applied-ai-018's picture
Add files using upload-large-folder tool
fab61cf verified
raw
history blame
12.7 kB
# Copyright (c) 2023 NVIDIA Corporation & Affiliates. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import annotations
from ..runtime import driver
def generate_cu_signature(constants, signature, ids):
# CUtensorMap*s are always the last arguments
num_regular_signatures = max(signature.keys()) + 1 if len(signature) > 0 else 0
if ids["ids_of_tensormaps"] is not None:
for i, _ in enumerate(ids["ids_of_tensormaps"]):
signature[num_regular_signatures + i] = '*CUtensorMap'
return signature, num_regular_signatures
def dummy_tensormaps_info(n=2):
ret = []
for i in range(n):
ret.append(InfoFromBackendForTensorMap(dummy=True))
return ret
def parse_tma_info(infos, ids_of_folded_args):
ret = []
for info in infos:
e = InfoFromBackendForTensorMap(infos=info)
e.ids_of_folded_args = ids_of_folded_args
ret.append(e)
return ret
def get_tma_mapping(tensormaps_info):
ret = {}
if tensormaps_info is not None:
for i, e in enumerate(tensormaps_info):
ret.update(e.get_address_tma_mapping())
else:
ret = None
return ret
def get_ids_of_tensormaps(tensormaps_info):
ret = None
# order is not relevant
if tensormaps_info is not None:
ret = [e.get_id_of_tensormap() for e in tensormaps_info]
return ret
# decouple information for tensormap from backend
# please ignore the naming style, xx_yy is compiler.py style, xxYy is to comply with cuda tensormap style
# mixing style is for readability
class InfoFromBackendForTensorMap:
N = 2
n = 0
ntma = 0
def __init__(self, infos=None, dummy=False):
self.dummy = dummy
self.ids_of_folded_args = ()
if not dummy and not isinstance(infos, dict):
self._extract_info_from_backend(infos)
elif not dummy and isinstance(infos, dict):
self._extract_info_from_dict(infos)
elif dummy:
self._dummy()
def _dummy(self):
assert InfoFromBackendForTensorMap.n < InfoFromBackendForTensorMap.N
if InfoFromBackendForTensorMap.n == 0:
self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]
self.tensorRank = 4
self.globalAddressArgIdx = 0
self.globalStridesArgIdx = [7, 6, -1, -1]
self.globalDimsArgIdx = [5, 3, -1, -1]
self.boxDims = [16, 64, 1, 1]
self.elementStrides = [1, 1, 1, 1]
self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"]
self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"]
self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"]
self.TMADescArgIdx = 11
self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"]
InfoFromBackendForTensorMap.n += 1
return
if InfoFromBackendForTensorMap.n == 1:
self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]
self.tensorRank = 4
self.globalAddressArgIdx = 1
self.globalStridesArgIdx = [7, 6, -1, -1]
self.globalDimsArgIdx = [5, 3, -1, -1]
self.boxDims = [16, 64, 1, 1]
self.elementStrides = [1, 1, 1, 1]
self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"]
self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"]
self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"]
self.TMADescArgIdx = 12
self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"]
InfoFromBackendForTensorMap.n += 1
return
def _extract_info_from_backend(self, infos):
self.tensorDataType = infos.tensorDataType
self.tensorRank = infos.tensorRank
self.globalAddressArgIdx = infos.globalAddressArgIdx
self.globalStridesArgIdx = infos.globalStridesArgIdx
self.globalDimsArgIdx = infos.globalDimsArgIdx
self.boxDims = infos.boxDims
self.elementStrides = infos.elementStrides
self.interleave = infos.interleave
self.swizzle = infos.swizzle
self.l2Promotion = infos.l2Promotion
self.oobFill = infos.oobFill
self.TMADescArgIdx = infos.TMADescArgIdx
# dict could be from cached metadata json
def _extract_info_from_dict(self, infos: dict):
self.tensorDataType = infos['tensorDataType']
self.tensorRank = infos['tensorRank']
self.globalAddressArgIdx = infos['globalAddressArgIdx']
self.globalStridesArgIdx = infos['globalStridesArgIdx']
self.globalDimsArgIdx = infos['globalDimsArgIdx']
self.boxDims = infos['boxDims']
self.elementStrides = infos['elementStrides']
self.interleave = infos['interleave']
self.swizzle = infos['swizzle']
self.l2Promotion = infos['l2Promotion']
self.oobFill = infos['oobFill']
self.TMADescArgIdx = infos['TMADescArgIdx']
def get_address_tma_mapping(self):
return {self.globalAddressArgIdx: self.TMADescArgIdx + len(self.ids_of_folded_args)}
def get_id_of_tensormap(self):
return self.TMADescArgIdx + len(self.ids_of_folded_args)
def getTMADescArgIdx(self):
return self.TMADescArgIdx
# dtype:cuda.CUtensorMapDataType | int
def bytes_from_type(self, dtype):
return {
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT8"]: 1,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT16"]: 2,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT64"]: 8,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT64"]: 8,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]: 2,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT64"]: 8,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_BFLOAT16"]: 2,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ"]: 4
}[dtype]
def getTensorMapDataType(self):
return self.tensorDataType
def getInterleave(self):
return self.interleave
def getSwizzle(self):
return self.swizzle
def getL2Promotion(self):
return self.l2Promotion
def getOobFill(self):
return self.oobFill
def getTensorRank(self):
return self.tensorRank
def getBoxDims(self):
return self.boxDims
def getElementStrides(self):
return self.elementStrides
def getGlobalAddress(self, args):
idx = self.getOriginArgIdx(self.globalAddressArgIdx, args)
return args[idx]
# args, captured kernel args in runtime
def getGlobalDims(self, args):
shape = []
for e in self.globalDimsArgIdx:
t = 1
# < 0 means folded arg or constant (-1 - value)
# -1 means extended dim which is 1, -2 means folded arg with constant 1 (-1 - value)
if e == -1:
t = 1
elif e < 0 and e != -1:
t = -e - 1
else:
idx = self.getOriginArgIdx(e, args)
t = args[idx]
shape.append(t)
return shape
def getGlobalStrides(self, args):
t_globalDims = [int(e) for e in self.getGlobalDims(args)]
t_globalStridesArgIdx = self.globalStridesArgIdx.copy()
strides_in_elements = []
# todo: get all stride from backend even in extended mode
for i in range(self.tensorRank):
t = 1
if t_globalStridesArgIdx[i] == -1:
for ii in range(i):
t *= t_globalDims[ii]
# -2 means the sride in arguments is folded constant 1, we don't use 1 because it can not be distinguished from index 1
elif t_globalStridesArgIdx[i] < 0:
t = -1 - t_globalStridesArgIdx[i]
else:
new_idx = self.getOriginArgIdx(t_globalStridesArgIdx[i], args)
t = args[new_idx]
strides_in_elements.append(t)
strides_in_elements = strides_in_elements[1:]
strides_in_bytes = [e * self.bytes_from_type(self.tensorDataType) for e in strides_in_elements]
return strides_in_bytes
def getOriginArgIdx(self, idx, args):
if self.ids_of_folded_args:
ids_before_folding_arg = [i for i in range(len(args)) if i not in self.ids_of_folded_args]
return ids_before_folding_arg[idx]
else:
return idx
def tensormap(self, args):
return driver.utils.cuTensorMapEncodeTiled(
self.getTensorMapDataType(),
self.getTensorRank(),
self.getGlobalAddress(args),
self.getGlobalDims(args),
self.getGlobalStrides(args),
self.getBoxDims(),
self.getElementStrides(),
self.getInterleave(),
self.getSwizzle(),
self.getL2Promotion(),
self.getOobFill(),
)
# make hashable to use as partial key in cache
def __hash__(self):
return hash((self.ids_of_folded_args, self.globalAddressArgIdx, tuple(self.globalDimsArgIdx),
tuple(self.globalStridesArgIdx), self.tensorDataType, self.tensorRank, tuple(self.boxDims),
tuple(self.elementStrides), self.interleave, self.swizzle, self.l2Promotion, self.oobFill))
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return (self.ids_of_folded_args, self.globalAddressArgIdx, self.globalDimsArgIdx, self.globalStridesArgIdx,
self.tensorDataType, self.tensorRank, self.boxDims, self.elementStrides, self.interleave, self.swizzle,
self.l2Promotion,
self.oobFill) == (other.ids_of_folded_args, other.globalAddressArgIdx, other.globalDimsArgIdx,
other.globalStridesArgIdx, other.tensorDataType, other.tensorRank, other.boxDims,
other.elementStrides, other.interleave, other.swizzle, other.l2Promotion,
other.oobFill)
class TensorMapManager:
def __init__(self):
self.tensormaps_device = {}
def __getitem__(self, key: tuple):
if key in self.tensormaps_device:
return int(self.tensormaps_device[key])
else:
(e, args) = key
t_tensormap = e.tensormap(args)
TENSORMAP_SIZE_IN_BYTES = 128
t_tensormap_device = driver.utils.cuMemAlloc(TENSORMAP_SIZE_IN_BYTES)
driver.utils.cuMemcpyHtoD(t_tensormap_device, t_tensormap, TENSORMAP_SIZE_IN_BYTES)
self.tensormaps_device[key] = t_tensormap_device
return int(self.tensormaps_device[key])
def __del__(self):
for _, v in self.tensormaps_device.items():
driver.utils.cuMemFree(v)