applied-ai-018's picture
Add files using upload-large-folder tool
4ba564c verified
raw
history blame
6.57 kB
from ..runtime.jit import jit
from . import core as tl
from . import standard
N_ROUNDS_DEFAULT = 10 # Default number of rounds for philox
# -------------------
# randint
# -------------------
@jit
def philox_impl(c0, c1, c2, c3, k0, k1, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Run `n_rounds` rounds of Philox for state (c0, c1, c2, c3) and key (k0, k1).
"""
if c0.dtype == tl.uint32:
PHILOX_KEY_A: tl.constexpr = 0x9E3779B9
PHILOX_KEY_B: tl.constexpr = 0xBB67AE85
PHILOX_ROUND_A: tl.constexpr = 0xD2511F53
PHILOX_ROUND_B: tl.constexpr = 0xCD9E8D57
else:
tl.static_assert(c0.dtype == tl.uint64, "dtype not supported in philox_impl")
PHILOX_KEY_A: tl.constexpr = 0x9E3779B97F4A7C15
PHILOX_KEY_B: tl.constexpr = 0xBB67AE8584CAA73B
PHILOX_ROUND_A: tl.constexpr = 0xD2E7470EE14C6C93
PHILOX_ROUND_B: tl.constexpr = 0xCA5A826395121157
for _ in tl.static_range(n_rounds):
# for _ in range(n_rounds):
# update random state
A = PHILOX_ROUND_A
B = PHILOX_ROUND_B
_c0, _c2 = c0, c2
c0 = tl.umulhi(B, _c2) ^ c1 ^ k0
c2 = tl.umulhi(A, _c0) ^ c3 ^ k1
c1 = B * _c2
c3 = A * _c0
# raise key
k0 = k0 + PHILOX_KEY_A
k1 = k1 + PHILOX_KEY_B
return c0, c1, c2, c3
@jit
def philox(seed, c0, c1, c2, c3, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
seed = seed.to(tl.uint64)
if tl.constexpr(c0.dtype.primitive_bitwidth) == 32:
int_dtype = tl.uint32
seed_hi = ((seed >> 32) & 0xffffffff).to(tl.uint32)
seed_lo = (seed & 0xffffffff).to(tl.uint32)
else:
tl.static_assert(tl.constexpr(c0.dtype.primitive_bitwidth) == 64, "bitwidth not supported in philox")
int_dtype = tl.uint64
seed_hi = 0
seed_lo = seed
c0 = c0.to(int_dtype, bitcast=True)
c1 = c1.to(int_dtype, bitcast=True)
c2 = c2.to(int_dtype, bitcast=True)
c3 = c3.to(int_dtype, bitcast=True)
return philox_impl(c0, c1, c2, c3, seed_lo, seed_hi, n_rounds)
@jit
def randint(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block, returns a single
block of random :code:`int32`.
If you need multiple streams of random numbers,
using `randint4x` is likely to be faster than calling `randint` 4 times.
:param seed: The seed for generating random numbers.
:param offset: The offsets to generate random numbers for.
"""
ret, _, _, _ = randint4x(seed, offset, n_rounds)
return ret
@jit
def randint4x(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block, returns four
blocks of random :code:`int32`.
This is the maximally efficient entry point
to Triton's Philox pseudo-random number generator.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
# _0 = tl.zeros(offset.shape, offset.dtype)
_0 = offset * 0
return philox(seed, offset, _0, _0, _0, n_rounds)
# -------------------
# rand
# -------------------
# @jit
# def uint32_to_uniform_float(x):
# """
# Numerically stable function to convert a random uint32 into a random float uniformly sampled in [0, 1).
# """
# two_to_the_minus_32: tl.constexpr = 2.328306e-10
# return x * two_to_the_minus_32
@jit
def uint_to_uniform_float(x):
"""
Numerically stable function to convert a random uint into a random float uniformly sampled in [0, 1).
"""
# TODO: fix frontend issues and cleanup
# conditions can be simplified
# scale is ((2**23 - 1) / 2**23) * 2**(N_BITS - 1)
if tl.constexpr(x.dtype == tl.uint32) or tl.constexpr(x.dtype == tl.int32):
# maximum value such that `MAX_INT * scale < 1.0` (with float rounding)
x = x.to(tl.int32, bitcast=True)
scale = 4.6566127342e-10
else:
tl.static_assert(tl.constexpr(x.dtype == tl.uint64) or tl.constexpr(x.dtype == tl.int64))
x = x.to(tl.int64, bitcast=True)
scale = 1.0842020432385337e-19
x = tl.where(x < 0, -x - 1, x)
return x * scale
@jit
def rand(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a block of random :code:`float32` in :math:`U(0, 1)`.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
source = randint(seed, offset, n_rounds)
return uint_to_uniform_float(source)
@jit
def rand4x(seed, offsets, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offsets` block,
returns 4 blocks of random :code:`float32` in :math:`U(0, 1)`.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
i1, i2, i3, i4 = randint4x(seed, offsets, n_rounds)
u1 = uint_to_uniform_float(i1)
u2 = uint_to_uniform_float(i2)
u3 = uint_to_uniform_float(i3)
u4 = uint_to_uniform_float(i4)
return u1, u2, u3, u4
# -------------------
# randn
# -------------------
@jit
def pair_uniform_to_normal(u1, u2):
"""Box-Muller transform"""
u1 = standard.maximum(1.0e-7, u1)
th = 6.283185307179586 * u2
r = tl.sqrt(-2.0 * tl.log(u1))
return r * tl.cos(th), r * tl.sin(th)
@jit
def randn(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a block of random :code:`float32` in :math:`\\mathcal{N}(0, 1)`.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
i1, i2, _, _ = randint4x(seed, offset, n_rounds)
u1 = uint_to_uniform_float(i1)
u2 = uint_to_uniform_float(i2)
n1, _ = pair_uniform_to_normal(u1, u2)
return n1
@jit
def randn4x(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns 4 blocks of random :code:`float32` in :math:`\\mathcal{N}(0, 1)`.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
u1, u2, u3, u4 = rand4x(seed, offset, n_rounds)
n1, n2 = pair_uniform_to_normal(u1, u2)
n3, n4 = pair_uniform_to_normal(u3, u4)
return n1, n2, n3, n4