peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/triton
/compiler
/make_launcher.py
import hashlib | |
import os | |
import tempfile | |
from ..common import _build | |
from ..common.backend import get_cuda_version_key | |
from ..common.build import is_hip | |
from ..runtime.cache import get_cache_manager | |
from .utils import generate_cu_signature | |
# ----- stub -------- | |
def make_so_cache_key(version_hash, signature, constants, ids, **kwargs): | |
# Get unique key for the compiled code | |
signature = {k: 'ptr' if v[0] == '*' else v for k, v in signature.items()} | |
key = f"{version_hash}-{''.join(signature.values())}-{constants}-{ids}" | |
for kw in kwargs: | |
key = f"{key}-{kwargs.get(kw)}" | |
key = hashlib.md5(key.encode("utf-8")).hexdigest() | |
return key | |
def make_stub(name, signature, constants, ids, **kwargs): | |
# name of files that are cached | |
so_cache_key = make_so_cache_key(get_cuda_version_key(), signature, constants, ids, **kwargs) | |
so_cache_manager = get_cache_manager(so_cache_key) | |
so_name = f"{name}.so" | |
# retrieve stub from cache if it exists | |
cache_path = so_cache_manager.get_file(so_name) | |
if cache_path is None: | |
with tempfile.TemporaryDirectory() as tmpdir: | |
src = generate_launcher(constants, signature, ids) | |
src_path = os.path.join(tmpdir, "main.c") | |
with open(src_path, "w") as f: | |
f.write(src) | |
so = _build(name, src_path, tmpdir) | |
with open(so, "rb") as f: | |
return so_cache_manager.put(f.read(), so_name, binary=True) | |
else: | |
return cache_path | |
# ----- source code generation -------- | |
def ty_to_cpp(ty): | |
if ty[0] == '*': | |
return "hipDeviceptr_t" if is_hip() else "CUdeviceptr" | |
return { | |
"i1": "int32_t", | |
"i8": "int8_t", | |
"i16": "int16_t", | |
"i32": "int32_t", | |
"i64": "int64_t", | |
"u32": "uint32_t", | |
"u64": "uint64_t", | |
"fp16": "float", | |
"bf16": "float", | |
"fp32": "float", | |
"f32": "float", | |
"fp64": "double", | |
}[ty] | |
def generate_launcher(constants, signature, ids): | |
# Record the end of regular arguments; | |
# subsequent arguments are architecture-specific descriptors, such as tensor descriptors for CUDA. | |
signature, desc_start_idx = generate_cu_signature(constants, signature, ids) | |
arg_decls = ', '.join(f"{ty_to_cpp(ty)} arg{i}" for i, ty in signature.items()) | |
def _extracted_type(ty): | |
if ty[0] == '*': | |
return "PyObject*" | |
return { | |
'i1': 'int32_t', | |
'i32': 'int32_t', | |
'i64': 'int64_t', | |
'u32': 'uint32_t', | |
'u64': 'uint64_t', | |
'fp16': 'float', | |
'bf16': 'float', | |
'fp32': 'float', | |
'f32': 'float', | |
'fp64': 'double', | |
}[ty] | |
def format_of(ty): | |
return { | |
"PyObject*": "O", | |
"float": "f", | |
"double": "d", | |
"long": "l", | |
"uint32_t": "I", | |
"int32_t": "i", | |
"uint64_t": "K", | |
"int64_t": "L", | |
}[ty] | |
format = "iiiiiiiiiKKOOO" + ''.join([format_of(_extracted_type(ty)) for ty in signature.values()]) | |
# generate glue code | |
folded_without_constexprs = [c for c in ids['ids_of_folded_args'] if c not in ids['ids_of_const_exprs']] | |
params = [ | |
i for i in signature.keys() | |
if i >= desc_start_idx or (i not in constants and i not in folded_without_constexprs) | |
] | |
src = f""" | |
#include \"cuda.h\" | |
#include <stdbool.h> | |
#include <Python.h> | |
#include <dlfcn.h> | |
static inline void gpuAssert(CUresult code, const char *file, int line) | |
{{ | |
if (code != CUDA_SUCCESS) | |
{{ | |
const char* prefix = "Triton Error [CUDA]: "; | |
const char* str; | |
cuGetErrorString(code, &str); | |
char err[1024] = {{0}}; | |
strcat(err, prefix); | |
strcat(err, str); | |
PyGILState_STATE gil_state; | |
gil_state = PyGILState_Ensure(); | |
PyErr_SetString(PyExc_RuntimeError, err); | |
PyGILState_Release(gil_state); | |
}} | |
}} | |
#define CUDA_CHECK(ans) {{ gpuAssert((ans), __FILE__, __LINE__); }} | |
typedef CUresult (*cuLaunchKernelEx_t)(const CUlaunchConfig* config, CUfunction f, void** kernelParams, void** extra); | |
static cuLaunchKernelEx_t getLaunchKernelExHandle() {{ | |
// Open the shared library | |
void* handle = dlopen("libcuda.so", RTLD_LAZY); | |
if (!handle) {{ | |
PyErr_SetString(PyExc_RuntimeError, "Failed to open libcuda.so"); | |
return NULL; | |
}} | |
// Clear any existing error | |
dlerror(); | |
cuLaunchKernelEx_t cuLaunchKernelExHandle = (cuLaunchKernelEx_t)dlsym(handle, "cuLaunchKernelEx"); | |
// Check for errors | |
const char *dlsym_error = dlerror(); | |
if (dlsym_error) {{ | |
PyErr_SetString(PyExc_RuntimeError, "Failed to retrieve cuLaunchKernelEx from libcuda.so"); | |
return NULL; | |
}} | |
return cuLaunchKernelExHandle; | |
}} | |
static void _launch(int gridX, int gridY, int gridZ, int num_warps, int num_ctas, int clusterDimX, int clusterDimY, int clusterDimZ, int shared_memory, CUstream stream, CUfunction function{', ' + arg_decls if len(arg_decls) > 0 else ''}) {{ | |
void *params[] = {{ {', '.join(f"&arg{i}" for i in params)} }}; | |
if (gridX*gridY*gridZ > 0) {{ | |
if (num_ctas == 1) {{ | |
CUDA_CHECK(cuLaunchKernel(function, gridX, gridY, gridZ, 32*num_warps, 1, 1, shared_memory, stream, params, 0)); | |
}} else {{ | |
CUlaunchAttribute launchAttr[2]; | |
launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION; | |
launchAttr[0].value.clusterDim.x = clusterDimX; | |
launchAttr[0].value.clusterDim.y = clusterDimY; | |
launchAttr[0].value.clusterDim.z = clusterDimZ; | |
launchAttr[1].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE; | |
launchAttr[1].value.clusterSchedulingPolicyPreference = CU_CLUSTER_SCHEDULING_POLICY_SPREAD; | |
CUlaunchConfig config; | |
config.gridDimX = gridX * clusterDimX; | |
config.gridDimY = gridY * clusterDimY; | |
config.gridDimZ = gridZ * clusterDimZ; | |
config.blockDimX = 32 * num_warps; | |
config.blockDimY = 1; | |
config.blockDimZ = 1; | |
config.sharedMemBytes = shared_memory; | |
config.hStream = stream; | |
config.attrs = launchAttr; | |
config.numAttrs = 2; | |
static cuLaunchKernelEx_t cuLaunchKernelExHandle = NULL; | |
if (cuLaunchKernelExHandle == NULL) {{ | |
cuLaunchKernelExHandle = getLaunchKernelExHandle(); | |
}} | |
CUDA_CHECK(cuLaunchKernelExHandle(&config, function, params, 0)); | |
}} | |
}} | |
}} | |
typedef struct _DevicePtrInfo {{ | |
CUdeviceptr dev_ptr; | |
bool valid; | |
}} DevicePtrInfo; | |
static inline DevicePtrInfo getPointer(PyObject *obj, int idx) {{ | |
DevicePtrInfo ptr_info; | |
ptr_info.dev_ptr = 0; | |
ptr_info.valid = true; | |
if (PyLong_Check(obj)) {{ | |
ptr_info.dev_ptr = PyLong_AsUnsignedLongLong(obj); | |
return ptr_info; | |
}} | |
if (obj == Py_None) {{ | |
// valid nullptr | |
return ptr_info; | |
}} | |
PyObject *ptr = PyObject_GetAttrString(obj, "data_ptr"); | |
if(ptr){{ | |
PyObject *empty_tuple = PyTuple_New(0); | |
PyObject *ret = PyObject_Call(ptr, empty_tuple, NULL); | |
Py_DECREF(empty_tuple); | |
Py_DECREF(ptr); | |
if (!PyLong_Check(ret)) {{ | |
PyErr_SetString(PyExc_TypeError, "data_ptr method of Pointer object must return 64-bit int"); | |
ptr_info.valid = false; | |
return ptr_info; | |
}} | |
ptr_info.dev_ptr = PyLong_AsUnsignedLongLong(ret); | |
if(!ptr_info.dev_ptr) | |
return ptr_info; | |
uint64_t dev_ptr; | |
int status = cuPointerGetAttribute(&dev_ptr, CU_POINTER_ATTRIBUTE_DEVICE_POINTER, ptr_info.dev_ptr); | |
if (status == CUDA_ERROR_INVALID_VALUE) {{ | |
PyErr_Format(PyExc_ValueError, | |
"Pointer argument (at %d) cannot be accessed from Triton (cpu tensor?)", idx); | |
ptr_info.valid = false; | |
}} | |
ptr_info.dev_ptr = dev_ptr; | |
Py_DECREF(ret); // Thanks ChatGPT! | |
return ptr_info; | |
}} | |
PyErr_SetString(PyExc_TypeError, "Pointer argument must be either uint64 or have data_ptr method"); | |
ptr_info.valid = false; | |
return ptr_info; | |
}} | |
static PyObject* launch(PyObject* self, PyObject* args) {{ | |
int gridX, gridY, gridZ; | |
uint64_t _stream; | |
uint64_t _function; | |
int num_warps; | |
int num_ctas; | |
int clusterDimX; | |
int clusterDimY; | |
int clusterDimZ; | |
int shared_memory; | |
PyObject *launch_enter_hook = NULL; | |
PyObject *launch_exit_hook = NULL; | |
PyObject *compiled_kernel = NULL; | |
{' '.join([f"{_extracted_type(ty)} _arg{i}; " for i, ty in signature.items()])} | |
if(!PyArg_ParseTuple(args, \"{format}\", &gridX, &gridY, &gridZ, &num_warps, &num_ctas, &clusterDimX, &clusterDimY, &clusterDimZ, &shared_memory, &_stream, &_function, &launch_enter_hook, &launch_exit_hook, &compiled_kernel{', ' + ', '.join(f"&_arg{i}" for i, ty in signature.items()) if len(signature) > 0 else ''})) {{ | |
return NULL; | |
}} | |
if (launch_enter_hook != Py_None && !PyObject_CallObject(launch_enter_hook, args)) {{ | |
return NULL; | |
}} | |
// raise exception asap | |
{"; ".join([f"DevicePtrInfo ptr_info{i} = getPointer(_arg{i}, {i}); if (!ptr_info{i}.valid) return NULL;" if ty[0] == "*" else "" for i, ty in signature.items()])}; | |
Py_BEGIN_ALLOW_THREADS; | |
_launch(gridX, gridY, gridZ, num_warps, num_ctas, clusterDimX, clusterDimY, clusterDimZ, shared_memory, (CUstream)_stream, (CUfunction)_function{', ' + ', '.join(f"ptr_info{i}.dev_ptr" if ty[0]=="*" else f"_arg{i}"for i, ty in signature.items()) if len(signature) > 0 else ''}); | |
Py_END_ALLOW_THREADS; | |
if (PyErr_Occurred()) {{ | |
return NULL; | |
}} | |
if (launch_exit_hook != Py_None && !PyObject_CallObject(launch_exit_hook, args)) {{ | |
return NULL; | |
}} | |
// return None | |
Py_INCREF(Py_None); | |
return Py_None; | |
}} | |
static PyMethodDef ModuleMethods[] = {{ | |
{{"launch", launch, METH_VARARGS, "Entry point for all kernels with this signature"}}, | |
{{NULL, NULL, 0, NULL}} // sentinel | |
}}; | |
static struct PyModuleDef ModuleDef = {{ | |
PyModuleDef_HEAD_INIT, | |
\"__triton_launcher\", | |
NULL, //documentation | |
-1, //size | |
ModuleMethods | |
}}; | |
PyMODINIT_FUNC PyInit___triton_launcher(void) {{ | |
PyObject *m = PyModule_Create(&ModuleDef); | |
if(m == NULL) {{ | |
return NULL; | |
}} | |
PyModule_AddFunctions(m, ModuleMethods); | |
return m; | |
}} | |
""" | |
return src | |