applied-ai-018's picture
Add files using upload-large-folder tool
9f700b4 verified
raw
history blame
17.9 kB
"""
Fused Attention
===============
This is a Triton implementation of the Flash Attention algorithm
(see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf)
Sequence Parallel implementation inspired by HazyResearch
(see https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attn_triton.py)
"""
import torch
from .. import cdiv, jit
from .. import language as tl
@jit
def _fwd_kernel(Q, K, V, sm_scale, #
L, #
Out, #
stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vn, stride_vk, #
stride_oz, stride_oh, stride_om, stride_on, #
Z, H, N_CTX, #
Z_H_N_CTX, #
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, #
BLOCK_N: tl.constexpr, #
IS_CAUSAL: tl.constexpr #
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
qvk_offset = off_hz * stride_qh
vk_offset = qvk_offset // stride_qm
K_block_ptr = tl.make_block_ptr(
base=K,
shape=(BLOCK_DMODEL, Z_H_N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, vk_offset),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1),
)
V_block_ptr = tl.make_block_ptr(
base=V,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_vn, stride_vk),
offsets=(vk_offset, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0),
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# credits to: Adam P. Goucher (https://github.com/apgoucher):
# scale sm_scale by 1/log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
qk_scale = sm_scale * 1.44269504
# load q: it will stay in SRAM throughout
offs_k = tl.arange(0, BLOCK_DMODEL)
Q_ptrs = Q + qvk_offset + offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk
q = tl.load(Q_ptrs)
q = (q * qk_scale).to(K.dtype.element_ty)
lo = 0
hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
for start_n in range(lo, hi, BLOCK_N):
# -- load k, v --
k = tl.load(K_block_ptr)
v = tl.load(V_block_ptr)
# -- compute qk ---
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
if IS_CAUSAL:
qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
qk += tl.dot(q, k, allow_tf32=True)
# -- compute scaling constant ---
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
alpha = tl.math.exp2(m_i - m_i_new)
p = tl.math.exp2(qk - m_i_new[:, None])
# -- scale and update acc --
acc *= alpha[:, None]
acc += tl.dot(p.to(V.dtype.element_ty), v, allow_tf32=True)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
# update pointers
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
# write back l and m
acc = acc / l_i[:, None]
l_ptrs = L + off_hz * N_CTX + offs_m
tl.store(l_ptrs, m_i + tl.math.log2(l_i))
# write back O
O_block_ptr = tl.make_block_ptr(
base=Out,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_om, stride_on),
offsets=(vk_offset + start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
# O_ptrs = Out + qvk_offset + offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk
tl.store(O_block_ptr, acc.to(K.dtype.element_ty))
@jit
def _bwd_preprocess(
Out,
DO,
Delta,
BLOCK_M: tl.constexpr,
D_HEAD: tl.constexpr,
):
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
off_n = tl.arange(0, D_HEAD)
# load
o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
# compute
delta = tl.sum(o * do, axis=1)
# write-back
tl.store(Delta + off_m, delta)
@jit
def _bwd_kernel_one_col_block(Q, K, V, sm_scale, qk_scale, #
Out, DO, #
DQ, DK, DV, #
L, #
D, #
Q_block_ptr, K_block_ptr, V_block_ptr, #
DO_block_ptr, DQ_block_ptr, DK_block_ptr, DV_block_ptr, #
stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vn, stride_vk, #
Z, H, N_CTX, #
off_h, off_z, off_hz, start_n, num_block, #
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, #
BLOCK_N: tl.constexpr, #
SEQUENCE_PARALLEL: tl.constexpr, #
CAUSAL: tl.constexpr, #
MMA_V3: tl.constexpr #
):
if CAUSAL:
lo = start_n * BLOCK_M
else:
lo = 0
Q_offset = (off_z * stride_qz + off_h * stride_qh) // stride_qm
DQ_offset = off_z * stride_qz + off_h * stride_qh
K_offset = (off_z * stride_kz + off_h * stride_kh) // stride_kn
V_offset = (off_z * stride_vz + off_h * stride_vh) // stride_vn
if SEQUENCE_PARALLEL:
DQ_offset += stride_dqa.to(tl.int64) * start_n
DQ_offset = DQ_offset // stride_qm
Q_block_ptr = tl.advance(Q_block_ptr, (lo + Q_offset, 0))
K_block_ptr = tl.advance(K_block_ptr, (start_n * BLOCK_M + K_offset, 0))
V_block_ptr = tl.advance(V_block_ptr, (start_n * BLOCK_M + V_offset, 0))
DO_block_ptr = tl.advance(DO_block_ptr, (lo + Q_offset, 0))
DQ_block_ptr = tl.advance(DQ_block_ptr, (lo + DQ_offset, 0))
DK_block_ptr = tl.advance(DK_block_ptr, (start_n * BLOCK_M + K_offset, 0))
DV_block_ptr = tl.advance(DV_block_ptr, (start_n * BLOCK_M + V_offset, 0))
# initialize row/col offsets
offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M)
offs_m = tl.arange(0, BLOCK_N)
# pointer to row-wise quantities in value-like data
D_ptrs = D + off_hz * N_CTX
l_ptrs = L + off_hz * N_CTX
# initialize dv amd dk
dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# k and v stay in SRAM throughout
k = tl.load(K_block_ptr)
v = tl.load(V_block_ptr)
# loop over rows
for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
offs_m_curr = start_m + offs_m
# load q, k, v, do on-chip
q = tl.load(Q_block_ptr)
# recompute p = softmax(qk, dim=-1).T
# NOTE: `do` is pre-divided by `l`; no normalization here
if CAUSAL:
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), float(0.0), float("-inf"))
else:
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, tl.trans(k))
qk *= qk_scale
l_i = tl.load(l_ptrs + offs_m_curr)
p = tl.math.exp2(qk - l_i[:, None])
# compute dv
do = tl.load(DO_block_ptr)
dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do, allow_tf32=True)
# compute dp = dot(v, do)
Di = tl.load(D_ptrs + offs_m_curr)
# dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
dp = tl.dot(do, tl.trans(v), allow_tf32=True)
# compute ds = p * (dp - delta[:, None])
ds = (p * (dp - Di[:, None]) * sm_scale).to(Q.dtype.element_ty)
# compute dk = dot(ds.T, q)
dk += tl.dot(tl.trans(ds), q, allow_tf32=True)
# compute dq
if not SEQUENCE_PARALLEL:
dq = tl.load(DQ_block_ptr)
dq += tl.dot(ds, k, allow_tf32=True)
tl.store(DQ_block_ptr, dq.to(Q.dtype.element_ty))
elif SEQUENCE_PARALLEL:
if MMA_V3:
dq = tl.dot(ds, k, allow_tf32=True)
else:
# not work with mma v3, becuase M % 64 != 0
dq = tl.trans(tl.dot(tl.trans(k), tl.trans(ds), allow_tf32=True))
tl.store(DQ_block_ptr, dq.to(Q.dtype.element_ty))
# increment pointers
DQ_block_ptr = tl.advance(DQ_block_ptr, (BLOCK_M, 0))
Q_block_ptr = tl.advance(Q_block_ptr, (BLOCK_M, 0))
DO_block_ptr = tl.advance(DO_block_ptr, (BLOCK_M, 0))
# write-back
tl.store(DV_block_ptr, dv.to(V.dtype.element_ty))
tl.store(DK_block_ptr, dk.to(K.dtype.element_ty))
@jit
def _bwd_kernel(Q, K, V, sm_scale, #
Out, DO, #
DQ, DK, DV, #
L, #
D, #
stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vn, stride_vk, #
Z, H, N_CTX, #
Z_H_N_CTX, #
SQ_Z_H_N_CTX, #
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, #
BLOCK_N: tl.constexpr, #
SEQUENCE_PARALLEL: tl.constexpr, #
CAUSAL: tl.constexpr, #
MMA_V3: tl.constexpr #
):
qk_scale = sm_scale * 1.44269504
off_hz = tl.program_id(0)
off_z = off_hz // H
off_h = off_hz % H
Q_block_ptr = tl.make_block_ptr(
base=Q,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=K,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_kn, stride_kk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
V_block_ptr = tl.make_block_ptr(
base=V,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_vn, stride_vk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
DO_block_ptr = tl.make_block_ptr(
base=DO,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
if SEQUENCE_PARALLEL:
DQ_block_ptr = tl.make_block_ptr(
base=DQ,
shape=(SQ_Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
else:
DQ_block_ptr = tl.make_block_ptr(
base=DQ,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
DK_block_ptr = tl.make_block_ptr(
base=DK,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_kn, stride_kk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
DV_block_ptr = tl.make_block_ptr(
base=DV,
shape=(Z_H_N_CTX, BLOCK_DMODEL),
strides=(stride_vn, stride_vk),
offsets=(0, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
num_block_n = tl.cdiv(N_CTX, BLOCK_N)
if not SEQUENCE_PARALLEL:
for start_n in range(0, num_block_n):
_bwd_kernel_one_col_block(Q, K, V, sm_scale, qk_scale, Out, DO, #
DQ, DK, DV, #
L, #
D, #
Q_block_ptr, K_block_ptr, V_block_ptr, #
DO_block_ptr, DQ_block_ptr, DK_block_ptr, DV_block_ptr, #
stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vn, stride_vk, #
Z, H, N_CTX, #
off_h, off_z, off_hz, start_n, num_block_n, #
BLOCK_M=BLOCK_M, BLOCK_DMODEL=BLOCK_DMODEL, #
BLOCK_N=BLOCK_N, #
SEQUENCE_PARALLEL=SEQUENCE_PARALLEL, #
CAUSAL=CAUSAL, #
MMA_V3=MMA_V3 #
)
else:
start_n = tl.program_id(1)
_bwd_kernel_one_col_block(Q, K, V, sm_scale, qk_scale, Out, DO, #
DQ, DK, DV, #
L, #
D, #
Q_block_ptr, K_block_ptr, V_block_ptr, #
DO_block_ptr, DQ_block_ptr, DK_block_ptr, DV_block_ptr, #
stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk, #
stride_kz, stride_kh, stride_kn, stride_kk, #
stride_vz, stride_vh, stride_vn, stride_vk, #
Z, H, N_CTX, #
off_h, off_z, off_hz, start_n, num_block_n, #
BLOCK_M=BLOCK_M, BLOCK_DMODEL=BLOCK_DMODEL, #
BLOCK_N=BLOCK_N, #
SEQUENCE_PARALLEL=SEQUENCE_PARALLEL, #
CAUSAL=CAUSAL, #
MMA_V3=MMA_V3 #
)
class _attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, causal, sm_scale, sequence_parallel=False):
# only support for Ampere now
capability = torch.cuda.get_device_capability()
if capability[0] < 8:
raise RuntimeError("Flash attention currently only supported for compute capability >= 80")
BLOCK_M = 128
BLOCK_N = 64
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
assert Lk in {16, 32, 64, 128}
o = torch.empty_like(q)
grid = (cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
num_warps = 4 if Lk <= 64 else 8
_fwd_kernel[grid](
q, k, v, sm_scale, #
L, #
o, #
q.stride(0), q.stride(1), q.stride(2), q.stride(3), #
k.stride(0), k.stride(1), k.stride(2), k.stride(3), #
v.stride(0), v.stride(1), v.stride(2), v.stride(3), #
o.stride(0), o.stride(1), o.stride(2), o.stride(3), #
q.shape[0], q.shape[1], q.shape[2], #
q.shape[0] * q.shape[1] * q.shape[2], #
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=Lk, #
IS_CAUSAL=causal, #
num_warps=num_warps, #
num_stages=4 #
)
ctx.save_for_backward(q, k, v, o, L)
ctx.grid = grid
ctx.sm_scale = sm_scale
ctx.BLOCK_DMODEL = Lk
ctx.causal = causal
ctx.sequence_parallel = sequence_parallel
return o
@staticmethod
def backward(ctx, do):
capability = torch.cuda.get_device_capability()
MMA_V3 = capability[0] >= 9
BLOCK = 128
q, k, v, o, L = ctx.saved_tensors
sequence_parallel = ctx.sequence_parallel
seq_len_kv = k.shape[2]
do = do.contiguous()
if sequence_parallel:
replicas = cdiv(seq_len_kv, BLOCK)
new_dq_shape = (replicas, ) + q.shape
dq = torch.zeros(new_dq_shape, device=q.device, dtype=q.dtype)
else:
dq = torch.zeros_like(q, dtype=q.dtype)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
delta = torch.empty_like(L)
_bwd_preprocess[(cdiv(q.shape[2], BLOCK) * ctx.grid[1], )](
o,
do,
delta,
BLOCK_M=BLOCK,
D_HEAD=ctx.BLOCK_DMODEL,
)
_bwd_kernel[(ctx.grid[1], cdiv(seq_len_kv, BLOCK) if sequence_parallel else 1)](
q, k, v, ctx.sm_scale, #
o, do, #
dq, dk, dv, #
L, #
delta, #
o.numel(), q.stride(0), q.stride(1), q.stride(2), q.stride(3), #
k.stride(0), k.stride(1), k.stride(2), k.stride(3), #
v.stride(0), v.stride(1), v.stride(2), v.stride(3), #
q.shape[0], q.shape[1], q.shape[2], #
q.shape[0] * q.shape[1] * q.shape[2], #
cdiv(seq_len_kv, BLOCK) * q.shape[0] * q.shape[1] * q.shape[2], #
BLOCK_M=BLOCK, BLOCK_N=BLOCK, #
BLOCK_DMODEL=ctx.BLOCK_DMODEL, #
SEQUENCE_PARALLEL=sequence_parallel, #
CAUSAL=ctx.causal, #
MMA_V3=MMA_V3, #
num_warps=8, #
num_stages=1 #
)
if len(dq.shape) == 5:
dq = dq.sum(dim=0)
return dq, dk, dv, None, None, None
attention = _attention.apply