applied-ai-018's picture
Add files using upload-large-folder tool
fab61cf verified
raw
history blame
10.1 kB
import hashlib
import os
import tempfile
from ..common import _build
from ..common.backend import get_cuda_version_key
from ..common.build import is_hip
from ..runtime.cache import get_cache_manager
from .utils import generate_cu_signature
# ----- stub --------
def make_so_cache_key(version_hash, signature, constants, ids, **kwargs):
# Get unique key for the compiled code
signature = {k: 'ptr' if v[0] == '*' else v for k, v in signature.items()}
key = f"{version_hash}-{''.join(signature.values())}-{constants}-{ids}"
for kw in kwargs:
key = f"{key}-{kwargs.get(kw)}"
key = hashlib.md5(key.encode("utf-8")).hexdigest()
return key
def make_stub(name, signature, constants, ids, **kwargs):
# name of files that are cached
so_cache_key = make_so_cache_key(get_cuda_version_key(), signature, constants, ids, **kwargs)
so_cache_manager = get_cache_manager(so_cache_key)
so_name = f"{name}.so"
# retrieve stub from cache if it exists
cache_path = so_cache_manager.get_file(so_name)
if cache_path is None:
with tempfile.TemporaryDirectory() as tmpdir:
src = generate_launcher(constants, signature, ids)
src_path = os.path.join(tmpdir, "main.c")
with open(src_path, "w") as f:
f.write(src)
so = _build(name, src_path, tmpdir)
with open(so, "rb") as f:
return so_cache_manager.put(f.read(), so_name, binary=True)
else:
return cache_path
# ----- source code generation --------
def ty_to_cpp(ty):
if ty[0] == '*':
return "hipDeviceptr_t" if is_hip() else "CUdeviceptr"
return {
"i1": "int32_t",
"i8": "int8_t",
"i16": "int16_t",
"i32": "int32_t",
"i64": "int64_t",
"u32": "uint32_t",
"u64": "uint64_t",
"fp16": "float",
"bf16": "float",
"fp32": "float",
"f32": "float",
"fp64": "double",
}[ty]
def generate_launcher(constants, signature, ids):
# Record the end of regular arguments;
# subsequent arguments are architecture-specific descriptors, such as tensor descriptors for CUDA.
signature, desc_start_idx = generate_cu_signature(constants, signature, ids)
arg_decls = ', '.join(f"{ty_to_cpp(ty)} arg{i}" for i, ty in signature.items())
def _extracted_type(ty):
if ty[0] == '*':
return "PyObject*"
return {
'i1': 'int32_t',
'i32': 'int32_t',
'i64': 'int64_t',
'u32': 'uint32_t',
'u64': 'uint64_t',
'fp16': 'float',
'bf16': 'float',
'fp32': 'float',
'f32': 'float',
'fp64': 'double',
}[ty]
def format_of(ty):
return {
"PyObject*": "O",
"float": "f",
"double": "d",
"long": "l",
"uint32_t": "I",
"int32_t": "i",
"uint64_t": "K",
"int64_t": "L",
}[ty]
format = "iiiiiiiiiKKOOO" + ''.join([format_of(_extracted_type(ty)) for ty in signature.values()])
# generate glue code
folded_without_constexprs = [c for c in ids['ids_of_folded_args'] if c not in ids['ids_of_const_exprs']]
params = [
i for i in signature.keys()
if i >= desc_start_idx or (i not in constants and i not in folded_without_constexprs)
]
src = f"""
#include \"cuda.h\"
#include <stdbool.h>
#include <Python.h>
#include <dlfcn.h>
static inline void gpuAssert(CUresult code, const char *file, int line)
{{
if (code != CUDA_SUCCESS)
{{
const char* prefix = "Triton Error [CUDA]: ";
const char* str;
cuGetErrorString(code, &str);
char err[1024] = {{0}};
strcat(err, prefix);
strcat(err, str);
PyGILState_STATE gil_state;
gil_state = PyGILState_Ensure();
PyErr_SetString(PyExc_RuntimeError, err);
PyGILState_Release(gil_state);
}}
}}
#define CUDA_CHECK(ans) {{ gpuAssert((ans), __FILE__, __LINE__); }}
typedef CUresult (*cuLaunchKernelEx_t)(const CUlaunchConfig* config, CUfunction f, void** kernelParams, void** extra);
static cuLaunchKernelEx_t getLaunchKernelExHandle() {{
// Open the shared library
void* handle = dlopen("libcuda.so", RTLD_LAZY);
if (!handle) {{
PyErr_SetString(PyExc_RuntimeError, "Failed to open libcuda.so");
return NULL;
}}
// Clear any existing error
dlerror();
cuLaunchKernelEx_t cuLaunchKernelExHandle = (cuLaunchKernelEx_t)dlsym(handle, "cuLaunchKernelEx");
// Check for errors
const char *dlsym_error = dlerror();
if (dlsym_error) {{
PyErr_SetString(PyExc_RuntimeError, "Failed to retrieve cuLaunchKernelEx from libcuda.so");
return NULL;
}}
return cuLaunchKernelExHandle;
}}
static void _launch(int gridX, int gridY, int gridZ, int num_warps, int num_ctas, int clusterDimX, int clusterDimY, int clusterDimZ, int shared_memory, CUstream stream, CUfunction function{', ' + arg_decls if len(arg_decls) > 0 else ''}) {{
void *params[] = {{ {', '.join(f"&arg{i}" for i in params)} }};
if (gridX*gridY*gridZ > 0) {{
if (num_ctas == 1) {{
CUDA_CHECK(cuLaunchKernel(function, gridX, gridY, gridZ, 32*num_warps, 1, 1, shared_memory, stream, params, 0));
}} else {{
CUlaunchAttribute launchAttr[2];
launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION;
launchAttr[0].value.clusterDim.x = clusterDimX;
launchAttr[0].value.clusterDim.y = clusterDimY;
launchAttr[0].value.clusterDim.z = clusterDimZ;
launchAttr[1].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE;
launchAttr[1].value.clusterSchedulingPolicyPreference = CU_CLUSTER_SCHEDULING_POLICY_SPREAD;
CUlaunchConfig config;
config.gridDimX = gridX * clusterDimX;
config.gridDimY = gridY * clusterDimY;
config.gridDimZ = gridZ * clusterDimZ;
config.blockDimX = 32 * num_warps;
config.blockDimY = 1;
config.blockDimZ = 1;
config.sharedMemBytes = shared_memory;
config.hStream = stream;
config.attrs = launchAttr;
config.numAttrs = 2;
static cuLaunchKernelEx_t cuLaunchKernelExHandle = NULL;
if (cuLaunchKernelExHandle == NULL) {{
cuLaunchKernelExHandle = getLaunchKernelExHandle();
}}
CUDA_CHECK(cuLaunchKernelExHandle(&config, function, params, 0));
}}
}}
}}
typedef struct _DevicePtrInfo {{
CUdeviceptr dev_ptr;
bool valid;
}} DevicePtrInfo;
static inline DevicePtrInfo getPointer(PyObject *obj, int idx) {{
DevicePtrInfo ptr_info;
ptr_info.dev_ptr = 0;
ptr_info.valid = true;
if (PyLong_Check(obj)) {{
ptr_info.dev_ptr = PyLong_AsUnsignedLongLong(obj);
return ptr_info;
}}
if (obj == Py_None) {{
// valid nullptr
return ptr_info;
}}
PyObject *ptr = PyObject_GetAttrString(obj, "data_ptr");
if(ptr){{
PyObject *empty_tuple = PyTuple_New(0);
PyObject *ret = PyObject_Call(ptr, empty_tuple, NULL);
Py_DECREF(empty_tuple);
Py_DECREF(ptr);
if (!PyLong_Check(ret)) {{
PyErr_SetString(PyExc_TypeError, "data_ptr method of Pointer object must return 64-bit int");
ptr_info.valid = false;
return ptr_info;
}}
ptr_info.dev_ptr = PyLong_AsUnsignedLongLong(ret);
if(!ptr_info.dev_ptr)
return ptr_info;
uint64_t dev_ptr;
int status = cuPointerGetAttribute(&dev_ptr, CU_POINTER_ATTRIBUTE_DEVICE_POINTER, ptr_info.dev_ptr);
if (status == CUDA_ERROR_INVALID_VALUE) {{
PyErr_Format(PyExc_ValueError,
"Pointer argument (at %d) cannot be accessed from Triton (cpu tensor?)", idx);
ptr_info.valid = false;
}}
ptr_info.dev_ptr = dev_ptr;
Py_DECREF(ret); // Thanks ChatGPT!
return ptr_info;
}}
PyErr_SetString(PyExc_TypeError, "Pointer argument must be either uint64 or have data_ptr method");
ptr_info.valid = false;
return ptr_info;
}}
static PyObject* launch(PyObject* self, PyObject* args) {{
int gridX, gridY, gridZ;
uint64_t _stream;
uint64_t _function;
int num_warps;
int num_ctas;
int clusterDimX;
int clusterDimY;
int clusterDimZ;
int shared_memory;
PyObject *launch_enter_hook = NULL;
PyObject *launch_exit_hook = NULL;
PyObject *compiled_kernel = NULL;
{' '.join([f"{_extracted_type(ty)} _arg{i}; " for i, ty in signature.items()])}
if(!PyArg_ParseTuple(args, \"{format}\", &gridX, &gridY, &gridZ, &num_warps, &num_ctas, &clusterDimX, &clusterDimY, &clusterDimZ, &shared_memory, &_stream, &_function, &launch_enter_hook, &launch_exit_hook, &compiled_kernel{', ' + ', '.join(f"&_arg{i}" for i, ty in signature.items()) if len(signature) > 0 else ''})) {{
return NULL;
}}
if (launch_enter_hook != Py_None && !PyObject_CallObject(launch_enter_hook, args)) {{
return NULL;
}}
// raise exception asap
{"; ".join([f"DevicePtrInfo ptr_info{i} = getPointer(_arg{i}, {i}); if (!ptr_info{i}.valid) return NULL;" if ty[0] == "*" else "" for i, ty in signature.items()])};
Py_BEGIN_ALLOW_THREADS;
_launch(gridX, gridY, gridZ, num_warps, num_ctas, clusterDimX, clusterDimY, clusterDimZ, shared_memory, (CUstream)_stream, (CUfunction)_function{', ' + ', '.join(f"ptr_info{i}.dev_ptr" if ty[0]=="*" else f"_arg{i}"for i, ty in signature.items()) if len(signature) > 0 else ''});
Py_END_ALLOW_THREADS;
if (PyErr_Occurred()) {{
return NULL;
}}
if (launch_exit_hook != Py_None && !PyObject_CallObject(launch_exit_hook, args)) {{
return NULL;
}}
// return None
Py_INCREF(Py_None);
return Py_None;
}}
static PyMethodDef ModuleMethods[] = {{
{{"launch", launch, METH_VARARGS, "Entry point for all kernels with this signature"}},
{{NULL, NULL, 0, NULL}} // sentinel
}};
static struct PyModuleDef ModuleDef = {{
PyModuleDef_HEAD_INIT,
\"__triton_launcher\",
NULL, //documentation
-1, //size
ModuleMethods
}};
PyMODINIT_FUNC PyInit___triton_launcher(void) {{
PyObject *m = PyModule_Create(&ModuleDef);
if(m == NULL) {{
return NULL;
}}
PyModule_AddFunctions(m, ModuleMethods);
return m;
}}
"""
return src