peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/triton
/compiler
/utils.py
# Copyright (c) 2023 NVIDIA Corporation & Affiliates. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining | |
# a copy of this software and associated documentation files | |
# (the "Software"), to deal in the Software without restriction, | |
# including without limitation the rights to use, copy, modify, merge, | |
# publish, distribute, sublicense, and/or sell copies of the Software, | |
# and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be | |
# included in all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
from __future__ import annotations | |
from ..runtime import driver | |
def generate_cu_signature(constants, signature, ids): | |
# CUtensorMap*s are always the last arguments | |
num_regular_signatures = max(signature.keys()) + 1 if len(signature) > 0 else 0 | |
if ids["ids_of_tensormaps"] is not None: | |
for i, _ in enumerate(ids["ids_of_tensormaps"]): | |
signature[num_regular_signatures + i] = '*CUtensorMap' | |
return signature, num_regular_signatures | |
def dummy_tensormaps_info(n=2): | |
ret = [] | |
for i in range(n): | |
ret.append(InfoFromBackendForTensorMap(dummy=True)) | |
return ret | |
def parse_tma_info(infos, ids_of_folded_args): | |
ret = [] | |
for info in infos: | |
e = InfoFromBackendForTensorMap(infos=info) | |
e.ids_of_folded_args = ids_of_folded_args | |
ret.append(e) | |
return ret | |
def get_tma_mapping(tensormaps_info): | |
ret = {} | |
if tensormaps_info is not None: | |
for i, e in enumerate(tensormaps_info): | |
ret.update(e.get_address_tma_mapping()) | |
else: | |
ret = None | |
return ret | |
def get_ids_of_tensormaps(tensormaps_info): | |
ret = None | |
# order is not relevant | |
if tensormaps_info is not None: | |
ret = [e.get_id_of_tensormap() for e in tensormaps_info] | |
return ret | |
# decouple information for tensormap from backend | |
# please ignore the naming style, xx_yy is compiler.py style, xxYy is to comply with cuda tensormap style | |
# mixing style is for readability | |
class InfoFromBackendForTensorMap: | |
N = 2 | |
n = 0 | |
ntma = 0 | |
def __init__(self, infos=None, dummy=False): | |
self.dummy = dummy | |
self.ids_of_folded_args = () | |
if not dummy and not isinstance(infos, dict): | |
self._extract_info_from_backend(infos) | |
elif not dummy and isinstance(infos, dict): | |
self._extract_info_from_dict(infos) | |
elif dummy: | |
self._dummy() | |
def _dummy(self): | |
assert InfoFromBackendForTensorMap.n < InfoFromBackendForTensorMap.N | |
if InfoFromBackendForTensorMap.n == 0: | |
self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"] | |
self.tensorRank = 4 | |
self.globalAddressArgIdx = 0 | |
self.globalStridesArgIdx = [7, 6, -1, -1] | |
self.globalDimsArgIdx = [5, 3, -1, -1] | |
self.boxDims = [16, 64, 1, 1] | |
self.elementStrides = [1, 1, 1, 1] | |
self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"] | |
self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"] | |
self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"] | |
self.TMADescArgIdx = 11 | |
self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"] | |
InfoFromBackendForTensorMap.n += 1 | |
return | |
if InfoFromBackendForTensorMap.n == 1: | |
self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"] | |
self.tensorRank = 4 | |
self.globalAddressArgIdx = 1 | |
self.globalStridesArgIdx = [7, 6, -1, -1] | |
self.globalDimsArgIdx = [5, 3, -1, -1] | |
self.boxDims = [16, 64, 1, 1] | |
self.elementStrides = [1, 1, 1, 1] | |
self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"] | |
self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"] | |
self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"] | |
self.TMADescArgIdx = 12 | |
self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"] | |
InfoFromBackendForTensorMap.n += 1 | |
return | |
def _extract_info_from_backend(self, infos): | |
self.tensorDataType = infos.tensorDataType | |
self.tensorRank = infos.tensorRank | |
self.globalAddressArgIdx = infos.globalAddressArgIdx | |
self.globalStridesArgIdx = infos.globalStridesArgIdx | |
self.globalDimsArgIdx = infos.globalDimsArgIdx | |
self.boxDims = infos.boxDims | |
self.elementStrides = infos.elementStrides | |
self.interleave = infos.interleave | |
self.swizzle = infos.swizzle | |
self.l2Promotion = infos.l2Promotion | |
self.oobFill = infos.oobFill | |
self.TMADescArgIdx = infos.TMADescArgIdx | |
# dict could be from cached metadata json | |
def _extract_info_from_dict(self, infos: dict): | |
self.tensorDataType = infos['tensorDataType'] | |
self.tensorRank = infos['tensorRank'] | |
self.globalAddressArgIdx = infos['globalAddressArgIdx'] | |
self.globalStridesArgIdx = infos['globalStridesArgIdx'] | |
self.globalDimsArgIdx = infos['globalDimsArgIdx'] | |
self.boxDims = infos['boxDims'] | |
self.elementStrides = infos['elementStrides'] | |
self.interleave = infos['interleave'] | |
self.swizzle = infos['swizzle'] | |
self.l2Promotion = infos['l2Promotion'] | |
self.oobFill = infos['oobFill'] | |
self.TMADescArgIdx = infos['TMADescArgIdx'] | |
def get_address_tma_mapping(self): | |
return {self.globalAddressArgIdx: self.TMADescArgIdx + len(self.ids_of_folded_args)} | |
def get_id_of_tensormap(self): | |
return self.TMADescArgIdx + len(self.ids_of_folded_args) | |
def getTMADescArgIdx(self): | |
return self.TMADescArgIdx | |
# dtype:cuda.CUtensorMapDataType | int | |
def bytes_from_type(self, dtype): | |
return { | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT8"]: 1, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT16"]: 2, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT32"]: 4, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT32"]: 4, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT64"]: 8, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT64"]: 8, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]: 2, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32"]: 4, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT64"]: 8, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_BFLOAT16"]: 2, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ"]: 4, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32"]: 4, | |
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ"]: 4 | |
}[dtype] | |
def getTensorMapDataType(self): | |
return self.tensorDataType | |
def getInterleave(self): | |
return self.interleave | |
def getSwizzle(self): | |
return self.swizzle | |
def getL2Promotion(self): | |
return self.l2Promotion | |
def getOobFill(self): | |
return self.oobFill | |
def getTensorRank(self): | |
return self.tensorRank | |
def getBoxDims(self): | |
return self.boxDims | |
def getElementStrides(self): | |
return self.elementStrides | |
def getGlobalAddress(self, args): | |
idx = self.getOriginArgIdx(self.globalAddressArgIdx, args) | |
return args[idx] | |
# args, captured kernel args in runtime | |
def getGlobalDims(self, args): | |
shape = [] | |
for e in self.globalDimsArgIdx: | |
t = 1 | |
# < 0 means folded arg or constant (-1 - value) | |
# -1 means extended dim which is 1, -2 means folded arg with constant 1 (-1 - value) | |
if e == -1: | |
t = 1 | |
elif e < 0 and e != -1: | |
t = -e - 1 | |
else: | |
idx = self.getOriginArgIdx(e, args) | |
t = args[idx] | |
shape.append(t) | |
return shape | |
def getGlobalStrides(self, args): | |
t_globalDims = [int(e) for e in self.getGlobalDims(args)] | |
t_globalStridesArgIdx = self.globalStridesArgIdx.copy() | |
strides_in_elements = [] | |
# todo: get all stride from backend even in extended mode | |
for i in range(self.tensorRank): | |
t = 1 | |
if t_globalStridesArgIdx[i] == -1: | |
for ii in range(i): | |
t *= t_globalDims[ii] | |
# -2 means the sride in arguments is folded constant 1, we don't use 1 because it can not be distinguished from index 1 | |
elif t_globalStridesArgIdx[i] < 0: | |
t = -1 - t_globalStridesArgIdx[i] | |
else: | |
new_idx = self.getOriginArgIdx(t_globalStridesArgIdx[i], args) | |
t = args[new_idx] | |
strides_in_elements.append(t) | |
strides_in_elements = strides_in_elements[1:] | |
strides_in_bytes = [e * self.bytes_from_type(self.tensorDataType) for e in strides_in_elements] | |
return strides_in_bytes | |
def getOriginArgIdx(self, idx, args): | |
if self.ids_of_folded_args: | |
ids_before_folding_arg = [i for i in range(len(args)) if i not in self.ids_of_folded_args] | |
return ids_before_folding_arg[idx] | |
else: | |
return idx | |
def tensormap(self, args): | |
return driver.utils.cuTensorMapEncodeTiled( | |
self.getTensorMapDataType(), | |
self.getTensorRank(), | |
self.getGlobalAddress(args), | |
self.getGlobalDims(args), | |
self.getGlobalStrides(args), | |
self.getBoxDims(), | |
self.getElementStrides(), | |
self.getInterleave(), | |
self.getSwizzle(), | |
self.getL2Promotion(), | |
self.getOobFill(), | |
) | |
# make hashable to use as partial key in cache | |
def __hash__(self): | |
return hash((self.ids_of_folded_args, self.globalAddressArgIdx, tuple(self.globalDimsArgIdx), | |
tuple(self.globalStridesArgIdx), self.tensorDataType, self.tensorRank, tuple(self.boxDims), | |
tuple(self.elementStrides), self.interleave, self.swizzle, self.l2Promotion, self.oobFill)) | |
def __eq__(self, other): | |
if not isinstance(other, self.__class__): | |
return False | |
return (self.ids_of_folded_args, self.globalAddressArgIdx, self.globalDimsArgIdx, self.globalStridesArgIdx, | |
self.tensorDataType, self.tensorRank, self.boxDims, self.elementStrides, self.interleave, self.swizzle, | |
self.l2Promotion, | |
self.oobFill) == (other.ids_of_folded_args, other.globalAddressArgIdx, other.globalDimsArgIdx, | |
other.globalStridesArgIdx, other.tensorDataType, other.tensorRank, other.boxDims, | |
other.elementStrides, other.interleave, other.swizzle, other.l2Promotion, | |
other.oobFill) | |
class TensorMapManager: | |
def __init__(self): | |
self.tensormaps_device = {} | |
def __getitem__(self, key: tuple): | |
if key in self.tensormaps_device: | |
return int(self.tensormaps_device[key]) | |
else: | |
(e, args) = key | |
t_tensormap = e.tensormap(args) | |
TENSORMAP_SIZE_IN_BYTES = 128 | |
t_tensormap_device = driver.utils.cuMemAlloc(TENSORMAP_SIZE_IN_BYTES) | |
driver.utils.cuMemcpyHtoD(t_tensormap_device, t_tensormap, TENSORMAP_SIZE_IN_BYTES) | |
self.tensormaps_device[key] = t_tensormap_device | |
return int(self.tensormaps_device[key]) | |
def __del__(self): | |
for _, v in self.tensormaps_device.items(): | |
driver.utils.cuMemFree(v) | |