applied-ai-018's picture
Add files using upload-large-folder tool
fab61cf verified
raw
history blame
29.9 kB
from __future__ import annotations
import functools
import hashlib
import json
import os
import re
from collections import namedtuple
from pathlib import Path
from typing import Any
from dataclasses import dataclass
from .._C.libtriton.triton import (ClusterInfo, TMAInfos, add_external_libs, compile_ptx_to_cubin, get_env_vars,
get_num_warps, get_shared_memory_size, ir, runtime, translate_llvmir_to_ptx,
translate_triton_gpu_to_llvmir)
from ..common.backend import get_backend, get_cuda_version_key, path_to_ptxas
from ..common.build import is_hip
# from ..runtime import driver, jit, JITFunction
# TODO: runtime.errors
from ..runtime.autotuner import OutOfResources
from ..runtime.cache import get_cache_manager, get_dump_manager, get_override_manager
from ..runtime.driver import driver
from ..runtime.jit import (JITFunction, get_cuda_stream, get_current_device, get_device_capability)
from ..tools.disasm import get_sass
from .code_generator import ast_to_ttir
from .make_launcher import make_stub
from .utils import (InfoFromBackendForTensorMap, TensorMapManager, get_ids_of_tensormaps, parse_tma_info)
@dataclass
class CudaTargetDescriptor:
capability: int
num_warps: int
enable_fp_fusion: bool
def _is_cuda(target):
return isinstance(target, CudaTargetDescriptor)
class LazyDict(dict):
def __getitem__(self, key):
val = dict.__getitem__(self, key)
if callable(val):
return val()
return val
def inline_triton_ir(mod):
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_inliner_pass()
pm.run(mod)
return mod
def ttir_compute_capability_rewrite(mod, target):
# For hardware without support, we must rewrite all load/store
# with block (tensor) pointers into tensors of pointers
pm = ir.pass_manager(mod.context)
pm.enable_debug()
if _is_cuda(target):
pm.add_rewrite_tensor_pointer_pass(target.capability)
pm.run(mod)
return mod
def optimize_ttir(mod, target):
mod = inline_triton_ir(mod)
mod = ttir_compute_capability_rewrite(mod, target)
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_inliner_pass()
pm.add_triton_combine_pass()
pm.add_canonicalizer_pass()
pm.add_reorder_broadcast_pass()
pm.add_cse_pass()
pm.add_licm_pass()
pm.add_symbol_dce_pass()
pm.run(mod)
return mod
def ttir_to_ttgir(mod, num_warps, num_ctas, target):
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_convert_triton_to_tritongpu_pass(num_warps, 32, num_ctas, target.capability)
pm.run(mod)
return mod
def optimize_ttgir(mod, num_stages, num_warps, num_ctas, target, cluster_info, enable_warp_specialization,
enable_persistent, optimize_epilogue):
is_cuda = _is_cuda(target)
if is_cuda:
capability = target.capability
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_tritongpu_coalesce_pass()
# TODO(Qingyi): Move PlanCTAPass to the front of CoalescePass
pm.add_plan_cta_pass(cluster_info)
if is_cuda:
pm.add_tritongpu_rewrite_tensor_pointer_pass(capability)
pm.add_plan_cta_pass(cluster_info)
pm.add_tritongpu_remove_layout_conversions_pass()
if is_cuda:
pm.add_tritongpu_accelerate_matmul_pass(capability)
pm.add_tritongpu_remove_layout_conversions_pass()
if optimize_epilogue:
pm.add_tritongpu_optimize_epilogue_pass()
pm.add_tritongpu_optimize_dot_operands_pass()
pm.add_cse_pass()
ws_enabled = False
# `num_warps` does not mean the total number of warps of a CTA when
# warp specialization is enabled.
# it's the responsibility of the compiler to figure out the exact
# `num_warps` to use.
# TODO: support the case where `num_warps` from user is not 4.
if capability // 10 >= 9 and enable_warp_specialization and num_warps == 4:
pm.add_tritongpu_ws_feasibility_checking_pass(capability)
pm.run(mod)
ws_enabled = ir.is_ws_supported(mod)
pm = ir.pass_manager(mod.context)
pm.enable_debug()
if ws_enabled:
pm.add_tritongpu_wsdecomposing_pass(capability)
pm.add_tritongpu_wspipeline_pass(num_stages, num_warps, capability)
pm.add_tritongpu_wsmutex_pass(capability)
pm.add_tritongpu_wsmaterialization_pass(capability)
pm.add_licm_pass()
pm.add_cse_pass()
else:
pm.add_tritongpu_pipeline_pass(num_stages, num_warps, num_ctas, capability)
pm.add_tritongpu_materialize_load_store_pass(num_warps, capability)
if capability // 10 <= 8:
pm.add_tritongpu_prefetch_pass()
pm.add_tritongpu_optimize_dot_operands_pass()
pm.add_tritongpu_remove_layout_conversions_pass()
pm.add_tritongpu_decompose_conversions_pass()
pm.add_tritongpu_ws_fixup_missing_attrs_pass()
pm.add_tritongpu_reorder_instructions_pass()
pm.add_cse_pass()
pm.add_symbol_dce_pass()
if capability // 10 >= 9:
pm.add_tritongpu_fence_insertion_pass()
pm.add_tritongpu_ws_fixup_missing_attrs_pass()
pm.add_tritongpu_optimize_thread_locality_pass()
pm.add_canonicalizer_pass()
pm.run(mod)
return mod
def _add_external_libs(mod, libs):
for name, path in libs.items():
if len(name) == 0 or len(path) == 0:
return
add_external_libs(mod, list(libs.keys()), list(libs.values()))
def ttgir_to_llir(mod, extern_libs, target, tma_infos):
if extern_libs:
_add_external_libs(mod, extern_libs)
# TODO: separate tritongpu_to_llvmir for different backends
if _is_cuda(target):
return translate_triton_gpu_to_llvmir(mod, target.capability, tma_infos, runtime.TARGET.NVVM)
else:
return translate_triton_gpu_to_llvmir(mod, 0, TMAInfos(), runtime.TARGET.ROCDL)
# PTX translation
@functools.lru_cache()
def ptx_get_version(cuda_version) -> int:
'''
Get the highest PTX version supported by the current CUDA driver.
'''
assert isinstance(cuda_version, str)
major, minor = map(int, cuda_version.split('.'))
if major == 12:
return 80 + minor
if major == 11:
return 70 + minor
if major == 10:
return 63 + minor
raise RuntimeError("Triton only support CUDA 10.0 or higher")
def llir_to_ptx(mod: Any, target: CudaTargetDescriptor, ptx_version: int = None) -> str:
'''
Translate TritonGPU module to PTX code.
:param mod: a TritonGPU dialect module
:return: PTX code
'''
if ptx_version is None:
_, cuda_version = path_to_ptxas()
ptx_version = ptx_get_version(cuda_version)
return translate_llvmir_to_ptx(mod, target.capability, ptx_version, target.enable_fp_fusion)
def ptx_to_cubin(ptx: str, target: CudaTargetDescriptor):
'''
Compile TritonGPU module to cubin.
:param ptx: ptx code
:param compute_capability: compute capability
:return: str
'''
ptxas, _ = path_to_ptxas()
return compile_ptx_to_cubin(ptx, ptxas, target.capability, target.enable_fp_fusion)
# ------------------------------------------------------------------------------
# compiler
# ------------------------------------------------------------------------------
def get_kernel_name(src: str, pattern: str) -> str:
'''
Get kernel name from PTX code.
This Kernel name is required when launching the kernel.
'''
# There is a name mangling in PTX codegen, so the original kernel names in Triton IR are not available in PTX/cubin.
assert src
for line in src.split('\n'):
line = line.strip()
if line.startswith(pattern):
return line.split()[-1]
def convert_type_repr(x):
# Currently we only capture the pointer type and assume the pointer is on global memory.
# TODO: Capture and support shared memory space
match = re.search(r'!tt\.ptr<([^,]+)', x)
if match is not None:
return '*' + convert_type_repr(match.group(1))
return x
def make_hash(fn, target, env_vars, device_backend, **kwargs):
if device_backend is None:
version_key = get_cuda_version_key()
else:
version_key = device_backend.get_version_key()
if isinstance(fn, JITFunction):
configs = kwargs["configs"]
signature = kwargs["signature"]
constants = kwargs.get("constants", dict())
num_warps = kwargs.get("num_warps", 4)
num_ctas = kwargs.get("num_ctas", 1)
num_stages = kwargs.get("num_stages", 3)
enable_warp_specialization = kwargs.get("enable_warp_specialization", False)
enable_persistent = kwargs.get("enable_persistent", False)
debug = kwargs.get("debug", False)
# Get unique key for the compiled code
get_conf_key = lambda conf: (sorted(conf.divisible_by_16), sorted(conf.equal_to_1),
sorted(conf.ids_of_folded_args), sorted(conf.divisible_by_8))
configs_key = [get_conf_key(conf) for conf in configs]
env_vars_list = [f"{env_vars[k]}" for k in sorted(env_vars.keys())]
key = f"{fn.cache_key}-{version_key}-{''.join(signature.values())}-{configs_key}-{constants}-{num_warps}-{num_stages}-{num_ctas}-{num_stages}-{enable_warp_specialization}-{enable_persistent}-{debug}-{target}-{env_vars_list}"
return hashlib.md5(key.encode("utf-8")).hexdigest()
assert isinstance(fn, str)
ignore_version = kwargs.get('ignore_version', False)
if (ignore_version):
return hashlib.md5((Path(fn).read_text()).encode("utf-8")).hexdigest()
return hashlib.md5((Path(fn).read_text() + version_key).encode("utf-8")).hexdigest()
# - ^\s*tt\.func\s+ : match the start of the string, any leading whitespace, the keyword func,
# and any following whitespace
# - (public\s+)? : optionally match the keyword public and any following whitespace
# - (@\w+) : match an @ symbol followed by one or more word characters
# (letters, digits, or underscores), and capture it as group 1 (the function name)
# - (\((?:%\w+: \S+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\)) : match a pair of parentheses enclosing
# zero or more arguments separated by commas, and capture it as group 2 (the argument list)
# - (attributes \{[\S\s]+\})? : optionally match attributes enclosed in braces and capture it as group 3
mlir_prototype_pattern = r"^\s*tt\.func\s+(?:public\s+)?(@\w+)(\((?:%\w+: [\S\s]+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\))\s*(attributes \{[\S\s]+\})?\s+\{\s*$"
ptx_prototype_pattern = r"\.(?:visible|extern)\s+\.(?:entry|func)\s+(\w+)\s*\(([^)]*)\)"
prototype_pattern = {
"ttir": mlir_prototype_pattern,
"ttgir": mlir_prototype_pattern,
"ptx": ptx_prototype_pattern,
}
# - ((?:[^,\s<]+|<[^>]+>)+): Capturing group that matches one or more of either:
# [^,\s<]+: One or more characters that are not a comma, whitespace, or the < symbol.
# |: OR
# <[^>]+>: A string that starts with < and ends with >, containing any characters except > in between.
mlir_arg_type_pattern = r'%\w+: ((?:[^,\s<]+|<[^>]+>)+),?'
ptx_arg_type_pattern = r"\.param\s+\.(\w+)"
arg_type_pattern = {
"ttir": mlir_arg_type_pattern,
"ttgir": mlir_arg_type_pattern,
"ptx": ptx_arg_type_pattern,
}
if is_hip():
ttgir_num_warps_pattern = r'"triton_gpu_rocm.num-warps"\s?=\s?(\d+)\s?:'
else:
ttgir_num_warps_pattern = r'"triton_gpu.num-warps"\s?=\s?(\d+)\s?:'
def _get_jsonable_constants(constants):
def _is_jsonable(x):
try:
json.dumps(x)
return True
except (TypeError, OverflowError):
return False
serialized_constants = {}
for constant in constants:
if _is_jsonable(constants[constant]):
serialized_constants[constant] = constants[constant]
return serialized_constants
def _get_num_warps_from_ir_str(src: str):
# TODO(jlebar): Using a regex to get num-warps is a hack, and will break if
# e.g. someone has an instruction (not module) attribute named "num-warps".
num_warps_matches = re.findall(ttgir_num_warps_pattern, src)
assert len(num_warps_matches) == 1, "Expected exactly one match for num_warps"
num_warps = int(num_warps_matches[0])
# If warp specialization is enabled, the true number of warps from
# the perspective of e.g. CUDA is num-warps times the number of
# specialized groups.
num_warp_groups_matches = re.findall(r'"triton_gpu.num-warp-groups-per-cta"\s?=\s?(\d+)\s?:', src)
assert len(num_warp_groups_matches) == 0 or len(num_warp_groups_matches) == 1, \
"Expected triton_gpu.num-warp-groups-per-cta attribute to appear 0 or 1 times"
if num_warp_groups_matches:
num_warps *= int(num_warp_groups_matches[0])
return num_warps
def parse_mlir_module(path, context):
module = ir.parse_mlir_module(path, context)
# module takes ownership of the context
module.context = context
return module
instance_descriptor = namedtuple("instance_descriptor",
["divisible_by_16", "equal_to_1", "ids_of_folded_args", "divisible_by_8"],
defaults=[set(), set(), set(), set()])
def get_cuda_capability(capability):
if capability is None:
device = get_current_device()
capability = get_device_capability(device)
capability = capability[0] * 10 + capability[1]
return capability
def get_arch_default_num_warps(device_type):
if device_type in ["cuda", "hip"]:
num_warps = 4
else:
_device_backend = get_backend(device_type)
assert _device_backend
arch = _device_backend.get_architecture_descriptor()
num_warps = arch["num_warps"]
return num_warps
def get_arch_default_num_stages(device_type, capability=None):
if device_type == "cuda":
num_stages = 3 if get_cuda_capability(capability) >= 75 else 2
else:
_device_backend = get_backend(device_type)
assert _device_backend
arch = _device_backend.get_architecture_descriptor()
num_stages = arch["num_stages"]
return num_stages
def add_cuda_stages(target, extern_libs, stages):
stages["ptx"] = (lambda path: Path(path).read_text(), lambda src: llir_to_ptx(src, target))
stages["cubin"] = (lambda path: Path(path).read_bytes(), lambda src: ptx_to_cubin(src, target))
def compile(fn, **kwargs):
# Get device type to decide which backend should be used
device_type = kwargs.get("device_type", "cuda")
capability = kwargs.get("cc", None)
if is_hip():
device_type = "hip"
is_cuda = device_type == "cuda"
if is_hip():
is_cuda = False
context = ir.context()
constants = kwargs.get("constants", dict())
num_warps = kwargs.get("num_warps", get_arch_default_num_warps(device_type))
assert num_warps > 0 and (num_warps & (num_warps - 1)) == 0, "num_warps must be a power of 2"
num_ctas = kwargs.get("num_ctas", 1)
num_stages = kwargs.get("num_stages", get_arch_default_num_stages(device_type, capability=capability))
enable_fp_fusion = kwargs.get("enable_fp_fusion", True)
# TODO[shuhaoj]: Default should be to enable warp specialization once possible
enable_warp_specialization = kwargs.get("enable_warp_specialization", False)
# TODO[shuhaoj]: persistent can be decoupled with warp specialization
enable_persistent = kwargs.get("enable_persistent", enable_warp_specialization)
extern_libs = kwargs.get("extern_libs", dict())
if extern_libs is None:
extern_libs = dict()
debug = kwargs.get("debug", False)
# Flag to control whether to store mma layout directly
optimize_epilogue = False
if os.environ.get('OPTIMIZE_EPILOGUE', '') == '1':
optimize_epilogue = True
#
cluster_info = ClusterInfo()
if "clusterDims" in kwargs:
cluster_info.clusterDimX = kwargs["clusterDims"][0]
cluster_info.clusterDimY = kwargs["clusterDims"][1]
cluster_info.clusterDimZ = kwargs["clusterDims"][2]
tma_infos = TMAInfos()
# build architecture descriptor
if device_type == "cuda":
_device_backend = get_backend(device_type)
target = CudaTargetDescriptor(capability=get_cuda_capability(capability), num_warps=num_warps,
enable_fp_fusion=enable_fp_fusion)
else:
_device_backend = get_backend(device_type)
assert _device_backend
target = _device_backend.get_architecture_descriptor(**kwargs)
# build compilation stages
stages = dict()
stages["ast"] = (lambda path: fn, None)
stages["ttir"] = (lambda path: parse_mlir_module(path, context), lambda src: optimize_ttir(
ast_to_ttir(src, signature, configs[0], constants, debug=debug, target=target), target))
if is_cuda:
stages["ttgir"] = (lambda path: parse_mlir_module(path, context), lambda src: optimize_ttgir(
ttir_to_ttgir(src, num_warps, num_ctas, target), num_stages, num_warps, num_ctas, target, cluster_info,
enable_warp_specialization, enable_persistent, optimize_epilogue))
stages["llir"] = (lambda path: Path(path).read_text(),
lambda src: ttgir_to_llir(src, extern_libs, target, tma_infos))
add_cuda_stages(target, extern_libs, stages)
elif device_type == "hip":
_device_backend.add_stages(target, extern_libs, stages, num_warps=num_warps, num_stages=num_stages)
else:
# pass the user's configuration to the backend device.
target["num_warps"] = num_warps
target["num_stages"] = num_stages
target["num_ctas"] = num_ctas
_device_backend.add_stages(target, extern_libs, stages)
# find out the signature of the function
if isinstance(fn, JITFunction):
configs = kwargs.get("configs", None)
signature = kwargs["signature"]
if configs is None:
configs = [instance_descriptor()]
assert len(configs) == 1
kwargs["configs"] = configs
name = fn.__name__
first_stage = 0
if isinstance(signature, str):
signature = {k: v.strip() for k, v in enumerate(signature.split(","))}
kwargs["signature"] = signature
else:
assert isinstance(fn, str)
_, ir_name = os.path.basename(fn).split(".")
src = Path(fn).read_text()
import re
match = re.search(prototype_pattern[ir_name], src, re.MULTILINE)
# TODO: support function attributes at group 3 (e.g., device function)
name, signature = match.group(1), match.group(2)
types = re.findall(arg_type_pattern[ir_name], signature)
if ir_name == 'ttgir':
num_warps_from_ir = _get_num_warps_from_ir_str(src)
assert "num_warps" not in kwargs or num_warps_from_ir == num_warps, "num_warps in ttgir does not match num_warps in compile"
num_warps = num_warps_from_ir
param_tys = [convert_type_repr(ty) for ty in types]
signature = {k: v for k, v in enumerate(param_tys)}
first_stage = list(stages.keys()).index(ir_name)
# create cache manager
fn_cache_manager = get_cache_manager(make_hash(fn, target, get_env_vars(), _device_backend, **kwargs))
# managers used to dump and override IR for debugging
enable_override = os.environ.get("TRITON_KERNEL_OVERRIDE", "0") == "1"
fn_override_manager = get_override_manager(
make_hash(fn, target, get_env_vars(), _device_backend, **kwargs, ignore_version=True))
fn_dump_manager = get_dump_manager(
make_hash(fn, target, get_env_vars(), _device_backend, **kwargs, ignore_version=True))
# determine name and extension type of provided function
if isinstance(fn, JITFunction):
name, ext = fn.__name__, "ast"
else:
name, ext = os.path.basename(fn).split(".")
# load metadata if any
metadata = None
metadata_filename = f"{name}.json"
# The group is addressed by the metadata
metadata_group = fn_cache_manager.get_group(metadata_filename) or {}
metadata_path = metadata_group.get(metadata_filename)
if metadata_path is not None:
with open(metadata_path) as f:
metadata = json.load(f)
if 'tensormaps_info' in metadata:
metadata['tensormaps_info'] = [InfoFromBackendForTensorMap(e) for e in metadata['tensormaps_info']]
else:
metadata = {
"num_warps": num_warps,
"num_ctas": num_ctas,
"num_stages": num_stages,
"enable_warp_specialization": enable_warp_specialization,
"enable_persistent": enable_persistent,
"constants": _get_jsonable_constants(constants),
"debug": debug,
"target": target,
}
metadata.update(get_env_vars())
if ext == "ptx":
assert "shared" in kwargs, "ptx compilation must provide shared memory size"
metadata["shared"] = kwargs["shared"]
# Add device type to meta information
metadata["device_type"] = device_type
first_stage = list(stages.keys()).index(ext)
asm = LazyDict()
module = fn
# run compilation pipeline and populate metadata
for ir_name, (parse, compile_kernel) in list(stages.items())[first_stage:]:
ir_filename = f"{name}.{ir_name}"
if ir_name == ext:
next_module = parse(fn)
else:
path = metadata_group.get(ir_filename)
if path is None:
next_module = compile_kernel(module)
if ir_name == "amdgcn":
extra_file_name = f"{name}.hsaco_path"
metadata_group[ir_filename] = fn_cache_manager.put(next_module[0], ir_filename)
metadata_group[extra_file_name] = fn_cache_manager.put(next_module[1], extra_file_name)
else:
metadata_group[ir_filename] = fn_cache_manager.put(next_module, ir_filename)
fn_dump_manager.put(next_module, ir_filename)
if (enable_override and fn_override_manager.has_file(ir_filename)):
print(f"\nOverriding kernel with file {ir_filename}")
full_name = fn_override_manager.get_file(ir_filename)
next_module = parse(full_name)
else:
if ir_name == "amdgcn":
extra_file_name = f"{name}.hsaco_path"
hasco_path = metadata_group.get(extra_file_name)
assert hasco_path is not None, "Expected to have hsaco_path in metadata when we have the amdgcn"
next_module = (parse(path), parse(hasco_path))
else:
next_module = parse(path)
if ir_name == "cubin":
asm[ir_name] = next_module
asm["sass"] = lambda: get_sass(next_module)
elif ir_name == "amdgcn":
asm[ir_name] = str(next_module[0])
else:
asm[ir_name] = str(next_module)
if ir_name == "llir" and "shared" not in metadata:
if is_hip():
metadata["shared"] = _device_backend.get_shared_memory_size(module)
else:
metadata["shared"] = get_shared_memory_size(module)
if ir_name == "ttgir":
if is_hip():
metadata["num_warps"] = _device_backend.get_num_warps(next_module)
else:
metadata["enable_warp_specialization"] = ir.is_ws_supported(next_module)
if metadata["enable_warp_specialization"]:
metadata["num_warps"] = get_num_warps(next_module)
if ir_name == "ptx":
metadata["name"] = get_kernel_name(next_module, pattern='// .globl')
if ir_name == "amdgcn":
metadata["name"] = get_kernel_name(next_module[0], pattern='.globl')
asm["hsaco_path"] = next_module[1]
if not is_cuda and not is_hip():
_device_backend.add_meta_info(ir_name, module, next_module, metadata, asm)
module = next_module
ids_of_folded_args = tuple([int(k) for k in configs[0].ids_of_folded_args]) if isinstance(fn, JITFunction) else ()
if "clusterDims" not in metadata:
metadata["clusterDims"] = [cluster_info.clusterDimX, cluster_info.clusterDimY, cluster_info.clusterDimZ]
if len(tma_infos) > 0:
metadata["tensormaps_info"] = parse_tma_info(tma_infos, ids_of_folded_args)
# set constant
if "tensormaps_info" in metadata:
for i, _ in enumerate(metadata["tensormaps_info"]):
metadata["tensormaps_info"][i].ids_of_folded_args = ids_of_folded_args
ids_of_tensormaps = get_ids_of_tensormaps(metadata.get("tensormaps_info", None))
if isinstance(fn, JITFunction) and "tensormaps_info" in metadata:
fn.tensormaps_info = metadata["tensormaps_info"]
ids_of_const_exprs = tuple(fn.constexprs) if isinstance(fn, JITFunction) else ()
ids = {
"ids_of_tensormaps": ids_of_tensormaps, "ids_of_folded_args": ids_of_folded_args, "ids_of_const_exprs":
ids_of_const_exprs
}
# cache manager
if is_cuda:
so_path = make_stub(name, signature, constants, ids, enable_warp_specialization=enable_warp_specialization)
else:
so_path = _device_backend.make_launcher_stub(name, signature, constants, ids)
# write-back metadata, if it didn't come from the cache
if metadata_path is None:
metadata_group[metadata_filename] = fn_cache_manager.put(json.dumps(metadata, default=vars), metadata_filename,
binary=False)
fn_cache_manager.put_group(metadata_filename, metadata_group)
# return handle to compiled kernel
return CompiledKernel(fn, so_path, metadata, asm)
class CompiledKernel:
# Hooks for external tools to monitor the execution of triton kernels
launch_enter_hook = None
launch_exit_hook = None
tensormap_manager = TensorMapManager()
def __init__(self, fn, so_path, metadata, asm):
# initialize launcher
import importlib.util
spec = importlib.util.spec_from_file_location("__triton_launcher", so_path)
mod = importlib.util.module_from_spec(spec)
self.fn = fn
spec.loader.exec_module(mod)
self.c_wrapper = getattr(mod, "launch")
# initialize metadata
self.shared = metadata["shared"]
self.num_warps = metadata["num_warps"]
if "threads_per_warp" in metadata:
self.threads_per_warp = metadata["threads_per_warp"]
self.num_ctas = metadata["num_ctas"]
self.num_stages = metadata["num_stages"]
self.clusterDims = metadata["clusterDims"]
if "tensormaps_info" in metadata:
self.tensormaps_info = metadata["tensormaps_info"]
self.constants = metadata["constants"]
self.device_type = metadata["device_type"]
self.device_backend = get_backend(self.device_type) if self.device_type not in ["cuda"] else None
# initialize asm dict
self.asm = asm
# binaries are lazily initialized
# because it involves doing runtime things
# (e.g., checking amount of shared memory on current device)
self.metadata = metadata
self.cu_module = None
self.cu_function = None
def _init_handles(self):
if self.cu_module is not None:
return
if self.device_type in ["cuda"]:
device = get_current_device()
bin_path = {driver.HIP: "hsaco_path", driver.CUDA: "cubin"}[driver.backend]
max_shared = driver.utils.get_device_properties(device)["max_shared_mem"]
fn_load_binary = driver.utils.load_binary
else:
assert self.device_backend
device = self.device_backend.get_current_device()
bin_path = self.device_backend.get_kernel_bin()
max_shared = self.device_backend.get_device_properties(device)["max_shared_mem"]
fn_load_binary = self.device_backend.get_load_binary_fn()
if self.shared > max_shared:
raise OutOfResources(self.shared, max_shared, "shared memory")
mod, func, n_regs, n_spills = fn_load_binary(self.metadata["name"], self.asm[bin_path], self.shared, device)
self.n_spills = n_spills
self.n_regs = n_regs
self.cu_module = mod
self.cu_function = func
def __getattribute__(self, name):
if name == 'c_wrapper':
self._init_handles()
return super().__getattribute__(name)
# capture args and expand args with cutensormap*
def assemble_tensormap_to_arg(self, args):
args_with_tma = list(args)
if hasattr(self, 'tensormaps_info'):
# tuple for hashable
args_ptr = tuple([arg.data_ptr() if hasattr(arg, 'data_ptr') else arg for arg in args])
for i, e in enumerate(self.tensormaps_info):
args_with_tma.append(CompiledKernel.tensormap_manager[(e, args_ptr)])
return args_with_tma
def __getitem__(self, grid):
self._init_handles()
def runner(*args, stream=None):
args_expand = self.assemble_tensormap_to_arg(args)
if stream is None:
if self.device_type in ["cuda"]:
stream = get_cuda_stream()
else:
stream = get_backend(self.device_type).get_stream(None)
self.c_wrapper(grid[0], grid[1], grid[2], self.num_warps, self.num_ctas, self.clusterDims[0],
self.clusterDims[1], self.clusterDims[2], self.shared, stream, self.cu_function,
CompiledKernel.launch_enter_hook, CompiledKernel.launch_exit_hook, self, *args_expand)
return runner