applied-ai-018's picture
Add files using upload-large-folder tool
9f700b4 verified
raw
history blame
8.24 kB
import torch
from ... import jit
from ... import language as tl
from ... import next_power_of_2
def num_warps(n):
if n <= 128:
return 1
if n <= 256:
return 2
if n <= 512:
return 4
if n <= 4096:
return 8
return 16
@jit
def _blocksparse_softmax_fwd(Out, A, stride_xz, LUT, #
R, extent, stride_zr, stride_hr, # relative attention
scale, is_causal, #
ROW_SIZE: tl.constexpr, #
BLOCK_SIZE: tl.constexpr, #
IS_DENSE: tl.constexpr #
):
h = tl.program_id(0)
m = tl.program_id(1)
z = tl.program_id(2)
# create index ranges
hm = h * tl.num_programs(1) + m
lane_n = tl.arange(0, ROW_SIZE) % BLOCK_SIZE
block_n = tl.arange(0, ROW_SIZE) // BLOCK_SIZE
# extract information from LUT
header = LUT + (hm // BLOCK_SIZE) * 2
size = tl.load(header + 0)
offset = tl.load(header + 1)
# pointer offset
off_a = z * stride_xz
off_a += (offset + block_n) * BLOCK_SIZE * BLOCK_SIZE # block indx
off_a += (m % BLOCK_SIZE) * BLOCK_SIZE # row indx
# do not need to read column indices in the dense case
if IS_DENSE:
ns = tl.arange(0, ROW_SIZE)
else:
off_lut = offset + 2 * tl.num_programs(0) * tl.num_programs(1) // BLOCK_SIZE
start_n = tl.load(LUT + off_lut + block_n, mask=block_n < size, other=0)
ns = start_n * BLOCK_SIZE + lane_n
# load X
mask = block_n < size
a = tl.load(A + off_a + lane_n, mask=mask, other=-float("inf"))
a = a.to(tl.float32)
# compute
out = a
out *= scale
# apply relative attention
if R is not None:
R += z * stride_zr
R += h * stride_hr
off_lo = (extent - m - 1) + ns
mask_lo = (off_lo >= 0) & (off_lo < extent)
rel_logits = tl.load(R + m * extent + off_lo, mask=mask_lo, other=0.0)
out += rel_logits
out = out.to(tl.float32)
# apply causal mask
out = tl.where((ns > m) & is_causal, -float("inf"), out)
# computation
out = tl.softmax(out)
# write-back
tl.store(Out + off_a + lane_n, out, mask=mask)
@jit
def _blocksparse_softmax_bwd(DA, stride_zdx, #
DOut, stride_zdout, #
Out, stride_zout, #
scale, #
LUT, #
DR, extent, stride_zr, stride_hr, stride_er, #
is_causal, #
ROW_SIZE: tl.constexpr, #
BLOCK_SIZE: tl.constexpr, #
IS_DENSE: tl.constexpr):
h = tl.program_id(0)
m = tl.program_id(1)
z = tl.program_id(2)
# create index ranges
hm = h * tl.num_programs(1) + m
lane_n = tl.arange(0, ROW_SIZE) % BLOCK_SIZE
block_n = tl.arange(0, ROW_SIZE) // BLOCK_SIZE
# extract information from LUT
header = LUT + (hm // BLOCK_SIZE) * 2
size = tl.load(header + 0)
offset = tl.load(header + 1)
# row-col offset
off_mn = (offset + block_n) * BLOCK_SIZE * BLOCK_SIZE
off_mn += (m % BLOCK_SIZE) * BLOCK_SIZE
mask = block_n < size
# pointers
As = Out + z * stride_zout + off_mn
DOuts = DOut + z * stride_zdout + off_mn
# do not need to read column indices in the dense case
if IS_DENSE:
ns = tl.arange(0, ROW_SIZE)
else:
off_lut = offset + 2 * tl.num_programs(0) * tl.num_programs(1) // BLOCK_SIZE
start_n = tl.load(LUT + off_lut + block_n, mask=mask, other=0)
ns = start_n * BLOCK_SIZE + lane_n
# load data
a = tl.load(As + lane_n, mask=mask, other=0.0)
a = a.to(tl.float32)
dout = tl.load(DOuts + lane_n, mask=mask, other=0.0)
dout = dout.to(tl.float32)
# compute
a = tl.where((ns > m) & is_causal & (a == a), 0., a)
da = a * (dout - tl.sum(a * dout, 0))
# apply relative attention
if DR is not None:
DR += z * stride_zr
DR += h * stride_hr
off_lo = (extent - m - 1) + ns
mask_lo = (off_lo >= 0) & (off_lo < extent) & mask
tl.store(DR + m * extent + off_lo, da, mask=mask_lo)
da = da * scale
# convert da
# write-back
DAs = DA + z * stride_zdx + off_mn
tl.store(DAs + lane_n, da, mask=mask)
class _softmax(torch.autograd.Function):
@staticmethod
def make_lut(layout, block, device):
_empty = torch.tensor([], dtype=torch.int64, device=layout.device)
sizes = _empty.clone()
# sizes along rows
for h in range(layout.shape[0]):
sizes = torch.cat((sizes, layout[h, :, :].sum(-1)))
total_sizes = sizes * block
# offsets in block format
offsets = torch.zeros_like(sizes)
offsets[1:] = torch.cumsum(sizes[:-1], dim=0)
# block indices
columns = layout.nonzero(as_tuple=False)[:, 2]
header = torch.stack((sizes, offsets), dim=1).view(-1)
lut = torch.cat((header, columns)).type(torch.int32).to(device)
return lut, int(total_sizes.max())
@staticmethod
def forward(ctx, a, scale, rel_logits, is_causal, spdims, block, lut, maxlut, is_dense):
if scale is not None and isinstance(scale, torch.Tensor):
assert scale.device.type == "cpu"
scale = scale.item()
M = a.shape[0]
grid = [spdims[0], spdims[1] * block, M]
rel_shape = (1, 1, 1, 1) if rel_logits is None else rel_logits.shape
rel_strides = (1, 1, 1, 1) if rel_logits is None else rel_logits.stride()
# enqueue kernel
out = torch.empty_like(a)
_blocksparse_softmax_fwd[grid](
out, a, a.stride(0), lut, #
rel_logits, rel_shape[-1], rel_strides[0], rel_strides[1], # relative attn#
scale, #
is_causal, #
BLOCK_SIZE=block, #
ROW_SIZE=next_power_of_2(maxlut), #
IS_DENSE=is_dense, #
num_warps=num_warps(maxlut) #
)
# save to context
# ctx.mark_dirty(x)
ctx.save_for_backward(out, lut)
ctx.spdims = spdims
ctx.block = block
ctx.maxlut = maxlut
ctx.scale = scale
ctx.rel_shape = rel_shape
ctx.rel_strides = rel_strides
ctx.rel_dtype = a.dtype
ctx.is_dense = is_dense
ctx.is_causal = is_causal
return out
@staticmethod
def backward(ctx, dout):
# retrieve from context
out, lut = ctx.saved_tensors
# relative logits gradients
dr = None
if ctx.needs_input_grad[3]:
dr = torch.zeros(ctx.rel_shape, dtype=ctx.rel_dtype, device=out.device)
# run kernel
M = out.shape[0]
grid = (ctx.spdims[0], ctx.spdims[1] * ctx.block, M)
da = torch.empty_like(dout)
_blocksparse_softmax_bwd[grid](
da, da.stride(0), #
dout, dout.stride(0), #
out, out.stride(0), #
ctx.scale, #
lut, #
dr, ctx.rel_shape[-1], ctx.rel_strides[0], ctx.rel_strides[1], ctx.rel_strides[2], #
ctx.is_causal, #
BLOCK_SIZE=ctx.block, #
ROW_SIZE=next_power_of_2(ctx.maxlut), #
IS_DENSE=ctx.is_dense, #
num_warps=num_warps(ctx.maxlut) #
)
return (da, None, None, dr, None, None, None, None, None, None, None, None, None, None, None, None, None, None)
class softmax:
def __init__(self, layout, block, device, is_dense=False):
self.spdims = layout.shape
self.layout = layout
self.block = block
self.lut, self.maxlut = _softmax.make_lut(self.layout, self.block, device)
self.is_dense = is_dense
def __call__(self, a, *, scale=1.0, rel_logits=None, is_causal=False):
if rel_logits is not None and rel_logits.dtype != a.dtype:
raise ValueError(f"relative position embedding must be {a.dtype}")
a = _softmax.apply(a, scale, rel_logits, is_causal, self.spdims, self.block, self.lut, self.maxlut,
self.is_dense)
return a