applied-ai-018's picture
Add files using upload-large-folder tool
4ba564c verified
raw
history blame
11 kB
from __future__ import annotations
from ..runtime.jit import jit
from . import core, math
# -----------------------
# Standard library
# -----------------------
@jit
def cdiv(x, div):
"""
Computes the ceiling division of :code:`x` by :code:`div`
:param x: the input number
:type x: Block
:param div: the divisor
:param div: Block
"""
return (x + div - 1) // div
@jit
@core._add_math_1arg_docstr("sigmoid")
def sigmoid(x):
return 1 / (1 + core.exp(-x))
@jit
@core._add_math_1arg_docstr("softmax")
def softmax(x, ieee_rounding=False):
z = x - max(x, 0)
num = core.exp(z)
den = sum(num, 0)
return core.fdiv(num, den, ieee_rounding)
@jit
def ravel(x):
"""
Returns a contiguous flattened view of :code:`x`.
:param x: the input tensor
:type x: Block
"""
return core.view(x, [x.numel])
@jit
def swizzle2d(i, j, size_i, size_j, size_g):
"""
Transforms indices of a row-major size_i*size_j matrix into those
of one where indices are row major for each group of size_j rows.
For example, for size_i = size_j = 4 and size_g = 2, it will transform
[[0 , 1 , 2 , 3 ],
[4 , 5 , 6 , 7 ],
[8 , 9 , 10, 11],
[12, 13, 14, 15]]
into
[[0, 2, 4 , 6 ],
[1, 3, 5 , 7 ],
[8, 10, 12, 14],
[9, 11, 13, 15]]
"""
# "unrolled index in array"
ij = i * size_j + j
# number of elements in `size_g` groups
# of `size_j` columns
size_gj = size_g * size_j
# index of the group in which (i,j) is
group_id = ij // size_gj
# row-index of the first element of this group
off_i = group_id * size_g
# last group may have fewer rows
size_g = minimum(size_i - off_i, size_g)
# new row and column indices
new_i = off_i + (ij % size_g)
new_j = (ij % size_gj) // size_g
return new_i, new_j
@jit
def zeros(shape, dtype):
"""
Returns a tensor filled with the scalar value 0 for the given :code:`shape` and :code:`dtype`.
:param shape: Shape of the new array, e.g., (8, 16) or (8, )
:type shape: tuple of ints
:param dtype: Data-type of the new array, e.g., :code:`tl.float16`
:type dtype: DType
"""
return core.full(shape, 0, dtype)
@jit
def zeros_like(input):
return zeros(input.shape, input.dtype)
@jit
def minimum(x, y):
"""
Computes the element-wise minimum of :code:`x` and :code:`y`.
:param input: the first input tensor
:type input: Block
:param other: the second input tensor
:type other: Block
"""
return math.min(x, y)
@jit
def maximum(x, y):
"""
Computes the element-wise maximum of :code:`x` and :code:`y`.
:param input: the first input tensor
:type input: Block
:param other: the second input tensor
:type other: Block
"""
return math.max(x, y)
# max and argmax
@jit
def _argmax_combine(value1, index1, value2, index2, tie_break_left):
if tie_break_left:
tie = value1 == value2 and index1 < index2
else:
tie = False
gt = value1 > value2 or tie
v_ret = core.where(gt, value1, value2)
i_ret = core.where(gt, index1, index2)
return v_ret, i_ret
@jit
def _argmax_combine_tie_break_left(value1, index1, value2, index2):
return _argmax_combine(value1, index1, value2, index2, True)
@jit
def _argmax_combine_tie_break_fast(value1, index1, value2, index2):
return _argmax_combine(value1, index1, value2, index2, False)
@jit
@core._add_reduction_docstr("maximum", return_indices_arg="return_indices",
tie_break_arg="return_indices_tie_break_left")
def max(input, axis=None, return_indices=False, return_indices_tie_break_left=True):
input = core._promote_reduction_input(input)
if return_indices:
if return_indices_tie_break_left:
return core._reduce_with_indices(input, axis, _argmax_combine_tie_break_left)
else:
return core._reduce_with_indices(input, axis, _argmax_combine_tie_break_fast)
else:
if core.constexpr(input.dtype.primitive_bitwidth) < core.constexpr(32):
if core.constexpr(input.dtype.is_floating()):
input = input.to(core.float32)
else:
assert input.dtype.is_integer_type()
input = input.to(core.int32)
return core.reduce(input, axis, maximum)
@jit
@core._add_reduction_docstr("maximum index", tie_break_arg="tie_break_left")
def argmax(input, axis, tie_break_left=True):
(_, ret) = max(input, axis, return_indices=True, return_indices_tie_break_left=tie_break_left)
return ret
# min and argmin
@jit
def _argmin_combine(value1, index1, value2, index2, tie_break_left):
if tie_break_left:
tie = value1 == value2 and index1 < index2
else:
tie = False
lt = value1 < value2 or tie
value_ret = core.where(lt, value1, value2)
index_ret = core.where(lt, index1, index2)
return value_ret, index_ret
@jit
def _argmin_combine_tie_break_left(value1, index1, value2, index2):
return _argmin_combine(value1, index1, value2, index2, True)
@jit
def _argmin_combine_tie_break_fast(value1, index1, value2, index2):
return _argmin_combine(value1, index1, value2, index2, False)
@jit
@core._add_reduction_docstr("minimum", return_indices_arg="return_indices",
tie_break_arg="return_indices_tie_break_left")
def min(input, axis=None, return_indices=False, return_indices_tie_break_left=True):
input = core._promote_reduction_input(input)
if return_indices:
if return_indices_tie_break_left:
return core._reduce_with_indices(input, axis, _argmin_combine_tie_break_left)
else:
return core._reduce_with_indices(input, axis, _argmin_combine_tie_break_fast)
else:
if core.constexpr(input.dtype.primitive_bitwidth) < 32:
if core.constexpr(input.dtype.is_floating()):
input = input.to(core.float32)
else:
assert input.dtype.is_integer_type()
input = input.to(core.int32)
return core.reduce(input, axis, minimum)
@jit
@core._add_reduction_docstr("minimum index", tie_break_arg="tie_break_left")
def argmin(input, axis, tie_break_left=True):
_, ret = min(input, axis, return_indices=True, return_indices_tie_break_left=tie_break_left)
return ret
@jit
def _sum_combine(a, b):
return a + b
# sum
@jit
@core._add_reduction_docstr("sum")
def sum(input, axis=None):
input = core._promote_reduction_input(input)
return core.reduce(input, axis, _sum_combine)
@jit
def _xor_combine(a, b):
return a ^ b
# xor sum
@core.builtin
@core._add_reduction_docstr("xor sum")
def xor_sum(input, axis=None, _builder=None, _generator=None):
scalar_ty = input.type.scalar
if not scalar_ty.is_int():
raise ValueError("xor_sum only supported for integers")
input = core._promote_reduction_input(input, _builder=_builder)
return core.reduce(input, axis, _xor_combine, _builder=_builder, _generator=_generator)
# cumsum
@jit
@core._add_scan_docstr("cumsum")
def cumsum(input, axis=0):
# todo rename this to a generic function name
input = core._promote_reduction_input(input)
return core.associative_scan(input, axis, _sum_combine)
# cumprod
@jit
def _prod_combine(a, b):
return a * b
@jit
@core._add_scan_docstr("cumprod")
def cumprod(input, axis=0):
# todo rename this to a generic function name
input = core._promote_reduction_input(input)
return core.associative_scan(input, axis, _prod_combine)
# sort
@jit
def _indicator(n_dims: core.constexpr, idx: core.constexpr, pos: core.constexpr):
core.static_assert(idx < n_dims)
core.static_assert((pos == 0) or (pos == 1))
y = core.arange(0, 2)
if pos == 0:
y = 1 - y
for n in core.static_range(0, n_dims):
if n != n_dims - 1 - idx:
y = core.expand_dims(y, n)
return y
@jit
def _take_slice(x, n_dims: core.constexpr, idx: core.constexpr, pos: core.constexpr, keep_dim: core.constexpr = True):
y = sum(x * _indicator(n_dims, idx, pos), n_dims - 1 - idx)
if keep_dim:
y = core.expand_dims(y, n_dims - 1 - idx)
return y
@jit
def _compare_and_swap(x, desc_mask, n_dims: core.constexpr, idx: core.constexpr):
l = _take_slice(x, n_dims, idx, 0)
r = _take_slice(x, n_dims, idx, 1)
x_int = x
l_int = l
r_int = r
if x.dtype.is_floating():
if core.constexpr(x.dtype.primitive_bitwidth) == 16:
dtype_int = core.int16
elif core.constexpr(x.dtype.primitive_bitwidth) == 32:
dtype_int = core.int32
elif core.constexpr(x.dtype.primitive_bitwidth) == 64:
dtype_int = core.int64
else:
raise ValueError("Unsupported dtype")
x_int = x.to(dtype_int, bitcast=True)
l_int = l.to(dtype_int, bitcast=True)
r_int = r.to(dtype_int, bitcast=True)
desc_mask = desc_mask.to(x_int.dtype)
zero = zeros_like(x_int)
y = x_int ^ core.where((l > r) ^ desc_mask, l_int ^ r_int, zero)
y = y.to(x.dtype, bitcast=True)
return y
@jit
def _bitonic_merge(x, n_dims: core.constexpr, active_dims: core.constexpr, order_type: core.constexpr):
'''
order_type 0 == ascending
order_type 1 == descending
order_type 2 == alternating
'''
core.static_assert(active_dims <= n_dims)
if order_type == 2:
desc_mask = _indicator(n_dims, active_dims, 1)
else:
desc_mask = order_type
for i in core.static_range(active_dims):
x = _compare_and_swap(x, desc_mask, n_dims, active_dims - 1 - i)
return x
def _log2(i: core.constexpr):
log2 = 0
n = i.value
while n > 1:
n >>= 1
log2 += 1
return core.constexpr(log2)
def _is_power_of_two(i: core.constexpr):
n = i.value
return core.constexpr((n & (n - 1)) == 0 and n != 0)
def _unwrap_if_constexpr(o):
return o.value if isinstance(o, core.constexpr) else o
def _get_sort_dim(dim, shape):
dim = _unwrap_if_constexpr(dim)
shape = _unwrap_if_constexpr(shape)
if dim is None:
dim = len(shape) - 1
assert dim == len(shape) - 1, "Currently only support sorting on the last dimension"
return core.constexpr(dim)
@jit
def sort(x, dim=None, descending: core.constexpr = 0):
core.static_assert(_is_power_of_two(x.shape[_get_sort_dim(dim, x.shape)]))
core.static_assert(_is_power_of_two(x.numel))
# reshape the tensor to have all dimensions be 2.
# TODO: We shouldn't have to change the dimensions not sorted.
y = core.reshape(x, [2] * _log2(x.numel))
for i in core.static_range(1, _log2(x.shape[_get_sort_dim(dim, x.shape)]) + 1):
y = _bitonic_merge(y, _log2(x.numel), i, (descending if
(i == _log2(x.shape[_get_sort_dim(dim, x.shape)])) else 2))
x = core.reshape(y, x.shape)
return x