x**2, (x, 1, 9))
|
1152 |
+
assert e.factor() == \
|
1153 |
+
8*y**3*Sum(x, (x, 1, 3))*Sum(x**2, (x, 1, 9))
|
1154 |
+
|
1155 |
+
|
1156 |
+
def test_issue_10973():
|
1157 |
+
assert Sum((-n + (n**3 + 1)**(S(1)/3))/log(n), (n, 1, oo)).is_convergent() is S.true
|
1158 |
+
|
1159 |
+
|
1160 |
+
def test_issue_14129():
|
1161 |
+
x = Symbol('x', zero=False)
|
1162 |
+
assert Sum( k*x**k, (k, 0, n-1)).doit() == \
|
1163 |
+
Piecewise((n**2/2 - n/2, Eq(x, 1)), ((n*x*x**n -
|
1164 |
+
n*x**n - x*x**n + x)/(x - 1)**2, True))
|
1165 |
+
assert Sum( x**k, (k, 0, n-1)).doit() == \
|
1166 |
+
Piecewise((n, Eq(x, 1)), ((-x**n + 1)/(-x + 1), True))
|
1167 |
+
assert Sum( k*(x/y+x)**k, (k, 0, n-1)).doit() == \
|
1168 |
+
Piecewise((n*(n - 1)/2, Eq(x, y/(y + 1))),
|
1169 |
+
(x*(y + 1)*(n*x*y*(x + x/y)**(n - 1) +
|
1170 |
+
n*x*(x + x/y)**(n - 1) - n*y*(x + x/y)**(n - 1) -
|
1171 |
+
x*y*(x + x/y)**(n - 1) - x*(x + x/y)**(n - 1) + y)/
|
1172 |
+
(x*y + x - y)**2, True))
|
1173 |
+
|
1174 |
+
|
1175 |
+
def test_issue_14112():
|
1176 |
+
assert Sum((-1)**n/sqrt(n), (n, 1, oo)).is_absolutely_convergent() is S.false
|
1177 |
+
assert Sum((-1)**(2*n)/n, (n, 1, oo)).is_convergent() is S.false
|
1178 |
+
assert Sum((-2)**n + (-3)**n, (n, 1, oo)).is_convergent() is S.false
|
1179 |
+
|
1180 |
+
|
1181 |
+
def test_issue_14219():
|
1182 |
+
A = diag(0, 2, -3)
|
1183 |
+
res = diag(1, 15, -20)
|
1184 |
+
assert Sum(A**n, (n, 0, 3)).doit() == res
|
1185 |
+
|
1186 |
+
|
1187 |
+
def test_sin_times_absolutely_convergent():
|
1188 |
+
assert Sum(sin(n) / n**3, (n, 1, oo)).is_convergent() is S.true
|
1189 |
+
assert Sum(sin(n) * log(n) / n**3, (n, 1, oo)).is_convergent() is S.true
|
1190 |
+
|
1191 |
+
|
1192 |
+
def test_issue_14111():
|
1193 |
+
assert Sum(1/log(log(n)), (n, 22, oo)).is_convergent() is S.false
|
1194 |
+
|
1195 |
+
|
1196 |
+
def test_issue_14484():
|
1197 |
+
assert Sum(sin(n)/log(log(n)), (n, 22, oo)).is_convergent() is S.false
|
1198 |
+
|
1199 |
+
|
1200 |
+
def test_issue_14640():
|
1201 |
+
i, n = symbols("i n", integer=True)
|
1202 |
+
a, b, c = symbols("a b c", zero=False)
|
1203 |
+
|
1204 |
+
assert Sum(a**-i/(a - b), (i, 0, n)).doit() == Sum(
|
1205 |
+
1/(a*a**i - a**i*b), (i, 0, n)).doit() == Piecewise(
|
1206 |
+
(n + 1, Eq(1/a, 1)),
|
1207 |
+
((-a**(-n - 1) + 1)/(1 - 1/a), True))/(a - b)
|
1208 |
+
|
1209 |
+
assert Sum((b*a**i - c*a**i)**-2, (i, 0, n)).doit() == Piecewise(
|
1210 |
+
(n + 1, Eq(a**(-2), 1)),
|
1211 |
+
((-a**(-2*n - 2) + 1)/(1 - 1/a**2), True))/(b - c)**2
|
1212 |
+
|
1213 |
+
s = Sum(i*(a**(n - i) - b**(n - i))/(a - b), (i, 0, n)).doit()
|
1214 |
+
assert not s.has(Sum)
|
1215 |
+
assert s.subs({a: 2, b: 3, n: 5}) == 122
|
1216 |
+
|
1217 |
+
|
1218 |
+
def test_issue_15943():
|
1219 |
+
s = Sum(binomial(n, k)*factorial(n - k), (k, 0, n)).doit().rewrite(gamma)
|
1220 |
+
assert s == -E*(n + 1)*gamma(n + 1)*lowergamma(n + 1, 1)/gamma(n + 2
|
1221 |
+
) + E*gamma(n + 1)
|
1222 |
+
assert s.simplify() == E*(factorial(n) - lowergamma(n + 1, 1))
|
1223 |
+
|
1224 |
+
|
1225 |
+
def test_Sum_dummy_eq():
|
1226 |
+
assert not Sum(x, (x, a, b)).dummy_eq(1)
|
1227 |
+
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b), (a, 1, 2)))
|
1228 |
+
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, c)))
|
1229 |
+
assert Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b)))
|
1230 |
+
d = Dummy()
|
1231 |
+
assert Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)), c)
|
1232 |
+
assert not Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)))
|
1233 |
+
assert Sum(x, (x, a, c)).dummy_eq(Sum(y, (y, a, c)))
|
1234 |
+
assert Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)), c)
|
1235 |
+
assert not Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)))
|
1236 |
+
|
1237 |
+
|
1238 |
+
def test_issue_15852():
|
1239 |
+
assert summation(x**y*y, (y, -oo, oo)).doit() == Sum(x**y*y, (y, -oo, oo))
|
1240 |
+
|
1241 |
+
|
1242 |
+
def test_exceptions():
|
1243 |
+
S = Sum(x, (x, a, b))
|
1244 |
+
raises(ValueError, lambda: S.change_index(x, x**2, y))
|
1245 |
+
S = Sum(x, (x, a, b), (x, 1, 4))
|
1246 |
+
raises(ValueError, lambda: S.index(x))
|
1247 |
+
S = Sum(x, (x, a, b), (y, 1, 4))
|
1248 |
+
raises(ValueError, lambda: S.reorder([x]))
|
1249 |
+
S = Sum(x, (x, y, b), (y, 1, 4))
|
1250 |
+
raises(ReorderError, lambda: S.reorder_limit(0, 1))
|
1251 |
+
S = Sum(x*y, (x, a, b), (y, 1, 4))
|
1252 |
+
raises(NotImplementedError, lambda: S.is_convergent())
|
1253 |
+
|
1254 |
+
|
1255 |
+
def test_sumproducts_assumptions():
|
1256 |
+
M = Symbol('M', integer=True, positive=True)
|
1257 |
+
|
1258 |
+
m = Symbol('m', integer=True)
|
1259 |
+
for func in [Sum, Product]:
|
1260 |
+
assert func(m, (m, -M, M)).is_positive is None
|
1261 |
+
assert func(m, (m, -M, M)).is_nonpositive is None
|
1262 |
+
assert func(m, (m, -M, M)).is_negative is None
|
1263 |
+
assert func(m, (m, -M, M)).is_nonnegative is None
|
1264 |
+
assert func(m, (m, -M, M)).is_finite is True
|
1265 |
+
|
1266 |
+
m = Symbol('m', integer=True, nonnegative=True)
|
1267 |
+
for func in [Sum, Product]:
|
1268 |
+
assert func(m, (m, 0, M)).is_positive is None
|
1269 |
+
assert func(m, (m, 0, M)).is_nonpositive is None
|
1270 |
+
assert func(m, (m, 0, M)).is_negative is False
|
1271 |
+
assert func(m, (m, 0, M)).is_nonnegative is True
|
1272 |
+
assert func(m, (m, 0, M)).is_finite is True
|
1273 |
+
|
1274 |
+
m = Symbol('m', integer=True, positive=True)
|
1275 |
+
for func in [Sum, Product]:
|
1276 |
+
assert func(m, (m, 1, M)).is_positive is True
|
1277 |
+
assert func(m, (m, 1, M)).is_nonpositive is False
|
1278 |
+
assert func(m, (m, 1, M)).is_negative is False
|
1279 |
+
assert func(m, (m, 1, M)).is_nonnegative is True
|
1280 |
+
assert func(m, (m, 1, M)).is_finite is True
|
1281 |
+
|
1282 |
+
m = Symbol('m', integer=True, negative=True)
|
1283 |
+
assert Sum(m, (m, -M, -1)).is_positive is False
|
1284 |
+
assert Sum(m, (m, -M, -1)).is_nonpositive is True
|
1285 |
+
assert Sum(m, (m, -M, -1)).is_negative is True
|
1286 |
+
assert Sum(m, (m, -M, -1)).is_nonnegative is False
|
1287 |
+
assert Sum(m, (m, -M, -1)).is_finite is True
|
1288 |
+
assert Product(m, (m, -M, -1)).is_positive is None
|
1289 |
+
assert Product(m, (m, -M, -1)).is_nonpositive is None
|
1290 |
+
assert Product(m, (m, -M, -1)).is_negative is None
|
1291 |
+
assert Product(m, (m, -M, -1)).is_nonnegative is None
|
1292 |
+
assert Product(m, (m, -M, -1)).is_finite is True
|
1293 |
+
|
1294 |
+
m = Symbol('m', integer=True, nonpositive=True)
|
1295 |
+
assert Sum(m, (m, -M, 0)).is_positive is False
|
1296 |
+
assert Sum(m, (m, -M, 0)).is_nonpositive is True
|
1297 |
+
assert Sum(m, (m, -M, 0)).is_negative is None
|
1298 |
+
assert Sum(m, (m, -M, 0)).is_nonnegative is None
|
1299 |
+
assert Sum(m, (m, -M, 0)).is_finite is True
|
1300 |
+
assert Product(m, (m, -M, 0)).is_positive is None
|
1301 |
+
assert Product(m, (m, -M, 0)).is_nonpositive is None
|
1302 |
+
assert Product(m, (m, -M, 0)).is_negative is None
|
1303 |
+
assert Product(m, (m, -M, 0)).is_nonnegative is None
|
1304 |
+
assert Product(m, (m, -M, 0)).is_finite is True
|
1305 |
+
|
1306 |
+
m = Symbol('m', integer=True)
|
1307 |
+
assert Sum(2, (m, 0, oo)).is_positive is None
|
1308 |
+
assert Sum(2, (m, 0, oo)).is_nonpositive is None
|
1309 |
+
assert Sum(2, (m, 0, oo)).is_negative is None
|
1310 |
+
assert Sum(2, (m, 0, oo)).is_nonnegative is None
|
1311 |
+
assert Sum(2, (m, 0, oo)).is_finite is None
|
1312 |
+
|
1313 |
+
assert Product(2, (m, 0, oo)).is_positive is None
|
1314 |
+
assert Product(2, (m, 0, oo)).is_nonpositive is None
|
1315 |
+
assert Product(2, (m, 0, oo)).is_negative is False
|
1316 |
+
assert Product(2, (m, 0, oo)).is_nonnegative is None
|
1317 |
+
assert Product(2, (m, 0, oo)).is_finite is None
|
1318 |
+
|
1319 |
+
assert Product(0, (x, M, M-1)).is_positive is True
|
1320 |
+
assert Product(0, (x, M, M-1)).is_finite is True
|
1321 |
+
|
1322 |
+
|
1323 |
+
def test_expand_with_assumptions():
|
1324 |
+
M = Symbol('M', integer=True, positive=True)
|
1325 |
+
x = Symbol('x', positive=True)
|
1326 |
+
m = Symbol('m', nonnegative=True)
|
1327 |
+
assert log(Product(x**m, (m, 0, M))).expand() == Sum(m*log(x), (m, 0, M))
|
1328 |
+
assert log(Product(exp(x**m), (m, 0, M))).expand() == Sum(x**m, (m, 0, M))
|
1329 |
+
assert log(Product(x**m, (m, 0, M))).rewrite(Sum).expand() == Sum(m*log(x), (m, 0, M))
|
1330 |
+
assert log(Product(exp(x**m), (m, 0, M))).rewrite(Sum).expand() == Sum(x**m, (m, 0, M))
|
1331 |
+
|
1332 |
+
n = Symbol('n', nonnegative=True)
|
1333 |
+
i, j = symbols('i,j', positive=True, integer=True)
|
1334 |
+
x, y = symbols('x,y', positive=True)
|
1335 |
+
assert log(Product(x**i*y**j, (i, 1, n), (j, 1, m))).expand() \
|
1336 |
+
== Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
|
1337 |
+
|
1338 |
+
m = Symbol('m', nonnegative=True, integer=True)
|
1339 |
+
s = Sum(x**m, (m, 0, M))
|
1340 |
+
s_as_product = s.rewrite(Product)
|
1341 |
+
assert s_as_product.has(Product)
|
1342 |
+
assert s_as_product == log(Product(exp(x**m), (m, 0, M)))
|
1343 |
+
assert s_as_product.expand() == s
|
1344 |
+
s5 = s.subs(M, 5)
|
1345 |
+
s5_as_product = s5.rewrite(Product)
|
1346 |
+
assert s5_as_product.has(Product)
|
1347 |
+
assert s5_as_product.doit().expand() == s5.doit()
|
1348 |
+
|
1349 |
+
|
1350 |
+
def test_has_finite_limits():
|
1351 |
+
x = Symbol('x')
|
1352 |
+
assert Sum(1, (x, 1, 9)).has_finite_limits is True
|
1353 |
+
assert Sum(1, (x, 1, oo)).has_finite_limits is False
|
1354 |
+
M = Symbol('M')
|
1355 |
+
assert Sum(1, (x, 1, M)).has_finite_limits is None
|
1356 |
+
M = Symbol('M', positive=True)
|
1357 |
+
assert Sum(1, (x, 1, M)).has_finite_limits is True
|
1358 |
+
x = Symbol('x', positive=True)
|
1359 |
+
M = Symbol('M')
|
1360 |
+
assert Sum(1, (x, 1, M)).has_finite_limits is True
|
1361 |
+
|
1362 |
+
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_finite_limits is False
|
1363 |
+
|
1364 |
+
def test_has_reversed_limits():
|
1365 |
+
assert Sum(1, (x, 1, 1)).has_reversed_limits is False
|
1366 |
+
assert Sum(1, (x, 1, 9)).has_reversed_limits is False
|
1367 |
+
assert Sum(1, (x, 1, -9)).has_reversed_limits is True
|
1368 |
+
assert Sum(1, (x, 1, 0)).has_reversed_limits is True
|
1369 |
+
assert Sum(1, (x, 1, oo)).has_reversed_limits is False
|
1370 |
+
M = Symbol('M')
|
1371 |
+
assert Sum(1, (x, 1, M)).has_reversed_limits is None
|
1372 |
+
M = Symbol('M', positive=True, integer=True)
|
1373 |
+
assert Sum(1, (x, 1, M)).has_reversed_limits is False
|
1374 |
+
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is False
|
1375 |
+
M = Symbol('M', negative=True)
|
1376 |
+
assert Sum(1, (x, 1, M)).has_reversed_limits is True
|
1377 |
+
|
1378 |
+
assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is True
|
1379 |
+
assert Sum(1, (x, oo, oo)).has_reversed_limits is None
|
1380 |
+
|
1381 |
+
|
1382 |
+
def test_has_empty_sequence():
|
1383 |
+
assert Sum(1, (x, 1, 1)).has_empty_sequence is False
|
1384 |
+
assert Sum(1, (x, 1, 9)).has_empty_sequence is False
|
1385 |
+
assert Sum(1, (x, 1, -9)).has_empty_sequence is False
|
1386 |
+
assert Sum(1, (x, 1, 0)).has_empty_sequence is True
|
1387 |
+
assert Sum(1, (x, y, y - 1)).has_empty_sequence is True
|
1388 |
+
assert Sum(1, (x, 3, 2), (y, -oo, oo)).has_empty_sequence is True
|
1389 |
+
assert Sum(1, (y, -oo, oo), (x, 3, 2)).has_empty_sequence is True
|
1390 |
+
assert Sum(1, (x, oo, oo)).has_empty_sequence is False
|
1391 |
+
|
1392 |
+
|
1393 |
+
def test_empty_sequence():
|
1394 |
+
assert Product(x*y, (x, -oo, oo), (y, 1, 0)).doit() == 1
|
1395 |
+
assert Product(x*y, (y, 1, 0), (x, -oo, oo)).doit() == 1
|
1396 |
+
assert Sum(x, (x, -oo, oo), (y, 1, 0)).doit() == 0
|
1397 |
+
assert Sum(x, (y, 1, 0), (x, -oo, oo)).doit() == 0
|
1398 |
+
|
1399 |
+
|
1400 |
+
def test_issue_8016():
|
1401 |
+
k = Symbol('k', integer=True)
|
1402 |
+
n, m = symbols('n, m', integer=True, positive=True)
|
1403 |
+
s = Sum(binomial(m, k)*binomial(m, n - k)*(-1)**k, (k, 0, n))
|
1404 |
+
assert s.doit().simplify() == \
|
1405 |
+
cos(pi*n/2)*gamma(m + 1)/gamma(n/2 + 1)/gamma(m - n/2 + 1)
|
1406 |
+
|
1407 |
+
|
1408 |
+
def test_issue_14313():
|
1409 |
+
assert Sum(S.Half**floor(n/2), (n, 1, oo)).is_convergent()
|
1410 |
+
|
1411 |
+
|
1412 |
+
def test_issue_14563():
|
1413 |
+
# The assertion was failing due to no assumptions methods in Sums and Product
|
1414 |
+
assert 1 % Sum(1, (x, 0, 1)) == 1
|
1415 |
+
|
1416 |
+
|
1417 |
+
def test_issue_16735():
|
1418 |
+
assert Sum(5**n/gamma(n+1), (n, 1, oo)).is_convergent() is S.true
|
1419 |
+
|
1420 |
+
|
1421 |
+
def test_issue_14871():
|
1422 |
+
assert Sum((Rational(1, 10))**n*rf(0, n)/factorial(n), (n, 0, oo)).rewrite(factorial).doit() == 1
|
1423 |
+
|
1424 |
+
|
1425 |
+
def test_issue_17165():
|
1426 |
+
n = symbols("n", integer=True)
|
1427 |
+
x = symbols('x')
|
1428 |
+
s = (x*Sum(x**n, (n, -1, oo)))
|
1429 |
+
ssimp = s.doit().simplify()
|
1430 |
+
|
1431 |
+
assert ssimp == Piecewise((-1/(x - 1), (x > -1) & (x < 1)),
|
1432 |
+
(x*Sum(x**n, (n, -1, oo)), True)), ssimp
|
1433 |
+
assert ssimp.simplify() == ssimp
|
1434 |
+
|
1435 |
+
|
1436 |
+
def test_issue_19379():
|
1437 |
+
assert Sum(factorial(n)/factorial(n + 2), (n, 1, oo)).is_convergent() is S.true
|
1438 |
+
|
1439 |
+
|
1440 |
+
def test_issue_20777():
|
1441 |
+
assert Sum(exp(x*sin(n/m)), (n, 1, m)).doit() == Sum(exp(x*sin(n/m)), (n, 1, m))
|
1442 |
+
|
1443 |
+
|
1444 |
+
def test__dummy_with_inherited_properties_concrete():
|
1445 |
+
x = Symbol('x')
|
1446 |
+
|
1447 |
+
from sympy.core.containers import Tuple
|
1448 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, 0, 5))
|
1449 |
+
assert d.is_real
|
1450 |
+
assert d.is_integer
|
1451 |
+
assert d.is_nonnegative
|
1452 |
+
assert d.is_extended_nonnegative
|
1453 |
+
|
1454 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, 1, 9))
|
1455 |
+
assert d.is_real
|
1456 |
+
assert d.is_integer
|
1457 |
+
assert d.is_positive
|
1458 |
+
assert d.is_odd is None
|
1459 |
+
|
1460 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, -5, 5))
|
1461 |
+
assert d.is_real
|
1462 |
+
assert d.is_integer
|
1463 |
+
assert d.is_positive is None
|
1464 |
+
assert d.is_extended_nonnegative is None
|
1465 |
+
assert d.is_odd is None
|
1466 |
+
|
1467 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, -1.5, 1.5))
|
1468 |
+
assert d.is_real
|
1469 |
+
assert d.is_integer is None
|
1470 |
+
assert d.is_positive is None
|
1471 |
+
assert d.is_extended_nonnegative is None
|
1472 |
+
|
1473 |
+
N = Symbol('N', integer=True, positive=True)
|
1474 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(x, 2, N))
|
1475 |
+
assert d.is_real
|
1476 |
+
assert d.is_positive
|
1477 |
+
assert d.is_integer
|
1478 |
+
|
1479 |
+
# Return None if no assumptions are added
|
1480 |
+
N = Symbol('N', integer=True, positive=True)
|
1481 |
+
d = _dummy_with_inherited_properties_concrete(Tuple(N, 2, 4))
|
1482 |
+
assert d is None
|
1483 |
+
|
1484 |
+
x = Symbol('x', negative=True)
|
1485 |
+
raises(InconsistentAssumptions,
|
1486 |
+
lambda: _dummy_with_inherited_properties_concrete(Tuple(x, 1, 5)))
|
1487 |
+
|
1488 |
+
|
1489 |
+
def test_matrixsymbol_summation_numerical_limits():
|
1490 |
+
A = MatrixSymbol('A', 3, 3)
|
1491 |
+
n = Symbol('n', integer=True)
|
1492 |
+
|
1493 |
+
assert Sum(A**n, (n, 0, 2)).doit() == Identity(3) + A + A**2
|
1494 |
+
assert Sum(A, (n, 0, 2)).doit() == 3*A
|
1495 |
+
assert Sum(n*A, (n, 0, 2)).doit() == 3*A
|
1496 |
+
|
1497 |
+
B = Matrix([[0, n, 0], [-1, 0, 0], [0, 0, 2]])
|
1498 |
+
ans = Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]]) + 4*A
|
1499 |
+
assert Sum(A+B, (n, 0, 3)).doit() == ans
|
1500 |
+
ans = A*Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]])
|
1501 |
+
assert Sum(A*B, (n, 0, 3)).doit() == ans
|
1502 |
+
|
1503 |
+
ans = (A**2*Matrix([[-2, 0, 0], [0,-2, 0], [0, 0, 4]]) +
|
1504 |
+
A**3*Matrix([[0, -9, 0], [3, 0, 0], [0, 0, 8]]) +
|
1505 |
+
A*Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 2]]))
|
1506 |
+
assert Sum(A**n*B**n, (n, 1, 3)).doit() == ans
|
1507 |
+
|
1508 |
+
|
1509 |
+
def test_issue_21651():
|
1510 |
+
i = Symbol('i')
|
1511 |
+
a = Sum(floor(2*2**(-i)), (i, S.One, 2))
|
1512 |
+
assert a.doit() == S.One
|
1513 |
+
|
1514 |
+
|
1515 |
+
@XFAIL
|
1516 |
+
def test_matrixsymbol_summation_symbolic_limits():
|
1517 |
+
N = Symbol('N', integer=True, positive=True)
|
1518 |
+
|
1519 |
+
A = MatrixSymbol('A', 3, 3)
|
1520 |
+
n = Symbol('n', integer=True)
|
1521 |
+
assert Sum(A, (n, 0, N)).doit() == (N+1)*A
|
1522 |
+
assert Sum(n*A, (n, 0, N)).doit() == (N**2/2+N/2)*A
|
1523 |
+
|
1524 |
+
|
1525 |
+
def test_summation_by_residues():
|
1526 |
+
x = Symbol('x')
|
1527 |
+
|
1528 |
+
# Examples from Nakhle H. Asmar, Loukas Grafakos,
|
1529 |
+
# Complex Analysis with Applications
|
1530 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, -oo, oo)) == pi/tanh(pi)
|
1531 |
+
assert eval_sum_residue(1 / x**6, (x, S(1), oo)) == pi**6/945
|
1532 |
+
assert eval_sum_residue(1 / (x**2 + 9), (x, -oo, oo)) == pi/(3*tanh(3*pi))
|
1533 |
+
assert eval_sum_residue(1 / (x**2 + 1)**2, (x, -oo, oo)).cancel() == \
|
1534 |
+
(-pi**2*tanh(pi)**2 + pi*tanh(pi) + pi**2)/(2*tanh(pi)**2)
|
1535 |
+
assert eval_sum_residue(x**2 / (x**2 + 1)**2, (x, -oo, oo)).cancel() == \
|
1536 |
+
(-pi**2 + pi*tanh(pi) + pi**2*tanh(pi)**2)/(2*tanh(pi)**2)
|
1537 |
+
assert eval_sum_residue(1 / (4*x**2 - 1), (x, -oo, oo)) == 0
|
1538 |
+
assert eval_sum_residue(x**2 / (x**2 - S(1)/4)**2, (x, -oo, oo)) == pi**2/2
|
1539 |
+
assert eval_sum_residue(1 / (4*x**2 - 1)**2, (x, -oo, oo)) == pi**2/8
|
1540 |
+
assert eval_sum_residue(1 / ((x - S(1)/2)**2 + 1), (x, -oo, oo)) == pi*tanh(pi)
|
1541 |
+
assert eval_sum_residue(1 / x**2, (x, S(1), oo)) == pi**2/6
|
1542 |
+
assert eval_sum_residue(1 / x**4, (x, S(1), oo)) == pi**4/90
|
1543 |
+
assert eval_sum_residue(1 / x**2 / (x**2 + 4), (x, S(1), oo)) == \
|
1544 |
+
-pi*(-pi/12 - 1/(16*pi) + 1/(8*tanh(2*pi)))/2
|
1545 |
+
|
1546 |
+
# Some examples made from 1 / (x**2 + 1)
|
1547 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, S(0), oo)) == \
|
1548 |
+
S(1)/2 + pi/(2*tanh(pi))
|
1549 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, S(1), oo)) == \
|
1550 |
+
-S(1)/2 + pi/(2*tanh(pi))
|
1551 |
+
assert eval_sum_residue(1 / (x**2 + 1), (x, S(-1), oo)) == \
|
1552 |
+
1 + pi/(2*tanh(pi))
|
1553 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, -oo, oo)) == \
|
1554 |
+
pi/sinh(pi)
|
1555 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(0), oo)) == \
|
1556 |
+
pi/(2*sinh(pi)) + S(1)/2
|
1557 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(1), oo)) == \
|
1558 |
+
-S(1)/2 + pi/(2*sinh(pi))
|
1559 |
+
assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(-1), oo)) == \
|
1560 |
+
pi/(2*sinh(pi))
|
1561 |
+
|
1562 |
+
# Some examples made from shifting of 1 / (x**2 + 1)
|
1563 |
+
assert eval_sum_residue(1 / (x**2 + 2*x + 2), (x, S(-1), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1564 |
+
assert eval_sum_residue(1 / (x**2 + 4*x + 5), (x, S(-2), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1565 |
+
assert eval_sum_residue(1 / (x**2 - 2*x + 2), (x, S(1), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1566 |
+
assert eval_sum_residue(1 / (x**2 - 4*x + 5), (x, S(2), oo)) == S(1)/2 + pi/(2*tanh(pi))
|
1567 |
+
assert eval_sum_residue((-1)**x * -1 / (x**2 + 2*x + 2), (x, S(-1), oo)) == S(1)/2 + pi/(2*sinh(pi))
|
1568 |
+
assert eval_sum_residue((-1)**x * -1 / (x**2 -2*x + 2), (x, S(1), oo)) == S(1)/2 + pi/(2*sinh(pi))
|
1569 |
+
|
1570 |
+
# Some examples made from 1 / x**2
|
1571 |
+
assert eval_sum_residue(1 / x**2, (x, S(2), oo)) == -1 + pi**2/6
|
1572 |
+
assert eval_sum_residue(1 / x**2, (x, S(3), oo)) == -S(5)/4 + pi**2/6
|
1573 |
+
assert eval_sum_residue((-1)**x / x**2, (x, S(1), oo)) == -pi**2/12
|
1574 |
+
assert eval_sum_residue((-1)**x / x**2, (x, S(2), oo)) == 1 - pi**2/12
|
1575 |
+
|
1576 |
+
|
1577 |
+
@slow
|
1578 |
+
def test_summation_by_residues_failing():
|
1579 |
+
x = Symbol('x')
|
1580 |
+
|
1581 |
+
# Failing because of the bug in residue computation
|
1582 |
+
assert eval_sum_residue(x**2 / (x**4 + 1), (x, S(1), oo))
|
1583 |
+
assert eval_sum_residue(1 / ((x - 1)*(x - 2) + 1), (x, -oo, oo)) != 0
|
1584 |
+
|
1585 |
+
|
1586 |
+
def test_process_limits():
|
1587 |
+
from sympy.concrete.expr_with_limits import _process_limits
|
1588 |
+
|
1589 |
+
# these should be (x, Range(3)) not Range(3)
|
1590 |
+
raises(ValueError, lambda: _process_limits(
|
1591 |
+
Range(3), discrete=True))
|
1592 |
+
raises(ValueError, lambda: _process_limits(
|
1593 |
+
Range(3), discrete=False))
|
1594 |
+
# these should be (x, union) not union
|
1595 |
+
# (but then we would get a TypeError because we don't
|
1596 |
+
# handle non-contiguous sets: see below use of `union`)
|
1597 |
+
union = Or(x < 1, x > 3).as_set()
|
1598 |
+
raises(ValueError, lambda: _process_limits(
|
1599 |
+
union, discrete=True))
|
1600 |
+
raises(ValueError, lambda: _process_limits(
|
1601 |
+
union, discrete=False))
|
1602 |
+
|
1603 |
+
# error not triggered if not needed
|
1604 |
+
assert _process_limits((x, 1, 2)) == ([(x, 1, 2)], 1)
|
1605 |
+
|
1606 |
+
# this equivalence is used to detect Reals in _process_limits
|
1607 |
+
assert isinstance(S.Reals, Interval)
|
1608 |
+
|
1609 |
+
C = Integral # continuous limits
|
1610 |
+
assert C(x, x >= 5) == C(x, (x, 5, oo))
|
1611 |
+
assert C(x, x < 3) == C(x, (x, -oo, 3))
|
1612 |
+
ans = C(x, (x, 0, 3))
|
1613 |
+
assert C(x, And(x >= 0, x < 3)) == ans
|
1614 |
+
assert C(x, (x, Interval.Ropen(0, 3))) == ans
|
1615 |
+
raises(TypeError, lambda: C(x, (x, Range(3))))
|
1616 |
+
|
1617 |
+
# discrete limits
|
1618 |
+
for D in (Sum, Product):
|
1619 |
+
r, ans = Range(3, 10, 2), D(2*x + 3, (x, 0, 3))
|
1620 |
+
assert D(x, (x, r)) == ans
|
1621 |
+
assert D(x, (x, r.reversed)) == ans
|
1622 |
+
r, ans = Range(3, oo, 2), D(2*x + 3, (x, 0, oo))
|
1623 |
+
assert D(x, (x, r)) == ans
|
1624 |
+
assert D(x, (x, r.reversed)) == ans
|
1625 |
+
r, ans = Range(-oo, 5, 2), D(3 - 2*x, (x, 0, oo))
|
1626 |
+
assert D(x, (x, r)) == ans
|
1627 |
+
assert D(x, (x, r.reversed)) == ans
|
1628 |
+
raises(TypeError, lambda: D(x, x > 0))
|
1629 |
+
raises(ValueError, lambda: D(x, Interval(1, 3)))
|
1630 |
+
raises(NotImplementedError, lambda: D(x, (x, union)))
|
1631 |
+
|
1632 |
+
|
1633 |
+
def test_pr_22677():
|
1634 |
+
b = Symbol('b', integer=True, positive=True)
|
1635 |
+
assert Sum(1/x**2,(x, 0, b)).doit() == Sum(x**(-2), (x, 0, b))
|
1636 |
+
assert Sum(1/(x - b)**2,(x, 0, b-1)).doit() == Sum(
|
1637 |
+
(-b + x)**(-2), (x, 0, b - 1))
|
1638 |
+
|
1639 |
+
|
1640 |
+
def test_issue_23952():
|
1641 |
+
p, q = symbols("p q", real=True, nonnegative=True)
|
1642 |
+
k1, k2 = symbols("k1 k2", integer=True, nonnegative=True)
|
1643 |
+
n = Symbol("n", integer=True, positive=True)
|
1644 |
+
expr = Sum(abs(k1 - k2)*p**k1 *(1 - q)**(n - k2),
|
1645 |
+
(k1, 0, n), (k2, 0, n))
|
1646 |
+
assert expr.subs(p,0).subs(q,1).subs(n, 3).doit() == 3
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/aesaracode.py
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from sympy.external import import_module
|
5 |
+
from sympy.printing.printer import Printer
|
6 |
+
from sympy.utilities.iterables import is_sequence
|
7 |
+
import sympy
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
|
11 |
+
aesara = import_module('aesara')
|
12 |
+
|
13 |
+
if aesara:
|
14 |
+
aes = aesara.scalar
|
15 |
+
aet = aesara.tensor
|
16 |
+
from aesara.tensor import nlinalg
|
17 |
+
from aesara.tensor.elemwise import Elemwise
|
18 |
+
from aesara.tensor.elemwise import DimShuffle
|
19 |
+
|
20 |
+
# `true_divide` replaced `true_div` in Aesara 2.8.11 (released 2023) to
|
21 |
+
# match NumPy
|
22 |
+
# XXX: Remove this when not needed to support older versions.
|
23 |
+
true_divide = getattr(aet, 'true_divide', None)
|
24 |
+
if true_divide is None:
|
25 |
+
true_divide = aet.true_div
|
26 |
+
|
27 |
+
mapping = {
|
28 |
+
sympy.Add: aet.add,
|
29 |
+
sympy.Mul: aet.mul,
|
30 |
+
sympy.Abs: aet.abs,
|
31 |
+
sympy.sign: aet.sgn,
|
32 |
+
sympy.ceiling: aet.ceil,
|
33 |
+
sympy.floor: aet.floor,
|
34 |
+
sympy.log: aet.log,
|
35 |
+
sympy.exp: aet.exp,
|
36 |
+
sympy.sqrt: aet.sqrt,
|
37 |
+
sympy.cos: aet.cos,
|
38 |
+
sympy.acos: aet.arccos,
|
39 |
+
sympy.sin: aet.sin,
|
40 |
+
sympy.asin: aet.arcsin,
|
41 |
+
sympy.tan: aet.tan,
|
42 |
+
sympy.atan: aet.arctan,
|
43 |
+
sympy.atan2: aet.arctan2,
|
44 |
+
sympy.cosh: aet.cosh,
|
45 |
+
sympy.acosh: aet.arccosh,
|
46 |
+
sympy.sinh: aet.sinh,
|
47 |
+
sympy.asinh: aet.arcsinh,
|
48 |
+
sympy.tanh: aet.tanh,
|
49 |
+
sympy.atanh: aet.arctanh,
|
50 |
+
sympy.re: aet.real,
|
51 |
+
sympy.im: aet.imag,
|
52 |
+
sympy.arg: aet.angle,
|
53 |
+
sympy.erf: aet.erf,
|
54 |
+
sympy.gamma: aet.gamma,
|
55 |
+
sympy.loggamma: aet.gammaln,
|
56 |
+
sympy.Pow: aet.pow,
|
57 |
+
sympy.Eq: aet.eq,
|
58 |
+
sympy.StrictGreaterThan: aet.gt,
|
59 |
+
sympy.StrictLessThan: aet.lt,
|
60 |
+
sympy.LessThan: aet.le,
|
61 |
+
sympy.GreaterThan: aet.ge,
|
62 |
+
sympy.And: aet.bitwise_and, # bitwise
|
63 |
+
sympy.Or: aet.bitwise_or, # bitwise
|
64 |
+
sympy.Not: aet.invert, # bitwise
|
65 |
+
sympy.Xor: aet.bitwise_xor, # bitwise
|
66 |
+
sympy.Max: aet.maximum, # Sympy accept >2 inputs, Aesara only 2
|
67 |
+
sympy.Min: aet.minimum, # Sympy accept >2 inputs, Aesara only 2
|
68 |
+
sympy.conjugate: aet.conj,
|
69 |
+
sympy.core.numbers.ImaginaryUnit: lambda:aet.complex(0,1),
|
70 |
+
# Matrices
|
71 |
+
sympy.MatAdd: Elemwise(aes.add),
|
72 |
+
sympy.HadamardProduct: Elemwise(aes.mul),
|
73 |
+
sympy.Trace: nlinalg.trace,
|
74 |
+
sympy.Determinant : nlinalg.det,
|
75 |
+
sympy.Inverse: nlinalg.matrix_inverse,
|
76 |
+
sympy.Transpose: DimShuffle((False, False), [1, 0]),
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
class AesaraPrinter(Printer):
|
81 |
+
""" Code printer which creates Aesara symbolic expression graphs.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
==========
|
85 |
+
|
86 |
+
cache : dict
|
87 |
+
Cache dictionary to use. If None (default) will use
|
88 |
+
the global cache. To create a printer which does not depend on or alter
|
89 |
+
global state pass an empty dictionary. Note: the dictionary is not
|
90 |
+
copied on initialization of the printer and will be updated in-place,
|
91 |
+
so using the same dict object when creating multiple printers or making
|
92 |
+
multiple calls to :func:`.aesara_code` or :func:`.aesara_function` means
|
93 |
+
the cache is shared between all these applications.
|
94 |
+
|
95 |
+
Attributes
|
96 |
+
==========
|
97 |
+
|
98 |
+
cache : dict
|
99 |
+
A cache of Aesara variables which have been created for SymPy
|
100 |
+
symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or
|
101 |
+
:class:`sympy.matrices.expressions.MatrixSymbol`). This is used to
|
102 |
+
ensure that all references to a given symbol in an expression (or
|
103 |
+
multiple expressions) are printed as the same Aesara variable, which is
|
104 |
+
created only once. Symbols are differentiated only by name and type. The
|
105 |
+
format of the cache's contents should be considered opaque to the user.
|
106 |
+
"""
|
107 |
+
printmethod = "_aesara"
|
108 |
+
|
109 |
+
def __init__(self, *args, **kwargs):
|
110 |
+
self.cache = kwargs.pop('cache', {})
|
111 |
+
super().__init__(*args, **kwargs)
|
112 |
+
|
113 |
+
def _get_key(self, s, name=None, dtype=None, broadcastable=None):
|
114 |
+
""" Get the cache key for a SymPy object.
|
115 |
+
|
116 |
+
Parameters
|
117 |
+
==========
|
118 |
+
|
119 |
+
s : sympy.core.basic.Basic
|
120 |
+
SymPy object to get key for.
|
121 |
+
|
122 |
+
name : str
|
123 |
+
Name of object, if it does not have a ``name`` attribute.
|
124 |
+
"""
|
125 |
+
|
126 |
+
if name is None:
|
127 |
+
name = s.name
|
128 |
+
|
129 |
+
return (name, type(s), s.args, dtype, broadcastable)
|
130 |
+
|
131 |
+
def _get_or_create(self, s, name=None, dtype=None, broadcastable=None):
|
132 |
+
"""
|
133 |
+
Get the Aesara variable for a SymPy symbol from the cache, or create it
|
134 |
+
if it does not exist.
|
135 |
+
"""
|
136 |
+
|
137 |
+
# Defaults
|
138 |
+
if name is None:
|
139 |
+
name = s.name
|
140 |
+
if dtype is None:
|
141 |
+
dtype = 'floatX'
|
142 |
+
if broadcastable is None:
|
143 |
+
broadcastable = ()
|
144 |
+
|
145 |
+
key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable)
|
146 |
+
|
147 |
+
if key in self.cache:
|
148 |
+
return self.cache[key]
|
149 |
+
|
150 |
+
value = aet.tensor(name=name, dtype=dtype, broadcastable=broadcastable)
|
151 |
+
self.cache[key] = value
|
152 |
+
return value
|
153 |
+
|
154 |
+
def _print_Symbol(self, s, **kwargs):
|
155 |
+
dtype = kwargs.get('dtypes', {}).get(s)
|
156 |
+
bc = kwargs.get('broadcastables', {}).get(s)
|
157 |
+
return self._get_or_create(s, dtype=dtype, broadcastable=bc)
|
158 |
+
|
159 |
+
def _print_AppliedUndef(self, s, **kwargs):
|
160 |
+
name = str(type(s)) + '_' + str(s.args[0])
|
161 |
+
dtype = kwargs.get('dtypes', {}).get(s)
|
162 |
+
bc = kwargs.get('broadcastables', {}).get(s)
|
163 |
+
return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc)
|
164 |
+
|
165 |
+
def _print_Basic(self, expr, **kwargs):
|
166 |
+
op = mapping[type(expr)]
|
167 |
+
children = [self._print(arg, **kwargs) for arg in expr.args]
|
168 |
+
return op(*children)
|
169 |
+
|
170 |
+
def _print_Number(self, n, **kwargs):
|
171 |
+
# Integers already taken care of below, interpret as float
|
172 |
+
return float(n.evalf())
|
173 |
+
|
174 |
+
def _print_MatrixSymbol(self, X, **kwargs):
|
175 |
+
dtype = kwargs.get('dtypes', {}).get(X)
|
176 |
+
return self._get_or_create(X, dtype=dtype, broadcastable=(None, None))
|
177 |
+
|
178 |
+
def _print_DenseMatrix(self, X, **kwargs):
|
179 |
+
if not hasattr(aet, 'stacklists'):
|
180 |
+
raise NotImplementedError(
|
181 |
+
"Matrix translation not yet supported in this version of Aesara")
|
182 |
+
|
183 |
+
return aet.stacklists([
|
184 |
+
[self._print(arg, **kwargs) for arg in L]
|
185 |
+
for L in X.tolist()
|
186 |
+
])
|
187 |
+
|
188 |
+
_print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix
|
189 |
+
|
190 |
+
def _print_MatMul(self, expr, **kwargs):
|
191 |
+
children = [self._print(arg, **kwargs) for arg in expr.args]
|
192 |
+
result = children[0]
|
193 |
+
for child in children[1:]:
|
194 |
+
result = aet.dot(result, child)
|
195 |
+
return result
|
196 |
+
|
197 |
+
def _print_MatPow(self, expr, **kwargs):
|
198 |
+
children = [self._print(arg, **kwargs) for arg in expr.args]
|
199 |
+
result = 1
|
200 |
+
if isinstance(children[1], int) and children[1] > 0:
|
201 |
+
for i in range(children[1]):
|
202 |
+
result = aet.dot(result, children[0])
|
203 |
+
else:
|
204 |
+
raise NotImplementedError('''Only non-negative integer
|
205 |
+
powers of matrices can be handled by Aesara at the moment''')
|
206 |
+
return result
|
207 |
+
|
208 |
+
def _print_MatrixSlice(self, expr, **kwargs):
|
209 |
+
parent = self._print(expr.parent, **kwargs)
|
210 |
+
rowslice = self._print(slice(*expr.rowslice), **kwargs)
|
211 |
+
colslice = self._print(slice(*expr.colslice), **kwargs)
|
212 |
+
return parent[rowslice, colslice]
|
213 |
+
|
214 |
+
def _print_BlockMatrix(self, expr, **kwargs):
|
215 |
+
nrows, ncols = expr.blocks.shape
|
216 |
+
blocks = [[self._print(expr.blocks[r, c], **kwargs)
|
217 |
+
for c in range(ncols)]
|
218 |
+
for r in range(nrows)]
|
219 |
+
return aet.join(0, *[aet.join(1, *row) for row in blocks])
|
220 |
+
|
221 |
+
|
222 |
+
def _print_slice(self, expr, **kwargs):
|
223 |
+
return slice(*[self._print(i, **kwargs)
|
224 |
+
if isinstance(i, sympy.Basic) else i
|
225 |
+
for i in (expr.start, expr.stop, expr.step)])
|
226 |
+
|
227 |
+
def _print_Pi(self, expr, **kwargs):
|
228 |
+
return 3.141592653589793
|
229 |
+
|
230 |
+
def _print_Piecewise(self, expr, **kwargs):
|
231 |
+
import numpy as np
|
232 |
+
e, cond = expr.args[0].args # First condition and corresponding value
|
233 |
+
|
234 |
+
# Print conditional expression and value for first condition
|
235 |
+
p_cond = self._print(cond, **kwargs)
|
236 |
+
p_e = self._print(e, **kwargs)
|
237 |
+
|
238 |
+
# One condition only
|
239 |
+
if len(expr.args) == 1:
|
240 |
+
# Return value if condition else NaN
|
241 |
+
return aet.switch(p_cond, p_e, np.nan)
|
242 |
+
|
243 |
+
# Return value_1 if condition_1 else evaluate remaining conditions
|
244 |
+
p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs)
|
245 |
+
return aet.switch(p_cond, p_e, p_remaining)
|
246 |
+
|
247 |
+
def _print_Rational(self, expr, **kwargs):
|
248 |
+
return true_divide(self._print(expr.p, **kwargs),
|
249 |
+
self._print(expr.q, **kwargs))
|
250 |
+
|
251 |
+
def _print_Integer(self, expr, **kwargs):
|
252 |
+
return expr.p
|
253 |
+
|
254 |
+
def _print_factorial(self, expr, **kwargs):
|
255 |
+
return self._print(sympy.gamma(expr.args[0] + 1), **kwargs)
|
256 |
+
|
257 |
+
def _print_Derivative(self, deriv, **kwargs):
|
258 |
+
from aesara.gradient import Rop
|
259 |
+
|
260 |
+
rv = self._print(deriv.expr, **kwargs)
|
261 |
+
for var in deriv.variables:
|
262 |
+
var = self._print(var, **kwargs)
|
263 |
+
rv = Rop(rv, var, aet.ones_like(var))
|
264 |
+
return rv
|
265 |
+
|
266 |
+
def emptyPrinter(self, expr):
|
267 |
+
return expr
|
268 |
+
|
269 |
+
def doprint(self, expr, dtypes=None, broadcastables=None):
|
270 |
+
""" Convert a SymPy expression to a Aesara graph variable.
|
271 |
+
|
272 |
+
The ``dtypes`` and ``broadcastables`` arguments are used to specify the
|
273 |
+
data type, dimension, and broadcasting behavior of the Aesara variables
|
274 |
+
corresponding to the free symbols in ``expr``. Each is a mapping from
|
275 |
+
SymPy symbols to the value of the corresponding argument to
|
276 |
+
``aesara.tensor.var.TensorVariable``.
|
277 |
+
|
278 |
+
See the corresponding `documentation page`__ for more information on
|
279 |
+
broadcasting in Aesara.
|
280 |
+
|
281 |
+
.. __: https://aesara.readthedocs.io/en/latest/tutorial/broadcasting.html
|
282 |
+
|
283 |
+
Parameters
|
284 |
+
==========
|
285 |
+
|
286 |
+
expr : sympy.core.expr.Expr
|
287 |
+
SymPy expression to print.
|
288 |
+
|
289 |
+
dtypes : dict
|
290 |
+
Mapping from SymPy symbols to Aesara datatypes to use when creating
|
291 |
+
new Aesara variables for those symbols. Corresponds to the ``dtype``
|
292 |
+
argument to ``aesara.tensor.var.TensorVariable``. Defaults to ``'floatX'``
|
293 |
+
for symbols not included in the mapping.
|
294 |
+
|
295 |
+
broadcastables : dict
|
296 |
+
Mapping from SymPy symbols to the value of the ``broadcastable``
|
297 |
+
argument to ``aesara.tensor.var.TensorVariable`` to use when creating Aesara
|
298 |
+
variables for those symbols. Defaults to the empty tuple for symbols
|
299 |
+
not included in the mapping (resulting in a scalar).
|
300 |
+
|
301 |
+
Returns
|
302 |
+
=======
|
303 |
+
|
304 |
+
aesara.graph.basic.Variable
|
305 |
+
A variable corresponding to the expression's value in a Aesara
|
306 |
+
symbolic expression graph.
|
307 |
+
|
308 |
+
"""
|
309 |
+
if dtypes is None:
|
310 |
+
dtypes = {}
|
311 |
+
if broadcastables is None:
|
312 |
+
broadcastables = {}
|
313 |
+
|
314 |
+
return self._print(expr, dtypes=dtypes, broadcastables=broadcastables)
|
315 |
+
|
316 |
+
|
317 |
+
global_cache: dict[Any, Any] = {}
|
318 |
+
|
319 |
+
|
320 |
+
def aesara_code(expr, cache=None, **kwargs):
|
321 |
+
"""
|
322 |
+
Convert a SymPy expression into a Aesara graph variable.
|
323 |
+
|
324 |
+
Parameters
|
325 |
+
==========
|
326 |
+
|
327 |
+
expr : sympy.core.expr.Expr
|
328 |
+
SymPy expression object to convert.
|
329 |
+
|
330 |
+
cache : dict
|
331 |
+
Cached Aesara variables (see :class:`AesaraPrinter.cache
|
332 |
+
<AesaraPrinter>`). Defaults to the module-level global cache.
|
333 |
+
|
334 |
+
dtypes : dict
|
335 |
+
Passed to :meth:`.AesaraPrinter.doprint`.
|
336 |
+
|
337 |
+
broadcastables : dict
|
338 |
+
Passed to :meth:`.AesaraPrinter.doprint`.
|
339 |
+
|
340 |
+
Returns
|
341 |
+
=======
|
342 |
+
|
343 |
+
aesara.graph.basic.Variable
|
344 |
+
A variable corresponding to the expression's value in a Aesara symbolic
|
345 |
+
expression graph.
|
346 |
+
|
347 |
+
"""
|
348 |
+
if not aesara:
|
349 |
+
raise ImportError("aesara is required for aesara_code")
|
350 |
+
|
351 |
+
if cache is None:
|
352 |
+
cache = global_cache
|
353 |
+
|
354 |
+
return AesaraPrinter(cache=cache, settings={}).doprint(expr, **kwargs)
|
355 |
+
|
356 |
+
|
357 |
+
def dim_handling(inputs, dim=None, dims=None, broadcastables=None):
|
358 |
+
r"""
|
359 |
+
Get value of ``broadcastables`` argument to :func:`.aesara_code` from
|
360 |
+
keyword arguments to :func:`.aesara_function`.
|
361 |
+
|
362 |
+
Included for backwards compatibility.
|
363 |
+
|
364 |
+
Parameters
|
365 |
+
==========
|
366 |
+
|
367 |
+
inputs
|
368 |
+
Sequence of input symbols.
|
369 |
+
|
370 |
+
dim : int
|
371 |
+
Common number of dimensions for all inputs. Overrides other arguments
|
372 |
+
if given.
|
373 |
+
|
374 |
+
dims : dict
|
375 |
+
Mapping from input symbols to number of dimensions. Overrides
|
376 |
+
``broadcastables`` argument if given.
|
377 |
+
|
378 |
+
broadcastables : dict
|
379 |
+
Explicit value of ``broadcastables`` argument to
|
380 |
+
:meth:`.AesaraPrinter.doprint`. If not None function will return this value unchanged.
|
381 |
+
|
382 |
+
Returns
|
383 |
+
=======
|
384 |
+
dict
|
385 |
+
Dictionary mapping elements of ``inputs`` to their "broadcastable"
|
386 |
+
values (tuple of ``bool``\ s).
|
387 |
+
"""
|
388 |
+
if dim is not None:
|
389 |
+
return {s: (False,) * dim for s in inputs}
|
390 |
+
|
391 |
+
if dims is not None:
|
392 |
+
maxdim = max(dims.values())
|
393 |
+
return {
|
394 |
+
s: (False,) * d + (True,) * (maxdim - d)
|
395 |
+
for s, d in dims.items()
|
396 |
+
}
|
397 |
+
|
398 |
+
if broadcastables is not None:
|
399 |
+
return broadcastables
|
400 |
+
|
401 |
+
return {}
|
402 |
+
|
403 |
+
|
404 |
+
def aesara_function(inputs, outputs, scalar=False, *,
|
405 |
+
dim=None, dims=None, broadcastables=None, **kwargs):
|
406 |
+
"""
|
407 |
+
Create a Aesara function from SymPy expressions.
|
408 |
+
|
409 |
+
The inputs and outputs are converted to Aesara variables using
|
410 |
+
:func:`.aesara_code` and then passed to ``aesara.function``.
|
411 |
+
|
412 |
+
Parameters
|
413 |
+
==========
|
414 |
+
|
415 |
+
inputs
|
416 |
+
Sequence of symbols which constitute the inputs of the function.
|
417 |
+
|
418 |
+
outputs
|
419 |
+
Sequence of expressions which constitute the outputs(s) of the
|
420 |
+
function. The free symbols of each expression must be a subset of
|
421 |
+
``inputs``.
|
422 |
+
|
423 |
+
scalar : bool
|
424 |
+
Convert 0-dimensional arrays in output to scalars. This will return a
|
425 |
+
Python wrapper function around the Aesara function object.
|
426 |
+
|
427 |
+
cache : dict
|
428 |
+
Cached Aesara variables (see :class:`AesaraPrinter.cache
|
429 |
+
<AesaraPrinter>`). Defaults to the module-level global cache.
|
430 |
+
|
431 |
+
dtypes : dict
|
432 |
+
Passed to :meth:`.AesaraPrinter.doprint`.
|
433 |
+
|
434 |
+
broadcastables : dict
|
435 |
+
Passed to :meth:`.AesaraPrinter.doprint`.
|
436 |
+
|
437 |
+
dims : dict
|
438 |
+
Alternative to ``broadcastables`` argument. Mapping from elements of
|
439 |
+
``inputs`` to integers indicating the dimension of their associated
|
440 |
+
arrays/tensors. Overrides ``broadcastables`` argument if given.
|
441 |
+
|
442 |
+
dim : int
|
443 |
+
Another alternative to the ``broadcastables`` argument. Common number of
|
444 |
+
dimensions to use for all arrays/tensors.
|
445 |
+
``aesara_function([x, y], [...], dim=2)`` is equivalent to using
|
446 |
+
``broadcastables={x: (False, False), y: (False, False)}``.
|
447 |
+
|
448 |
+
Returns
|
449 |
+
=======
|
450 |
+
callable
|
451 |
+
A callable object which takes values of ``inputs`` as positional
|
452 |
+
arguments and returns an output array for each of the expressions
|
453 |
+
in ``outputs``. If ``outputs`` is a single expression the function will
|
454 |
+
return a Numpy array, if it is a list of multiple expressions the
|
455 |
+
function will return a list of arrays. See description of the ``squeeze``
|
456 |
+
argument above for the behavior when a single output is passed in a list.
|
457 |
+
The returned object will either be an instance of
|
458 |
+
``aesara.compile.function.types.Function`` or a Python wrapper
|
459 |
+
function around one. In both cases, the returned value will have a
|
460 |
+
``aesara_function`` attribute which points to the return value of
|
461 |
+
``aesara.function``.
|
462 |
+
|
463 |
+
Examples
|
464 |
+
========
|
465 |
+
|
466 |
+
>>> from sympy.abc import x, y, z
|
467 |
+
>>> from sympy.printing.aesaracode import aesara_function
|
468 |
+
|
469 |
+
A simple function with one input and one output:
|
470 |
+
|
471 |
+
>>> f1 = aesara_function([x], [x**2 - 1], scalar=True)
|
472 |
+
>>> f1(3)
|
473 |
+
8.0
|
474 |
+
|
475 |
+
A function with multiple inputs and one output:
|
476 |
+
|
477 |
+
>>> f2 = aesara_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
|
478 |
+
>>> f2(3, 4, 2)
|
479 |
+
5.0
|
480 |
+
|
481 |
+
A function with multiple inputs and multiple outputs:
|
482 |
+
|
483 |
+
>>> f3 = aesara_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
|
484 |
+
>>> f3(2, 3)
|
485 |
+
[13.0, -5.0]
|
486 |
+
|
487 |
+
See also
|
488 |
+
========
|
489 |
+
|
490 |
+
dim_handling
|
491 |
+
|
492 |
+
"""
|
493 |
+
if not aesara:
|
494 |
+
raise ImportError("Aesara is required for aesara_function")
|
495 |
+
|
496 |
+
# Pop off non-aesara keyword args
|
497 |
+
cache = kwargs.pop('cache', {})
|
498 |
+
dtypes = kwargs.pop('dtypes', {})
|
499 |
+
|
500 |
+
broadcastables = dim_handling(
|
501 |
+
inputs, dim=dim, dims=dims, broadcastables=broadcastables,
|
502 |
+
)
|
503 |
+
|
504 |
+
# Print inputs/outputs
|
505 |
+
code = partial(aesara_code, cache=cache, dtypes=dtypes,
|
506 |
+
broadcastables=broadcastables)
|
507 |
+
tinputs = list(map(code, inputs))
|
508 |
+
toutputs = list(map(code, outputs))
|
509 |
+
|
510 |
+
#fix constant expressions as variables
|
511 |
+
toutputs = [output if isinstance(output, aesara.graph.basic.Variable) else aet.as_tensor_variable(output) for output in toutputs]
|
512 |
+
|
513 |
+
if len(toutputs) == 1:
|
514 |
+
toutputs = toutputs[0]
|
515 |
+
|
516 |
+
# Compile aesara func
|
517 |
+
func = aesara.function(tinputs, toutputs, **kwargs)
|
518 |
+
|
519 |
+
is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs]
|
520 |
+
|
521 |
+
# No wrapper required
|
522 |
+
if not scalar or not any(is_0d):
|
523 |
+
func.aesara_function = func
|
524 |
+
return func
|
525 |
+
|
526 |
+
# Create wrapper to convert 0-dimensional outputs to scalars
|
527 |
+
def wrapper(*args):
|
528 |
+
out = func(*args)
|
529 |
+
# out can be array(1.0) or [array(1.0), array(2.0)]
|
530 |
+
|
531 |
+
if is_sequence(out):
|
532 |
+
return [o[()] if is_0d[i] else o for i, o in enumerate(out)]
|
533 |
+
else:
|
534 |
+
return out[()]
|
535 |
+
|
536 |
+
wrapper.__wrapped__ = func
|
537 |
+
wrapper.__doc__ = func.__doc__
|
538 |
+
wrapper.aesara_function = func
|
539 |
+
return wrapper
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/c.py
ADDED
@@ -0,0 +1,747 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
C code printer
|
3 |
+
|
4 |
+
The C89CodePrinter & C99CodePrinter converts single SymPy expressions into
|
5 |
+
single C expressions, using the functions defined in math.h where possible.
|
6 |
+
|
7 |
+
A complete code generator, which uses ccode extensively, can be found in
|
8 |
+
sympy.utilities.codegen. The codegen module can be used to generate complete
|
9 |
+
source code files that are compilable without further modifications.
|
10 |
+
|
11 |
+
|
12 |
+
"""
|
13 |
+
|
14 |
+
from __future__ import annotations
|
15 |
+
from typing import Any
|
16 |
+
|
17 |
+
from functools import wraps
|
18 |
+
from itertools import chain
|
19 |
+
|
20 |
+
from sympy.core import S
|
21 |
+
from sympy.core.numbers import equal_valued
|
22 |
+
from sympy.codegen.ast import (
|
23 |
+
Assignment, Pointer, Variable, Declaration, Type,
|
24 |
+
real, complex_, integer, bool_, float32, float64, float80,
|
25 |
+
complex64, complex128, intc, value_const, pointer_const,
|
26 |
+
int8, int16, int32, int64, uint8, uint16, uint32, uint64, untyped,
|
27 |
+
none
|
28 |
+
)
|
29 |
+
from sympy.printing.codeprinter import CodePrinter, requires
|
30 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
31 |
+
from sympy.sets.fancysets import Range
|
32 |
+
|
33 |
+
# These are defined in the other file so we can avoid importing sympy.codegen
|
34 |
+
# from the top-level 'import sympy'. Export them here as well.
|
35 |
+
from sympy.printing.codeprinter import ccode, print_ccode # noqa:F401
|
36 |
+
|
37 |
+
# dictionary mapping SymPy function to (argument_conditions, C_function).
|
38 |
+
# Used in C89CodePrinter._print_Function(self)
|
39 |
+
known_functions_C89 = {
|
40 |
+
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
|
41 |
+
"sin": "sin",
|
42 |
+
"cos": "cos",
|
43 |
+
"tan": "tan",
|
44 |
+
"asin": "asin",
|
45 |
+
"acos": "acos",
|
46 |
+
"atan": "atan",
|
47 |
+
"atan2": "atan2",
|
48 |
+
"exp": "exp",
|
49 |
+
"log": "log",
|
50 |
+
"sinh": "sinh",
|
51 |
+
"cosh": "cosh",
|
52 |
+
"tanh": "tanh",
|
53 |
+
"floor": "floor",
|
54 |
+
"ceiling": "ceil",
|
55 |
+
"sqrt": "sqrt", # To enable automatic rewrites
|
56 |
+
}
|
57 |
+
|
58 |
+
known_functions_C99 = dict(known_functions_C89, **{
|
59 |
+
'exp2': 'exp2',
|
60 |
+
'expm1': 'expm1',
|
61 |
+
'log10': 'log10',
|
62 |
+
'log2': 'log2',
|
63 |
+
'log1p': 'log1p',
|
64 |
+
'Cbrt': 'cbrt',
|
65 |
+
'hypot': 'hypot',
|
66 |
+
'fma': 'fma',
|
67 |
+
'loggamma': 'lgamma',
|
68 |
+
'erfc': 'erfc',
|
69 |
+
'Max': 'fmax',
|
70 |
+
'Min': 'fmin',
|
71 |
+
"asinh": "asinh",
|
72 |
+
"acosh": "acosh",
|
73 |
+
"atanh": "atanh",
|
74 |
+
"erf": "erf",
|
75 |
+
"gamma": "tgamma",
|
76 |
+
})
|
77 |
+
|
78 |
+
# These are the core reserved words in the C language. Taken from:
|
79 |
+
# https://en.cppreference.com/w/c/keyword
|
80 |
+
|
81 |
+
reserved_words = [
|
82 |
+
'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do',
|
83 |
+
'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int',
|
84 |
+
'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static',
|
85 |
+
'struct', 'entry', # never standardized, we'll leave it here anyway
|
86 |
+
'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while'
|
87 |
+
]
|
88 |
+
|
89 |
+
reserved_words_c99 = ['inline', 'restrict']
|
90 |
+
|
91 |
+
def get_math_macros():
|
92 |
+
""" Returns a dictionary with math-related macros from math.h/cmath
|
93 |
+
|
94 |
+
Note that these macros are not strictly required by the C/C++-standard.
|
95 |
+
For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably
|
96 |
+
via a compilation flag).
|
97 |
+
|
98 |
+
Returns
|
99 |
+
=======
|
100 |
+
|
101 |
+
Dictionary mapping SymPy expressions to strings (macro names)
|
102 |
+
|
103 |
+
"""
|
104 |
+
from sympy.codegen.cfunctions import log2, Sqrt
|
105 |
+
from sympy.functions.elementary.exponential import log
|
106 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
107 |
+
|
108 |
+
return {
|
109 |
+
S.Exp1: 'M_E',
|
110 |
+
log2(S.Exp1): 'M_LOG2E',
|
111 |
+
1/log(2): 'M_LOG2E',
|
112 |
+
log(2): 'M_LN2',
|
113 |
+
log(10): 'M_LN10',
|
114 |
+
S.Pi: 'M_PI',
|
115 |
+
S.Pi/2: 'M_PI_2',
|
116 |
+
S.Pi/4: 'M_PI_4',
|
117 |
+
1/S.Pi: 'M_1_PI',
|
118 |
+
2/S.Pi: 'M_2_PI',
|
119 |
+
2/sqrt(S.Pi): 'M_2_SQRTPI',
|
120 |
+
2/Sqrt(S.Pi): 'M_2_SQRTPI',
|
121 |
+
sqrt(2): 'M_SQRT2',
|
122 |
+
Sqrt(2): 'M_SQRT2',
|
123 |
+
1/sqrt(2): 'M_SQRT1_2',
|
124 |
+
1/Sqrt(2): 'M_SQRT1_2'
|
125 |
+
}
|
126 |
+
|
127 |
+
|
128 |
+
def _as_macro_if_defined(meth):
|
129 |
+
""" Decorator for printer methods
|
130 |
+
|
131 |
+
When a Printer's method is decorated using this decorator the expressions printed
|
132 |
+
will first be looked for in the attribute ``math_macros``, and if present it will
|
133 |
+
print the macro name in ``math_macros`` followed by a type suffix for the type
|
134 |
+
``real``. e.g. printing ``sympy.pi`` would print ``M_PIl`` if real is mapped to float80.
|
135 |
+
|
136 |
+
"""
|
137 |
+
@wraps(meth)
|
138 |
+
def _meth_wrapper(self, expr, **kwargs):
|
139 |
+
if expr in self.math_macros:
|
140 |
+
return '%s%s' % (self.math_macros[expr], self._get_math_macro_suffix(real))
|
141 |
+
else:
|
142 |
+
return meth(self, expr, **kwargs)
|
143 |
+
|
144 |
+
return _meth_wrapper
|
145 |
+
|
146 |
+
|
147 |
+
class C89CodePrinter(CodePrinter):
|
148 |
+
"""A printer to convert Python expressions to strings of C code"""
|
149 |
+
printmethod = "_ccode"
|
150 |
+
language = "C"
|
151 |
+
standard = "C89"
|
152 |
+
reserved_words = set(reserved_words)
|
153 |
+
|
154 |
+
_default_settings: dict[str, Any] = {
|
155 |
+
'order': None,
|
156 |
+
'full_prec': 'auto',
|
157 |
+
'precision': 17,
|
158 |
+
'user_functions': {},
|
159 |
+
'human': True,
|
160 |
+
'allow_unknown_functions': False,
|
161 |
+
'contract': True,
|
162 |
+
'dereference': set(),
|
163 |
+
'error_on_reserved': False,
|
164 |
+
'reserved_word_suffix': '_',
|
165 |
+
}
|
166 |
+
|
167 |
+
type_aliases = {
|
168 |
+
real: float64,
|
169 |
+
complex_: complex128,
|
170 |
+
integer: intc
|
171 |
+
}
|
172 |
+
|
173 |
+
type_mappings: dict[Type, Any] = {
|
174 |
+
real: 'double',
|
175 |
+
intc: 'int',
|
176 |
+
float32: 'float',
|
177 |
+
float64: 'double',
|
178 |
+
integer: 'int',
|
179 |
+
bool_: 'bool',
|
180 |
+
int8: 'int8_t',
|
181 |
+
int16: 'int16_t',
|
182 |
+
int32: 'int32_t',
|
183 |
+
int64: 'int64_t',
|
184 |
+
uint8: 'int8_t',
|
185 |
+
uint16: 'int16_t',
|
186 |
+
uint32: 'int32_t',
|
187 |
+
uint64: 'int64_t',
|
188 |
+
}
|
189 |
+
|
190 |
+
type_headers = {
|
191 |
+
bool_: {'stdbool.h'},
|
192 |
+
int8: {'stdint.h'},
|
193 |
+
int16: {'stdint.h'},
|
194 |
+
int32: {'stdint.h'},
|
195 |
+
int64: {'stdint.h'},
|
196 |
+
uint8: {'stdint.h'},
|
197 |
+
uint16: {'stdint.h'},
|
198 |
+
uint32: {'stdint.h'},
|
199 |
+
uint64: {'stdint.h'},
|
200 |
+
}
|
201 |
+
|
202 |
+
# Macros needed to be defined when using a Type
|
203 |
+
type_macros: dict[Type, tuple[str, ...]] = {}
|
204 |
+
|
205 |
+
type_func_suffixes = {
|
206 |
+
float32: 'f',
|
207 |
+
float64: '',
|
208 |
+
float80: 'l'
|
209 |
+
}
|
210 |
+
|
211 |
+
type_literal_suffixes = {
|
212 |
+
float32: 'F',
|
213 |
+
float64: '',
|
214 |
+
float80: 'L'
|
215 |
+
}
|
216 |
+
|
217 |
+
type_math_macro_suffixes = {
|
218 |
+
float80: 'l'
|
219 |
+
}
|
220 |
+
|
221 |
+
math_macros = None
|
222 |
+
|
223 |
+
_ns = '' # namespace, C++ uses 'std::'
|
224 |
+
# known_functions-dict to copy
|
225 |
+
_kf: dict[str, Any] = known_functions_C89
|
226 |
+
|
227 |
+
def __init__(self, settings=None):
|
228 |
+
settings = settings or {}
|
229 |
+
if self.math_macros is None:
|
230 |
+
self.math_macros = settings.pop('math_macros', get_math_macros())
|
231 |
+
self.type_aliases = dict(chain(self.type_aliases.items(),
|
232 |
+
settings.pop('type_aliases', {}).items()))
|
233 |
+
self.type_mappings = dict(chain(self.type_mappings.items(),
|
234 |
+
settings.pop('type_mappings', {}).items()))
|
235 |
+
self.type_headers = dict(chain(self.type_headers.items(),
|
236 |
+
settings.pop('type_headers', {}).items()))
|
237 |
+
self.type_macros = dict(chain(self.type_macros.items(),
|
238 |
+
settings.pop('type_macros', {}).items()))
|
239 |
+
self.type_func_suffixes = dict(chain(self.type_func_suffixes.items(),
|
240 |
+
settings.pop('type_func_suffixes', {}).items()))
|
241 |
+
self.type_literal_suffixes = dict(chain(self.type_literal_suffixes.items(),
|
242 |
+
settings.pop('type_literal_suffixes', {}).items()))
|
243 |
+
self.type_math_macro_suffixes = dict(chain(self.type_math_macro_suffixes.items(),
|
244 |
+
settings.pop('type_math_macro_suffixes', {}).items()))
|
245 |
+
super().__init__(settings)
|
246 |
+
self.known_functions = dict(self._kf, **settings.get('user_functions', {}))
|
247 |
+
self._dereference = set(settings.get('dereference', []))
|
248 |
+
self.headers = set()
|
249 |
+
self.libraries = set()
|
250 |
+
self.macros = set()
|
251 |
+
|
252 |
+
def _rate_index_position(self, p):
|
253 |
+
return p*5
|
254 |
+
|
255 |
+
def _get_statement(self, codestring):
|
256 |
+
""" Get code string as a statement - i.e. ending with a semicolon. """
|
257 |
+
return codestring if codestring.endswith(';') else codestring + ';'
|
258 |
+
|
259 |
+
def _get_comment(self, text):
|
260 |
+
return "/* {} */".format(text)
|
261 |
+
|
262 |
+
def _declare_number_const(self, name, value):
|
263 |
+
type_ = self.type_aliases[real]
|
264 |
+
var = Variable(name, type=type_, value=value.evalf(type_.decimal_dig), attrs={value_const})
|
265 |
+
decl = Declaration(var)
|
266 |
+
return self._get_statement(self._print(decl))
|
267 |
+
|
268 |
+
def _format_code(self, lines):
|
269 |
+
return self.indent_code(lines)
|
270 |
+
|
271 |
+
def _traverse_matrix_indices(self, mat):
|
272 |
+
rows, cols = mat.shape
|
273 |
+
return ((i, j) for i in range(rows) for j in range(cols))
|
274 |
+
|
275 |
+
@_as_macro_if_defined
|
276 |
+
def _print_Mul(self, expr, **kwargs):
|
277 |
+
return super()._print_Mul(expr, **kwargs)
|
278 |
+
|
279 |
+
@_as_macro_if_defined
|
280 |
+
def _print_Pow(self, expr):
|
281 |
+
if "Pow" in self.known_functions:
|
282 |
+
return self._print_Function(expr)
|
283 |
+
PREC = precedence(expr)
|
284 |
+
suffix = self._get_func_suffix(real)
|
285 |
+
if equal_valued(expr.exp, -1):
|
286 |
+
literal_suffix = self._get_literal_suffix(real)
|
287 |
+
return '1.0%s/%s' % (literal_suffix, self.parenthesize(expr.base, PREC))
|
288 |
+
elif equal_valued(expr.exp, 0.5):
|
289 |
+
return '%ssqrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
|
290 |
+
elif expr.exp == S.One/3 and self.standard != 'C89':
|
291 |
+
return '%scbrt%s(%s)' % (self._ns, suffix, self._print(expr.base))
|
292 |
+
else:
|
293 |
+
return '%spow%s(%s, %s)' % (self._ns, suffix, self._print(expr.base),
|
294 |
+
self._print(expr.exp))
|
295 |
+
|
296 |
+
def _print_Mod(self, expr):
|
297 |
+
num, den = expr.args
|
298 |
+
if num.is_integer and den.is_integer:
|
299 |
+
PREC = precedence(expr)
|
300 |
+
snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args]
|
301 |
+
# % is remainder (same sign as numerator), not modulo (same sign as
|
302 |
+
# denominator), in C. Hence, % only works as modulo if both numbers
|
303 |
+
# have the same sign
|
304 |
+
if (num.is_nonnegative and den.is_nonnegative or
|
305 |
+
num.is_nonpositive and den.is_nonpositive):
|
306 |
+
return f"{snum} % {sden}"
|
307 |
+
return f"(({snum} % {sden}) + {sden}) % {sden}"
|
308 |
+
# Not guaranteed integer
|
309 |
+
return self._print_math_func(expr, known='fmod')
|
310 |
+
|
311 |
+
def _print_Rational(self, expr):
|
312 |
+
p, q = int(expr.p), int(expr.q)
|
313 |
+
suffix = self._get_literal_suffix(real)
|
314 |
+
return '%d.0%s/%d.0%s' % (p, suffix, q, suffix)
|
315 |
+
|
316 |
+
def _print_Indexed(self, expr):
|
317 |
+
# calculate index for 1d array
|
318 |
+
offset = getattr(expr.base, 'offset', S.Zero)
|
319 |
+
strides = getattr(expr.base, 'strides', None)
|
320 |
+
indices = expr.indices
|
321 |
+
|
322 |
+
if strides is None or isinstance(strides, str):
|
323 |
+
dims = expr.shape
|
324 |
+
shift = S.One
|
325 |
+
temp = ()
|
326 |
+
if strides == 'C' or strides is None:
|
327 |
+
traversal = reversed(range(expr.rank))
|
328 |
+
indices = indices[::-1]
|
329 |
+
elif strides == 'F':
|
330 |
+
traversal = range(expr.rank)
|
331 |
+
|
332 |
+
for i in traversal:
|
333 |
+
temp += (shift,)
|
334 |
+
shift *= dims[i]
|
335 |
+
strides = temp
|
336 |
+
flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset
|
337 |
+
return "%s[%s]" % (self._print(expr.base.label),
|
338 |
+
self._print(flat_index))
|
339 |
+
|
340 |
+
def _print_Idx(self, expr):
|
341 |
+
return self._print(expr.label)
|
342 |
+
|
343 |
+
@_as_macro_if_defined
|
344 |
+
def _print_NumberSymbol(self, expr):
|
345 |
+
return super()._print_NumberSymbol(expr)
|
346 |
+
|
347 |
+
def _print_Infinity(self, expr):
|
348 |
+
return 'HUGE_VAL'
|
349 |
+
|
350 |
+
def _print_NegativeInfinity(self, expr):
|
351 |
+
return '-HUGE_VAL'
|
352 |
+
|
353 |
+
def _print_Piecewise(self, expr):
|
354 |
+
if expr.args[-1].cond != True:
|
355 |
+
# We need the last conditional to be a True, otherwise the resulting
|
356 |
+
# function may not return a result.
|
357 |
+
raise ValueError("All Piecewise expressions must contain an "
|
358 |
+
"(expr, True) statement to be used as a default "
|
359 |
+
"condition. Without one, the generated "
|
360 |
+
"expression may not evaluate to anything under "
|
361 |
+
"some condition.")
|
362 |
+
lines = []
|
363 |
+
if expr.has(Assignment):
|
364 |
+
for i, (e, c) in enumerate(expr.args):
|
365 |
+
if i == 0:
|
366 |
+
lines.append("if (%s) {" % self._print(c))
|
367 |
+
elif i == len(expr.args) - 1 and c == True:
|
368 |
+
lines.append("else {")
|
369 |
+
else:
|
370 |
+
lines.append("else if (%s) {" % self._print(c))
|
371 |
+
code0 = self._print(e)
|
372 |
+
lines.append(code0)
|
373 |
+
lines.append("}")
|
374 |
+
return "\n".join(lines)
|
375 |
+
else:
|
376 |
+
# The piecewise was used in an expression, need to do inline
|
377 |
+
# operators. This has the downside that inline operators will
|
378 |
+
# not work for statements that span multiple lines (Matrix or
|
379 |
+
# Indexed expressions).
|
380 |
+
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
|
381 |
+
self._print(e))
|
382 |
+
for e, c in expr.args[:-1]]
|
383 |
+
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
|
384 |
+
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
|
385 |
+
|
386 |
+
def _print_ITE(self, expr):
|
387 |
+
from sympy.functions import Piecewise
|
388 |
+
return self._print(expr.rewrite(Piecewise, deep=False))
|
389 |
+
|
390 |
+
def _print_MatrixElement(self, expr):
|
391 |
+
return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
|
392 |
+
strict=True), expr.j + expr.i*expr.parent.shape[1])
|
393 |
+
|
394 |
+
def _print_Symbol(self, expr):
|
395 |
+
name = super()._print_Symbol(expr)
|
396 |
+
if expr in self._settings['dereference']:
|
397 |
+
return '(*{})'.format(name)
|
398 |
+
else:
|
399 |
+
return name
|
400 |
+
|
401 |
+
def _print_Relational(self, expr):
|
402 |
+
lhs_code = self._print(expr.lhs)
|
403 |
+
rhs_code = self._print(expr.rhs)
|
404 |
+
op = expr.rel_op
|
405 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
406 |
+
|
407 |
+
def _print_For(self, expr):
|
408 |
+
target = self._print(expr.target)
|
409 |
+
if isinstance(expr.iterable, Range):
|
410 |
+
start, stop, step = expr.iterable.args
|
411 |
+
else:
|
412 |
+
raise NotImplementedError("Only iterable currently supported is Range")
|
413 |
+
body = self._print(expr.body)
|
414 |
+
return ('for ({target} = {start}; {target} < {stop}; {target} += '
|
415 |
+
'{step}) {{\n{body}\n}}').format(target=target, start=start,
|
416 |
+
stop=stop, step=step, body=body)
|
417 |
+
|
418 |
+
def _print_sign(self, func):
|
419 |
+
return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0]))
|
420 |
+
|
421 |
+
def _print_Max(self, expr):
|
422 |
+
if "Max" in self.known_functions:
|
423 |
+
return self._print_Function(expr)
|
424 |
+
def inner_print_max(args): # The more natural abstraction of creating
|
425 |
+
if len(args) == 1: # and printing smaller Max objects is slow
|
426 |
+
return self._print(args[0]) # when there are many arguments.
|
427 |
+
half = len(args) // 2
|
428 |
+
return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % {
|
429 |
+
'a': inner_print_max(args[:half]),
|
430 |
+
'b': inner_print_max(args[half:])
|
431 |
+
}
|
432 |
+
return inner_print_max(expr.args)
|
433 |
+
|
434 |
+
def _print_Min(self, expr):
|
435 |
+
if "Min" in self.known_functions:
|
436 |
+
return self._print_Function(expr)
|
437 |
+
def inner_print_min(args): # The more natural abstraction of creating
|
438 |
+
if len(args) == 1: # and printing smaller Min objects is slow
|
439 |
+
return self._print(args[0]) # when there are many arguments.
|
440 |
+
half = len(args) // 2
|
441 |
+
return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % {
|
442 |
+
'a': inner_print_min(args[:half]),
|
443 |
+
'b': inner_print_min(args[half:])
|
444 |
+
}
|
445 |
+
return inner_print_min(expr.args)
|
446 |
+
|
447 |
+
def indent_code(self, code):
|
448 |
+
"""Accepts a string of code or a list of code lines"""
|
449 |
+
|
450 |
+
if isinstance(code, str):
|
451 |
+
code_lines = self.indent_code(code.splitlines(True))
|
452 |
+
return ''.join(code_lines)
|
453 |
+
|
454 |
+
tab = " "
|
455 |
+
inc_token = ('{', '(', '{\n', '(\n')
|
456 |
+
dec_token = ('}', ')')
|
457 |
+
|
458 |
+
code = [line.lstrip(' \t') for line in code]
|
459 |
+
|
460 |
+
increase = [int(any(map(line.endswith, inc_token))) for line in code]
|
461 |
+
decrease = [int(any(map(line.startswith, dec_token))) for line in code]
|
462 |
+
|
463 |
+
pretty = []
|
464 |
+
level = 0
|
465 |
+
for n, line in enumerate(code):
|
466 |
+
if line in ('', '\n'):
|
467 |
+
pretty.append(line)
|
468 |
+
continue
|
469 |
+
level -= decrease[n]
|
470 |
+
pretty.append("%s%s" % (tab*level, line))
|
471 |
+
level += increase[n]
|
472 |
+
return pretty
|
473 |
+
|
474 |
+
def _get_func_suffix(self, type_):
|
475 |
+
return self.type_func_suffixes[self.type_aliases.get(type_, type_)]
|
476 |
+
|
477 |
+
def _get_literal_suffix(self, type_):
|
478 |
+
return self.type_literal_suffixes[self.type_aliases.get(type_, type_)]
|
479 |
+
|
480 |
+
def _get_math_macro_suffix(self, type_):
|
481 |
+
alias = self.type_aliases.get(type_, type_)
|
482 |
+
dflt = self.type_math_macro_suffixes.get(alias, '')
|
483 |
+
return self.type_math_macro_suffixes.get(type_, dflt)
|
484 |
+
|
485 |
+
def _print_Tuple(self, expr):
|
486 |
+
return '{'+', '.join(self._print(e) for e in expr)+'}'
|
487 |
+
|
488 |
+
_print_List = _print_Tuple
|
489 |
+
|
490 |
+
def _print_Type(self, type_):
|
491 |
+
self.headers.update(self.type_headers.get(type_, set()))
|
492 |
+
self.macros.update(self.type_macros.get(type_, set()))
|
493 |
+
return self._print(self.type_mappings.get(type_, type_.name))
|
494 |
+
|
495 |
+
def _print_Declaration(self, decl):
|
496 |
+
from sympy.codegen.cnodes import restrict
|
497 |
+
var = decl.variable
|
498 |
+
val = var.value
|
499 |
+
if var.type == untyped:
|
500 |
+
raise ValueError("C does not support untyped variables")
|
501 |
+
|
502 |
+
if isinstance(var, Pointer):
|
503 |
+
result = '{vc}{t} *{pc} {r}{s}'.format(
|
504 |
+
vc='const ' if value_const in var.attrs else '',
|
505 |
+
t=self._print(var.type),
|
506 |
+
pc=' const' if pointer_const in var.attrs else '',
|
507 |
+
r='restrict ' if restrict in var.attrs else '',
|
508 |
+
s=self._print(var.symbol)
|
509 |
+
)
|
510 |
+
elif isinstance(var, Variable):
|
511 |
+
result = '{vc}{t} {s}'.format(
|
512 |
+
vc='const ' if value_const in var.attrs else '',
|
513 |
+
t=self._print(var.type),
|
514 |
+
s=self._print(var.symbol)
|
515 |
+
)
|
516 |
+
else:
|
517 |
+
raise NotImplementedError("Unknown type of var: %s" % type(var))
|
518 |
+
if val != None: # Must be "!= None", cannot be "is not None"
|
519 |
+
result += ' = %s' % self._print(val)
|
520 |
+
return result
|
521 |
+
|
522 |
+
def _print_Float(self, flt):
|
523 |
+
type_ = self.type_aliases.get(real, real)
|
524 |
+
self.macros.update(self.type_macros.get(type_, set()))
|
525 |
+
suffix = self._get_literal_suffix(type_)
|
526 |
+
num = str(flt.evalf(type_.decimal_dig))
|
527 |
+
if 'e' not in num and '.' not in num:
|
528 |
+
num += '.0'
|
529 |
+
num_parts = num.split('e')
|
530 |
+
num_parts[0] = num_parts[0].rstrip('0')
|
531 |
+
if num_parts[0].endswith('.'):
|
532 |
+
num_parts[0] += '0'
|
533 |
+
return 'e'.join(num_parts) + suffix
|
534 |
+
|
535 |
+
@requires(headers={'stdbool.h'})
|
536 |
+
def _print_BooleanTrue(self, expr):
|
537 |
+
return 'true'
|
538 |
+
|
539 |
+
@requires(headers={'stdbool.h'})
|
540 |
+
def _print_BooleanFalse(self, expr):
|
541 |
+
return 'false'
|
542 |
+
|
543 |
+
def _print_Element(self, elem):
|
544 |
+
if elem.strides == None: # Must be "== None", cannot be "is None"
|
545 |
+
if elem.offset != None: # Must be "!= None", cannot be "is not None"
|
546 |
+
raise ValueError("Expected strides when offset is given")
|
547 |
+
idxs = ']['.join((self._print(arg) for arg in elem.indices))
|
548 |
+
else:
|
549 |
+
global_idx = sum([i*s for i, s in zip(elem.indices, elem.strides)])
|
550 |
+
if elem.offset != None: # Must be "!= None", cannot be "is not None"
|
551 |
+
global_idx += elem.offset
|
552 |
+
idxs = self._print(global_idx)
|
553 |
+
|
554 |
+
return "{symb}[{idxs}]".format(
|
555 |
+
symb=self._print(elem.symbol),
|
556 |
+
idxs=idxs
|
557 |
+
)
|
558 |
+
|
559 |
+
def _print_CodeBlock(self, expr):
|
560 |
+
""" Elements of code blocks printed as statements. """
|
561 |
+
return '\n'.join([self._get_statement(self._print(i)) for i in expr.args])
|
562 |
+
|
563 |
+
def _print_While(self, expr):
|
564 |
+
return 'while ({condition}) {{\n{body}\n}}'.format(**expr.kwargs(
|
565 |
+
apply=lambda arg: self._print(arg)))
|
566 |
+
|
567 |
+
def _print_Scope(self, expr):
|
568 |
+
return '{\n%s\n}' % self._print_CodeBlock(expr.body)
|
569 |
+
|
570 |
+
@requires(headers={'stdio.h'})
|
571 |
+
def _print_Print(self, expr):
|
572 |
+
return 'printf({fmt}, {pargs})'.format(
|
573 |
+
fmt=self._print(expr.format_string),
|
574 |
+
pargs=', '.join((self._print(arg) for arg in expr.print_args))
|
575 |
+
)
|
576 |
+
|
577 |
+
def _print_FunctionPrototype(self, expr):
|
578 |
+
pars = ', '.join((self._print(Declaration(arg)) for arg in expr.parameters))
|
579 |
+
return "%s %s(%s)" % (
|
580 |
+
tuple((self._print(arg) for arg in (expr.return_type, expr.name))) + (pars,)
|
581 |
+
)
|
582 |
+
|
583 |
+
def _print_FunctionDefinition(self, expr):
|
584 |
+
return "%s%s" % (self._print_FunctionPrototype(expr),
|
585 |
+
self._print_Scope(expr))
|
586 |
+
|
587 |
+
def _print_Return(self, expr):
|
588 |
+
arg, = expr.args
|
589 |
+
return 'return %s' % self._print(arg)
|
590 |
+
|
591 |
+
def _print_CommaOperator(self, expr):
|
592 |
+
return '(%s)' % ', '.join((self._print(arg) for arg in expr.args))
|
593 |
+
|
594 |
+
def _print_Label(self, expr):
|
595 |
+
if expr.body == none:
|
596 |
+
return '%s:' % str(expr.name)
|
597 |
+
if len(expr.body.args) == 1:
|
598 |
+
return '%s:\n%s' % (str(expr.name), self._print_CodeBlock(expr.body))
|
599 |
+
return '%s:\n{\n%s\n}' % (str(expr.name), self._print_CodeBlock(expr.body))
|
600 |
+
|
601 |
+
def _print_goto(self, expr):
|
602 |
+
return 'goto %s' % expr.label.name
|
603 |
+
|
604 |
+
def _print_PreIncrement(self, expr):
|
605 |
+
arg, = expr.args
|
606 |
+
return '++(%s)' % self._print(arg)
|
607 |
+
|
608 |
+
def _print_PostIncrement(self, expr):
|
609 |
+
arg, = expr.args
|
610 |
+
return '(%s)++' % self._print(arg)
|
611 |
+
|
612 |
+
def _print_PreDecrement(self, expr):
|
613 |
+
arg, = expr.args
|
614 |
+
return '--(%s)' % self._print(arg)
|
615 |
+
|
616 |
+
def _print_PostDecrement(self, expr):
|
617 |
+
arg, = expr.args
|
618 |
+
return '(%s)--' % self._print(arg)
|
619 |
+
|
620 |
+
def _print_struct(self, expr):
|
621 |
+
return "%(keyword)s %(name)s {\n%(lines)s}" % {
|
622 |
+
"keyword": expr.__class__.__name__, "name": expr.name, "lines": ';\n'.join(
|
623 |
+
[self._print(decl) for decl in expr.declarations] + [''])
|
624 |
+
}
|
625 |
+
|
626 |
+
def _print_BreakToken(self, _):
|
627 |
+
return 'break'
|
628 |
+
|
629 |
+
def _print_ContinueToken(self, _):
|
630 |
+
return 'continue'
|
631 |
+
|
632 |
+
_print_union = _print_struct
|
633 |
+
|
634 |
+
class C99CodePrinter(C89CodePrinter):
|
635 |
+
standard = 'C99'
|
636 |
+
reserved_words = set(reserved_words + reserved_words_c99)
|
637 |
+
type_mappings=dict(chain(C89CodePrinter.type_mappings.items(), {
|
638 |
+
complex64: 'float complex',
|
639 |
+
complex128: 'double complex',
|
640 |
+
}.items()))
|
641 |
+
type_headers = dict(chain(C89CodePrinter.type_headers.items(), {
|
642 |
+
complex64: {'complex.h'},
|
643 |
+
complex128: {'complex.h'}
|
644 |
+
}.items()))
|
645 |
+
|
646 |
+
# known_functions-dict to copy
|
647 |
+
_kf: dict[str, Any] = known_functions_C99
|
648 |
+
|
649 |
+
# functions with versions with 'f' and 'l' suffixes:
|
650 |
+
_prec_funcs = ('fabs fmod remainder remquo fma fmax fmin fdim nan exp exp2'
|
651 |
+
' expm1 log log10 log2 log1p pow sqrt cbrt hypot sin cos tan'
|
652 |
+
' asin acos atan atan2 sinh cosh tanh asinh acosh atanh erf'
|
653 |
+
' erfc tgamma lgamma ceil floor trunc round nearbyint rint'
|
654 |
+
' frexp ldexp modf scalbn ilogb logb nextafter copysign').split()
|
655 |
+
|
656 |
+
def _print_Infinity(self, expr):
|
657 |
+
return 'INFINITY'
|
658 |
+
|
659 |
+
def _print_NegativeInfinity(self, expr):
|
660 |
+
return '-INFINITY'
|
661 |
+
|
662 |
+
def _print_NaN(self, expr):
|
663 |
+
return 'NAN'
|
664 |
+
|
665 |
+
# tgamma was already covered by 'known_functions' dict
|
666 |
+
|
667 |
+
@requires(headers={'math.h'}, libraries={'m'})
|
668 |
+
@_as_macro_if_defined
|
669 |
+
def _print_math_func(self, expr, nest=False, known=None):
|
670 |
+
if known is None:
|
671 |
+
known = self.known_functions[expr.__class__.__name__]
|
672 |
+
if not isinstance(known, str):
|
673 |
+
for cb, name in known:
|
674 |
+
if cb(*expr.args):
|
675 |
+
known = name
|
676 |
+
break
|
677 |
+
else:
|
678 |
+
raise ValueError("No matching printer")
|
679 |
+
try:
|
680 |
+
return known(self, *expr.args)
|
681 |
+
except TypeError:
|
682 |
+
suffix = self._get_func_suffix(real) if self._ns + known in self._prec_funcs else ''
|
683 |
+
|
684 |
+
if nest:
|
685 |
+
args = self._print(expr.args[0])
|
686 |
+
if len(expr.args) > 1:
|
687 |
+
paren_pile = ''
|
688 |
+
for curr_arg in expr.args[1:-1]:
|
689 |
+
paren_pile += ')'
|
690 |
+
args += ', {ns}{name}{suffix}({next}'.format(
|
691 |
+
ns=self._ns,
|
692 |
+
name=known,
|
693 |
+
suffix=suffix,
|
694 |
+
next = self._print(curr_arg)
|
695 |
+
)
|
696 |
+
args += ', %s%s' % (
|
697 |
+
self._print(expr.func(expr.args[-1])),
|
698 |
+
paren_pile
|
699 |
+
)
|
700 |
+
else:
|
701 |
+
args = ', '.join((self._print(arg) for arg in expr.args))
|
702 |
+
return '{ns}{name}{suffix}({args})'.format(
|
703 |
+
ns=self._ns,
|
704 |
+
name=known,
|
705 |
+
suffix=suffix,
|
706 |
+
args=args
|
707 |
+
)
|
708 |
+
|
709 |
+
def _print_Max(self, expr):
|
710 |
+
return self._print_math_func(expr, nest=True)
|
711 |
+
|
712 |
+
def _print_Min(self, expr):
|
713 |
+
return self._print_math_func(expr, nest=True)
|
714 |
+
|
715 |
+
def _get_loop_opening_ending(self, indices):
|
716 |
+
open_lines = []
|
717 |
+
close_lines = []
|
718 |
+
loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){" # C99
|
719 |
+
for i in indices:
|
720 |
+
# C arrays start at 0 and end at dimension-1
|
721 |
+
open_lines.append(loopstart % {
|
722 |
+
'var': self._print(i.label),
|
723 |
+
'start': self._print(i.lower),
|
724 |
+
'end': self._print(i.upper + 1)})
|
725 |
+
close_lines.append("}")
|
726 |
+
return open_lines, close_lines
|
727 |
+
|
728 |
+
|
729 |
+
for k in ('Abs Sqrt exp exp2 expm1 log log10 log2 log1p Cbrt hypot fma'
|
730 |
+
' loggamma sin cos tan asin acos atan atan2 sinh cosh tanh asinh acosh '
|
731 |
+
'atanh erf erfc loggamma gamma ceiling floor').split():
|
732 |
+
setattr(C99CodePrinter, '_print_%s' % k, C99CodePrinter._print_math_func)
|
733 |
+
|
734 |
+
|
735 |
+
class C11CodePrinter(C99CodePrinter):
|
736 |
+
|
737 |
+
@requires(headers={'stdalign.h'})
|
738 |
+
def _print_alignof(self, expr):
|
739 |
+
arg, = expr.args
|
740 |
+
return 'alignof(%s)' % self._print(arg)
|
741 |
+
|
742 |
+
|
743 |
+
c_code_printers = {
|
744 |
+
'c89': C89CodePrinter,
|
745 |
+
'c99': C99CodePrinter,
|
746 |
+
'c11': C11CodePrinter
|
747 |
+
}
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/conventions.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A few practical conventions common to all printers.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import re
|
6 |
+
|
7 |
+
from collections.abc import Iterable
|
8 |
+
from sympy.core.function import Derivative
|
9 |
+
|
10 |
+
_name_with_digits_p = re.compile(r'^([^\W\d_]+)(\d+)$', re.U)
|
11 |
+
|
12 |
+
|
13 |
+
def split_super_sub(text):
|
14 |
+
"""Split a symbol name into a name, superscripts and subscripts
|
15 |
+
|
16 |
+
The first part of the symbol name is considered to be its actual
|
17 |
+
'name', followed by super- and subscripts. Each superscript is
|
18 |
+
preceded with a "^" character or by "__". Each subscript is preceded
|
19 |
+
by a "_" character. The three return values are the actual name, a
|
20 |
+
list with superscripts and a list with subscripts.
|
21 |
+
|
22 |
+
Examples
|
23 |
+
========
|
24 |
+
|
25 |
+
>>> from sympy.printing.conventions import split_super_sub
|
26 |
+
>>> split_super_sub('a_x^1')
|
27 |
+
('a', ['1'], ['x'])
|
28 |
+
>>> split_super_sub('var_sub1__sup_sub2')
|
29 |
+
('var', ['sup'], ['sub1', 'sub2'])
|
30 |
+
|
31 |
+
"""
|
32 |
+
if not text:
|
33 |
+
return text, [], []
|
34 |
+
|
35 |
+
pos = 0
|
36 |
+
name = None
|
37 |
+
supers = []
|
38 |
+
subs = []
|
39 |
+
while pos < len(text):
|
40 |
+
start = pos + 1
|
41 |
+
if text[pos:pos + 2] == "__":
|
42 |
+
start += 1
|
43 |
+
pos_hat = text.find("^", start)
|
44 |
+
if pos_hat < 0:
|
45 |
+
pos_hat = len(text)
|
46 |
+
pos_usc = text.find("_", start)
|
47 |
+
if pos_usc < 0:
|
48 |
+
pos_usc = len(text)
|
49 |
+
pos_next = min(pos_hat, pos_usc)
|
50 |
+
part = text[pos:pos_next]
|
51 |
+
pos = pos_next
|
52 |
+
if name is None:
|
53 |
+
name = part
|
54 |
+
elif part.startswith("^"):
|
55 |
+
supers.append(part[1:])
|
56 |
+
elif part.startswith("__"):
|
57 |
+
supers.append(part[2:])
|
58 |
+
elif part.startswith("_"):
|
59 |
+
subs.append(part[1:])
|
60 |
+
else:
|
61 |
+
raise RuntimeError("This should never happen.")
|
62 |
+
|
63 |
+
# Make a little exception when a name ends with digits, i.e. treat them
|
64 |
+
# as a subscript too.
|
65 |
+
m = _name_with_digits_p.match(name)
|
66 |
+
if m:
|
67 |
+
name, sub = m.groups()
|
68 |
+
subs.insert(0, sub)
|
69 |
+
|
70 |
+
return name, supers, subs
|
71 |
+
|
72 |
+
|
73 |
+
def requires_partial(expr):
|
74 |
+
"""Return whether a partial derivative symbol is required for printing
|
75 |
+
|
76 |
+
This requires checking how many free variables there are,
|
77 |
+
filtering out the ones that are integers. Some expressions do not have
|
78 |
+
free variables. In that case, check its variable list explicitly to
|
79 |
+
get the context of the expression.
|
80 |
+
"""
|
81 |
+
|
82 |
+
if isinstance(expr, Derivative):
|
83 |
+
return requires_partial(expr.expr)
|
84 |
+
|
85 |
+
if not isinstance(expr.free_symbols, Iterable):
|
86 |
+
return len(set(expr.variables)) > 1
|
87 |
+
|
88 |
+
return sum(not s.is_integer for s in expr.free_symbols) > 1
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/dot.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.basic import Basic
|
2 |
+
from sympy.core.expr import Expr
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.core.numbers import Integer, Rational, Float
|
5 |
+
from sympy.printing.repr import srepr
|
6 |
+
|
7 |
+
__all__ = ['dotprint']
|
8 |
+
|
9 |
+
default_styles = (
|
10 |
+
(Basic, {'color': 'blue', 'shape': 'ellipse'}),
|
11 |
+
(Expr, {'color': 'black'})
|
12 |
+
)
|
13 |
+
|
14 |
+
slotClasses = (Symbol, Integer, Rational, Float)
|
15 |
+
def purestr(x, with_args=False):
|
16 |
+
"""A string that follows ```obj = type(obj)(*obj.args)``` exactly.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
==========
|
20 |
+
|
21 |
+
with_args : boolean, optional
|
22 |
+
If ``True``, there will be a second argument for the return
|
23 |
+
value, which is a tuple containing ``purestr`` applied to each
|
24 |
+
of the subnodes.
|
25 |
+
|
26 |
+
If ``False``, there will not be a second argument for the
|
27 |
+
return.
|
28 |
+
|
29 |
+
Default is ``False``
|
30 |
+
|
31 |
+
Examples
|
32 |
+
========
|
33 |
+
|
34 |
+
>>> from sympy import Float, Symbol, MatrixSymbol
|
35 |
+
>>> from sympy import Integer # noqa: F401
|
36 |
+
>>> from sympy.core.symbol import Str # noqa: F401
|
37 |
+
>>> from sympy.printing.dot import purestr
|
38 |
+
|
39 |
+
Applying ``purestr`` for basic symbolic object:
|
40 |
+
>>> code = purestr(Symbol('x'))
|
41 |
+
>>> code
|
42 |
+
"Symbol('x')"
|
43 |
+
>>> eval(code) == Symbol('x')
|
44 |
+
True
|
45 |
+
|
46 |
+
For basic numeric object:
|
47 |
+
>>> purestr(Float(2))
|
48 |
+
"Float('2.0', precision=53)"
|
49 |
+
|
50 |
+
For matrix symbol:
|
51 |
+
>>> code = purestr(MatrixSymbol('x', 2, 2))
|
52 |
+
>>> code
|
53 |
+
"MatrixSymbol(Str('x'), Integer(2), Integer(2))"
|
54 |
+
>>> eval(code) == MatrixSymbol('x', 2, 2)
|
55 |
+
True
|
56 |
+
|
57 |
+
With ``with_args=True``:
|
58 |
+
>>> purestr(Float(2), with_args=True)
|
59 |
+
("Float('2.0', precision=53)", ())
|
60 |
+
>>> purestr(MatrixSymbol('x', 2, 2), with_args=True)
|
61 |
+
("MatrixSymbol(Str('x'), Integer(2), Integer(2))",
|
62 |
+
("Str('x')", 'Integer(2)', 'Integer(2)'))
|
63 |
+
"""
|
64 |
+
sargs = ()
|
65 |
+
if not isinstance(x, Basic):
|
66 |
+
rv = str(x)
|
67 |
+
elif not x.args:
|
68 |
+
rv = srepr(x)
|
69 |
+
else:
|
70 |
+
args = x.args
|
71 |
+
sargs = tuple(map(purestr, args))
|
72 |
+
rv = "%s(%s)"%(type(x).__name__, ', '.join(sargs))
|
73 |
+
if with_args:
|
74 |
+
rv = rv, sargs
|
75 |
+
return rv
|
76 |
+
|
77 |
+
|
78 |
+
def styleof(expr, styles=default_styles):
|
79 |
+
""" Merge style dictionaries in order
|
80 |
+
|
81 |
+
Examples
|
82 |
+
========
|
83 |
+
|
84 |
+
>>> from sympy import Symbol, Basic, Expr, S
|
85 |
+
>>> from sympy.printing.dot import styleof
|
86 |
+
>>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),
|
87 |
+
... (Expr, {'color': 'black'})]
|
88 |
+
|
89 |
+
>>> styleof(Basic(S(1)), styles)
|
90 |
+
{'color': 'blue', 'shape': 'ellipse'}
|
91 |
+
|
92 |
+
>>> x = Symbol('x')
|
93 |
+
>>> styleof(x + 1, styles) # this is an Expr
|
94 |
+
{'color': 'black', 'shape': 'ellipse'}
|
95 |
+
"""
|
96 |
+
style = {}
|
97 |
+
for typ, sty in styles:
|
98 |
+
if isinstance(expr, typ):
|
99 |
+
style.update(sty)
|
100 |
+
return style
|
101 |
+
|
102 |
+
|
103 |
+
def attrprint(d, delimiter=', '):
|
104 |
+
""" Print a dictionary of attributes
|
105 |
+
|
106 |
+
Examples
|
107 |
+
========
|
108 |
+
|
109 |
+
>>> from sympy.printing.dot import attrprint
|
110 |
+
>>> print(attrprint({'color': 'blue', 'shape': 'ellipse'}))
|
111 |
+
"color"="blue", "shape"="ellipse"
|
112 |
+
"""
|
113 |
+
return delimiter.join('"%s"="%s"'%item for item in sorted(d.items()))
|
114 |
+
|
115 |
+
|
116 |
+
def dotnode(expr, styles=default_styles, labelfunc=str, pos=(), repeat=True):
|
117 |
+
""" String defining a node
|
118 |
+
|
119 |
+
Examples
|
120 |
+
========
|
121 |
+
|
122 |
+
>>> from sympy.printing.dot import dotnode
|
123 |
+
>>> from sympy.abc import x
|
124 |
+
>>> print(dotnode(x))
|
125 |
+
"Symbol('x')_()" ["color"="black", "label"="x", "shape"="ellipse"];
|
126 |
+
"""
|
127 |
+
style = styleof(expr, styles)
|
128 |
+
|
129 |
+
if isinstance(expr, Basic) and not expr.is_Atom:
|
130 |
+
label = str(expr.__class__.__name__)
|
131 |
+
else:
|
132 |
+
label = labelfunc(expr)
|
133 |
+
style['label'] = label
|
134 |
+
expr_str = purestr(expr)
|
135 |
+
if repeat:
|
136 |
+
expr_str += '_%s' % str(pos)
|
137 |
+
return '"%s" [%s];' % (expr_str, attrprint(style))
|
138 |
+
|
139 |
+
|
140 |
+
def dotedges(expr, atom=lambda x: not isinstance(x, Basic), pos=(), repeat=True):
|
141 |
+
""" List of strings for all expr->expr.arg pairs
|
142 |
+
|
143 |
+
See the docstring of dotprint for explanations of the options.
|
144 |
+
|
145 |
+
Examples
|
146 |
+
========
|
147 |
+
|
148 |
+
>>> from sympy.printing.dot import dotedges
|
149 |
+
>>> from sympy.abc import x
|
150 |
+
>>> for e in dotedges(x+2):
|
151 |
+
... print(e)
|
152 |
+
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
|
153 |
+
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
|
154 |
+
"""
|
155 |
+
if atom(expr):
|
156 |
+
return []
|
157 |
+
else:
|
158 |
+
expr_str, arg_strs = purestr(expr, with_args=True)
|
159 |
+
if repeat:
|
160 |
+
expr_str += '_%s' % str(pos)
|
161 |
+
arg_strs = ['%s_%s' % (a, str(pos + (i,)))
|
162 |
+
for i, a in enumerate(arg_strs)]
|
163 |
+
return ['"%s" -> "%s";' % (expr_str, a) for a in arg_strs]
|
164 |
+
|
165 |
+
template = \
|
166 |
+
"""digraph{
|
167 |
+
|
168 |
+
# Graph style
|
169 |
+
%(graphstyle)s
|
170 |
+
|
171 |
+
#########
|
172 |
+
# Nodes #
|
173 |
+
#########
|
174 |
+
|
175 |
+
%(nodes)s
|
176 |
+
|
177 |
+
#########
|
178 |
+
# Edges #
|
179 |
+
#########
|
180 |
+
|
181 |
+
%(edges)s
|
182 |
+
}"""
|
183 |
+
|
184 |
+
_graphstyle = {'rankdir': 'TD', 'ordering': 'out'}
|
185 |
+
|
186 |
+
def dotprint(expr,
|
187 |
+
styles=default_styles, atom=lambda x: not isinstance(x, Basic),
|
188 |
+
maxdepth=None, repeat=True, labelfunc=str, **kwargs):
|
189 |
+
"""DOT description of a SymPy expression tree
|
190 |
+
|
191 |
+
Parameters
|
192 |
+
==========
|
193 |
+
|
194 |
+
styles : list of lists composed of (Class, mapping), optional
|
195 |
+
Styles for different classes.
|
196 |
+
|
197 |
+
The default is
|
198 |
+
|
199 |
+
.. code-block:: python
|
200 |
+
|
201 |
+
(
|
202 |
+
(Basic, {'color': 'blue', 'shape': 'ellipse'}),
|
203 |
+
(Expr, {'color': 'black'})
|
204 |
+
)
|
205 |
+
|
206 |
+
atom : function, optional
|
207 |
+
Function used to determine if an arg is an atom.
|
208 |
+
|
209 |
+
A good choice is ``lambda x: not x.args``.
|
210 |
+
|
211 |
+
The default is ``lambda x: not isinstance(x, Basic)``.
|
212 |
+
|
213 |
+
maxdepth : integer, optional
|
214 |
+
The maximum depth.
|
215 |
+
|
216 |
+
The default is ``None``, meaning no limit.
|
217 |
+
|
218 |
+
repeat : boolean, optional
|
219 |
+
Whether to use different nodes for common subexpressions.
|
220 |
+
|
221 |
+
The default is ``True``.
|
222 |
+
|
223 |
+
For example, for ``x + x*y`` with ``repeat=True``, it will have
|
224 |
+
two nodes for ``x``; with ``repeat=False``, it will have one
|
225 |
+
node.
|
226 |
+
|
227 |
+
.. warning::
|
228 |
+
Even if a node appears twice in the same object like ``x`` in
|
229 |
+
``Pow(x, x)``, it will still only appear once.
|
230 |
+
Hence, with ``repeat=False``, the number of arrows out of an
|
231 |
+
object might not equal the number of args it has.
|
232 |
+
|
233 |
+
labelfunc : function, optional
|
234 |
+
A function to create a label for a given leaf node.
|
235 |
+
|
236 |
+
The default is ``str``.
|
237 |
+
|
238 |
+
Another good option is ``srepr``.
|
239 |
+
|
240 |
+
For example with ``str``, the leaf nodes of ``x + 1`` are labeled,
|
241 |
+
``x`` and ``1``. With ``srepr``, they are labeled ``Symbol('x')``
|
242 |
+
and ``Integer(1)``.
|
243 |
+
|
244 |
+
**kwargs : optional
|
245 |
+
Additional keyword arguments are included as styles for the graph.
|
246 |
+
|
247 |
+
Examples
|
248 |
+
========
|
249 |
+
|
250 |
+
>>> from sympy import dotprint
|
251 |
+
>>> from sympy.abc import x
|
252 |
+
>>> print(dotprint(x+2)) # doctest: +NORMALIZE_WHITESPACE
|
253 |
+
digraph{
|
254 |
+
<BLANKLINE>
|
255 |
+
# Graph style
|
256 |
+
"ordering"="out"
|
257 |
+
"rankdir"="TD"
|
258 |
+
<BLANKLINE>
|
259 |
+
#########
|
260 |
+
# Nodes #
|
261 |
+
#########
|
262 |
+
<BLANKLINE>
|
263 |
+
"Add(Integer(2), Symbol('x'))_()" ["color"="black", "label"="Add", "shape"="ellipse"];
|
264 |
+
"Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"];
|
265 |
+
"Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"];
|
266 |
+
<BLANKLINE>
|
267 |
+
#########
|
268 |
+
# Edges #
|
269 |
+
#########
|
270 |
+
<BLANKLINE>
|
271 |
+
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
|
272 |
+
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
|
273 |
+
}
|
274 |
+
|
275 |
+
"""
|
276 |
+
# repeat works by adding a signature tuple to the end of each node for its
|
277 |
+
# position in the graph. For example, for expr = Add(x, Pow(x, 2)), the x in the
|
278 |
+
# Pow will have the tuple (1, 0), meaning it is expr.args[1].args[0].
|
279 |
+
graphstyle = _graphstyle.copy()
|
280 |
+
graphstyle.update(kwargs)
|
281 |
+
|
282 |
+
nodes = []
|
283 |
+
edges = []
|
284 |
+
def traverse(e, depth, pos=()):
|
285 |
+
nodes.append(dotnode(e, styles, labelfunc=labelfunc, pos=pos, repeat=repeat))
|
286 |
+
if maxdepth and depth >= maxdepth:
|
287 |
+
return
|
288 |
+
edges.extend(dotedges(e, atom=atom, pos=pos, repeat=repeat))
|
289 |
+
[traverse(arg, depth+1, pos + (i,)) for i, arg in enumerate(e.args) if not atom(arg)]
|
290 |
+
traverse(expr, 0)
|
291 |
+
|
292 |
+
return template%{'graphstyle': attrprint(graphstyle, delimiter='\n'),
|
293 |
+
'nodes': '\n'.join(nodes),
|
294 |
+
'edges': '\n'.join(edges)}
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/precedence.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module providing information about the necessity of brackets"""
|
2 |
+
|
3 |
+
|
4 |
+
# Default precedence values for some basic types
|
5 |
+
PRECEDENCE = {
|
6 |
+
"Lambda": 1,
|
7 |
+
"Xor": 10,
|
8 |
+
"Or": 20,
|
9 |
+
"And": 30,
|
10 |
+
"Relational": 35,
|
11 |
+
"Add": 40,
|
12 |
+
"Mul": 50,
|
13 |
+
"Pow": 60,
|
14 |
+
"Func": 70,
|
15 |
+
"Not": 100,
|
16 |
+
"Atom": 1000,
|
17 |
+
"BitwiseOr": 36,
|
18 |
+
"BitwiseXor": 37,
|
19 |
+
"BitwiseAnd": 38
|
20 |
+
}
|
21 |
+
|
22 |
+
# A dictionary assigning precedence values to certain classes. These values are
|
23 |
+
# treated like they were inherited, so not every single class has to be named
|
24 |
+
# here.
|
25 |
+
# Do not use this with printers other than StrPrinter
|
26 |
+
PRECEDENCE_VALUES = {
|
27 |
+
"Equivalent": PRECEDENCE["Xor"],
|
28 |
+
"Xor": PRECEDENCE["Xor"],
|
29 |
+
"Implies": PRECEDENCE["Xor"],
|
30 |
+
"Or": PRECEDENCE["Or"],
|
31 |
+
"And": PRECEDENCE["And"],
|
32 |
+
"Add": PRECEDENCE["Add"],
|
33 |
+
"Pow": PRECEDENCE["Pow"],
|
34 |
+
"Relational": PRECEDENCE["Relational"],
|
35 |
+
"Sub": PRECEDENCE["Add"],
|
36 |
+
"Not": PRECEDENCE["Not"],
|
37 |
+
"Function" : PRECEDENCE["Func"],
|
38 |
+
"NegativeInfinity": PRECEDENCE["Add"],
|
39 |
+
"MatAdd": PRECEDENCE["Add"],
|
40 |
+
"MatPow": PRECEDENCE["Pow"],
|
41 |
+
"MatrixSolve": PRECEDENCE["Mul"],
|
42 |
+
"Mod": PRECEDENCE["Mul"],
|
43 |
+
"TensAdd": PRECEDENCE["Add"],
|
44 |
+
# As soon as `TensMul` is a subclass of `Mul`, remove this:
|
45 |
+
"TensMul": PRECEDENCE["Mul"],
|
46 |
+
"HadamardProduct": PRECEDENCE["Mul"],
|
47 |
+
"HadamardPower": PRECEDENCE["Pow"],
|
48 |
+
"KroneckerProduct": PRECEDENCE["Mul"],
|
49 |
+
"Equality": PRECEDENCE["Mul"],
|
50 |
+
"Unequality": PRECEDENCE["Mul"],
|
51 |
+
}
|
52 |
+
|
53 |
+
# Sometimes it's not enough to assign a fixed precedence value to a
|
54 |
+
# class. Then a function can be inserted in this dictionary that takes
|
55 |
+
# an instance of this class as argument and returns the appropriate
|
56 |
+
# precedence value.
|
57 |
+
|
58 |
+
# Precedence functions
|
59 |
+
|
60 |
+
|
61 |
+
def precedence_Mul(item):
|
62 |
+
if item.could_extract_minus_sign():
|
63 |
+
return PRECEDENCE["Add"]
|
64 |
+
return PRECEDENCE["Mul"]
|
65 |
+
|
66 |
+
|
67 |
+
def precedence_Rational(item):
|
68 |
+
if item.p < 0:
|
69 |
+
return PRECEDENCE["Add"]
|
70 |
+
return PRECEDENCE["Mul"]
|
71 |
+
|
72 |
+
|
73 |
+
def precedence_Integer(item):
|
74 |
+
if item.p < 0:
|
75 |
+
return PRECEDENCE["Add"]
|
76 |
+
return PRECEDENCE["Atom"]
|
77 |
+
|
78 |
+
|
79 |
+
def precedence_Float(item):
|
80 |
+
if item < 0:
|
81 |
+
return PRECEDENCE["Add"]
|
82 |
+
return PRECEDENCE["Atom"]
|
83 |
+
|
84 |
+
|
85 |
+
def precedence_PolyElement(item):
|
86 |
+
if item.is_generator:
|
87 |
+
return PRECEDENCE["Atom"]
|
88 |
+
elif item.is_ground:
|
89 |
+
return precedence(item.coeff(1))
|
90 |
+
elif item.is_term:
|
91 |
+
return PRECEDENCE["Mul"]
|
92 |
+
else:
|
93 |
+
return PRECEDENCE["Add"]
|
94 |
+
|
95 |
+
|
96 |
+
def precedence_FracElement(item):
|
97 |
+
if item.denom == 1:
|
98 |
+
return precedence_PolyElement(item.numer)
|
99 |
+
else:
|
100 |
+
return PRECEDENCE["Mul"]
|
101 |
+
|
102 |
+
|
103 |
+
def precedence_UnevaluatedExpr(item):
|
104 |
+
return precedence(item.args[0]) - 0.5
|
105 |
+
|
106 |
+
|
107 |
+
PRECEDENCE_FUNCTIONS = {
|
108 |
+
"Integer": precedence_Integer,
|
109 |
+
"Mul": precedence_Mul,
|
110 |
+
"Rational": precedence_Rational,
|
111 |
+
"Float": precedence_Float,
|
112 |
+
"PolyElement": precedence_PolyElement,
|
113 |
+
"FracElement": precedence_FracElement,
|
114 |
+
"UnevaluatedExpr": precedence_UnevaluatedExpr,
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
def precedence(item):
|
119 |
+
"""Returns the precedence of a given object.
|
120 |
+
|
121 |
+
This is the precedence for StrPrinter.
|
122 |
+
"""
|
123 |
+
if hasattr(item, "precedence"):
|
124 |
+
return item.precedence
|
125 |
+
try:
|
126 |
+
mro = item.__class__.__mro__
|
127 |
+
except AttributeError:
|
128 |
+
return PRECEDENCE["Atom"]
|
129 |
+
for i in mro:
|
130 |
+
n = i.__name__
|
131 |
+
if n in PRECEDENCE_FUNCTIONS:
|
132 |
+
return PRECEDENCE_FUNCTIONS[n](item)
|
133 |
+
elif n in PRECEDENCE_VALUES:
|
134 |
+
return PRECEDENCE_VALUES[n]
|
135 |
+
return PRECEDENCE["Atom"]
|
136 |
+
|
137 |
+
|
138 |
+
PRECEDENCE_TRADITIONAL = PRECEDENCE.copy()
|
139 |
+
PRECEDENCE_TRADITIONAL['Integral'] = PRECEDENCE["Mul"]
|
140 |
+
PRECEDENCE_TRADITIONAL['Sum'] = PRECEDENCE["Mul"]
|
141 |
+
PRECEDENCE_TRADITIONAL['Product'] = PRECEDENCE["Mul"]
|
142 |
+
PRECEDENCE_TRADITIONAL['Limit'] = PRECEDENCE["Mul"]
|
143 |
+
PRECEDENCE_TRADITIONAL['Derivative'] = PRECEDENCE["Mul"]
|
144 |
+
PRECEDENCE_TRADITIONAL['TensorProduct'] = PRECEDENCE["Mul"]
|
145 |
+
PRECEDENCE_TRADITIONAL['Transpose'] = PRECEDENCE["Pow"]
|
146 |
+
PRECEDENCE_TRADITIONAL['Adjoint'] = PRECEDENCE["Pow"]
|
147 |
+
PRECEDENCE_TRADITIONAL['Dot'] = PRECEDENCE["Mul"] - 1
|
148 |
+
PRECEDENCE_TRADITIONAL['Cross'] = PRECEDENCE["Mul"] - 1
|
149 |
+
PRECEDENCE_TRADITIONAL['Gradient'] = PRECEDENCE["Mul"] - 1
|
150 |
+
PRECEDENCE_TRADITIONAL['Divergence'] = PRECEDENCE["Mul"] - 1
|
151 |
+
PRECEDENCE_TRADITIONAL['Curl'] = PRECEDENCE["Mul"] - 1
|
152 |
+
PRECEDENCE_TRADITIONAL['Laplacian'] = PRECEDENCE["Mul"] - 1
|
153 |
+
PRECEDENCE_TRADITIONAL['Union'] = PRECEDENCE['Xor']
|
154 |
+
PRECEDENCE_TRADITIONAL['Intersection'] = PRECEDENCE['Xor']
|
155 |
+
PRECEDENCE_TRADITIONAL['Complement'] = PRECEDENCE['Xor']
|
156 |
+
PRECEDENCE_TRADITIONAL['SymmetricDifference'] = PRECEDENCE['Xor']
|
157 |
+
PRECEDENCE_TRADITIONAL['ProductSet'] = PRECEDENCE['Xor']
|
158 |
+
|
159 |
+
|
160 |
+
def precedence_traditional(item):
|
161 |
+
"""Returns the precedence of a given object according to the
|
162 |
+
traditional rules of mathematics.
|
163 |
+
|
164 |
+
This is the precedence for the LaTeX and pretty printer.
|
165 |
+
"""
|
166 |
+
# Integral, Sum, Product, Limit have the precedence of Mul in LaTeX,
|
167 |
+
# the precedence of Atom for other printers:
|
168 |
+
from sympy.core.expr import UnevaluatedExpr
|
169 |
+
|
170 |
+
if isinstance(item, UnevaluatedExpr):
|
171 |
+
return precedence_traditional(item.args[0])
|
172 |
+
|
173 |
+
n = item.__class__.__name__
|
174 |
+
if n in PRECEDENCE_TRADITIONAL:
|
175 |
+
return PRECEDENCE_TRADITIONAL[n]
|
176 |
+
|
177 |
+
return precedence(item)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/rcode.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
R code printer
|
3 |
+
|
4 |
+
The RCodePrinter converts single SymPy expressions into single R expressions,
|
5 |
+
using the functions defined in math.h where possible.
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
"""
|
10 |
+
|
11 |
+
from __future__ import annotations
|
12 |
+
from typing import Any
|
13 |
+
|
14 |
+
from sympy.core.numbers import equal_valued
|
15 |
+
from sympy.printing.codeprinter import CodePrinter
|
16 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
17 |
+
from sympy.sets.fancysets import Range
|
18 |
+
|
19 |
+
# dictionary mapping SymPy function to (argument_conditions, C_function).
|
20 |
+
# Used in RCodePrinter._print_Function(self)
|
21 |
+
known_functions = {
|
22 |
+
#"Abs": [(lambda x: not x.is_integer, "fabs")],
|
23 |
+
"Abs": "abs",
|
24 |
+
"sin": "sin",
|
25 |
+
"cos": "cos",
|
26 |
+
"tan": "tan",
|
27 |
+
"asin": "asin",
|
28 |
+
"acos": "acos",
|
29 |
+
"atan": "atan",
|
30 |
+
"atan2": "atan2",
|
31 |
+
"exp": "exp",
|
32 |
+
"log": "log",
|
33 |
+
"erf": "erf",
|
34 |
+
"sinh": "sinh",
|
35 |
+
"cosh": "cosh",
|
36 |
+
"tanh": "tanh",
|
37 |
+
"asinh": "asinh",
|
38 |
+
"acosh": "acosh",
|
39 |
+
"atanh": "atanh",
|
40 |
+
"floor": "floor",
|
41 |
+
"ceiling": "ceiling",
|
42 |
+
"sign": "sign",
|
43 |
+
"Max": "max",
|
44 |
+
"Min": "min",
|
45 |
+
"factorial": "factorial",
|
46 |
+
"gamma": "gamma",
|
47 |
+
"digamma": "digamma",
|
48 |
+
"trigamma": "trigamma",
|
49 |
+
"beta": "beta",
|
50 |
+
"sqrt": "sqrt", # To enable automatic rewrite
|
51 |
+
}
|
52 |
+
|
53 |
+
# These are the core reserved words in the R language. Taken from:
|
54 |
+
# https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Reserved-words
|
55 |
+
|
56 |
+
reserved_words = ['if',
|
57 |
+
'else',
|
58 |
+
'repeat',
|
59 |
+
'while',
|
60 |
+
'function',
|
61 |
+
'for',
|
62 |
+
'in',
|
63 |
+
'next',
|
64 |
+
'break',
|
65 |
+
'TRUE',
|
66 |
+
'FALSE',
|
67 |
+
'NULL',
|
68 |
+
'Inf',
|
69 |
+
'NaN',
|
70 |
+
'NA',
|
71 |
+
'NA_integer_',
|
72 |
+
'NA_real_',
|
73 |
+
'NA_complex_',
|
74 |
+
'NA_character_',
|
75 |
+
'volatile']
|
76 |
+
|
77 |
+
|
78 |
+
class RCodePrinter(CodePrinter):
|
79 |
+
"""A printer to convert SymPy expressions to strings of R code"""
|
80 |
+
printmethod = "_rcode"
|
81 |
+
language = "R"
|
82 |
+
|
83 |
+
_default_settings: dict[str, Any] = {
|
84 |
+
'order': None,
|
85 |
+
'full_prec': 'auto',
|
86 |
+
'precision': 15,
|
87 |
+
'user_functions': {},
|
88 |
+
'human': True,
|
89 |
+
'contract': True,
|
90 |
+
'dereference': set(),
|
91 |
+
'error_on_reserved': False,
|
92 |
+
'reserved_word_suffix': '_',
|
93 |
+
}
|
94 |
+
_operators = {
|
95 |
+
'and': '&',
|
96 |
+
'or': '|',
|
97 |
+
'not': '!',
|
98 |
+
}
|
99 |
+
|
100 |
+
_relationals: dict[str, str] = {}
|
101 |
+
|
102 |
+
def __init__(self, settings={}):
|
103 |
+
CodePrinter.__init__(self, settings)
|
104 |
+
self.known_functions = dict(known_functions)
|
105 |
+
userfuncs = settings.get('user_functions', {})
|
106 |
+
self.known_functions.update(userfuncs)
|
107 |
+
self._dereference = set(settings.get('dereference', []))
|
108 |
+
self.reserved_words = set(reserved_words)
|
109 |
+
|
110 |
+
def _rate_index_position(self, p):
|
111 |
+
return p*5
|
112 |
+
|
113 |
+
def _get_statement(self, codestring):
|
114 |
+
return "%s;" % codestring
|
115 |
+
|
116 |
+
def _get_comment(self, text):
|
117 |
+
return "// {}".format(text)
|
118 |
+
|
119 |
+
def _declare_number_const(self, name, value):
|
120 |
+
return "{} = {};".format(name, value)
|
121 |
+
|
122 |
+
def _format_code(self, lines):
|
123 |
+
return self.indent_code(lines)
|
124 |
+
|
125 |
+
def _traverse_matrix_indices(self, mat):
|
126 |
+
rows, cols = mat.shape
|
127 |
+
return ((i, j) for i in range(rows) for j in range(cols))
|
128 |
+
|
129 |
+
def _get_loop_opening_ending(self, indices):
|
130 |
+
"""Returns a tuple (open_lines, close_lines) containing lists of codelines
|
131 |
+
"""
|
132 |
+
open_lines = []
|
133 |
+
close_lines = []
|
134 |
+
loopstart = "for (%(var)s in %(start)s:%(end)s){"
|
135 |
+
for i in indices:
|
136 |
+
# R arrays start at 1 and end at dimension
|
137 |
+
open_lines.append(loopstart % {
|
138 |
+
'var': self._print(i.label),
|
139 |
+
'start': self._print(i.lower+1),
|
140 |
+
'end': self._print(i.upper + 1)})
|
141 |
+
close_lines.append("}")
|
142 |
+
return open_lines, close_lines
|
143 |
+
|
144 |
+
def _print_Pow(self, expr):
|
145 |
+
if "Pow" in self.known_functions:
|
146 |
+
return self._print_Function(expr)
|
147 |
+
PREC = precedence(expr)
|
148 |
+
if equal_valued(expr.exp, -1):
|
149 |
+
return '1.0/%s' % (self.parenthesize(expr.base, PREC))
|
150 |
+
elif equal_valued(expr.exp, 0.5):
|
151 |
+
return 'sqrt(%s)' % self._print(expr.base)
|
152 |
+
else:
|
153 |
+
return '%s^%s' % (self.parenthesize(expr.base, PREC),
|
154 |
+
self.parenthesize(expr.exp, PREC))
|
155 |
+
|
156 |
+
|
157 |
+
def _print_Rational(self, expr):
|
158 |
+
p, q = int(expr.p), int(expr.q)
|
159 |
+
return '%d.0/%d.0' % (p, q)
|
160 |
+
|
161 |
+
def _print_Indexed(self, expr):
|
162 |
+
inds = [ self._print(i) for i in expr.indices ]
|
163 |
+
return "%s[%s]" % (self._print(expr.base.label), ", ".join(inds))
|
164 |
+
|
165 |
+
def _print_Idx(self, expr):
|
166 |
+
return self._print(expr.label)
|
167 |
+
|
168 |
+
def _print_Exp1(self, expr):
|
169 |
+
return "exp(1)"
|
170 |
+
|
171 |
+
def _print_Pi(self, expr):
|
172 |
+
return 'pi'
|
173 |
+
|
174 |
+
def _print_Infinity(self, expr):
|
175 |
+
return 'Inf'
|
176 |
+
|
177 |
+
def _print_NegativeInfinity(self, expr):
|
178 |
+
return '-Inf'
|
179 |
+
|
180 |
+
def _print_Assignment(self, expr):
|
181 |
+
from sympy.codegen.ast import Assignment
|
182 |
+
|
183 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
184 |
+
from sympy.tensor.indexed import IndexedBase
|
185 |
+
lhs = expr.lhs
|
186 |
+
rhs = expr.rhs
|
187 |
+
# We special case assignments that take multiple lines
|
188 |
+
#if isinstance(expr.rhs, Piecewise):
|
189 |
+
# from sympy.functions.elementary.piecewise import Piecewise
|
190 |
+
# # Here we modify Piecewise so each expression is now
|
191 |
+
# # an Assignment, and then continue on the print.
|
192 |
+
# expressions = []
|
193 |
+
# conditions = []
|
194 |
+
# for (e, c) in rhs.args:
|
195 |
+
# expressions.append(Assignment(lhs, e))
|
196 |
+
# conditions.append(c)
|
197 |
+
# temp = Piecewise(*zip(expressions, conditions))
|
198 |
+
# return self._print(temp)
|
199 |
+
#elif isinstance(lhs, MatrixSymbol):
|
200 |
+
if isinstance(lhs, MatrixSymbol):
|
201 |
+
# Here we form an Assignment for each element in the array,
|
202 |
+
# printing each one.
|
203 |
+
lines = []
|
204 |
+
for (i, j) in self._traverse_matrix_indices(lhs):
|
205 |
+
temp = Assignment(lhs[i, j], rhs[i, j])
|
206 |
+
code0 = self._print(temp)
|
207 |
+
lines.append(code0)
|
208 |
+
return "\n".join(lines)
|
209 |
+
elif self._settings["contract"] and (lhs.has(IndexedBase) or
|
210 |
+
rhs.has(IndexedBase)):
|
211 |
+
# Here we check if there is looping to be done, and if so
|
212 |
+
# print the required loops.
|
213 |
+
return self._doprint_loops(rhs, lhs)
|
214 |
+
else:
|
215 |
+
lhs_code = self._print(lhs)
|
216 |
+
rhs_code = self._print(rhs)
|
217 |
+
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
|
218 |
+
|
219 |
+
def _print_Piecewise(self, expr):
|
220 |
+
# This method is called only for inline if constructs
|
221 |
+
# Top level piecewise is handled in doprint()
|
222 |
+
if expr.args[-1].cond == True:
|
223 |
+
last_line = "%s" % self._print(expr.args[-1].expr)
|
224 |
+
else:
|
225 |
+
last_line = "ifelse(%s,%s,NA)" % (self._print(expr.args[-1].cond), self._print(expr.args[-1].expr))
|
226 |
+
code=last_line
|
227 |
+
for e, c in reversed(expr.args[:-1]):
|
228 |
+
code= "ifelse(%s,%s," % (self._print(c), self._print(e))+code+")"
|
229 |
+
return(code)
|
230 |
+
|
231 |
+
def _print_ITE(self, expr):
|
232 |
+
from sympy.functions import Piecewise
|
233 |
+
return self._print(expr.rewrite(Piecewise))
|
234 |
+
|
235 |
+
def _print_MatrixElement(self, expr):
|
236 |
+
return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
|
237 |
+
strict=True), expr.j + expr.i*expr.parent.shape[1])
|
238 |
+
|
239 |
+
def _print_Symbol(self, expr):
|
240 |
+
name = super()._print_Symbol(expr)
|
241 |
+
if expr in self._dereference:
|
242 |
+
return '(*{})'.format(name)
|
243 |
+
else:
|
244 |
+
return name
|
245 |
+
|
246 |
+
def _print_Relational(self, expr):
|
247 |
+
lhs_code = self._print(expr.lhs)
|
248 |
+
rhs_code = self._print(expr.rhs)
|
249 |
+
op = expr.rel_op
|
250 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
251 |
+
|
252 |
+
def _print_AugmentedAssignment(self, expr):
|
253 |
+
lhs_code = self._print(expr.lhs)
|
254 |
+
op = expr.op
|
255 |
+
rhs_code = self._print(expr.rhs)
|
256 |
+
return "{} {} {};".format(lhs_code, op, rhs_code)
|
257 |
+
|
258 |
+
def _print_For(self, expr):
|
259 |
+
target = self._print(expr.target)
|
260 |
+
if isinstance(expr.iterable, Range):
|
261 |
+
start, stop, step = expr.iterable.args
|
262 |
+
else:
|
263 |
+
raise NotImplementedError("Only iterable currently supported is Range")
|
264 |
+
body = self._print(expr.body)
|
265 |
+
return 'for({target} in seq(from={start}, to={stop}, by={step}){{\n{body}\n}}'.format(target=target, start=start,
|
266 |
+
stop=stop-1, step=step, body=body)
|
267 |
+
|
268 |
+
|
269 |
+
def indent_code(self, code):
|
270 |
+
"""Accepts a string of code or a list of code lines"""
|
271 |
+
|
272 |
+
if isinstance(code, str):
|
273 |
+
code_lines = self.indent_code(code.splitlines(True))
|
274 |
+
return ''.join(code_lines)
|
275 |
+
|
276 |
+
tab = " "
|
277 |
+
inc_token = ('{', '(', '{\n', '(\n')
|
278 |
+
dec_token = ('}', ')')
|
279 |
+
|
280 |
+
code = [ line.lstrip(' \t') for line in code ]
|
281 |
+
|
282 |
+
increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
|
283 |
+
decrease = [ int(any(map(line.startswith, dec_token)))
|
284 |
+
for line in code ]
|
285 |
+
|
286 |
+
pretty = []
|
287 |
+
level = 0
|
288 |
+
for n, line in enumerate(code):
|
289 |
+
if line in ('', '\n'):
|
290 |
+
pretty.append(line)
|
291 |
+
continue
|
292 |
+
level -= decrease[n]
|
293 |
+
pretty.append("%s%s" % (tab*level, line))
|
294 |
+
level += increase[n]
|
295 |
+
return pretty
|
296 |
+
|
297 |
+
|
298 |
+
def rcode(expr, assign_to=None, **settings):
|
299 |
+
"""Converts an expr to a string of r code
|
300 |
+
|
301 |
+
Parameters
|
302 |
+
==========
|
303 |
+
|
304 |
+
expr : Expr
|
305 |
+
A SymPy expression to be converted.
|
306 |
+
assign_to : optional
|
307 |
+
When given, the argument is used as the name of the variable to which
|
308 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
309 |
+
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
|
310 |
+
line-wrapping, or for expressions that generate multi-line statements.
|
311 |
+
precision : integer, optional
|
312 |
+
The precision for numbers such as pi [default=15].
|
313 |
+
user_functions : dict, optional
|
314 |
+
A dictionary where the keys are string representations of either
|
315 |
+
``FunctionClass`` or ``UndefinedFunction`` instances and the values
|
316 |
+
are their desired R string representations. Alternatively, the
|
317 |
+
dictionary value can be a list of tuples i.e. [(argument_test,
|
318 |
+
rfunction_string)] or [(argument_test, rfunction_formater)]. See below
|
319 |
+
for examples.
|
320 |
+
human : bool, optional
|
321 |
+
If True, the result is a single string that may contain some constant
|
322 |
+
declarations for the number symbols. If False, the same information is
|
323 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
324 |
+
code_text). [default=True].
|
325 |
+
contract: bool, optional
|
326 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
327 |
+
rules and the corresponding nested loops over indices are generated.
|
328 |
+
Setting contract=False will not generate loops, instead the user is
|
329 |
+
responsible to provide values for the indices in the code.
|
330 |
+
[default=True].
|
331 |
+
|
332 |
+
Examples
|
333 |
+
========
|
334 |
+
|
335 |
+
>>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function
|
336 |
+
>>> x, tau = symbols("x, tau")
|
337 |
+
>>> rcode((2*tau)**Rational(7, 2))
|
338 |
+
'8*sqrt(2)*tau^(7.0/2.0)'
|
339 |
+
>>> rcode(sin(x), assign_to="s")
|
340 |
+
's = sin(x);'
|
341 |
+
|
342 |
+
Simple custom printing can be defined for certain types by passing a
|
343 |
+
dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
|
344 |
+
Alternatively, the dictionary value can be a list of tuples i.e.
|
345 |
+
[(argument_test, cfunction_string)].
|
346 |
+
|
347 |
+
>>> custom_functions = {
|
348 |
+
... "ceiling": "CEIL",
|
349 |
+
... "Abs": [(lambda x: not x.is_integer, "fabs"),
|
350 |
+
... (lambda x: x.is_integer, "ABS")],
|
351 |
+
... "func": "f"
|
352 |
+
... }
|
353 |
+
>>> func = Function('func')
|
354 |
+
>>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
|
355 |
+
'f(fabs(x) + CEIL(x))'
|
356 |
+
|
357 |
+
or if the R-function takes a subset of the original arguments:
|
358 |
+
|
359 |
+
>>> rcode(2**x + 3**x, user_functions={'Pow': [
|
360 |
+
... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
|
361 |
+
... (lambda b, e: b != 2, 'pow')]})
|
362 |
+
'exp2(x) + pow(3, x)'
|
363 |
+
|
364 |
+
``Piecewise`` expressions are converted into conditionals. If an
|
365 |
+
``assign_to`` variable is provided an if statement is created, otherwise
|
366 |
+
the ternary operator is used. Note that if the ``Piecewise`` lacks a
|
367 |
+
default term, represented by ``(expr, True)`` then an error will be thrown.
|
368 |
+
This is to prevent generating an expression that may not evaluate to
|
369 |
+
anything.
|
370 |
+
|
371 |
+
>>> from sympy import Piecewise
|
372 |
+
>>> expr = Piecewise((x + 1, x > 0), (x, True))
|
373 |
+
>>> print(rcode(expr, assign_to=tau))
|
374 |
+
tau = ifelse(x > 0,x + 1,x);
|
375 |
+
|
376 |
+
Support for loops is provided through ``Indexed`` types. With
|
377 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
378 |
+
``contract=False`` will just print the assignment expression that should be
|
379 |
+
looped over:
|
380 |
+
|
381 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
382 |
+
>>> len_y = 5
|
383 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
384 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
385 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
386 |
+
>>> i = Idx('i', len_y-1)
|
387 |
+
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
388 |
+
>>> rcode(e.rhs, assign_to=e.lhs, contract=False)
|
389 |
+
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
|
390 |
+
|
391 |
+
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
|
392 |
+
must be provided to ``assign_to``. Note that any expression that can be
|
393 |
+
generated normally can also exist inside a Matrix:
|
394 |
+
|
395 |
+
>>> from sympy import Matrix, MatrixSymbol
|
396 |
+
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
|
397 |
+
>>> A = MatrixSymbol('A', 3, 1)
|
398 |
+
>>> print(rcode(mat, A))
|
399 |
+
A[0] = x^2;
|
400 |
+
A[1] = ifelse(x > 0,x + 1,x);
|
401 |
+
A[2] = sin(x);
|
402 |
+
|
403 |
+
"""
|
404 |
+
|
405 |
+
return RCodePrinter(settings).doprint(expr, assign_to)
|
406 |
+
|
407 |
+
|
408 |
+
def print_rcode(expr, **settings):
|
409 |
+
"""Prints R representation of the given expression."""
|
410 |
+
print(rcode(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/rust.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Rust code printer
|
3 |
+
|
4 |
+
The `RustCodePrinter` converts SymPy expressions into Rust expressions.
|
5 |
+
|
6 |
+
A complete code generator, which uses `rust_code` extensively, can be found
|
7 |
+
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
|
8 |
+
complete source code files.
|
9 |
+
|
10 |
+
"""
|
11 |
+
|
12 |
+
# Possible Improvement
|
13 |
+
#
|
14 |
+
# * make sure we follow Rust Style Guidelines_
|
15 |
+
# * make use of pattern matching
|
16 |
+
# * better support for reference
|
17 |
+
# * generate generic code and use trait to make sure they have specific methods
|
18 |
+
# * use crates_ to get more math support
|
19 |
+
# - num_
|
20 |
+
# + BigInt_, BigUint_
|
21 |
+
# + Complex_
|
22 |
+
# + Rational64_, Rational32_, BigRational_
|
23 |
+
#
|
24 |
+
# .. _crates: https://crates.io/
|
25 |
+
# .. _Guidelines: https://github.com/rust-lang/rust/tree/master/src/doc/style
|
26 |
+
# .. _num: http://rust-num.github.io/num/num/
|
27 |
+
# .. _BigInt: http://rust-num.github.io/num/num/bigint/struct.BigInt.html
|
28 |
+
# .. _BigUint: http://rust-num.github.io/num/num/bigint/struct.BigUint.html
|
29 |
+
# .. _Complex: http://rust-num.github.io/num/num/complex/struct.Complex.html
|
30 |
+
# .. _Rational32: http://rust-num.github.io/num/num/rational/type.Rational32.html
|
31 |
+
# .. _Rational64: http://rust-num.github.io/num/num/rational/type.Rational64.html
|
32 |
+
# .. _BigRational: http://rust-num.github.io/num/num/rational/type.BigRational.html
|
33 |
+
|
34 |
+
from __future__ import annotations
|
35 |
+
from typing import Any
|
36 |
+
|
37 |
+
from sympy.core import S, Rational, Float, Lambda
|
38 |
+
from sympy.core.numbers import equal_valued
|
39 |
+
from sympy.printing.codeprinter import CodePrinter
|
40 |
+
|
41 |
+
# Rust's methods for integer and float can be found at here :
|
42 |
+
#
|
43 |
+
# * `Rust - Primitive Type f64 <https://doc.rust-lang.org/std/primitive.f64.html>`_
|
44 |
+
# * `Rust - Primitive Type i64 <https://doc.rust-lang.org/std/primitive.i64.html>`_
|
45 |
+
#
|
46 |
+
# Function Style :
|
47 |
+
#
|
48 |
+
# 1. args[0].func(args[1:]), method with arguments
|
49 |
+
# 2. args[0].func(), method without arguments
|
50 |
+
# 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
|
51 |
+
# 4. func(args), function with arguments
|
52 |
+
|
53 |
+
# dictionary mapping SymPy function to (argument_conditions, Rust_function).
|
54 |
+
# Used in RustCodePrinter._print_Function(self)
|
55 |
+
|
56 |
+
# f64 method in Rust
|
57 |
+
known_functions = {
|
58 |
+
# "": "is_nan",
|
59 |
+
# "": "is_infinite",
|
60 |
+
# "": "is_finite",
|
61 |
+
# "": "is_normal",
|
62 |
+
# "": "classify",
|
63 |
+
"floor": "floor",
|
64 |
+
"ceiling": "ceil",
|
65 |
+
# "": "round",
|
66 |
+
# "": "trunc",
|
67 |
+
# "": "fract",
|
68 |
+
"Abs": "abs",
|
69 |
+
"sign": "signum",
|
70 |
+
# "": "is_sign_positive",
|
71 |
+
# "": "is_sign_negative",
|
72 |
+
# "": "mul_add",
|
73 |
+
"Pow": [(lambda base, exp: equal_valued(exp, -1), "recip", 2), # 1.0/x
|
74 |
+
(lambda base, exp: equal_valued(exp, 0.5), "sqrt", 2), # x ** 0.5
|
75 |
+
(lambda base, exp: equal_valued(exp, -0.5), "sqrt().recip", 2), # 1/(x ** 0.5)
|
76 |
+
(lambda base, exp: exp == Rational(1, 3), "cbrt", 2), # x ** (1/3)
|
77 |
+
(lambda base, exp: equal_valued(base, 2), "exp2", 3), # 2 ** x
|
78 |
+
(lambda base, exp: exp.is_integer, "powi", 1), # x ** y, for i32
|
79 |
+
(lambda base, exp: not exp.is_integer, "powf", 1)], # x ** y, for f64
|
80 |
+
"exp": [(lambda exp: True, "exp", 2)], # e ** x
|
81 |
+
"log": "ln",
|
82 |
+
# "": "log", # number.log(base)
|
83 |
+
# "": "log2",
|
84 |
+
# "": "log10",
|
85 |
+
# "": "to_degrees",
|
86 |
+
# "": "to_radians",
|
87 |
+
"Max": "max",
|
88 |
+
"Min": "min",
|
89 |
+
# "": "hypot", # (x**2 + y**2) ** 0.5
|
90 |
+
"sin": "sin",
|
91 |
+
"cos": "cos",
|
92 |
+
"tan": "tan",
|
93 |
+
"asin": "asin",
|
94 |
+
"acos": "acos",
|
95 |
+
"atan": "atan",
|
96 |
+
"atan2": "atan2",
|
97 |
+
# "": "sin_cos",
|
98 |
+
# "": "exp_m1", # e ** x - 1
|
99 |
+
# "": "ln_1p", # ln(1 + x)
|
100 |
+
"sinh": "sinh",
|
101 |
+
"cosh": "cosh",
|
102 |
+
"tanh": "tanh",
|
103 |
+
"asinh": "asinh",
|
104 |
+
"acosh": "acosh",
|
105 |
+
"atanh": "atanh",
|
106 |
+
"sqrt": "sqrt", # To enable automatic rewrites
|
107 |
+
}
|
108 |
+
|
109 |
+
# i64 method in Rust
|
110 |
+
# known_functions_i64 = {
|
111 |
+
# "": "min_value",
|
112 |
+
# "": "max_value",
|
113 |
+
# "": "from_str_radix",
|
114 |
+
# "": "count_ones",
|
115 |
+
# "": "count_zeros",
|
116 |
+
# "": "leading_zeros",
|
117 |
+
# "": "trainling_zeros",
|
118 |
+
# "": "rotate_left",
|
119 |
+
# "": "rotate_right",
|
120 |
+
# "": "swap_bytes",
|
121 |
+
# "": "from_be",
|
122 |
+
# "": "from_le",
|
123 |
+
# "": "to_be", # to big endian
|
124 |
+
# "": "to_le", # to little endian
|
125 |
+
# "": "checked_add",
|
126 |
+
# "": "checked_sub",
|
127 |
+
# "": "checked_mul",
|
128 |
+
# "": "checked_div",
|
129 |
+
# "": "checked_rem",
|
130 |
+
# "": "checked_neg",
|
131 |
+
# "": "checked_shl",
|
132 |
+
# "": "checked_shr",
|
133 |
+
# "": "checked_abs",
|
134 |
+
# "": "saturating_add",
|
135 |
+
# "": "saturating_sub",
|
136 |
+
# "": "saturating_mul",
|
137 |
+
# "": "wrapping_add",
|
138 |
+
# "": "wrapping_sub",
|
139 |
+
# "": "wrapping_mul",
|
140 |
+
# "": "wrapping_div",
|
141 |
+
# "": "wrapping_rem",
|
142 |
+
# "": "wrapping_neg",
|
143 |
+
# "": "wrapping_shl",
|
144 |
+
# "": "wrapping_shr",
|
145 |
+
# "": "wrapping_abs",
|
146 |
+
# "": "overflowing_add",
|
147 |
+
# "": "overflowing_sub",
|
148 |
+
# "": "overflowing_mul",
|
149 |
+
# "": "overflowing_div",
|
150 |
+
# "": "overflowing_rem",
|
151 |
+
# "": "overflowing_neg",
|
152 |
+
# "": "overflowing_shl",
|
153 |
+
# "": "overflowing_shr",
|
154 |
+
# "": "overflowing_abs",
|
155 |
+
# "Pow": "pow",
|
156 |
+
# "Abs": "abs",
|
157 |
+
# "sign": "signum",
|
158 |
+
# "": "is_positive",
|
159 |
+
# "": "is_negnative",
|
160 |
+
# }
|
161 |
+
|
162 |
+
# These are the core reserved words in the Rust language. Taken from:
|
163 |
+
# http://doc.rust-lang.org/grammar.html#keywords
|
164 |
+
|
165 |
+
reserved_words = ['abstract',
|
166 |
+
'alignof',
|
167 |
+
'as',
|
168 |
+
'become',
|
169 |
+
'box',
|
170 |
+
'break',
|
171 |
+
'const',
|
172 |
+
'continue',
|
173 |
+
'crate',
|
174 |
+
'do',
|
175 |
+
'else',
|
176 |
+
'enum',
|
177 |
+
'extern',
|
178 |
+
'false',
|
179 |
+
'final',
|
180 |
+
'fn',
|
181 |
+
'for',
|
182 |
+
'if',
|
183 |
+
'impl',
|
184 |
+
'in',
|
185 |
+
'let',
|
186 |
+
'loop',
|
187 |
+
'macro',
|
188 |
+
'match',
|
189 |
+
'mod',
|
190 |
+
'move',
|
191 |
+
'mut',
|
192 |
+
'offsetof',
|
193 |
+
'override',
|
194 |
+
'priv',
|
195 |
+
'proc',
|
196 |
+
'pub',
|
197 |
+
'pure',
|
198 |
+
'ref',
|
199 |
+
'return',
|
200 |
+
'Self',
|
201 |
+
'self',
|
202 |
+
'sizeof',
|
203 |
+
'static',
|
204 |
+
'struct',
|
205 |
+
'super',
|
206 |
+
'trait',
|
207 |
+
'true',
|
208 |
+
'type',
|
209 |
+
'typeof',
|
210 |
+
'unsafe',
|
211 |
+
'unsized',
|
212 |
+
'use',
|
213 |
+
'virtual',
|
214 |
+
'where',
|
215 |
+
'while',
|
216 |
+
'yield']
|
217 |
+
|
218 |
+
|
219 |
+
class RustCodePrinter(CodePrinter):
|
220 |
+
"""A printer to convert SymPy expressions to strings of Rust code"""
|
221 |
+
printmethod = "_rust_code"
|
222 |
+
language = "Rust"
|
223 |
+
|
224 |
+
_default_settings: dict[str, Any] = {
|
225 |
+
'order': None,
|
226 |
+
'full_prec': 'auto',
|
227 |
+
'precision': 17,
|
228 |
+
'user_functions': {},
|
229 |
+
'human': True,
|
230 |
+
'contract': True,
|
231 |
+
'dereference': set(),
|
232 |
+
'error_on_reserved': False,
|
233 |
+
'reserved_word_suffix': '_',
|
234 |
+
'inline': False,
|
235 |
+
}
|
236 |
+
|
237 |
+
def __init__(self, settings={}):
|
238 |
+
CodePrinter.__init__(self, settings)
|
239 |
+
self.known_functions = dict(known_functions)
|
240 |
+
userfuncs = settings.get('user_functions', {})
|
241 |
+
self.known_functions.update(userfuncs)
|
242 |
+
self._dereference = set(settings.get('dereference', []))
|
243 |
+
self.reserved_words = set(reserved_words)
|
244 |
+
|
245 |
+
def _rate_index_position(self, p):
|
246 |
+
return p*5
|
247 |
+
|
248 |
+
def _get_statement(self, codestring):
|
249 |
+
return "%s;" % codestring
|
250 |
+
|
251 |
+
def _get_comment(self, text):
|
252 |
+
return "// %s" % text
|
253 |
+
|
254 |
+
def _declare_number_const(self, name, value):
|
255 |
+
return "const %s: f64 = %s;" % (name, value)
|
256 |
+
|
257 |
+
def _format_code(self, lines):
|
258 |
+
return self.indent_code(lines)
|
259 |
+
|
260 |
+
def _traverse_matrix_indices(self, mat):
|
261 |
+
rows, cols = mat.shape
|
262 |
+
return ((i, j) for i in range(rows) for j in range(cols))
|
263 |
+
|
264 |
+
def _get_loop_opening_ending(self, indices):
|
265 |
+
open_lines = []
|
266 |
+
close_lines = []
|
267 |
+
loopstart = "for %(var)s in %(start)s..%(end)s {"
|
268 |
+
for i in indices:
|
269 |
+
# Rust arrays start at 0 and end at dimension-1
|
270 |
+
open_lines.append(loopstart % {
|
271 |
+
'var': self._print(i),
|
272 |
+
'start': self._print(i.lower),
|
273 |
+
'end': self._print(i.upper + 1)})
|
274 |
+
close_lines.append("}")
|
275 |
+
return open_lines, close_lines
|
276 |
+
|
277 |
+
def _print_caller_var(self, expr):
|
278 |
+
if len(expr.args) > 1:
|
279 |
+
# for something like `sin(x + y + z)`,
|
280 |
+
# make sure we can get '(x + y + z).sin()'
|
281 |
+
# instead of 'x + y + z.sin()'
|
282 |
+
return '(' + self._print(expr) + ')'
|
283 |
+
elif expr.is_number:
|
284 |
+
return self._print(expr, _type=True)
|
285 |
+
else:
|
286 |
+
return self._print(expr)
|
287 |
+
|
288 |
+
def _print_Function(self, expr):
|
289 |
+
"""
|
290 |
+
basic function for printing `Function`
|
291 |
+
|
292 |
+
Function Style :
|
293 |
+
|
294 |
+
1. args[0].func(args[1:]), method with arguments
|
295 |
+
2. args[0].func(), method without arguments
|
296 |
+
3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
|
297 |
+
4. func(args), function with arguments
|
298 |
+
"""
|
299 |
+
|
300 |
+
if expr.func.__name__ in self.known_functions:
|
301 |
+
cond_func = self.known_functions[expr.func.__name__]
|
302 |
+
func = None
|
303 |
+
style = 1
|
304 |
+
if isinstance(cond_func, str):
|
305 |
+
func = cond_func
|
306 |
+
else:
|
307 |
+
for cond, func, style in cond_func:
|
308 |
+
if cond(*expr.args):
|
309 |
+
break
|
310 |
+
if func is not None:
|
311 |
+
if style == 1:
|
312 |
+
ret = "%(var)s.%(method)s(%(args)s)" % {
|
313 |
+
'var': self._print_caller_var(expr.args[0]),
|
314 |
+
'method': func,
|
315 |
+
'args': self.stringify(expr.args[1:], ", ") if len(expr.args) > 1 else ''
|
316 |
+
}
|
317 |
+
elif style == 2:
|
318 |
+
ret = "%(var)s.%(method)s()" % {
|
319 |
+
'var': self._print_caller_var(expr.args[0]),
|
320 |
+
'method': func,
|
321 |
+
}
|
322 |
+
elif style == 3:
|
323 |
+
ret = "%(var)s.%(method)s()" % {
|
324 |
+
'var': self._print_caller_var(expr.args[1]),
|
325 |
+
'method': func,
|
326 |
+
}
|
327 |
+
else:
|
328 |
+
ret = "%(func)s(%(args)s)" % {
|
329 |
+
'func': func,
|
330 |
+
'args': self.stringify(expr.args, ", "),
|
331 |
+
}
|
332 |
+
return ret
|
333 |
+
elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
|
334 |
+
# inlined function
|
335 |
+
return self._print(expr._imp_(*expr.args))
|
336 |
+
elif expr.func.__name__ in self._rewriteable_functions:
|
337 |
+
# Simple rewrite to supported function possible
|
338 |
+
target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
|
339 |
+
if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
|
340 |
+
return self._print(expr.rewrite(target_f))
|
341 |
+
else:
|
342 |
+
return self._print_not_supported(expr)
|
343 |
+
|
344 |
+
def _print_Pow(self, expr):
|
345 |
+
if expr.base.is_integer and not expr.exp.is_integer:
|
346 |
+
expr = type(expr)(Float(expr.base), expr.exp)
|
347 |
+
return self._print(expr)
|
348 |
+
return self._print_Function(expr)
|
349 |
+
|
350 |
+
def _print_Float(self, expr, _type=False):
|
351 |
+
ret = super()._print_Float(expr)
|
352 |
+
if _type:
|
353 |
+
return ret + '_f64'
|
354 |
+
else:
|
355 |
+
return ret
|
356 |
+
|
357 |
+
def _print_Integer(self, expr, _type=False):
|
358 |
+
ret = super()._print_Integer(expr)
|
359 |
+
if _type:
|
360 |
+
return ret + '_i32'
|
361 |
+
else:
|
362 |
+
return ret
|
363 |
+
|
364 |
+
def _print_Rational(self, expr):
|
365 |
+
p, q = int(expr.p), int(expr.q)
|
366 |
+
return '%d_f64/%d.0' % (p, q)
|
367 |
+
|
368 |
+
def _print_Relational(self, expr):
|
369 |
+
lhs_code = self._print(expr.lhs)
|
370 |
+
rhs_code = self._print(expr.rhs)
|
371 |
+
op = expr.rel_op
|
372 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
373 |
+
|
374 |
+
def _print_Indexed(self, expr):
|
375 |
+
# calculate index for 1d array
|
376 |
+
dims = expr.shape
|
377 |
+
elem = S.Zero
|
378 |
+
offset = S.One
|
379 |
+
for i in reversed(range(expr.rank)):
|
380 |
+
elem += expr.indices[i]*offset
|
381 |
+
offset *= dims[i]
|
382 |
+
return "%s[%s]" % (self._print(expr.base.label), self._print(elem))
|
383 |
+
|
384 |
+
def _print_Idx(self, expr):
|
385 |
+
return expr.label.name
|
386 |
+
|
387 |
+
def _print_Dummy(self, expr):
|
388 |
+
return expr.name
|
389 |
+
|
390 |
+
def _print_Exp1(self, expr, _type=False):
|
391 |
+
return "E"
|
392 |
+
|
393 |
+
def _print_Pi(self, expr, _type=False):
|
394 |
+
return 'PI'
|
395 |
+
|
396 |
+
def _print_Infinity(self, expr, _type=False):
|
397 |
+
return 'INFINITY'
|
398 |
+
|
399 |
+
def _print_NegativeInfinity(self, expr, _type=False):
|
400 |
+
return 'NEG_INFINITY'
|
401 |
+
|
402 |
+
def _print_BooleanTrue(self, expr, _type=False):
|
403 |
+
return "true"
|
404 |
+
|
405 |
+
def _print_BooleanFalse(self, expr, _type=False):
|
406 |
+
return "false"
|
407 |
+
|
408 |
+
def _print_bool(self, expr, _type=False):
|
409 |
+
return str(expr).lower()
|
410 |
+
|
411 |
+
def _print_NaN(self, expr, _type=False):
|
412 |
+
return "NAN"
|
413 |
+
|
414 |
+
def _print_Piecewise(self, expr):
|
415 |
+
if expr.args[-1].cond != True:
|
416 |
+
# We need the last conditional to be a True, otherwise the resulting
|
417 |
+
# function may not return a result.
|
418 |
+
raise ValueError("All Piecewise expressions must contain an "
|
419 |
+
"(expr, True) statement to be used as a default "
|
420 |
+
"condition. Without one, the generated "
|
421 |
+
"expression may not evaluate to anything under "
|
422 |
+
"some condition.")
|
423 |
+
lines = []
|
424 |
+
|
425 |
+
for i, (e, c) in enumerate(expr.args):
|
426 |
+
if i == 0:
|
427 |
+
lines.append("if (%s) {" % self._print(c))
|
428 |
+
elif i == len(expr.args) - 1 and c == True:
|
429 |
+
lines[-1] += " else {"
|
430 |
+
else:
|
431 |
+
lines[-1] += " else if (%s) {" % self._print(c)
|
432 |
+
code0 = self._print(e)
|
433 |
+
lines.append(code0)
|
434 |
+
lines.append("}")
|
435 |
+
|
436 |
+
if self._settings['inline']:
|
437 |
+
return " ".join(lines)
|
438 |
+
else:
|
439 |
+
return "\n".join(lines)
|
440 |
+
|
441 |
+
def _print_ITE(self, expr):
|
442 |
+
from sympy.functions import Piecewise
|
443 |
+
return self._print(expr.rewrite(Piecewise, deep=False))
|
444 |
+
|
445 |
+
def _print_MatrixBase(self, A):
|
446 |
+
if A.cols == 1:
|
447 |
+
return "[%s]" % ", ".join(self._print(a) for a in A)
|
448 |
+
else:
|
449 |
+
raise ValueError("Full Matrix Support in Rust need Crates (https://crates.io/keywords/matrix).")
|
450 |
+
|
451 |
+
def _print_SparseRepMatrix(self, mat):
|
452 |
+
# do not allow sparse matrices to be made dense
|
453 |
+
return self._print_not_supported(mat)
|
454 |
+
|
455 |
+
def _print_MatrixElement(self, expr):
|
456 |
+
return "%s[%s]" % (expr.parent,
|
457 |
+
expr.j + expr.i*expr.parent.shape[1])
|
458 |
+
|
459 |
+
def _print_Symbol(self, expr):
|
460 |
+
|
461 |
+
name = super()._print_Symbol(expr)
|
462 |
+
|
463 |
+
if expr in self._dereference:
|
464 |
+
return '(*%s)' % name
|
465 |
+
else:
|
466 |
+
return name
|
467 |
+
|
468 |
+
def _print_Assignment(self, expr):
|
469 |
+
from sympy.tensor.indexed import IndexedBase
|
470 |
+
lhs = expr.lhs
|
471 |
+
rhs = expr.rhs
|
472 |
+
if self._settings["contract"] and (lhs.has(IndexedBase) or
|
473 |
+
rhs.has(IndexedBase)):
|
474 |
+
# Here we check if there is looping to be done, and if so
|
475 |
+
# print the required loops.
|
476 |
+
return self._doprint_loops(rhs, lhs)
|
477 |
+
else:
|
478 |
+
lhs_code = self._print(lhs)
|
479 |
+
rhs_code = self._print(rhs)
|
480 |
+
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
|
481 |
+
|
482 |
+
def indent_code(self, code):
|
483 |
+
"""Accepts a string of code or a list of code lines"""
|
484 |
+
|
485 |
+
if isinstance(code, str):
|
486 |
+
code_lines = self.indent_code(code.splitlines(True))
|
487 |
+
return ''.join(code_lines)
|
488 |
+
|
489 |
+
tab = " "
|
490 |
+
inc_token = ('{', '(', '{\n', '(\n')
|
491 |
+
dec_token = ('}', ')')
|
492 |
+
|
493 |
+
code = [ line.lstrip(' \t') for line in code ]
|
494 |
+
|
495 |
+
increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
|
496 |
+
decrease = [ int(any(map(line.startswith, dec_token)))
|
497 |
+
for line in code ]
|
498 |
+
|
499 |
+
pretty = []
|
500 |
+
level = 0
|
501 |
+
for n, line in enumerate(code):
|
502 |
+
if line in ('', '\n'):
|
503 |
+
pretty.append(line)
|
504 |
+
continue
|
505 |
+
level -= decrease[n]
|
506 |
+
pretty.append("%s%s" % (tab*level, line))
|
507 |
+
level += increase[n]
|
508 |
+
return pretty
|
509 |
+
|
510 |
+
|
511 |
+
def rust_code(expr, assign_to=None, **settings):
|
512 |
+
"""Converts an expr to a string of Rust code
|
513 |
+
|
514 |
+
Parameters
|
515 |
+
==========
|
516 |
+
|
517 |
+
expr : Expr
|
518 |
+
A SymPy expression to be converted.
|
519 |
+
assign_to : optional
|
520 |
+
When given, the argument is used as the name of the variable to which
|
521 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
522 |
+
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
|
523 |
+
line-wrapping, or for expressions that generate multi-line statements.
|
524 |
+
precision : integer, optional
|
525 |
+
The precision for numbers such as pi [default=15].
|
526 |
+
user_functions : dict, optional
|
527 |
+
A dictionary where the keys are string representations of either
|
528 |
+
``FunctionClass`` or ``UndefinedFunction`` instances and the values
|
529 |
+
are their desired C string representations. Alternatively, the
|
530 |
+
dictionary value can be a list of tuples i.e. [(argument_test,
|
531 |
+
cfunction_string)]. See below for examples.
|
532 |
+
dereference : iterable, optional
|
533 |
+
An iterable of symbols that should be dereferenced in the printed code
|
534 |
+
expression. These would be values passed by address to the function.
|
535 |
+
For example, if ``dereference=[a]``, the resulting code would print
|
536 |
+
``(*a)`` instead of ``a``.
|
537 |
+
human : bool, optional
|
538 |
+
If True, the result is a single string that may contain some constant
|
539 |
+
declarations for the number symbols. If False, the same information is
|
540 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
541 |
+
code_text). [default=True].
|
542 |
+
contract: bool, optional
|
543 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
544 |
+
rules and the corresponding nested loops over indices are generated.
|
545 |
+
Setting contract=False will not generate loops, instead the user is
|
546 |
+
responsible to provide values for the indices in the code.
|
547 |
+
[default=True].
|
548 |
+
|
549 |
+
Examples
|
550 |
+
========
|
551 |
+
|
552 |
+
>>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function
|
553 |
+
>>> x, tau = symbols("x, tau")
|
554 |
+
>>> rust_code((2*tau)**Rational(7, 2))
|
555 |
+
'8*1.4142135623731*tau.powf(7_f64/2.0)'
|
556 |
+
>>> rust_code(sin(x), assign_to="s")
|
557 |
+
's = x.sin();'
|
558 |
+
|
559 |
+
Simple custom printing can be defined for certain types by passing a
|
560 |
+
dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
|
561 |
+
Alternatively, the dictionary value can be a list of tuples i.e.
|
562 |
+
[(argument_test, cfunction_string)].
|
563 |
+
|
564 |
+
>>> custom_functions = {
|
565 |
+
... "ceiling": "CEIL",
|
566 |
+
... "Abs": [(lambda x: not x.is_integer, "fabs", 4),
|
567 |
+
... (lambda x: x.is_integer, "ABS", 4)],
|
568 |
+
... "func": "f"
|
569 |
+
... }
|
570 |
+
>>> func = Function('func')
|
571 |
+
>>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
|
572 |
+
'(fabs(x) + x.CEIL()).f()'
|
573 |
+
|
574 |
+
``Piecewise`` expressions are converted into conditionals. If an
|
575 |
+
``assign_to`` variable is provided an if statement is created, otherwise
|
576 |
+
the ternary operator is used. Note that if the ``Piecewise`` lacks a
|
577 |
+
default term, represented by ``(expr, True)`` then an error will be thrown.
|
578 |
+
This is to prevent generating an expression that may not evaluate to
|
579 |
+
anything.
|
580 |
+
|
581 |
+
>>> from sympy import Piecewise
|
582 |
+
>>> expr = Piecewise((x + 1, x > 0), (x, True))
|
583 |
+
>>> print(rust_code(expr, tau))
|
584 |
+
tau = if (x > 0) {
|
585 |
+
x + 1
|
586 |
+
} else {
|
587 |
+
x
|
588 |
+
};
|
589 |
+
|
590 |
+
Support for loops is provided through ``Indexed`` types. With
|
591 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
592 |
+
``contract=False`` will just print the assignment expression that should be
|
593 |
+
looped over:
|
594 |
+
|
595 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
596 |
+
>>> len_y = 5
|
597 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
598 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
599 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
600 |
+
>>> i = Idx('i', len_y-1)
|
601 |
+
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
602 |
+
>>> rust_code(e.rhs, assign_to=e.lhs, contract=False)
|
603 |
+
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
|
604 |
+
|
605 |
+
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
|
606 |
+
must be provided to ``assign_to``. Note that any expression that can be
|
607 |
+
generated normally can also exist inside a Matrix:
|
608 |
+
|
609 |
+
>>> from sympy import Matrix, MatrixSymbol
|
610 |
+
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
|
611 |
+
>>> A = MatrixSymbol('A', 3, 1)
|
612 |
+
>>> print(rust_code(mat, A))
|
613 |
+
A = [x.powi(2), if (x > 0) {
|
614 |
+
x + 1
|
615 |
+
} else {
|
616 |
+
x
|
617 |
+
}, x.sin()];
|
618 |
+
"""
|
619 |
+
|
620 |
+
return RustCodePrinter(settings).doprint(expr, assign_to)
|
621 |
+
|
622 |
+
|
623 |
+
def print_rust_code(expr, **settings):
|
624 |
+
"""Prints Rust representation of the given expression."""
|
625 |
+
print(rust_code(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/smtlib.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing
|
2 |
+
|
3 |
+
import sympy
|
4 |
+
from sympy.core import Add, Mul
|
5 |
+
from sympy.core import Symbol, Expr, Float, Rational, Integer, Basic
|
6 |
+
from sympy.core.function import UndefinedFunction, Function
|
7 |
+
from sympy.core.relational import Relational, Unequality, Equality, LessThan, GreaterThan, StrictLessThan, StrictGreaterThan
|
8 |
+
from sympy.functions.elementary.complexes import Abs
|
9 |
+
from sympy.functions.elementary.exponential import exp, log, Pow
|
10 |
+
from sympy.functions.elementary.hyperbolic import sinh, cosh, tanh
|
11 |
+
from sympy.functions.elementary.miscellaneous import Min, Max
|
12 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
13 |
+
from sympy.functions.elementary.trigonometric import sin, cos, tan, asin, acos, atan, atan2
|
14 |
+
from sympy.logic.boolalg import And, Or, Xor, Implies, Boolean
|
15 |
+
from sympy.logic.boolalg import BooleanTrue, BooleanFalse, BooleanFunction, Not, ITE
|
16 |
+
from sympy.printing.printer import Printer
|
17 |
+
from sympy.sets import Interval
|
18 |
+
|
19 |
+
|
20 |
+
class SMTLibPrinter(Printer):
|
21 |
+
printmethod = "_smtlib"
|
22 |
+
|
23 |
+
# based on dReal, an automated reasoning tool for solving problems that can be encoded as first-order logic formulas over the real numbers.
|
24 |
+
# dReal's special strength is in handling problems that involve a wide range of nonlinear real functions.
|
25 |
+
_default_settings: dict = {
|
26 |
+
'precision': None,
|
27 |
+
'known_types': {
|
28 |
+
bool: 'Bool',
|
29 |
+
int: 'Int',
|
30 |
+
float: 'Real'
|
31 |
+
},
|
32 |
+
'known_constants': {
|
33 |
+
# pi: 'MY_VARIABLE_PI_DECLARED_ELSEWHERE',
|
34 |
+
},
|
35 |
+
'known_functions': {
|
36 |
+
Add: '+',
|
37 |
+
Mul: '*',
|
38 |
+
|
39 |
+
Equality: '=',
|
40 |
+
LessThan: '<=',
|
41 |
+
GreaterThan: '>=',
|
42 |
+
StrictLessThan: '<',
|
43 |
+
StrictGreaterThan: '>',
|
44 |
+
|
45 |
+
exp: 'exp',
|
46 |
+
log: 'log',
|
47 |
+
Abs: 'abs',
|
48 |
+
sin: 'sin',
|
49 |
+
cos: 'cos',
|
50 |
+
tan: 'tan',
|
51 |
+
asin: 'arcsin',
|
52 |
+
acos: 'arccos',
|
53 |
+
atan: 'arctan',
|
54 |
+
atan2: 'arctan2',
|
55 |
+
sinh: 'sinh',
|
56 |
+
cosh: 'cosh',
|
57 |
+
tanh: 'tanh',
|
58 |
+
Min: 'min',
|
59 |
+
Max: 'max',
|
60 |
+
Pow: 'pow',
|
61 |
+
|
62 |
+
And: 'and',
|
63 |
+
Or: 'or',
|
64 |
+
Xor: 'xor',
|
65 |
+
Not: 'not',
|
66 |
+
ITE: 'ite',
|
67 |
+
Implies: '=>',
|
68 |
+
}
|
69 |
+
}
|
70 |
+
|
71 |
+
symbol_table: dict
|
72 |
+
|
73 |
+
def __init__(self, settings: typing.Optional[dict] = None,
|
74 |
+
symbol_table=None):
|
75 |
+
settings = settings or {}
|
76 |
+
self.symbol_table = symbol_table or {}
|
77 |
+
Printer.__init__(self, settings)
|
78 |
+
self._precision = self._settings['precision']
|
79 |
+
self._known_types = dict(self._settings['known_types'])
|
80 |
+
self._known_constants = dict(self._settings['known_constants'])
|
81 |
+
self._known_functions = dict(self._settings['known_functions'])
|
82 |
+
|
83 |
+
for _ in self._known_types.values(): assert self._is_legal_name(_)
|
84 |
+
for _ in self._known_constants.values(): assert self._is_legal_name(_)
|
85 |
+
# for _ in self._known_functions.values(): assert self._is_legal_name(_) # +, *, <, >, etc.
|
86 |
+
|
87 |
+
def _is_legal_name(self, s: str):
|
88 |
+
if not s: return False
|
89 |
+
if s[0].isnumeric(): return False
|
90 |
+
return all(_.isalnum() or _ == '_' for _ in s)
|
91 |
+
|
92 |
+
def _s_expr(self, op: str, args: typing.Union[list, tuple]) -> str:
|
93 |
+
args_str = ' '.join(
|
94 |
+
a if isinstance(a, str)
|
95 |
+
else self._print(a)
|
96 |
+
for a in args
|
97 |
+
)
|
98 |
+
return f'({op} {args_str})'
|
99 |
+
|
100 |
+
def _print_Function(self, e):
|
101 |
+
if e in self._known_functions:
|
102 |
+
op = self._known_functions[e]
|
103 |
+
elif type(e) in self._known_functions:
|
104 |
+
op = self._known_functions[type(e)]
|
105 |
+
elif type(type(e)) == UndefinedFunction:
|
106 |
+
op = e.name
|
107 |
+
else:
|
108 |
+
op = self._known_functions[e] # throw KeyError
|
109 |
+
|
110 |
+
return self._s_expr(op, e.args)
|
111 |
+
|
112 |
+
def _print_Relational(self, e: Relational):
|
113 |
+
return self._print_Function(e)
|
114 |
+
|
115 |
+
def _print_BooleanFunction(self, e: BooleanFunction):
|
116 |
+
return self._print_Function(e)
|
117 |
+
|
118 |
+
def _print_Expr(self, e: Expr):
|
119 |
+
return self._print_Function(e)
|
120 |
+
|
121 |
+
def _print_Unequality(self, e: Unequality):
|
122 |
+
if type(e) in self._known_functions:
|
123 |
+
return self._print_Relational(e) # default
|
124 |
+
else:
|
125 |
+
eq_op = self._known_functions[Equality]
|
126 |
+
not_op = self._known_functions[Not]
|
127 |
+
return self._s_expr(not_op, [self._s_expr(eq_op, e.args)])
|
128 |
+
|
129 |
+
def _print_Piecewise(self, e: Piecewise):
|
130 |
+
def _print_Piecewise_recursive(args: typing.Union[list, tuple]):
|
131 |
+
e, c = args[0]
|
132 |
+
if len(args) == 1:
|
133 |
+
assert (c is True) or isinstance(c, BooleanTrue)
|
134 |
+
return self._print(e)
|
135 |
+
else:
|
136 |
+
ite = self._known_functions[ITE]
|
137 |
+
return self._s_expr(ite, [
|
138 |
+
c, e, _print_Piecewise_recursive(args[1:])
|
139 |
+
])
|
140 |
+
|
141 |
+
return _print_Piecewise_recursive(e.args)
|
142 |
+
|
143 |
+
def _print_Interval(self, e: Interval):
|
144 |
+
if e.start.is_infinite and e.end.is_infinite:
|
145 |
+
return ''
|
146 |
+
elif e.start.is_infinite != e.end.is_infinite:
|
147 |
+
raise ValueError(f'One-sided intervals (`{e}`) are not supported in SMT.')
|
148 |
+
else:
|
149 |
+
return f'[{e.start}, {e.end}]'
|
150 |
+
|
151 |
+
# todo: Sympy does not support quantifiers yet as of 2022, but quantifiers can be handy in SMT.
|
152 |
+
# For now, users can extend this class and build in their own quantifier support.
|
153 |
+
# See `test_quantifier_extensions()` in test_smtlib.py for an example of how this might look.
|
154 |
+
|
155 |
+
# def _print_ForAll(self, e: ForAll):
|
156 |
+
# return self._s('forall', [
|
157 |
+
# self._s('', [
|
158 |
+
# self._s(sym.name, [self._type_name(sym), Interval(start, end)])
|
159 |
+
# for sym, start, end in e.limits
|
160 |
+
# ]),
|
161 |
+
# e.function
|
162 |
+
# ])
|
163 |
+
|
164 |
+
def _print_BooleanTrue(self, x: BooleanTrue):
|
165 |
+
return 'true'
|
166 |
+
|
167 |
+
def _print_BooleanFalse(self, x: BooleanFalse):
|
168 |
+
return 'false'
|
169 |
+
|
170 |
+
def _print_Float(self, x: Float):
|
171 |
+
f = x.evalf(self._precision) if self._precision else x.evalf()
|
172 |
+
return str(f).rstrip('0')
|
173 |
+
|
174 |
+
def _print_float(self, x: float):
|
175 |
+
return str(x)
|
176 |
+
|
177 |
+
def _print_Rational(self, x: Rational):
|
178 |
+
return self._s_expr('/', [x.p, x.q])
|
179 |
+
|
180 |
+
def _print_Integer(self, x: Integer):
|
181 |
+
assert x.q == 1
|
182 |
+
return str(x.p)
|
183 |
+
|
184 |
+
def _print_int(self, x: int):
|
185 |
+
return str(x)
|
186 |
+
|
187 |
+
def _print_Symbol(self, x: Symbol):
|
188 |
+
assert self._is_legal_name(x.name)
|
189 |
+
return x.name
|
190 |
+
|
191 |
+
def _print_NumberSymbol(self, x):
|
192 |
+
name = self._known_constants.get(x)
|
193 |
+
return name if name else self._print_Float(x)
|
194 |
+
|
195 |
+
def _print_UndefinedFunction(self, x):
|
196 |
+
assert self._is_legal_name(x.name)
|
197 |
+
return x.name
|
198 |
+
|
199 |
+
def _print_Exp1(self, x):
|
200 |
+
return (
|
201 |
+
self._print_Function(exp(1, evaluate=False))
|
202 |
+
if exp in self._known_functions else
|
203 |
+
self._print_NumberSymbol(x)
|
204 |
+
)
|
205 |
+
|
206 |
+
def emptyPrinter(self, expr):
|
207 |
+
raise NotImplementedError(f'Cannot convert `{repr(expr)}` of type `{type(expr)}` to SMT.')
|
208 |
+
|
209 |
+
|
210 |
+
def smtlib_code(
|
211 |
+
expr,
|
212 |
+
auto_assert=True, auto_declare=True,
|
213 |
+
precision=None,
|
214 |
+
symbol_table=None,
|
215 |
+
known_types=None, known_constants=None, known_functions=None,
|
216 |
+
prefix_expressions=None, suffix_expressions=None,
|
217 |
+
log_warn=None
|
218 |
+
):
|
219 |
+
r"""Converts ``expr`` to a string of smtlib code.
|
220 |
+
|
221 |
+
Parameters
|
222 |
+
==========
|
223 |
+
|
224 |
+
expr : Expr | List[Expr]
|
225 |
+
A SymPy expression or system to be converted.
|
226 |
+
auto_assert : bool, optional
|
227 |
+
If false, do not modify expr and produce only the S-Expression equivalent of expr.
|
228 |
+
If true, assume expr is a system and assert each boolean element.
|
229 |
+
auto_declare : bool, optional
|
230 |
+
If false, do not produce declarations for the symbols used in expr.
|
231 |
+
If true, prepend all necessary declarations for variables used in expr based on symbol_table.
|
232 |
+
precision : integer, optional
|
233 |
+
The ``evalf(..)`` precision for numbers such as pi.
|
234 |
+
symbol_table : dict, optional
|
235 |
+
A dictionary where keys are ``Symbol`` or ``Function`` instances and values are their Python type i.e. ``bool``, ``int``, ``float``, or ``Callable[...]``.
|
236 |
+
If incomplete, an attempt will be made to infer types from ``expr``.
|
237 |
+
known_types: dict, optional
|
238 |
+
A dictionary where keys are ``bool``, ``int``, ``float`` etc. and values are their corresponding SMT type names.
|
239 |
+
If not given, a partial listing compatible with several solvers will be used.
|
240 |
+
known_functions : dict, optional
|
241 |
+
A dictionary where keys are ``Function``, ``Relational``, ``BooleanFunction``, or ``Expr`` instances and values are their SMT string representations.
|
242 |
+
If not given, a partial listing optimized for dReal solver (but compatible with others) will be used.
|
243 |
+
known_constants: dict, optional
|
244 |
+
A dictionary where keys are ``NumberSymbol`` instances and values are their SMT variable names.
|
245 |
+
When using this feature, extra caution must be taken to avoid naming collisions between user symbols and listed constants.
|
246 |
+
If not given, constants will be expanded inline i.e. ``3.14159`` instead of ``MY_SMT_VARIABLE_FOR_PI``.
|
247 |
+
prefix_expressions: list, optional
|
248 |
+
A list of lists of ``str`` and/or expressions to convert into SMTLib and prefix to the output.
|
249 |
+
suffix_expressions: list, optional
|
250 |
+
A list of lists of ``str`` and/or expressions to convert into SMTLib and postfix to the output.
|
251 |
+
log_warn: lambda function, optional
|
252 |
+
A function to record all warnings during potentially risky operations.
|
253 |
+
Soundness is a core value in SMT solving, so it is good to log all assumptions made.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
========
|
257 |
+
>>> from sympy import smtlib_code, symbols, sin, Eq
|
258 |
+
>>> x = symbols('x')
|
259 |
+
>>> smtlib_code(sin(x).series(x).removeO(), log_warn=print)
|
260 |
+
Could not infer type of `x`. Defaulting to float.
|
261 |
+
Non-Boolean expression `x**5/120 - x**3/6 + x` will not be asserted. Converting to SMTLib verbatim.
|
262 |
+
'(declare-const x Real)\n(+ x (* (/ -1 6) (pow x 3)) (* (/ 1 120) (pow x 5)))'
|
263 |
+
|
264 |
+
>>> from sympy import Rational
|
265 |
+
>>> x, y, tau = symbols("x, y, tau")
|
266 |
+
>>> smtlib_code((2*tau)**Rational(7, 2), log_warn=print)
|
267 |
+
Could not infer type of `tau`. Defaulting to float.
|
268 |
+
Non-Boolean expression `8*sqrt(2)*tau**(7/2)` will not be asserted. Converting to SMTLib verbatim.
|
269 |
+
'(declare-const tau Real)\n(* 8 (pow 2 (/ 1 2)) (pow tau (/ 7 2)))'
|
270 |
+
|
271 |
+
``Piecewise`` expressions are implemented with ``ite`` expressions by default.
|
272 |
+
Note that if the ``Piecewise`` lacks a default term, represented by
|
273 |
+
``(expr, True)`` then an error will be thrown. This is to prevent
|
274 |
+
generating an expression that may not evaluate to anything.
|
275 |
+
|
276 |
+
>>> from sympy import Piecewise
|
277 |
+
>>> pw = Piecewise((x + 1, x > 0), (x, True))
|
278 |
+
>>> smtlib_code(Eq(pw, 3), symbol_table={x: float}, log_warn=print)
|
279 |
+
'(declare-const x Real)\n(assert (= (ite (> x 0) (+ 1 x) x) 3))'
|
280 |
+
|
281 |
+
Custom printing can be defined for certain types by passing a dictionary of
|
282 |
+
PythonType : "SMT Name" to the ``known_types``, ``known_constants``, and ``known_functions`` kwargs.
|
283 |
+
|
284 |
+
>>> from typing import Callable
|
285 |
+
>>> from sympy import Function, Add
|
286 |
+
>>> f = Function('f')
|
287 |
+
>>> g = Function('g')
|
288 |
+
>>> smt_builtin_funcs = { # functions our SMT solver will understand
|
289 |
+
... f: "existing_smtlib_fcn",
|
290 |
+
... Add: "sum",
|
291 |
+
... }
|
292 |
+
>>> user_def_funcs = { # functions defined by the user must have their types specified explicitly
|
293 |
+
... g: Callable[[int], float],
|
294 |
+
... }
|
295 |
+
>>> smtlib_code(f(x) + g(x), symbol_table=user_def_funcs, known_functions=smt_builtin_funcs, log_warn=print)
|
296 |
+
Non-Boolean expression `f(x) + g(x)` will not be asserted. Converting to SMTLib verbatim.
|
297 |
+
'(declare-const x Int)\n(declare-fun g (Int) Real)\n(sum (existing_smtlib_fcn x) (g x))'
|
298 |
+
"""
|
299 |
+
log_warn = log_warn or (lambda _: None)
|
300 |
+
|
301 |
+
if not isinstance(expr, list): expr = [expr]
|
302 |
+
expr = [
|
303 |
+
sympy.sympify(_, strict=True, evaluate=False, convert_xor=False)
|
304 |
+
for _ in expr
|
305 |
+
]
|
306 |
+
|
307 |
+
if not symbol_table: symbol_table = {}
|
308 |
+
symbol_table = _auto_infer_smtlib_types(
|
309 |
+
*expr, symbol_table=symbol_table
|
310 |
+
)
|
311 |
+
# See [FALLBACK RULES]
|
312 |
+
# Need SMTLibPrinter to populate known_functions and known_constants first.
|
313 |
+
|
314 |
+
settings = {}
|
315 |
+
if precision: settings['precision'] = precision
|
316 |
+
del precision
|
317 |
+
|
318 |
+
if known_types: settings['known_types'] = known_types
|
319 |
+
del known_types
|
320 |
+
|
321 |
+
if known_functions: settings['known_functions'] = known_functions
|
322 |
+
del known_functions
|
323 |
+
|
324 |
+
if known_constants: settings['known_constants'] = known_constants
|
325 |
+
del known_constants
|
326 |
+
|
327 |
+
if not prefix_expressions: prefix_expressions = []
|
328 |
+
if not suffix_expressions: suffix_expressions = []
|
329 |
+
|
330 |
+
p = SMTLibPrinter(settings, symbol_table)
|
331 |
+
del symbol_table
|
332 |
+
|
333 |
+
# [FALLBACK RULES]
|
334 |
+
for e in expr:
|
335 |
+
for sym in e.atoms(Symbol, Function):
|
336 |
+
if (
|
337 |
+
sym.is_Symbol and
|
338 |
+
sym not in p._known_constants and
|
339 |
+
sym not in p.symbol_table
|
340 |
+
):
|
341 |
+
log_warn(f"Could not infer type of `{sym}`. Defaulting to float.")
|
342 |
+
p.symbol_table[sym] = float
|
343 |
+
if (
|
344 |
+
sym.is_Function and
|
345 |
+
type(sym) not in p._known_functions and
|
346 |
+
type(sym) not in p.symbol_table and
|
347 |
+
not sym.is_Piecewise
|
348 |
+
): raise TypeError(
|
349 |
+
f"Unknown type of undefined function `{sym}`. "
|
350 |
+
f"Must be mapped to ``str`` in known_functions or mapped to ``Callable[..]`` in symbol_table."
|
351 |
+
)
|
352 |
+
|
353 |
+
declarations = []
|
354 |
+
if auto_declare:
|
355 |
+
constants = {sym.name: sym for e in expr for sym in e.free_symbols
|
356 |
+
if sym not in p._known_constants}
|
357 |
+
functions = {fnc.name: fnc for e in expr for fnc in e.atoms(Function)
|
358 |
+
if type(fnc) not in p._known_functions and not fnc.is_Piecewise}
|
359 |
+
declarations = \
|
360 |
+
[
|
361 |
+
_auto_declare_smtlib(sym, p, log_warn)
|
362 |
+
for sym in constants.values()
|
363 |
+
] + [
|
364 |
+
_auto_declare_smtlib(fnc, p, log_warn)
|
365 |
+
for fnc in functions.values()
|
366 |
+
]
|
367 |
+
declarations = [decl for decl in declarations if decl]
|
368 |
+
|
369 |
+
if auto_assert:
|
370 |
+
expr = [_auto_assert_smtlib(e, p, log_warn) for e in expr]
|
371 |
+
|
372 |
+
# return SMTLibPrinter().doprint(expr)
|
373 |
+
return '\n'.join([
|
374 |
+
# ';; PREFIX EXPRESSIONS',
|
375 |
+
*[
|
376 |
+
e if isinstance(e, str) else p.doprint(e)
|
377 |
+
for e in prefix_expressions
|
378 |
+
],
|
379 |
+
|
380 |
+
# ';; DECLARATIONS',
|
381 |
+
*sorted(e for e in declarations),
|
382 |
+
|
383 |
+
# ';; EXPRESSIONS',
|
384 |
+
*[
|
385 |
+
e if isinstance(e, str) else p.doprint(e)
|
386 |
+
for e in expr
|
387 |
+
],
|
388 |
+
|
389 |
+
# ';; SUFFIX EXPRESSIONS',
|
390 |
+
*[
|
391 |
+
e if isinstance(e, str) else p.doprint(e)
|
392 |
+
for e in suffix_expressions
|
393 |
+
],
|
394 |
+
])
|
395 |
+
|
396 |
+
|
397 |
+
def _auto_declare_smtlib(sym: typing.Union[Symbol, Function], p: SMTLibPrinter, log_warn: typing.Callable[[str], None]):
|
398 |
+
if sym.is_Symbol:
|
399 |
+
type_signature = p.symbol_table[sym]
|
400 |
+
assert isinstance(type_signature, type)
|
401 |
+
type_signature = p._known_types[type_signature]
|
402 |
+
return p._s_expr('declare-const', [sym, type_signature])
|
403 |
+
|
404 |
+
elif sym.is_Function:
|
405 |
+
type_signature = p.symbol_table[type(sym)]
|
406 |
+
assert callable(type_signature)
|
407 |
+
type_signature = [p._known_types[_] for _ in type_signature.__args__]
|
408 |
+
assert len(type_signature) > 0
|
409 |
+
params_signature = f"({' '.join(type_signature[:-1])})"
|
410 |
+
return_signature = type_signature[-1]
|
411 |
+
return p._s_expr('declare-fun', [type(sym), params_signature, return_signature])
|
412 |
+
|
413 |
+
else:
|
414 |
+
log_warn(f"Non-Symbol/Function `{sym}` will not be declared.")
|
415 |
+
return None
|
416 |
+
|
417 |
+
|
418 |
+
def _auto_assert_smtlib(e: Expr, p: SMTLibPrinter, log_warn: typing.Callable[[str], None]):
|
419 |
+
if isinstance(e, Boolean) or (
|
420 |
+
e in p.symbol_table and p.symbol_table[e] == bool
|
421 |
+
) or (
|
422 |
+
e.is_Function and
|
423 |
+
type(e) in p.symbol_table and
|
424 |
+
p.symbol_table[type(e)].__args__[-1] == bool
|
425 |
+
):
|
426 |
+
return p._s_expr('assert', [e])
|
427 |
+
else:
|
428 |
+
log_warn(f"Non-Boolean expression `{e}` will not be asserted. Converting to SMTLib verbatim.")
|
429 |
+
return e
|
430 |
+
|
431 |
+
|
432 |
+
def _auto_infer_smtlib_types(
|
433 |
+
*exprs: Basic,
|
434 |
+
symbol_table: typing.Optional[dict] = None
|
435 |
+
) -> dict:
|
436 |
+
# [TYPE INFERENCE RULES]
|
437 |
+
# X is alone in an expr => X is bool
|
438 |
+
# X in BooleanFunction.args => X is bool
|
439 |
+
# X matches to a bool param of a symbol_table function => X is bool
|
440 |
+
# X matches to an int param of a symbol_table function => X is int
|
441 |
+
# X.is_integer => X is int
|
442 |
+
# X == Y, where X is T => Y is T
|
443 |
+
|
444 |
+
# [FALLBACK RULES]
|
445 |
+
# see _auto_declare_smtlib(..)
|
446 |
+
# X is not bool and X is not int and X is Symbol => X is float
|
447 |
+
# else (e.g. X is Function) => error. must be specified explicitly.
|
448 |
+
|
449 |
+
_symbols = dict(symbol_table) if symbol_table else {}
|
450 |
+
|
451 |
+
def safe_update(syms: set, inf):
|
452 |
+
for s in syms:
|
453 |
+
assert s.is_Symbol
|
454 |
+
if (old_type := _symbols.setdefault(s, inf)) != inf:
|
455 |
+
raise TypeError(f"Could not infer type of `{s}`. Apparently both `{old_type}` and `{inf}`?")
|
456 |
+
|
457 |
+
# EXPLICIT TYPES
|
458 |
+
safe_update({
|
459 |
+
e
|
460 |
+
for e in exprs
|
461 |
+
if e.is_Symbol
|
462 |
+
}, bool)
|
463 |
+
|
464 |
+
safe_update({
|
465 |
+
symbol
|
466 |
+
for e in exprs
|
467 |
+
for boolfunc in e.atoms(BooleanFunction)
|
468 |
+
for symbol in boolfunc.args
|
469 |
+
if symbol.is_Symbol
|
470 |
+
}, bool)
|
471 |
+
|
472 |
+
safe_update({
|
473 |
+
symbol
|
474 |
+
for e in exprs
|
475 |
+
for boolfunc in e.atoms(Function)
|
476 |
+
if type(boolfunc) in _symbols
|
477 |
+
for symbol, param in zip(boolfunc.args, _symbols[type(boolfunc)].__args__)
|
478 |
+
if symbol.is_Symbol and param == bool
|
479 |
+
}, bool)
|
480 |
+
|
481 |
+
safe_update({
|
482 |
+
symbol
|
483 |
+
for e in exprs
|
484 |
+
for intfunc in e.atoms(Function)
|
485 |
+
if type(intfunc) in _symbols
|
486 |
+
for symbol, param in zip(intfunc.args, _symbols[type(intfunc)].__args__)
|
487 |
+
if symbol.is_Symbol and param == int
|
488 |
+
}, int)
|
489 |
+
|
490 |
+
safe_update({
|
491 |
+
symbol
|
492 |
+
for e in exprs
|
493 |
+
for symbol in e.atoms(Symbol)
|
494 |
+
if symbol.is_integer
|
495 |
+
}, int)
|
496 |
+
|
497 |
+
safe_update({
|
498 |
+
symbol
|
499 |
+
for e in exprs
|
500 |
+
for symbol in e.atoms(Symbol)
|
501 |
+
if symbol.is_real and not symbol.is_integer
|
502 |
+
}, float)
|
503 |
+
|
504 |
+
# EQUALITY RELATION RULE
|
505 |
+
rels = [rel for expr in exprs for rel in expr.atoms(Equality)]
|
506 |
+
rels = [
|
507 |
+
(rel.lhs, rel.rhs) for rel in rels if rel.lhs.is_Symbol
|
508 |
+
] + [
|
509 |
+
(rel.rhs, rel.lhs) for rel in rels if rel.rhs.is_Symbol
|
510 |
+
]
|
511 |
+
for infer, reltd in rels:
|
512 |
+
inference = (
|
513 |
+
_symbols[infer] if infer in _symbols else
|
514 |
+
_symbols[reltd] if reltd in _symbols else
|
515 |
+
|
516 |
+
_symbols[type(reltd)].__args__[-1]
|
517 |
+
if reltd.is_Function and type(reltd) in _symbols else
|
518 |
+
|
519 |
+
bool if reltd.is_Boolean else
|
520 |
+
int if reltd.is_integer or reltd.is_Integer else
|
521 |
+
float if reltd.is_real else
|
522 |
+
None
|
523 |
+
)
|
524 |
+
if inference: safe_update({infer}, inference)
|
525 |
+
|
526 |
+
return _symbols
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tableform.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.containers import Tuple
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.core.sympify import SympifyError
|
5 |
+
|
6 |
+
from types import FunctionType
|
7 |
+
|
8 |
+
|
9 |
+
class TableForm:
|
10 |
+
r"""
|
11 |
+
Create a nice table representation of data.
|
12 |
+
|
13 |
+
Examples
|
14 |
+
========
|
15 |
+
|
16 |
+
>>> from sympy import TableForm
|
17 |
+
>>> t = TableForm([[5, 7], [4, 2], [10, 3]])
|
18 |
+
>>> print(t)
|
19 |
+
5 7
|
20 |
+
4 2
|
21 |
+
10 3
|
22 |
+
|
23 |
+
You can use the SymPy's printing system to produce tables in any
|
24 |
+
format (ascii, latex, html, ...).
|
25 |
+
|
26 |
+
>>> print(t.as_latex())
|
27 |
+
\begin{tabular}{l l}
|
28 |
+
$5$ & $7$ \\
|
29 |
+
$4$ & $2$ \\
|
30 |
+
$10$ & $3$ \\
|
31 |
+
\end{tabular}
|
32 |
+
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, data, **kwarg):
|
36 |
+
"""
|
37 |
+
Creates a TableForm.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
|
41 |
+
data ...
|
42 |
+
2D data to be put into the table; data can be
|
43 |
+
given as a Matrix
|
44 |
+
|
45 |
+
headings ...
|
46 |
+
gives the labels for rows and columns:
|
47 |
+
|
48 |
+
Can be a single argument that applies to both
|
49 |
+
dimensions:
|
50 |
+
|
51 |
+
- None ... no labels
|
52 |
+
- "automatic" ... labels are 1, 2, 3, ...
|
53 |
+
|
54 |
+
Can be a list of labels for rows and columns:
|
55 |
+
The labels for each dimension can be given
|
56 |
+
as None, "automatic", or [l1, l2, ...] e.g.
|
57 |
+
["automatic", None] will number the rows
|
58 |
+
|
59 |
+
[default: None]
|
60 |
+
|
61 |
+
alignments ...
|
62 |
+
alignment of the columns with:
|
63 |
+
|
64 |
+
- "left" or "<"
|
65 |
+
- "center" or "^"
|
66 |
+
- "right" or ">"
|
67 |
+
|
68 |
+
When given as a single value, the value is used for
|
69 |
+
all columns. The row headings (if given) will be
|
70 |
+
right justified unless an explicit alignment is
|
71 |
+
given for it and all other columns.
|
72 |
+
|
73 |
+
[default: "left"]
|
74 |
+
|
75 |
+
formats ...
|
76 |
+
a list of format strings or functions that accept
|
77 |
+
3 arguments (entry, row number, col number) and
|
78 |
+
return a string for the table entry. (If a function
|
79 |
+
returns None then the _print method will be used.)
|
80 |
+
|
81 |
+
wipe_zeros ...
|
82 |
+
Do not show zeros in the table.
|
83 |
+
|
84 |
+
[default: True]
|
85 |
+
|
86 |
+
pad ...
|
87 |
+
the string to use to indicate a missing value (e.g.
|
88 |
+
elements that are None or those that are missing
|
89 |
+
from the end of a row (i.e. any row that is shorter
|
90 |
+
than the rest is assumed to have missing values).
|
91 |
+
When None, nothing will be shown for values that
|
92 |
+
are missing from the end of a row; values that are
|
93 |
+
None, however, will be shown.
|
94 |
+
|
95 |
+
[default: None]
|
96 |
+
|
97 |
+
Examples
|
98 |
+
========
|
99 |
+
|
100 |
+
>>> from sympy import TableForm, Symbol
|
101 |
+
>>> TableForm([[5, 7], [4, 2], [10, 3]])
|
102 |
+
5 7
|
103 |
+
4 2
|
104 |
+
10 3
|
105 |
+
>>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic')
|
106 |
+
| 1 2 3
|
107 |
+
---------
|
108 |
+
1 | .
|
109 |
+
2 | . .
|
110 |
+
3 | . . .
|
111 |
+
>>> TableForm([[Symbol('.'*(j if not i%2 else 1)) for i in range(3)]
|
112 |
+
... for j in range(4)], alignments='rcl')
|
113 |
+
.
|
114 |
+
. . .
|
115 |
+
.. . ..
|
116 |
+
... . ...
|
117 |
+
"""
|
118 |
+
from sympy.matrices.dense import Matrix
|
119 |
+
|
120 |
+
# We only support 2D data. Check the consistency:
|
121 |
+
if isinstance(data, Matrix):
|
122 |
+
data = data.tolist()
|
123 |
+
_h = len(data)
|
124 |
+
|
125 |
+
# fill out any short lines
|
126 |
+
pad = kwarg.get('pad', None)
|
127 |
+
ok_None = False
|
128 |
+
if pad is None:
|
129 |
+
pad = " "
|
130 |
+
ok_None = True
|
131 |
+
pad = Symbol(pad)
|
132 |
+
_w = max(len(line) for line in data)
|
133 |
+
for i, line in enumerate(data):
|
134 |
+
if len(line) != _w:
|
135 |
+
line.extend([pad]*(_w - len(line)))
|
136 |
+
for j, lj in enumerate(line):
|
137 |
+
if lj is None:
|
138 |
+
if not ok_None:
|
139 |
+
lj = pad
|
140 |
+
else:
|
141 |
+
try:
|
142 |
+
lj = S(lj)
|
143 |
+
except SympifyError:
|
144 |
+
lj = Symbol(str(lj))
|
145 |
+
line[j] = lj
|
146 |
+
data[i] = line
|
147 |
+
_lines = Tuple(*[Tuple(*d) for d in data])
|
148 |
+
|
149 |
+
headings = kwarg.get("headings", [None, None])
|
150 |
+
if headings == "automatic":
|
151 |
+
_headings = [range(1, _h + 1), range(1, _w + 1)]
|
152 |
+
else:
|
153 |
+
h1, h2 = headings
|
154 |
+
if h1 == "automatic":
|
155 |
+
h1 = range(1, _h + 1)
|
156 |
+
if h2 == "automatic":
|
157 |
+
h2 = range(1, _w + 1)
|
158 |
+
_headings = [h1, h2]
|
159 |
+
|
160 |
+
allow = ('l', 'r', 'c')
|
161 |
+
alignments = kwarg.get("alignments", "l")
|
162 |
+
|
163 |
+
def _std_align(a):
|
164 |
+
a = a.strip().lower()
|
165 |
+
if len(a) > 1:
|
166 |
+
return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a)
|
167 |
+
else:
|
168 |
+
return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a)
|
169 |
+
std_align = _std_align(alignments)
|
170 |
+
if std_align in allow:
|
171 |
+
_alignments = [std_align]*_w
|
172 |
+
else:
|
173 |
+
_alignments = []
|
174 |
+
for a in alignments:
|
175 |
+
std_align = _std_align(a)
|
176 |
+
_alignments.append(std_align)
|
177 |
+
if std_align not in ('l', 'r', 'c'):
|
178 |
+
raise ValueError('alignment "%s" unrecognized' %
|
179 |
+
alignments)
|
180 |
+
if _headings[0] and len(_alignments) == _w + 1:
|
181 |
+
_head_align = _alignments[0]
|
182 |
+
_alignments = _alignments[1:]
|
183 |
+
else:
|
184 |
+
_head_align = 'r'
|
185 |
+
if len(_alignments) != _w:
|
186 |
+
raise ValueError(
|
187 |
+
'wrong number of alignments: expected %s but got %s' %
|
188 |
+
(_w, len(_alignments)))
|
189 |
+
|
190 |
+
_column_formats = kwarg.get("formats", [None]*_w)
|
191 |
+
|
192 |
+
_wipe_zeros = kwarg.get("wipe_zeros", True)
|
193 |
+
|
194 |
+
self._w = _w
|
195 |
+
self._h = _h
|
196 |
+
self._lines = _lines
|
197 |
+
self._headings = _headings
|
198 |
+
self._head_align = _head_align
|
199 |
+
self._alignments = _alignments
|
200 |
+
self._column_formats = _column_formats
|
201 |
+
self._wipe_zeros = _wipe_zeros
|
202 |
+
|
203 |
+
def __repr__(self):
|
204 |
+
from .str import sstr
|
205 |
+
return sstr(self, order=None)
|
206 |
+
|
207 |
+
def __str__(self):
|
208 |
+
from .str import sstr
|
209 |
+
return sstr(self, order=None)
|
210 |
+
|
211 |
+
def as_matrix(self):
|
212 |
+
"""Returns the data of the table in Matrix form.
|
213 |
+
|
214 |
+
Examples
|
215 |
+
========
|
216 |
+
|
217 |
+
>>> from sympy import TableForm
|
218 |
+
>>> t = TableForm([[5, 7], [4, 2], [10, 3]], headings='automatic')
|
219 |
+
>>> t
|
220 |
+
| 1 2
|
221 |
+
--------
|
222 |
+
1 | 5 7
|
223 |
+
2 | 4 2
|
224 |
+
3 | 10 3
|
225 |
+
>>> t.as_matrix()
|
226 |
+
Matrix([
|
227 |
+
[ 5, 7],
|
228 |
+
[ 4, 2],
|
229 |
+
[10, 3]])
|
230 |
+
"""
|
231 |
+
from sympy.matrices.dense import Matrix
|
232 |
+
return Matrix(self._lines)
|
233 |
+
|
234 |
+
def as_str(self):
|
235 |
+
# XXX obsolete ?
|
236 |
+
return str(self)
|
237 |
+
|
238 |
+
def as_latex(self):
|
239 |
+
from .latex import latex
|
240 |
+
return latex(self)
|
241 |
+
|
242 |
+
def _sympystr(self, p):
|
243 |
+
"""
|
244 |
+
Returns the string representation of 'self'.
|
245 |
+
|
246 |
+
Examples
|
247 |
+
========
|
248 |
+
|
249 |
+
>>> from sympy import TableForm
|
250 |
+
>>> t = TableForm([[5, 7], [4, 2], [10, 3]])
|
251 |
+
>>> s = t.as_str()
|
252 |
+
|
253 |
+
"""
|
254 |
+
column_widths = [0] * self._w
|
255 |
+
lines = []
|
256 |
+
for line in self._lines:
|
257 |
+
new_line = []
|
258 |
+
for i in range(self._w):
|
259 |
+
# Format the item somehow if needed:
|
260 |
+
s = str(line[i])
|
261 |
+
if self._wipe_zeros and (s == "0"):
|
262 |
+
s = " "
|
263 |
+
w = len(s)
|
264 |
+
if w > column_widths[i]:
|
265 |
+
column_widths[i] = w
|
266 |
+
new_line.append(s)
|
267 |
+
lines.append(new_line)
|
268 |
+
|
269 |
+
# Check heading:
|
270 |
+
if self._headings[0]:
|
271 |
+
self._headings[0] = [str(x) for x in self._headings[0]]
|
272 |
+
_head_width = max([len(x) for x in self._headings[0]])
|
273 |
+
|
274 |
+
if self._headings[1]:
|
275 |
+
new_line = []
|
276 |
+
for i in range(self._w):
|
277 |
+
# Format the item somehow if needed:
|
278 |
+
s = str(self._headings[1][i])
|
279 |
+
w = len(s)
|
280 |
+
if w > column_widths[i]:
|
281 |
+
column_widths[i] = w
|
282 |
+
new_line.append(s)
|
283 |
+
self._headings[1] = new_line
|
284 |
+
|
285 |
+
format_str = []
|
286 |
+
|
287 |
+
def _align(align, w):
|
288 |
+
return '%%%s%ss' % (
|
289 |
+
("-" if align == "l" else ""),
|
290 |
+
str(w))
|
291 |
+
format_str = [_align(align, w) for align, w in
|
292 |
+
zip(self._alignments, column_widths)]
|
293 |
+
if self._headings[0]:
|
294 |
+
format_str.insert(0, _align(self._head_align, _head_width))
|
295 |
+
format_str.insert(1, '|')
|
296 |
+
format_str = ' '.join(format_str) + '\n'
|
297 |
+
|
298 |
+
s = []
|
299 |
+
if self._headings[1]:
|
300 |
+
d = self._headings[1]
|
301 |
+
if self._headings[0]:
|
302 |
+
d = [""] + d
|
303 |
+
first_line = format_str % tuple(d)
|
304 |
+
s.append(first_line)
|
305 |
+
s.append("-" * (len(first_line) - 1) + "\n")
|
306 |
+
for i, line in enumerate(lines):
|
307 |
+
d = [l if self._alignments[j] != 'c' else
|
308 |
+
l.center(column_widths[j]) for j, l in enumerate(line)]
|
309 |
+
if self._headings[0]:
|
310 |
+
l = self._headings[0][i]
|
311 |
+
l = (l if self._head_align != 'c' else
|
312 |
+
l.center(_head_width))
|
313 |
+
d = [l] + d
|
314 |
+
s.append(format_str % tuple(d))
|
315 |
+
return ''.join(s)[:-1] # don't include trailing newline
|
316 |
+
|
317 |
+
def _latex(self, printer):
|
318 |
+
"""
|
319 |
+
Returns the string representation of 'self'.
|
320 |
+
"""
|
321 |
+
# Check heading:
|
322 |
+
if self._headings[1]:
|
323 |
+
new_line = []
|
324 |
+
for i in range(self._w):
|
325 |
+
# Format the item somehow if needed:
|
326 |
+
new_line.append(str(self._headings[1][i]))
|
327 |
+
self._headings[1] = new_line
|
328 |
+
|
329 |
+
alignments = []
|
330 |
+
if self._headings[0]:
|
331 |
+
self._headings[0] = [str(x) for x in self._headings[0]]
|
332 |
+
alignments = [self._head_align]
|
333 |
+
alignments.extend(self._alignments)
|
334 |
+
|
335 |
+
s = r"\begin{tabular}{" + " ".join(alignments) + "}\n"
|
336 |
+
|
337 |
+
if self._headings[1]:
|
338 |
+
d = self._headings[1]
|
339 |
+
if self._headings[0]:
|
340 |
+
d = [""] + d
|
341 |
+
first_line = " & ".join(d) + r" \\" + "\n"
|
342 |
+
s += first_line
|
343 |
+
s += r"\hline" + "\n"
|
344 |
+
for i, line in enumerate(self._lines):
|
345 |
+
d = []
|
346 |
+
for j, x in enumerate(line):
|
347 |
+
if self._wipe_zeros and (x in (0, "0")):
|
348 |
+
d.append(" ")
|
349 |
+
continue
|
350 |
+
f = self._column_formats[j]
|
351 |
+
if f:
|
352 |
+
if isinstance(f, FunctionType):
|
353 |
+
v = f(x, i, j)
|
354 |
+
if v is None:
|
355 |
+
v = printer._print(x)
|
356 |
+
else:
|
357 |
+
v = f % x
|
358 |
+
d.append(v)
|
359 |
+
else:
|
360 |
+
v = printer._print(x)
|
361 |
+
d.append("$%s$" % v)
|
362 |
+
if self._headings[0]:
|
363 |
+
d = [self._headings[0][i]] + d
|
364 |
+
s += " & ".join(d) + r" \\" + "\n"
|
365 |
+
s += r"\end{tabular}"
|
366 |
+
return s
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tensorflow.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.external.importtools import version_tuple
|
2 |
+
from collections.abc import Iterable
|
3 |
+
|
4 |
+
from sympy.core.mul import Mul
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.codegen.cfunctions import Sqrt
|
7 |
+
from sympy.external import import_module
|
8 |
+
from sympy.printing.precedence import PRECEDENCE
|
9 |
+
from sympy.printing.pycode import AbstractPythonCodePrinter, ArrayPrinter
|
10 |
+
import sympy
|
11 |
+
|
12 |
+
tensorflow = import_module('tensorflow')
|
13 |
+
|
14 |
+
class TensorflowPrinter(ArrayPrinter, AbstractPythonCodePrinter):
|
15 |
+
"""
|
16 |
+
Tensorflow printer which handles vectorized piecewise functions,
|
17 |
+
logical operators, max/min, and relational operators.
|
18 |
+
"""
|
19 |
+
printmethod = "_tensorflowcode"
|
20 |
+
|
21 |
+
mapping = {
|
22 |
+
sympy.Abs: "tensorflow.math.abs",
|
23 |
+
sympy.sign: "tensorflow.math.sign",
|
24 |
+
|
25 |
+
# XXX May raise error for ints.
|
26 |
+
sympy.ceiling: "tensorflow.math.ceil",
|
27 |
+
sympy.floor: "tensorflow.math.floor",
|
28 |
+
sympy.log: "tensorflow.math.log",
|
29 |
+
sympy.exp: "tensorflow.math.exp",
|
30 |
+
Sqrt: "tensorflow.math.sqrt",
|
31 |
+
sympy.cos: "tensorflow.math.cos",
|
32 |
+
sympy.acos: "tensorflow.math.acos",
|
33 |
+
sympy.sin: "tensorflow.math.sin",
|
34 |
+
sympy.asin: "tensorflow.math.asin",
|
35 |
+
sympy.tan: "tensorflow.math.tan",
|
36 |
+
sympy.atan: "tensorflow.math.atan",
|
37 |
+
sympy.atan2: "tensorflow.math.atan2",
|
38 |
+
# XXX Also may give NaN for complex results.
|
39 |
+
sympy.cosh: "tensorflow.math.cosh",
|
40 |
+
sympy.acosh: "tensorflow.math.acosh",
|
41 |
+
sympy.sinh: "tensorflow.math.sinh",
|
42 |
+
sympy.asinh: "tensorflow.math.asinh",
|
43 |
+
sympy.tanh: "tensorflow.math.tanh",
|
44 |
+
sympy.atanh: "tensorflow.math.atanh",
|
45 |
+
|
46 |
+
sympy.re: "tensorflow.math.real",
|
47 |
+
sympy.im: "tensorflow.math.imag",
|
48 |
+
sympy.arg: "tensorflow.math.angle",
|
49 |
+
|
50 |
+
# XXX May raise error for ints and complexes
|
51 |
+
sympy.erf: "tensorflow.math.erf",
|
52 |
+
sympy.loggamma: "tensorflow.math.lgamma",
|
53 |
+
|
54 |
+
sympy.Eq: "tensorflow.math.equal",
|
55 |
+
sympy.Ne: "tensorflow.math.not_equal",
|
56 |
+
sympy.StrictGreaterThan: "tensorflow.math.greater",
|
57 |
+
sympy.StrictLessThan: "tensorflow.math.less",
|
58 |
+
sympy.LessThan: "tensorflow.math.less_equal",
|
59 |
+
sympy.GreaterThan: "tensorflow.math.greater_equal",
|
60 |
+
|
61 |
+
sympy.And: "tensorflow.math.logical_and",
|
62 |
+
sympy.Or: "tensorflow.math.logical_or",
|
63 |
+
sympy.Not: "tensorflow.math.logical_not",
|
64 |
+
sympy.Max: "tensorflow.math.maximum",
|
65 |
+
sympy.Min: "tensorflow.math.minimum",
|
66 |
+
|
67 |
+
# Matrices
|
68 |
+
sympy.MatAdd: "tensorflow.math.add",
|
69 |
+
sympy.HadamardProduct: "tensorflow.math.multiply",
|
70 |
+
sympy.Trace: "tensorflow.linalg.trace",
|
71 |
+
|
72 |
+
# XXX May raise error for integer matrices.
|
73 |
+
sympy.Determinant : "tensorflow.linalg.det",
|
74 |
+
}
|
75 |
+
|
76 |
+
_default_settings = dict(
|
77 |
+
AbstractPythonCodePrinter._default_settings,
|
78 |
+
tensorflow_version=None
|
79 |
+
)
|
80 |
+
|
81 |
+
def __init__(self, settings=None):
|
82 |
+
super().__init__(settings)
|
83 |
+
|
84 |
+
version = self._settings['tensorflow_version']
|
85 |
+
if version is None and tensorflow:
|
86 |
+
version = tensorflow.__version__
|
87 |
+
self.tensorflow_version = version
|
88 |
+
|
89 |
+
def _print_Function(self, expr):
|
90 |
+
op = self.mapping.get(type(expr), None)
|
91 |
+
if op is None:
|
92 |
+
return super()._print_Basic(expr)
|
93 |
+
children = [self._print(arg) for arg in expr.args]
|
94 |
+
if len(children) == 1:
|
95 |
+
return "%s(%s)" % (
|
96 |
+
self._module_format(op),
|
97 |
+
children[0]
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
return self._expand_fold_binary_op(op, children)
|
101 |
+
|
102 |
+
_print_Expr = _print_Function
|
103 |
+
_print_Application = _print_Function
|
104 |
+
_print_MatrixExpr = _print_Function
|
105 |
+
# TODO: a better class structure would avoid this mess:
|
106 |
+
_print_Relational = _print_Function
|
107 |
+
_print_Not = _print_Function
|
108 |
+
_print_And = _print_Function
|
109 |
+
_print_Or = _print_Function
|
110 |
+
_print_HadamardProduct = _print_Function
|
111 |
+
_print_Trace = _print_Function
|
112 |
+
_print_Determinant = _print_Function
|
113 |
+
|
114 |
+
def _print_Inverse(self, expr):
|
115 |
+
op = self._module_format('tensorflow.linalg.inv')
|
116 |
+
return "{}({})".format(op, self._print(expr.arg))
|
117 |
+
|
118 |
+
def _print_Transpose(self, expr):
|
119 |
+
version = self.tensorflow_version
|
120 |
+
if version and version_tuple(version) < version_tuple('1.14'):
|
121 |
+
op = self._module_format('tensorflow.matrix_transpose')
|
122 |
+
else:
|
123 |
+
op = self._module_format('tensorflow.linalg.matrix_transpose')
|
124 |
+
return "{}({})".format(op, self._print(expr.arg))
|
125 |
+
|
126 |
+
def _print_Derivative(self, expr):
|
127 |
+
variables = expr.variables
|
128 |
+
if any(isinstance(i, Iterable) for i in variables):
|
129 |
+
raise NotImplementedError("derivation by multiple variables is not supported")
|
130 |
+
def unfold(expr, args):
|
131 |
+
if not args:
|
132 |
+
return self._print(expr)
|
133 |
+
return "%s(%s, %s)[0]" % (
|
134 |
+
self._module_format("tensorflow.gradients"),
|
135 |
+
unfold(expr, args[:-1]),
|
136 |
+
self._print(args[-1]),
|
137 |
+
)
|
138 |
+
return unfold(expr.expr, variables)
|
139 |
+
|
140 |
+
def _print_Piecewise(self, expr):
|
141 |
+
version = self.tensorflow_version
|
142 |
+
if version and version_tuple(version) < version_tuple('1.0'):
|
143 |
+
tensorflow_piecewise = "tensorflow.select"
|
144 |
+
else:
|
145 |
+
tensorflow_piecewise = "tensorflow.where"
|
146 |
+
|
147 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
148 |
+
e, cond = expr.args[0].args
|
149 |
+
if len(expr.args) == 1:
|
150 |
+
return '{}({}, {}, {})'.format(
|
151 |
+
self._module_format(tensorflow_piecewise),
|
152 |
+
self._print(cond),
|
153 |
+
self._print(e),
|
154 |
+
0)
|
155 |
+
|
156 |
+
return '{}({}, {}, {})'.format(
|
157 |
+
self._module_format(tensorflow_piecewise),
|
158 |
+
self._print(cond),
|
159 |
+
self._print(e),
|
160 |
+
self._print(Piecewise(*expr.args[1:])))
|
161 |
+
|
162 |
+
def _print_Pow(self, expr):
|
163 |
+
# XXX May raise error for
|
164 |
+
# int**float or int**complex or float**complex
|
165 |
+
base, exp = expr.args
|
166 |
+
if expr.exp == S.Half:
|
167 |
+
return "{}({})".format(
|
168 |
+
self._module_format("tensorflow.math.sqrt"), self._print(base))
|
169 |
+
return "{}({}, {})".format(
|
170 |
+
self._module_format("tensorflow.math.pow"),
|
171 |
+
self._print(base), self._print(exp))
|
172 |
+
|
173 |
+
def _print_MatrixBase(self, expr):
|
174 |
+
tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant"
|
175 |
+
data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]"
|
176 |
+
return "%s(%s)" % (
|
177 |
+
self._module_format(tensorflow_f),
|
178 |
+
data,
|
179 |
+
)
|
180 |
+
|
181 |
+
def _print_MatMul(self, expr):
|
182 |
+
from sympy.matrices.expressions import MatrixExpr
|
183 |
+
mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)]
|
184 |
+
args = [arg for arg in expr.args if arg not in mat_args]
|
185 |
+
if args:
|
186 |
+
return "%s*%s" % (
|
187 |
+
self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]),
|
188 |
+
self._expand_fold_binary_op(
|
189 |
+
"tensorflow.linalg.matmul", mat_args)
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
return self._expand_fold_binary_op(
|
193 |
+
"tensorflow.linalg.matmul", mat_args)
|
194 |
+
|
195 |
+
def _print_MatPow(self, expr):
|
196 |
+
return self._expand_fold_binary_op(
|
197 |
+
"tensorflow.linalg.matmul", [expr.base]*expr.exp)
|
198 |
+
|
199 |
+
def _print_CodeBlock(self, expr):
|
200 |
+
# TODO: is this necessary?
|
201 |
+
ret = []
|
202 |
+
for subexpr in expr.args:
|
203 |
+
ret.append(self._print(subexpr))
|
204 |
+
return "\n".join(ret)
|
205 |
+
|
206 |
+
_module = "tensorflow"
|
207 |
+
_einsum = "linalg.einsum"
|
208 |
+
_add = "math.add"
|
209 |
+
_transpose = "transpose"
|
210 |
+
_ones = "ones"
|
211 |
+
_zeros = "zeros"
|
212 |
+
|
213 |
+
|
214 |
+
def tensorflow_code(expr, **settings):
|
215 |
+
printer = TensorflowPrinter(settings)
|
216 |
+
return printer.doprint(expr)
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/autowrap.cpython-310.pyc
ADDED
Binary file (36.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/decorator.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/lambdify.cpython-310.pyc
ADDED
Binary file (48.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/magic.cpython-310.pyc
ADDED
Binary file (551 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/misc.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/pytest.cpython-310.pyc
ADDED
Binary file (607 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/runtests.cpython-310.pyc
ADDED
Binary file (619 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" This sub-module is private, i.e. external code should not depend on it.
|
2 |
+
|
3 |
+
These functions are used by tests run as part of continuous integration.
|
4 |
+
Once the implementation is mature (it should support the major
|
5 |
+
platforms: Windows, OS X & Linux) it may become official API which
|
6 |
+
may be relied upon by downstream libraries. Until then API may break
|
7 |
+
without prior notice.
|
8 |
+
|
9 |
+
TODO:
|
10 |
+
- (optionally) clean up after tempfile.mkdtemp()
|
11 |
+
- cross-platform testing
|
12 |
+
- caching of compiler choice and intermediate files
|
13 |
+
|
14 |
+
"""
|
15 |
+
|
16 |
+
from .compilation import compile_link_import_strings, compile_run_strings
|
17 |
+
from .availability import has_fortran, has_c, has_cxx
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
'compile_link_import_strings', 'compile_run_strings',
|
21 |
+
'has_fortran', 'has_c', 'has_cxx',
|
22 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (937 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/availability.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/compilation.cpython-310.pyc
ADDED
Binary file (16.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/runners.cpython-310.pyc
ADDED
Binary file (7.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/__pycache__/util.cpython-310.pyc
ADDED
Binary file (7.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/availability.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .compilation import compile_run_strings
|
3 |
+
from .util import CompilerNotFoundError
|
4 |
+
|
5 |
+
def has_fortran():
|
6 |
+
if not hasattr(has_fortran, 'result'):
|
7 |
+
try:
|
8 |
+
(stdout, stderr), info = compile_run_strings(
|
9 |
+
[('main.f90', (
|
10 |
+
'program foo\n'
|
11 |
+
'print *, "hello world"\n'
|
12 |
+
'end program'
|
13 |
+
))], clean=True
|
14 |
+
)
|
15 |
+
except CompilerNotFoundError:
|
16 |
+
has_fortran.result = False
|
17 |
+
if os.environ.get('SYMPY_STRICT_COMPILER_CHECKS', '0') == '1':
|
18 |
+
raise
|
19 |
+
else:
|
20 |
+
if info['exit_status'] != os.EX_OK or 'hello world' not in stdout:
|
21 |
+
if os.environ.get('SYMPY_STRICT_COMPILER_CHECKS', '0') == '1':
|
22 |
+
raise ValueError("Failed to compile test program:\n%s\n%s\n" % (stdout, stderr))
|
23 |
+
has_fortran.result = False
|
24 |
+
else:
|
25 |
+
has_fortran.result = True
|
26 |
+
return has_fortran.result
|
27 |
+
|
28 |
+
|
29 |
+
def has_c():
|
30 |
+
if not hasattr(has_c, 'result'):
|
31 |
+
try:
|
32 |
+
(stdout, stderr), info = compile_run_strings(
|
33 |
+
[('main.c', (
|
34 |
+
'#include <stdio.h>\n'
|
35 |
+
'int main(){\n'
|
36 |
+
'printf("hello world\\n");\n'
|
37 |
+
'return 0;\n'
|
38 |
+
'}'
|
39 |
+
))], clean=True
|
40 |
+
)
|
41 |
+
except CompilerNotFoundError:
|
42 |
+
has_c.result = False
|
43 |
+
if os.environ.get('SYMPY_STRICT_COMPILER_CHECKS', '0') == '1':
|
44 |
+
raise
|
45 |
+
else:
|
46 |
+
if info['exit_status'] != os.EX_OK or 'hello world' not in stdout:
|
47 |
+
if os.environ.get('SYMPY_STRICT_COMPILER_CHECKS', '0') == '1':
|
48 |
+
raise ValueError("Failed to compile test program:\n%s\n%s\n" % (stdout, stderr))
|
49 |
+
has_c.result = False
|
50 |
+
else:
|
51 |
+
has_c.result = True
|
52 |
+
return has_c.result
|
53 |
+
|
54 |
+
|
55 |
+
def has_cxx():
|
56 |
+
if not hasattr(has_cxx, 'result'):
|
57 |
+
try:
|
58 |
+
(stdout, stderr), info = compile_run_strings(
|
59 |
+
[('main.cxx', (
|
60 |
+
'#include <iostream>\n'
|
61 |
+
'int main(){\n'
|
62 |
+
'std::cout << "hello world" << std::endl;\n'
|
63 |
+
'}'
|
64 |
+
))], clean=True
|
65 |
+
)
|
66 |
+
except CompilerNotFoundError:
|
67 |
+
has_cxx.result = False
|
68 |
+
if os.environ.get('SYMPY_STRICT_COMPILER_CHECKS', '0') == '1':
|
69 |
+
raise
|
70 |
+
else:
|
71 |
+
if info['exit_status'] != os.EX_OK or 'hello world' not in stdout:
|
72 |
+
if os.environ.get('SYMPY_STRICT_COMPILER_CHECKS', '0') == '1':
|
73 |
+
raise ValueError("Failed to compile test program:\n%s\n%s\n" % (stdout, stderr))
|
74 |
+
has_cxx.result = False
|
75 |
+
else:
|
76 |
+
has_cxx.result = True
|
77 |
+
return has_cxx.result
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/compilation.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import subprocess
|
5 |
+
import sys
|
6 |
+
import tempfile
|
7 |
+
import warnings
|
8 |
+
from sysconfig import get_config_var, get_config_vars, get_path
|
9 |
+
|
10 |
+
from .runners import (
|
11 |
+
CCompilerRunner,
|
12 |
+
CppCompilerRunner,
|
13 |
+
FortranCompilerRunner
|
14 |
+
)
|
15 |
+
from .util import (
|
16 |
+
get_abspath, make_dirs, copy, Glob, ArbitraryDepthGlob,
|
17 |
+
glob_at_depth, import_module_from_file, pyx_is_cplus,
|
18 |
+
sha256_of_string, sha256_of_file, CompileError
|
19 |
+
)
|
20 |
+
|
21 |
+
if os.name == 'posix':
|
22 |
+
objext = '.o'
|
23 |
+
elif os.name == 'nt':
|
24 |
+
objext = '.obj'
|
25 |
+
else:
|
26 |
+
warnings.warn("Unknown os.name: {}".format(os.name))
|
27 |
+
objext = '.o'
|
28 |
+
|
29 |
+
|
30 |
+
def compile_sources(files, Runner=None, destdir=None, cwd=None, keep_dir_struct=False,
|
31 |
+
per_file_kwargs=None, **kwargs):
|
32 |
+
""" Compile source code files to object files.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
==========
|
36 |
+
|
37 |
+
files : iterable of str
|
38 |
+
Paths to source files, if ``cwd`` is given, the paths are taken as relative.
|
39 |
+
Runner: CompilerRunner subclass (optional)
|
40 |
+
Could be e.g. ``FortranCompilerRunner``. Will be inferred from filename
|
41 |
+
extensions if missing.
|
42 |
+
destdir: str
|
43 |
+
Output directory, if cwd is given, the path is taken as relative.
|
44 |
+
cwd: str
|
45 |
+
Working directory. Specify to have compiler run in other directory.
|
46 |
+
also used as root of relative paths.
|
47 |
+
keep_dir_struct: bool
|
48 |
+
Reproduce directory structure in `destdir`. default: ``False``
|
49 |
+
per_file_kwargs: dict
|
50 |
+
Dict mapping instances in ``files`` to keyword arguments.
|
51 |
+
\\*\\*kwargs: dict
|
52 |
+
Default keyword arguments to pass to ``Runner``.
|
53 |
+
|
54 |
+
"""
|
55 |
+
_per_file_kwargs = {}
|
56 |
+
|
57 |
+
if per_file_kwargs is not None:
|
58 |
+
for k, v in per_file_kwargs.items():
|
59 |
+
if isinstance(k, Glob):
|
60 |
+
for path in glob.glob(k.pathname):
|
61 |
+
_per_file_kwargs[path] = v
|
62 |
+
elif isinstance(k, ArbitraryDepthGlob):
|
63 |
+
for path in glob_at_depth(k.filename, cwd):
|
64 |
+
_per_file_kwargs[path] = v
|
65 |
+
else:
|
66 |
+
_per_file_kwargs[k] = v
|
67 |
+
|
68 |
+
# Set up destination directory
|
69 |
+
destdir = destdir or '.'
|
70 |
+
if not os.path.isdir(destdir):
|
71 |
+
if os.path.exists(destdir):
|
72 |
+
raise OSError("{} is not a directory".format(destdir))
|
73 |
+
else:
|
74 |
+
make_dirs(destdir)
|
75 |
+
if cwd is None:
|
76 |
+
cwd = '.'
|
77 |
+
for f in files:
|
78 |
+
copy(f, destdir, only_update=True, dest_is_dir=True)
|
79 |
+
|
80 |
+
# Compile files and return list of paths to the objects
|
81 |
+
dstpaths = []
|
82 |
+
for f in files:
|
83 |
+
if keep_dir_struct:
|
84 |
+
name, ext = os.path.splitext(f)
|
85 |
+
else:
|
86 |
+
name, ext = os.path.splitext(os.path.basename(f))
|
87 |
+
file_kwargs = kwargs.copy()
|
88 |
+
file_kwargs.update(_per_file_kwargs.get(f, {}))
|
89 |
+
dstpaths.append(src2obj(f, Runner, cwd=cwd, **file_kwargs))
|
90 |
+
return dstpaths
|
91 |
+
|
92 |
+
|
93 |
+
def get_mixed_fort_c_linker(vendor=None, cplus=False, cwd=None):
|
94 |
+
vendor = vendor or os.environ.get('SYMPY_COMPILER_VENDOR', 'gnu')
|
95 |
+
|
96 |
+
if vendor.lower() == 'intel':
|
97 |
+
if cplus:
|
98 |
+
return (FortranCompilerRunner,
|
99 |
+
{'flags': ['-nofor_main', '-cxxlib']}, vendor)
|
100 |
+
else:
|
101 |
+
return (FortranCompilerRunner,
|
102 |
+
{'flags': ['-nofor_main']}, vendor)
|
103 |
+
elif vendor.lower() == 'gnu' or 'llvm':
|
104 |
+
if cplus:
|
105 |
+
return (CppCompilerRunner,
|
106 |
+
{'lib_options': ['fortran']}, vendor)
|
107 |
+
else:
|
108 |
+
return (FortranCompilerRunner,
|
109 |
+
{}, vendor)
|
110 |
+
else:
|
111 |
+
raise ValueError("No vendor found.")
|
112 |
+
|
113 |
+
|
114 |
+
def link(obj_files, out_file=None, shared=False, Runner=None,
|
115 |
+
cwd=None, cplus=False, fort=False, **kwargs):
|
116 |
+
""" Link object files.
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
==========
|
120 |
+
|
121 |
+
obj_files: iterable of str
|
122 |
+
Paths to object files.
|
123 |
+
out_file: str (optional)
|
124 |
+
Path to executable/shared library, if ``None`` it will be
|
125 |
+
deduced from the last item in obj_files.
|
126 |
+
shared: bool
|
127 |
+
Generate a shared library?
|
128 |
+
Runner: CompilerRunner subclass (optional)
|
129 |
+
If not given the ``cplus`` and ``fort`` flags will be inspected
|
130 |
+
(fallback is the C compiler).
|
131 |
+
cwd: str
|
132 |
+
Path to the root of relative paths and working directory for compiler.
|
133 |
+
cplus: bool
|
134 |
+
C++ objects? default: ``False``.
|
135 |
+
fort: bool
|
136 |
+
Fortran objects? default: ``False``.
|
137 |
+
\\*\\*kwargs: dict
|
138 |
+
Keyword arguments passed to ``Runner``.
|
139 |
+
|
140 |
+
Returns
|
141 |
+
=======
|
142 |
+
|
143 |
+
The absolute path to the generated shared object / executable.
|
144 |
+
|
145 |
+
"""
|
146 |
+
if out_file is None:
|
147 |
+
out_file, ext = os.path.splitext(os.path.basename(obj_files[-1]))
|
148 |
+
if shared:
|
149 |
+
out_file += get_config_var('EXT_SUFFIX')
|
150 |
+
|
151 |
+
if not Runner:
|
152 |
+
if fort:
|
153 |
+
Runner, extra_kwargs, vendor = \
|
154 |
+
get_mixed_fort_c_linker(
|
155 |
+
vendor=kwargs.get('vendor', None),
|
156 |
+
cplus=cplus,
|
157 |
+
cwd=cwd,
|
158 |
+
)
|
159 |
+
for k, v in extra_kwargs.items():
|
160 |
+
if k in kwargs:
|
161 |
+
kwargs[k].expand(v)
|
162 |
+
else:
|
163 |
+
kwargs[k] = v
|
164 |
+
else:
|
165 |
+
if cplus:
|
166 |
+
Runner = CppCompilerRunner
|
167 |
+
else:
|
168 |
+
Runner = CCompilerRunner
|
169 |
+
|
170 |
+
flags = kwargs.pop('flags', [])
|
171 |
+
if shared:
|
172 |
+
if '-shared' not in flags:
|
173 |
+
flags.append('-shared')
|
174 |
+
run_linker = kwargs.pop('run_linker', True)
|
175 |
+
if not run_linker:
|
176 |
+
raise ValueError("run_linker was set to False (nonsensical).")
|
177 |
+
|
178 |
+
out_file = get_abspath(out_file, cwd=cwd)
|
179 |
+
runner = Runner(obj_files, out_file, flags, cwd=cwd, **kwargs)
|
180 |
+
runner.run()
|
181 |
+
return out_file
|
182 |
+
|
183 |
+
|
184 |
+
def link_py_so(obj_files, so_file=None, cwd=None, libraries=None,
|
185 |
+
cplus=False, fort=False, **kwargs):
|
186 |
+
""" Link Python extension module (shared object) for importing
|
187 |
+
|
188 |
+
Parameters
|
189 |
+
==========
|
190 |
+
|
191 |
+
obj_files: iterable of str
|
192 |
+
Paths to object files to be linked.
|
193 |
+
so_file: str
|
194 |
+
Name (path) of shared object file to create. If not specified it will
|
195 |
+
have the basname of the last object file in `obj_files` but with the
|
196 |
+
extension '.so' (Unix).
|
197 |
+
cwd: path string
|
198 |
+
Root of relative paths and working directory of linker.
|
199 |
+
libraries: iterable of strings
|
200 |
+
Libraries to link against, e.g. ['m'].
|
201 |
+
cplus: bool
|
202 |
+
Any C++ objects? default: ``False``.
|
203 |
+
fort: bool
|
204 |
+
Any Fortran objects? default: ``False``.
|
205 |
+
kwargs**: dict
|
206 |
+
Keyword arguments passed to ``link(...)``.
|
207 |
+
|
208 |
+
Returns
|
209 |
+
=======
|
210 |
+
|
211 |
+
Absolute path to the generate shared object.
|
212 |
+
"""
|
213 |
+
libraries = libraries or []
|
214 |
+
|
215 |
+
include_dirs = kwargs.pop('include_dirs', [])
|
216 |
+
library_dirs = kwargs.pop('library_dirs', [])
|
217 |
+
|
218 |
+
# Add Python include and library directories
|
219 |
+
# PY_LDFLAGS does not available on all python implementations
|
220 |
+
# e.g. when with pypy, so it's LDFLAGS we need to use
|
221 |
+
if sys.platform == "win32":
|
222 |
+
warnings.warn("Windows not yet supported.")
|
223 |
+
elif sys.platform == 'darwin':
|
224 |
+
cfgDict = get_config_vars()
|
225 |
+
kwargs['linkline'] = kwargs.get('linkline', []) + [cfgDict['LDFLAGS']]
|
226 |
+
library_dirs += [cfgDict['LIBDIR']]
|
227 |
+
|
228 |
+
# In macOS, linker needs to compile frameworks
|
229 |
+
# e.g. "-framework CoreFoundation"
|
230 |
+
is_framework = False
|
231 |
+
for opt in cfgDict['LIBS'].split():
|
232 |
+
if is_framework:
|
233 |
+
kwargs['linkline'] = kwargs.get('linkline', []) + ['-framework', opt]
|
234 |
+
is_framework = False
|
235 |
+
elif opt.startswith('-l'):
|
236 |
+
libraries.append(opt[2:])
|
237 |
+
elif opt.startswith('-framework'):
|
238 |
+
is_framework = True
|
239 |
+
# The python library is not included in LIBS
|
240 |
+
libfile = cfgDict['LIBRARY']
|
241 |
+
libname = ".".join(libfile.split('.')[:-1])[3:]
|
242 |
+
libraries.append(libname)
|
243 |
+
|
244 |
+
elif sys.platform[:3] == 'aix':
|
245 |
+
# Don't use the default code below
|
246 |
+
pass
|
247 |
+
else:
|
248 |
+
if get_config_var('Py_ENABLE_SHARED'):
|
249 |
+
cfgDict = get_config_vars()
|
250 |
+
kwargs['linkline'] = kwargs.get('linkline', []) + [cfgDict['LDFLAGS']]
|
251 |
+
library_dirs += [cfgDict['LIBDIR']]
|
252 |
+
for opt in cfgDict['BLDLIBRARY'].split():
|
253 |
+
if opt.startswith('-l'):
|
254 |
+
libraries += [opt[2:]]
|
255 |
+
else:
|
256 |
+
pass
|
257 |
+
|
258 |
+
flags = kwargs.pop('flags', [])
|
259 |
+
needed_flags = ('-pthread',)
|
260 |
+
for flag in needed_flags:
|
261 |
+
if flag not in flags:
|
262 |
+
flags.append(flag)
|
263 |
+
|
264 |
+
return link(obj_files, shared=True, flags=flags, cwd=cwd,
|
265 |
+
cplus=cplus, fort=fort, include_dirs=include_dirs,
|
266 |
+
libraries=libraries, library_dirs=library_dirs, **kwargs)
|
267 |
+
|
268 |
+
|
269 |
+
def simple_cythonize(src, destdir=None, cwd=None, **cy_kwargs):
|
270 |
+
""" Generates a C file from a Cython source file.
|
271 |
+
|
272 |
+
Parameters
|
273 |
+
==========
|
274 |
+
|
275 |
+
src: str
|
276 |
+
Path to Cython source.
|
277 |
+
destdir: str (optional)
|
278 |
+
Path to output directory (default: '.').
|
279 |
+
cwd: path string (optional)
|
280 |
+
Root of relative paths (default: '.').
|
281 |
+
**cy_kwargs:
|
282 |
+
Second argument passed to cy_compile. Generates a .cpp file if ``cplus=True`` in ``cy_kwargs``,
|
283 |
+
else a .c file.
|
284 |
+
"""
|
285 |
+
from Cython.Compiler.Main import (
|
286 |
+
default_options, CompilationOptions
|
287 |
+
)
|
288 |
+
from Cython.Compiler.Main import compile as cy_compile
|
289 |
+
|
290 |
+
assert src.lower().endswith('.pyx') or src.lower().endswith('.py')
|
291 |
+
cwd = cwd or '.'
|
292 |
+
destdir = destdir or '.'
|
293 |
+
|
294 |
+
ext = '.cpp' if cy_kwargs.get('cplus', False) else '.c'
|
295 |
+
c_name = os.path.splitext(os.path.basename(src))[0] + ext
|
296 |
+
|
297 |
+
dstfile = os.path.join(destdir, c_name)
|
298 |
+
|
299 |
+
if cwd:
|
300 |
+
ori_dir = os.getcwd()
|
301 |
+
else:
|
302 |
+
ori_dir = '.'
|
303 |
+
os.chdir(cwd)
|
304 |
+
try:
|
305 |
+
cy_options = CompilationOptions(default_options)
|
306 |
+
cy_options.__dict__.update(cy_kwargs)
|
307 |
+
# Set language_level if not set by cy_kwargs
|
308 |
+
# as not setting it is deprecated
|
309 |
+
if 'language_level' not in cy_kwargs:
|
310 |
+
cy_options.__dict__['language_level'] = 3
|
311 |
+
cy_result = cy_compile([src], cy_options)
|
312 |
+
if cy_result.num_errors > 0:
|
313 |
+
raise ValueError("Cython compilation failed.")
|
314 |
+
|
315 |
+
# Move generated C file to destination
|
316 |
+
# In macOS, the generated C file is in the same directory as the source
|
317 |
+
# but the /var is a symlink to /private/var, so we need to use realpath
|
318 |
+
if os.path.realpath(os.path.dirname(src)) != os.path.realpath(destdir):
|
319 |
+
if os.path.exists(dstfile):
|
320 |
+
os.unlink(dstfile)
|
321 |
+
shutil.move(os.path.join(os.path.dirname(src), c_name), destdir)
|
322 |
+
finally:
|
323 |
+
os.chdir(ori_dir)
|
324 |
+
return dstfile
|
325 |
+
|
326 |
+
|
327 |
+
extension_mapping = {
|
328 |
+
'.c': (CCompilerRunner, None),
|
329 |
+
'.cpp': (CppCompilerRunner, None),
|
330 |
+
'.cxx': (CppCompilerRunner, None),
|
331 |
+
'.f': (FortranCompilerRunner, None),
|
332 |
+
'.for': (FortranCompilerRunner, None),
|
333 |
+
'.ftn': (FortranCompilerRunner, None),
|
334 |
+
'.f90': (FortranCompilerRunner, None), # ifort only knows about .f90
|
335 |
+
'.f95': (FortranCompilerRunner, 'f95'),
|
336 |
+
'.f03': (FortranCompilerRunner, 'f2003'),
|
337 |
+
'.f08': (FortranCompilerRunner, 'f2008'),
|
338 |
+
}
|
339 |
+
|
340 |
+
|
341 |
+
def src2obj(srcpath, Runner=None, objpath=None, cwd=None, inc_py=False, **kwargs):
|
342 |
+
""" Compiles a source code file to an object file.
|
343 |
+
|
344 |
+
Files ending with '.pyx' assumed to be cython files and
|
345 |
+
are dispatched to pyx2obj.
|
346 |
+
|
347 |
+
Parameters
|
348 |
+
==========
|
349 |
+
|
350 |
+
srcpath: str
|
351 |
+
Path to source file.
|
352 |
+
Runner: CompilerRunner subclass (optional)
|
353 |
+
If ``None``: deduced from extension of srcpath.
|
354 |
+
objpath : str (optional)
|
355 |
+
Path to generated object. If ``None``: deduced from ``srcpath``.
|
356 |
+
cwd: str (optional)
|
357 |
+
Working directory and root of relative paths. If ``None``: current dir.
|
358 |
+
inc_py: bool
|
359 |
+
Add Python include path to kwarg "include_dirs". Default: False
|
360 |
+
\\*\\*kwargs: dict
|
361 |
+
keyword arguments passed to Runner or pyx2obj
|
362 |
+
|
363 |
+
"""
|
364 |
+
name, ext = os.path.splitext(os.path.basename(srcpath))
|
365 |
+
if objpath is None:
|
366 |
+
if os.path.isabs(srcpath):
|
367 |
+
objpath = '.'
|
368 |
+
else:
|
369 |
+
objpath = os.path.dirname(srcpath)
|
370 |
+
objpath = objpath or '.' # avoid objpath == ''
|
371 |
+
|
372 |
+
if os.path.isdir(objpath):
|
373 |
+
objpath = os.path.join(objpath, name + objext)
|
374 |
+
|
375 |
+
include_dirs = kwargs.pop('include_dirs', [])
|
376 |
+
if inc_py:
|
377 |
+
py_inc_dir = get_path('include')
|
378 |
+
if py_inc_dir not in include_dirs:
|
379 |
+
include_dirs.append(py_inc_dir)
|
380 |
+
|
381 |
+
if ext.lower() == '.pyx':
|
382 |
+
return pyx2obj(srcpath, objpath=objpath, include_dirs=include_dirs, cwd=cwd,
|
383 |
+
**kwargs)
|
384 |
+
|
385 |
+
if Runner is None:
|
386 |
+
Runner, std = extension_mapping[ext.lower()]
|
387 |
+
if 'std' not in kwargs:
|
388 |
+
kwargs['std'] = std
|
389 |
+
|
390 |
+
flags = kwargs.pop('flags', [])
|
391 |
+
needed_flags = ('-fPIC',)
|
392 |
+
for flag in needed_flags:
|
393 |
+
if flag not in flags:
|
394 |
+
flags.append(flag)
|
395 |
+
|
396 |
+
# src2obj implies not running the linker...
|
397 |
+
run_linker = kwargs.pop('run_linker', False)
|
398 |
+
if run_linker:
|
399 |
+
raise CompileError("src2obj called with run_linker=True")
|
400 |
+
|
401 |
+
runner = Runner([srcpath], objpath, include_dirs=include_dirs,
|
402 |
+
run_linker=run_linker, cwd=cwd, flags=flags, **kwargs)
|
403 |
+
runner.run()
|
404 |
+
return objpath
|
405 |
+
|
406 |
+
|
407 |
+
def pyx2obj(pyxpath, objpath=None, destdir=None, cwd=None,
|
408 |
+
include_dirs=None, cy_kwargs=None, cplus=None, **kwargs):
|
409 |
+
"""
|
410 |
+
Convenience function
|
411 |
+
|
412 |
+
If cwd is specified, pyxpath and dst are taken to be relative
|
413 |
+
If only_update is set to `True` the modification time is checked
|
414 |
+
and compilation is only run if the source is newer than the
|
415 |
+
destination
|
416 |
+
|
417 |
+
Parameters
|
418 |
+
==========
|
419 |
+
|
420 |
+
pyxpath: str
|
421 |
+
Path to Cython source file.
|
422 |
+
objpath: str (optional)
|
423 |
+
Path to object file to generate.
|
424 |
+
destdir: str (optional)
|
425 |
+
Directory to put generated C file. When ``None``: directory of ``objpath``.
|
426 |
+
cwd: str (optional)
|
427 |
+
Working directory and root of relative paths.
|
428 |
+
include_dirs: iterable of path strings (optional)
|
429 |
+
Passed onto src2obj and via cy_kwargs['include_path']
|
430 |
+
to simple_cythonize.
|
431 |
+
cy_kwargs: dict (optional)
|
432 |
+
Keyword arguments passed onto `simple_cythonize`
|
433 |
+
cplus: bool (optional)
|
434 |
+
Indicate whether C++ is used. default: auto-detect using ``.util.pyx_is_cplus``.
|
435 |
+
compile_kwargs: dict
|
436 |
+
keyword arguments passed onto src2obj
|
437 |
+
|
438 |
+
Returns
|
439 |
+
=======
|
440 |
+
|
441 |
+
Absolute path of generated object file.
|
442 |
+
|
443 |
+
"""
|
444 |
+
assert pyxpath.endswith('.pyx')
|
445 |
+
cwd = cwd or '.'
|
446 |
+
objpath = objpath or '.'
|
447 |
+
destdir = destdir or os.path.dirname(objpath)
|
448 |
+
|
449 |
+
abs_objpath = get_abspath(objpath, cwd=cwd)
|
450 |
+
|
451 |
+
if os.path.isdir(abs_objpath):
|
452 |
+
pyx_fname = os.path.basename(pyxpath)
|
453 |
+
name, ext = os.path.splitext(pyx_fname)
|
454 |
+
objpath = os.path.join(objpath, name + objext)
|
455 |
+
|
456 |
+
cy_kwargs = cy_kwargs or {}
|
457 |
+
cy_kwargs['output_dir'] = cwd
|
458 |
+
if cplus is None:
|
459 |
+
cplus = pyx_is_cplus(pyxpath)
|
460 |
+
cy_kwargs['cplus'] = cplus
|
461 |
+
|
462 |
+
interm_c_file = simple_cythonize(pyxpath, destdir=destdir, cwd=cwd, **cy_kwargs)
|
463 |
+
|
464 |
+
include_dirs = include_dirs or []
|
465 |
+
flags = kwargs.pop('flags', [])
|
466 |
+
needed_flags = ('-fwrapv', '-pthread', '-fPIC')
|
467 |
+
for flag in needed_flags:
|
468 |
+
if flag not in flags:
|
469 |
+
flags.append(flag)
|
470 |
+
|
471 |
+
options = kwargs.pop('options', [])
|
472 |
+
|
473 |
+
if kwargs.pop('strict_aliasing', False):
|
474 |
+
raise CompileError("Cython requires strict aliasing to be disabled.")
|
475 |
+
|
476 |
+
# Let's be explicit about standard
|
477 |
+
if cplus:
|
478 |
+
std = kwargs.pop('std', 'c++98')
|
479 |
+
else:
|
480 |
+
std = kwargs.pop('std', 'c99')
|
481 |
+
|
482 |
+
return src2obj(interm_c_file, objpath=objpath, cwd=cwd,
|
483 |
+
include_dirs=include_dirs, flags=flags, std=std,
|
484 |
+
options=options, inc_py=True, strict_aliasing=False,
|
485 |
+
**kwargs)
|
486 |
+
|
487 |
+
|
488 |
+
def _any_X(srcs, cls):
|
489 |
+
for src in srcs:
|
490 |
+
name, ext = os.path.splitext(src)
|
491 |
+
key = ext.lower()
|
492 |
+
if key in extension_mapping:
|
493 |
+
if extension_mapping[key][0] == cls:
|
494 |
+
return True
|
495 |
+
return False
|
496 |
+
|
497 |
+
|
498 |
+
def any_fortran_src(srcs):
|
499 |
+
return _any_X(srcs, FortranCompilerRunner)
|
500 |
+
|
501 |
+
|
502 |
+
def any_cplus_src(srcs):
|
503 |
+
return _any_X(srcs, CppCompilerRunner)
|
504 |
+
|
505 |
+
|
506 |
+
def compile_link_import_py_ext(sources, extname=None, build_dir='.', compile_kwargs=None,
|
507 |
+
link_kwargs=None):
|
508 |
+
""" Compiles sources to a shared object (Python extension) and imports it
|
509 |
+
|
510 |
+
Sources in ``sources`` which is imported. If shared object is newer than the sources, they
|
511 |
+
are not recompiled but instead it is imported.
|
512 |
+
|
513 |
+
Parameters
|
514 |
+
==========
|
515 |
+
|
516 |
+
sources : string
|
517 |
+
List of paths to sources.
|
518 |
+
extname : string
|
519 |
+
Name of extension (default: ``None``).
|
520 |
+
If ``None``: taken from the last file in ``sources`` without extension.
|
521 |
+
build_dir: str
|
522 |
+
Path to directory in which objects files etc. are generated.
|
523 |
+
compile_kwargs: dict
|
524 |
+
keyword arguments passed to ``compile_sources``
|
525 |
+
link_kwargs: dict
|
526 |
+
keyword arguments passed to ``link_py_so``
|
527 |
+
|
528 |
+
Returns
|
529 |
+
=======
|
530 |
+
|
531 |
+
The imported module from of the Python extension.
|
532 |
+
"""
|
533 |
+
if extname is None:
|
534 |
+
extname = os.path.splitext(os.path.basename(sources[-1]))[0]
|
535 |
+
|
536 |
+
compile_kwargs = compile_kwargs or {}
|
537 |
+
link_kwargs = link_kwargs or {}
|
538 |
+
|
539 |
+
try:
|
540 |
+
mod = import_module_from_file(os.path.join(build_dir, extname), sources)
|
541 |
+
except ImportError:
|
542 |
+
objs = compile_sources(list(map(get_abspath, sources)), destdir=build_dir,
|
543 |
+
cwd=build_dir, **compile_kwargs)
|
544 |
+
so = link_py_so(objs, cwd=build_dir, fort=any_fortran_src(sources),
|
545 |
+
cplus=any_cplus_src(sources), **link_kwargs)
|
546 |
+
mod = import_module_from_file(so)
|
547 |
+
return mod
|
548 |
+
|
549 |
+
|
550 |
+
def _write_sources_to_build_dir(sources, build_dir):
|
551 |
+
build_dir = build_dir or tempfile.mkdtemp()
|
552 |
+
if not os.path.isdir(build_dir):
|
553 |
+
raise OSError("Non-existent directory: ", build_dir)
|
554 |
+
|
555 |
+
source_files = []
|
556 |
+
for name, src in sources:
|
557 |
+
dest = os.path.join(build_dir, name)
|
558 |
+
differs = True
|
559 |
+
sha256_in_mem = sha256_of_string(src.encode('utf-8')).hexdigest()
|
560 |
+
if os.path.exists(dest):
|
561 |
+
if os.path.exists(dest + '.sha256'):
|
562 |
+
with open(dest + '.sha256') as fh:
|
563 |
+
sha256_on_disk = fh.read()
|
564 |
+
else:
|
565 |
+
sha256_on_disk = sha256_of_file(dest).hexdigest()
|
566 |
+
|
567 |
+
differs = sha256_on_disk != sha256_in_mem
|
568 |
+
if differs:
|
569 |
+
with open(dest, 'wt') as fh:
|
570 |
+
fh.write(src)
|
571 |
+
with open(dest + '.sha256', 'wt') as fh:
|
572 |
+
fh.write(sha256_in_mem)
|
573 |
+
source_files.append(dest)
|
574 |
+
return source_files, build_dir
|
575 |
+
|
576 |
+
|
577 |
+
def compile_link_import_strings(sources, build_dir=None, **kwargs):
|
578 |
+
""" Compiles, links and imports extension module from source.
|
579 |
+
|
580 |
+
Parameters
|
581 |
+
==========
|
582 |
+
|
583 |
+
sources : iterable of name/source pair tuples
|
584 |
+
build_dir : string (default: None)
|
585 |
+
Path. ``None`` implies use a temporary directory.
|
586 |
+
**kwargs:
|
587 |
+
Keyword arguments passed onto `compile_link_import_py_ext`.
|
588 |
+
|
589 |
+
Returns
|
590 |
+
=======
|
591 |
+
|
592 |
+
mod : module
|
593 |
+
The compiled and imported extension module.
|
594 |
+
info : dict
|
595 |
+
Containing ``build_dir`` as 'build_dir'.
|
596 |
+
|
597 |
+
"""
|
598 |
+
source_files, build_dir = _write_sources_to_build_dir(sources, build_dir)
|
599 |
+
mod = compile_link_import_py_ext(source_files, build_dir=build_dir, **kwargs)
|
600 |
+
info = {"build_dir": build_dir}
|
601 |
+
return mod, info
|
602 |
+
|
603 |
+
|
604 |
+
def compile_run_strings(sources, build_dir=None, clean=False, compile_kwargs=None, link_kwargs=None):
|
605 |
+
""" Compiles, links and runs a program built from sources.
|
606 |
+
|
607 |
+
Parameters
|
608 |
+
==========
|
609 |
+
|
610 |
+
sources : iterable of name/source pair tuples
|
611 |
+
build_dir : string (default: None)
|
612 |
+
Path. ``None`` implies use a temporary directory.
|
613 |
+
clean : bool
|
614 |
+
Whether to remove build_dir after use. This will only have an
|
615 |
+
effect if ``build_dir`` is ``None`` (which creates a temporary directory).
|
616 |
+
Passing ``clean == True`` and ``build_dir != None`` raises a ``ValueError``.
|
617 |
+
This will also set ``build_dir`` in returned info dictionary to ``None``.
|
618 |
+
compile_kwargs: dict
|
619 |
+
Keyword arguments passed onto ``compile_sources``
|
620 |
+
link_kwargs: dict
|
621 |
+
Keyword arguments passed onto ``link``
|
622 |
+
|
623 |
+
Returns
|
624 |
+
=======
|
625 |
+
|
626 |
+
(stdout, stderr): pair of strings
|
627 |
+
info: dict
|
628 |
+
Containing exit status as 'exit_status' and ``build_dir`` as 'build_dir'
|
629 |
+
|
630 |
+
"""
|
631 |
+
if clean and build_dir is not None:
|
632 |
+
raise ValueError("Automatic removal of build_dir is only available for temporary directory.")
|
633 |
+
try:
|
634 |
+
source_files, build_dir = _write_sources_to_build_dir(sources, build_dir)
|
635 |
+
objs = compile_sources(list(map(get_abspath, source_files)), destdir=build_dir,
|
636 |
+
cwd=build_dir, **(compile_kwargs or {}))
|
637 |
+
prog = link(objs, cwd=build_dir,
|
638 |
+
fort=any_fortran_src(source_files),
|
639 |
+
cplus=any_cplus_src(source_files), **(link_kwargs or {}))
|
640 |
+
p = subprocess.Popen([prog], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
641 |
+
exit_status = p.wait()
|
642 |
+
stdout, stderr = [txt.decode('utf-8') for txt in p.communicate()]
|
643 |
+
finally:
|
644 |
+
if clean and os.path.isdir(build_dir):
|
645 |
+
shutil.rmtree(build_dir)
|
646 |
+
build_dir = None
|
647 |
+
info = {"exit_status": exit_status, "build_dir": build_dir}
|
648 |
+
return (stdout, stderr), info
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (199 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/__pycache__/test_compilation.cpython-310.pyc
ADDED
Binary file (1.98 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/tests/test_compilation.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
from sympy.external import import_module
|
3 |
+
from sympy.testing.pytest import skip
|
4 |
+
|
5 |
+
from sympy.utilities._compilation.compilation import compile_link_import_strings
|
6 |
+
|
7 |
+
numpy = import_module('numpy')
|
8 |
+
cython = import_module('cython')
|
9 |
+
|
10 |
+
_sources1 = [
|
11 |
+
('sigmoid.c', r"""
|
12 |
+
#include <math.h>
|
13 |
+
|
14 |
+
void sigmoid(int n, const double * const restrict in,
|
15 |
+
double * const restrict out, double lim){
|
16 |
+
for (int i=0; i<n; ++i){
|
17 |
+
const double x = in[i];
|
18 |
+
out[i] = x*pow(pow(x/lim, 8)+1, -1./8.);
|
19 |
+
}
|
20 |
+
}
|
21 |
+
"""),
|
22 |
+
('_sigmoid.pyx', r"""
|
23 |
+
import numpy as np
|
24 |
+
cimport numpy as cnp
|
25 |
+
|
26 |
+
cdef extern void c_sigmoid "sigmoid" (int, const double * const,
|
27 |
+
double * const, double)
|
28 |
+
|
29 |
+
def sigmoid(double [:] inp, double lim=350.0):
|
30 |
+
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.empty(
|
31 |
+
inp.size, dtype=np.float64)
|
32 |
+
c_sigmoid(inp.size, &inp[0], &out[0], lim)
|
33 |
+
return out
|
34 |
+
""")
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
def npy(data, lim=350.0):
|
39 |
+
return data/((data/lim)**8+1)**(1/8.)
|
40 |
+
|
41 |
+
|
42 |
+
def test_compile_link_import_strings():
|
43 |
+
if not numpy:
|
44 |
+
skip("numpy not installed.")
|
45 |
+
if not cython:
|
46 |
+
skip("cython not installed.")
|
47 |
+
|
48 |
+
from sympy.utilities._compilation import has_c
|
49 |
+
if not has_c():
|
50 |
+
skip("No C compiler found.")
|
51 |
+
|
52 |
+
compile_kw = {"std": 'c99', "include_dirs": [numpy.get_include()]}
|
53 |
+
info = None
|
54 |
+
try:
|
55 |
+
mod, info = compile_link_import_strings(_sources1, compile_kwargs=compile_kw)
|
56 |
+
data = numpy.random.random(1024*1024*8) # 64 MB of RAM needed..
|
57 |
+
res_mod = mod.sigmoid(data)
|
58 |
+
res_npy = npy(data)
|
59 |
+
assert numpy.allclose(res_mod, res_npy)
|
60 |
+
finally:
|
61 |
+
if info and info['build_dir']:
|
62 |
+
shutil.rmtree(info['build_dir'])
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/_compilation/util.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from hashlib import sha256
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import sys
|
6 |
+
import fnmatch
|
7 |
+
|
8 |
+
from sympy.testing.pytest import XFAIL
|
9 |
+
|
10 |
+
|
11 |
+
def may_xfail(func):
|
12 |
+
if sys.platform.lower() == 'darwin' or os.name == 'nt':
|
13 |
+
# sympy.utilities._compilation needs more testing on Windows and macOS
|
14 |
+
# once those two platforms are reliably supported this xfail decorator
|
15 |
+
# may be removed.
|
16 |
+
return XFAIL(func)
|
17 |
+
else:
|
18 |
+
return func
|
19 |
+
|
20 |
+
|
21 |
+
class CompilerNotFoundError(FileNotFoundError):
|
22 |
+
pass
|
23 |
+
|
24 |
+
|
25 |
+
class CompileError (Exception):
|
26 |
+
"""Failure to compile one or more C/C++ source files."""
|
27 |
+
|
28 |
+
|
29 |
+
def get_abspath(path, cwd='.'):
|
30 |
+
""" Returns the absolute path.
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
==========
|
34 |
+
|
35 |
+
path : str
|
36 |
+
(relative) path.
|
37 |
+
cwd : str
|
38 |
+
Path to root of relative path.
|
39 |
+
"""
|
40 |
+
if os.path.isabs(path):
|
41 |
+
return path
|
42 |
+
else:
|
43 |
+
if not os.path.isabs(cwd):
|
44 |
+
cwd = os.path.abspath(cwd)
|
45 |
+
return os.path.abspath(
|
46 |
+
os.path.join(cwd, path)
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
def make_dirs(path):
|
51 |
+
""" Create directories (equivalent of ``mkdir -p``). """
|
52 |
+
if path[-1] == '/':
|
53 |
+
parent = os.path.dirname(path[:-1])
|
54 |
+
else:
|
55 |
+
parent = os.path.dirname(path)
|
56 |
+
|
57 |
+
if len(parent) > 0:
|
58 |
+
if not os.path.exists(parent):
|
59 |
+
make_dirs(parent)
|
60 |
+
|
61 |
+
if not os.path.exists(path):
|
62 |
+
os.mkdir(path, 0o777)
|
63 |
+
else:
|
64 |
+
assert os.path.isdir(path)
|
65 |
+
|
66 |
+
|
67 |
+
def copy(src, dst, only_update=False, copystat=True, cwd=None,
|
68 |
+
dest_is_dir=False, create_dest_dirs=False):
|
69 |
+
""" Variation of ``shutil.copy`` with extra options.
|
70 |
+
|
71 |
+
Parameters
|
72 |
+
==========
|
73 |
+
|
74 |
+
src : str
|
75 |
+
Path to source file.
|
76 |
+
dst : str
|
77 |
+
Path to destination.
|
78 |
+
only_update : bool
|
79 |
+
Only copy if source is newer than destination
|
80 |
+
(returns None if it was newer), default: ``False``.
|
81 |
+
copystat : bool
|
82 |
+
See ``shutil.copystat``. default: ``True``.
|
83 |
+
cwd : str
|
84 |
+
Path to working directory (root of relative paths).
|
85 |
+
dest_is_dir : bool
|
86 |
+
Ensures that dst is treated as a directory. default: ``False``
|
87 |
+
create_dest_dirs : bool
|
88 |
+
Creates directories if needed.
|
89 |
+
|
90 |
+
Returns
|
91 |
+
=======
|
92 |
+
|
93 |
+
Path to the copied file.
|
94 |
+
|
95 |
+
"""
|
96 |
+
if cwd: # Handle working directory
|
97 |
+
if not os.path.isabs(src):
|
98 |
+
src = os.path.join(cwd, src)
|
99 |
+
if not os.path.isabs(dst):
|
100 |
+
dst = os.path.join(cwd, dst)
|
101 |
+
|
102 |
+
if not os.path.exists(src): # Make sure source file extists
|
103 |
+
raise FileNotFoundError("Source: `{}` does not exist".format(src))
|
104 |
+
|
105 |
+
# We accept both (re)naming destination file _or_
|
106 |
+
# passing a (possible non-existent) destination directory
|
107 |
+
if dest_is_dir:
|
108 |
+
if not dst[-1] == '/':
|
109 |
+
dst = dst+'/'
|
110 |
+
else:
|
111 |
+
if os.path.exists(dst) and os.path.isdir(dst):
|
112 |
+
dest_is_dir = True
|
113 |
+
|
114 |
+
if dest_is_dir:
|
115 |
+
dest_dir = dst
|
116 |
+
dest_fname = os.path.basename(src)
|
117 |
+
dst = os.path.join(dest_dir, dest_fname)
|
118 |
+
else:
|
119 |
+
dest_dir = os.path.dirname(dst)
|
120 |
+
|
121 |
+
if not os.path.exists(dest_dir):
|
122 |
+
if create_dest_dirs:
|
123 |
+
make_dirs(dest_dir)
|
124 |
+
else:
|
125 |
+
raise FileNotFoundError("You must create directory first.")
|
126 |
+
|
127 |
+
if only_update:
|
128 |
+
# This function is not defined:
|
129 |
+
# XXX: This branch is clearly not tested!
|
130 |
+
if not missing_or_other_newer(dst, src): # noqa
|
131 |
+
return
|
132 |
+
|
133 |
+
if os.path.islink(dst):
|
134 |
+
dst = os.path.abspath(os.path.realpath(dst), cwd=cwd)
|
135 |
+
|
136 |
+
shutil.copy(src, dst)
|
137 |
+
if copystat:
|
138 |
+
shutil.copystat(src, dst)
|
139 |
+
|
140 |
+
return dst
|
141 |
+
|
142 |
+
Glob = namedtuple('Glob', 'pathname')
|
143 |
+
ArbitraryDepthGlob = namedtuple('ArbitraryDepthGlob', 'filename')
|
144 |
+
|
145 |
+
def glob_at_depth(filename_glob, cwd=None):
|
146 |
+
if cwd is not None:
|
147 |
+
cwd = '.'
|
148 |
+
globbed = []
|
149 |
+
for root, dirs, filenames in os.walk(cwd):
|
150 |
+
for fn in filenames:
|
151 |
+
# This is not tested:
|
152 |
+
if fnmatch.fnmatch(fn, filename_glob):
|
153 |
+
globbed.append(os.path.join(root, fn))
|
154 |
+
return globbed
|
155 |
+
|
156 |
+
def sha256_of_file(path, nblocks=128):
|
157 |
+
""" Computes the SHA256 hash of a file.
|
158 |
+
|
159 |
+
Parameters
|
160 |
+
==========
|
161 |
+
|
162 |
+
path : string
|
163 |
+
Path to file to compute hash of.
|
164 |
+
nblocks : int
|
165 |
+
Number of blocks to read per iteration.
|
166 |
+
|
167 |
+
Returns
|
168 |
+
=======
|
169 |
+
|
170 |
+
hashlib sha256 hash object. Use ``.digest()`` or ``.hexdigest()``
|
171 |
+
on returned object to get binary or hex encoded string.
|
172 |
+
"""
|
173 |
+
sh = sha256()
|
174 |
+
with open(path, 'rb') as f:
|
175 |
+
for chunk in iter(lambda: f.read(nblocks*sh.block_size), b''):
|
176 |
+
sh.update(chunk)
|
177 |
+
return sh
|
178 |
+
|
179 |
+
|
180 |
+
def sha256_of_string(string):
|
181 |
+
""" Computes the SHA256 hash of a string. """
|
182 |
+
sh = sha256()
|
183 |
+
sh.update(string)
|
184 |
+
return sh
|
185 |
+
|
186 |
+
|
187 |
+
def pyx_is_cplus(path):
|
188 |
+
"""
|
189 |
+
Inspect a Cython source file (.pyx) and look for comment line like:
|
190 |
+
|
191 |
+
# distutils: language = c++
|
192 |
+
|
193 |
+
Returns True if such a file is present in the file, else False.
|
194 |
+
"""
|
195 |
+
with open(path) as fh:
|
196 |
+
for line in fh:
|
197 |
+
if line.startswith('#') and '=' in line:
|
198 |
+
splitted = line.split('=')
|
199 |
+
if len(splitted) != 2:
|
200 |
+
continue
|
201 |
+
lhs, rhs = splitted
|
202 |
+
if lhs.strip().split()[-1].lower() == 'language' and \
|
203 |
+
rhs.strip().split()[0].lower() == 'c++':
|
204 |
+
return True
|
205 |
+
return False
|
206 |
+
|
207 |
+
def import_module_from_file(filename, only_if_newer_than=None):
|
208 |
+
""" Imports Python extension (from shared object file)
|
209 |
+
|
210 |
+
Provide a list of paths in `only_if_newer_than` to check
|
211 |
+
timestamps of dependencies. import_ raises an ImportError
|
212 |
+
if any is newer.
|
213 |
+
|
214 |
+
Word of warning: The OS may cache shared objects which makes
|
215 |
+
reimporting same path of an shared object file very problematic.
|
216 |
+
|
217 |
+
It will not detect the new time stamp, nor new checksum, but will
|
218 |
+
instead silently use old module. Use unique names for this reason.
|
219 |
+
|
220 |
+
Parameters
|
221 |
+
==========
|
222 |
+
|
223 |
+
filename : str
|
224 |
+
Path to shared object.
|
225 |
+
only_if_newer_than : iterable of strings
|
226 |
+
Paths to dependencies of the shared object.
|
227 |
+
|
228 |
+
Raises
|
229 |
+
======
|
230 |
+
|
231 |
+
``ImportError`` if any of the files specified in ``only_if_newer_than`` are newer
|
232 |
+
than the file given by filename.
|
233 |
+
"""
|
234 |
+
path, name = os.path.split(filename)
|
235 |
+
name, ext = os.path.splitext(name)
|
236 |
+
name = name.split('.')[0]
|
237 |
+
if sys.version_info[0] == 2:
|
238 |
+
from imp import find_module, load_module
|
239 |
+
fobj, filename, data = find_module(name, [path])
|
240 |
+
if only_if_newer_than:
|
241 |
+
for dep in only_if_newer_than:
|
242 |
+
if os.path.getmtime(filename) < os.path.getmtime(dep):
|
243 |
+
raise ImportError("{} is newer than {}".format(dep, filename))
|
244 |
+
mod = load_module(name, fobj, filename, data)
|
245 |
+
else:
|
246 |
+
import importlib.util
|
247 |
+
spec = importlib.util.spec_from_file_location(name, filename)
|
248 |
+
if spec is None:
|
249 |
+
raise ImportError("Failed to import: '%s'" % filename)
|
250 |
+
mod = importlib.util.module_from_spec(spec)
|
251 |
+
spec.loader.exec_module(mod)
|
252 |
+
return mod
|
253 |
+
|
254 |
+
|
255 |
+
def find_binary_of_command(candidates):
|
256 |
+
""" Finds binary first matching name among candidates.
|
257 |
+
|
258 |
+
Calls ``which`` from shutils for provided candidates and returns
|
259 |
+
first hit.
|
260 |
+
|
261 |
+
Parameters
|
262 |
+
==========
|
263 |
+
|
264 |
+
candidates : iterable of str
|
265 |
+
Names of candidate commands
|
266 |
+
|
267 |
+
Raises
|
268 |
+
======
|
269 |
+
|
270 |
+
CompilerNotFoundError if no candidates match.
|
271 |
+
"""
|
272 |
+
from shutil import which
|
273 |
+
for c in candidates:
|
274 |
+
binary_path = which(c)
|
275 |
+
if c and binary_path:
|
276 |
+
return c, binary_path
|
277 |
+
|
278 |
+
raise CompilerNotFoundError('No binary located for candidates: {}'.format(candidates))
|
279 |
+
|
280 |
+
|
281 |
+
def unique_list(l):
|
282 |
+
""" Uniquify a list (skip duplicate items). """
|
283 |
+
result = []
|
284 |
+
for x in l:
|
285 |
+
if x not in result:
|
286 |
+
result.append(x)
|
287 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/__init__.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module with some functions for MathML, like transforming MathML
|
2 |
+
content in MathML presentation.
|
3 |
+
|
4 |
+
To use this module, you will need lxml.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from sympy.utilities.pkgdata import get_resource
|
8 |
+
from sympy.utilities.decorator import doctest_depends_on
|
9 |
+
|
10 |
+
|
11 |
+
__doctest_requires__ = {('apply_xsl', 'c2p'): ['lxml']}
|
12 |
+
|
13 |
+
|
14 |
+
def add_mathml_headers(s):
|
15 |
+
return """<math xmlns:mml="http://www.w3.org/1998/Math/MathML"
|
16 |
+
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
17 |
+
xsi:schemaLocation="http://www.w3.org/1998/Math/MathML
|
18 |
+
http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">""" + s + "</math>"
|
19 |
+
|
20 |
+
|
21 |
+
@doctest_depends_on(modules=('lxml',))
|
22 |
+
def apply_xsl(mml, xsl):
|
23 |
+
"""Apply a xsl to a MathML string.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
==========
|
27 |
+
|
28 |
+
mml
|
29 |
+
A string with MathML code.
|
30 |
+
xsl
|
31 |
+
A string representing a path to a xsl (xml stylesheet) file.
|
32 |
+
This file name is relative to the PYTHONPATH.
|
33 |
+
|
34 |
+
Examples
|
35 |
+
========
|
36 |
+
|
37 |
+
>>> from sympy.utilities.mathml import apply_xsl
|
38 |
+
>>> xsl = 'mathml/data/simple_mmlctop.xsl'
|
39 |
+
>>> mml = '<apply> <plus/> <ci>a</ci> <ci>b</ci> </apply>'
|
40 |
+
>>> res = apply_xsl(mml,xsl)
|
41 |
+
>>> ''.join(res.splitlines())
|
42 |
+
'<?xml version="1.0"?><mrow xmlns="http://www.w3.org/1998/Math/MathML"> <mi>a</mi> <mo> + </mo> <mi>b</mi></mrow>'
|
43 |
+
"""
|
44 |
+
from lxml import etree
|
45 |
+
|
46 |
+
parser = etree.XMLParser(resolve_entities=False)
|
47 |
+
ac = etree.XSLTAccessControl.DENY_ALL
|
48 |
+
|
49 |
+
s = etree.XML(get_resource(xsl).read(), parser=parser)
|
50 |
+
transform = etree.XSLT(s, access_control=ac)
|
51 |
+
doc = etree.XML(mml, parser=parser)
|
52 |
+
result = transform(doc)
|
53 |
+
s = str(result)
|
54 |
+
return s
|
55 |
+
|
56 |
+
|
57 |
+
@doctest_depends_on(modules=('lxml',))
|
58 |
+
def c2p(mml, simple=False):
|
59 |
+
"""Transforms a document in MathML content (like the one that sympy produces)
|
60 |
+
in one document in MathML presentation, more suitable for printing, and more
|
61 |
+
widely accepted
|
62 |
+
|
63 |
+
Examples
|
64 |
+
========
|
65 |
+
|
66 |
+
>>> from sympy.utilities.mathml import c2p
|
67 |
+
>>> mml = '<apply> <exp/> <cn>2</cn> </apply>'
|
68 |
+
>>> c2p(mml,simple=True) != c2p(mml,simple=False)
|
69 |
+
True
|
70 |
+
|
71 |
+
"""
|
72 |
+
|
73 |
+
if not mml.startswith('<math'):
|
74 |
+
mml = add_mathml_headers(mml)
|
75 |
+
|
76 |
+
if simple:
|
77 |
+
return apply_xsl(mml, 'mathml/data/simple_mmlctop.xsl')
|
78 |
+
|
79 |
+
return apply_xsl(mml, 'mathml/data/mmlctop.xsl')
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/data/mmlctop.xsl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/data/mmltex.xsl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/mathml/data/simple_mmlctop.xsl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/pytest.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. deprecated:: 1.6
|
3 |
+
|
4 |
+
sympy.utilities.pytest has been renamed to sympy.testing.pytest.
|
5 |
+
"""
|
6 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
7 |
+
|
8 |
+
sympy_deprecation_warning("The sympy.utilities.pytest submodule is deprecated. Use sympy.testing.pytest instead.",
|
9 |
+
deprecated_since_version="1.6",
|
10 |
+
active_deprecations_target="deprecated-sympy-utilities-submodules")
|
11 |
+
|
12 |
+
from sympy.testing.pytest import * # noqa:F401
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_autowrap.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_codegen.cpython-310.pyc
ADDED
Binary file (44.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/utilities/tests/__pycache__/test_codegen_julia.cpython-310.pyc
ADDED
Binary file (15.4 kB). View file
|
|